fpc/utils/tply/lexopt.pas
fpc 50778076c3 initial import
git-svn-id: trunk@1 -
2005-05-16 18:37:41 +00:00

233 lines
6.8 KiB
ObjectPascal

{
DFA optimization algorithm.
This is an efficient (O(n log(n)) DFA optimization procedure based on the
algorithm given in Aho/Sethi/Ullman, 1986, Section 3.9.
Copyright (c) 1990-92 Albert Graef <ag@muwiinfa.geschichte.uni-mainz.de>
Copyright (C) 1996 Berend de Boer <berend@pobox.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
$Revision: 1.2 $
$Modtime: 96-08-01 6:29 $
$History: LEXOPT.PAS $
*
* ***************** Version 2 *****************
* User: Berend Date: 96-10-10 Time: 21:16
* Updated in $/Lex and Yacc/tply
* Updated for protected mode, windows and Delphi 1.X and 2.X.
}
unit LexOpt;
interface
procedure optimizeDFATable;
(* optimize the state table *)
implementation
uses LexBase, LexTable;
(* Partition table used in DFA optimization: *)
(* obsolete
const
max_parts = max_states;*) (* number of partitions of equivalent states; at
worst, each state may be in a partition by
itself *)
type
PartTable = array [0..max_states-1] of IntSetPtr;
(* state partitions (DFA optimization) *)
StatePartTable = array [0..max_states-1] of Integer;
(* partition number of states *)
var
(* partition table: *)
n_parts : Integer;
part_table : ^PartTable;
state_part : ^StatePartTable;
(* optimized state and transition table: *)
n_opt_states : Integer;
n_opt_trans : Integer;
opt_state_table : ^StateTable;
opt_trans_table : ^TransTable;
function equivStates(i, j : Integer) : Boolean;
(* checks whether states i and j are equivalent; two states are considered
equivalent iff:
- they cover the same marker positions (/ and endmarkers of rules)
- they have transitions on the same symbols/characters, and corresponding
transitions go to states in the same partition
two different start states are never considered equivalent *)
var ii, jj, k : Integer;
mark_pos_i, mark_pos_j : IntSet;
begin
(* check for start states: *)
if (i<=2*n_start_states+1) and (j<=2*n_start_states+1) and
(i<>j) then
begin
equivStates := false;
exit;
end;
(* check end positions: *)
empty(mark_pos_i);
with state_table^[i] do
for k := 1 to size(state_pos^) do
if pos_table^[state_pos^[k]].pos_type=mark_pos then
include(mark_pos_i, state_pos^[k]);
empty(mark_pos_j);
with state_table^[j] do
for k := 1 to size(state_pos^) do
if pos_table^[state_pos^[k]].pos_type=mark_pos then
include(mark_pos_j, state_pos^[k]);
if not equal(mark_pos_i, mark_pos_j) then
begin
equivStates := false;
exit
end;
(* check transitions: *)
if n_state_trans(i)<>n_state_trans(j) then
equivStates := false
else
begin
ii := state_table^[i].trans_lo;
jj := state_table^[j].trans_lo;
for k := 0 to pred(n_state_trans(i)) do
if (trans_table^[ii+k].cc^<>trans_table^[jj+k].cc^) then
begin
equivStates := false;
exit
end
else if state_part^[trans_table^[ii+k].next_state]<>
state_part^[trans_table^[jj+k].next_state] then
begin
equivStates := false;
exit
end;
equivStates := true;
end
end(*equivStates*);
procedure optimizeDFATable;
var
i, ii, j : Integer;
act_part, new_part, n_new_parts : Integer;
begin
n_parts := 0;
(* Initially, create one partition containing ALL states: *)
n_parts := 1;
part_table^[0] := newIntSet;
for i := 0 to n_states-1 do
begin
include(part_table^[0]^, i);
state_part^[i] := 0;
end;
(* Now, repeatedly pass over the created partitions, breaking up
partitions if they contain nonequivalent states, until no more
partitions have been added during the last pass: *)
repeat
n_new_parts := 0; act_part := 0;
new_part := n_parts;
part_table^[new_part] := newIntSet;
while (n_parts<n_states) and (act_part<n_parts) do
begin
for i := 2 to size(part_table^[act_part]^) do
if not equivStates(part_table^[act_part]^[1],
part_table^[act_part]^[i]) then
(* add to new partition: *)
include(part_table^[new_part]^, part_table^[act_part]^[i]);
if size(part_table^[new_part]^)<>0 then
begin
(* add new partition: *)
inc(n_parts); inc(n_new_parts);
(* remove new partition from old one: *)
setminus(part_table^[act_part]^, part_table^[new_part]^);
(* update partition assignments: *)
for i := 1 to size(part_table^[new_part]^) do
state_part^[part_table^[new_part]^[i]] := new_part;
inc(new_part);
part_table^[new_part] := newIntSet;
end;
inc(act_part);
end;
until n_new_parts=0;
(* build the optimized state table: *)
n_opt_states := n_parts;
n_opt_trans := 0;
for i := 0 to n_parts-1 do
begin
ii := part_table^[i]^[1];
opt_state_table^[i] := state_table^[ii];
with opt_state_table^[i] do
begin
trans_lo := n_opt_trans+1;
trans_hi := n_opt_trans+1+state_table^[ii].trans_hi-
state_table^[ii].trans_lo;
for j := 2 to size(part_table^[i]^) do
setunion(state_pos^, state_table^[
part_table^[i]^[j]].state_pos^);
end;
for j := state_table^[ii].trans_lo to state_table^[ii].trans_hi do
begin
inc(n_opt_trans);
opt_trans_table^[n_opt_trans] := trans_table^[j];
with opt_trans_table^[n_opt_trans] do
next_state := state_part^[next_state];
end;
end;
(* update state table: *)
n_states := n_opt_states;
n_trans := n_opt_trans;
state_table^ := opt_state_table^;
trans_table^ := opt_trans_table^;
end(*optimizeDFATable*);
begin
new(part_table);
new(state_part);
new(opt_state_table);
new(opt_trans_table);
end(*LexOpt*).