fpc/compiler/i8086/cpuinfo.pas
2023-10-29 10:26:52 +00:00

219 lines
8.4 KiB
ObjectPascal

{
Copyright (c) 1998-2004 by Florian Klaempfl
Basic Processor information
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
Unit cpuinfo;
{$i fpcdefs.inc}
Interface
uses
globtype;
Type
bestreal = extended;
bestrealrec = TExtended80Rec;
ts32real = single;
ts64real = double;
ts80real = extended;
ts128real = type extended;
ts64comp = type extended;
pbestreal=^bestreal;
{ possible supported processors for this target }
tcputype =
(cpu_none,
cpu_8086,
cpu_186,
cpu_286,
cpu_386,
cpu_486,
cpu_Pentium,
cpu_Pentium2,
cpu_Pentium3,
cpu_Pentium4,
cpu_PentiumM
);
tfputype =
(fpu_none,
// fpu_soft,
fpu_x87,
fpu_sse,
fpu_sse2,
fpu_sse3,
fpu_ssse3,
fpu_sse41,
fpu_sse42,
fpu_avx,
fpu_fma,
fpu_avx2
);
tcontrollertype =
(ct_none
);
tcontrollerdatatype = record
controllertypestr, controllerunitstr: string[20];
cputype: tcputype; fputype: tfputype;
flashbase, flashsize, srambase, sramsize, eeprombase, eepromsize, bootbase, bootsize: dword;
end;
Const
{ Is there support for dealing with multiple microcontrollers available }
{ for this platform? }
ControllerSupport = false;
{ We know that there are fields after sramsize
but we don't care about this warning }
{$PUSH}
{$WARN 3177 OFF}
embedded_controllers : array [tcontrollertype] of tcontrollerdatatype =
(
(controllertypestr:''; controllerunitstr:''; cputype:cpu_none; fputype:fpu_none; flashbase:0; flashsize:0; srambase:0; sramsize:0));
{$POP}
{ calling conventions supported by the code generator }
supported_calling_conventions : tproccalloptions = [
pocall_internproc,
pocall_register,
pocall_safecall,
pocall_stdcall,
pocall_cdecl,
pocall_cppdecl,
pocall_pascal
];
cputypestr : array[tcputype] of string[10] = ('',
'8086',
'80186',
'80286',
'80386',
'80486',
'PENTIUM',
'PENTIUM2',
'PENTIUM3',
'PENTIUM4',
'PENTIUMM'
);
fputypestr : array[tfputype] of string[6] = (
'NONE',
// 'SOFT',
'X87',
'SSE',
'SSE2',
'SSE3',
'SSSE3',
'SSE41',
'SSE42',
'AVX',
'FMA',
'AVX2'
);
sse_singlescalar : set of tfputype = [fpu_sse..fpu_avx2];
sse_doublescalar : set of tfputype = [fpu_sse2..fpu_avx2];
fpu_avx_instructionsets = [fpu_avx,fpu_fma,fpu_avx2];
{ Supported optimizations, only used for information }
supported_optimizerswitches = genericlevel1optimizerswitches+
genericlevel2optimizerswitches+
genericlevel3optimizerswitches-
{ no need to write info about those }
[cs_opt_level1,cs_opt_level2,cs_opt_level3]+
[cs_opt_peephole,{$ifndef llvm}cs_opt_regvar,{$endif}cs_opt_stackframe,
cs_opt_loopunroll,cs_opt_uncertain,
cs_opt_tailrecursion,cs_opt_nodecse,cs_useebp,
cs_opt_reorder_fields,cs_opt_fastmath];
level1optimizerswitches = genericlevel1optimizerswitches;
level2optimizerswitches = genericlevel2optimizerswitches + level1optimizerswitches +
[cs_opt_regvar,cs_opt_stackframe,cs_opt_tailrecursion{,cs_opt_nodecse}];
level3optimizerswitches = genericlevel3optimizerswitches + level2optimizerswitches;
level4optimizerswitches = genericlevel4optimizerswitches + level3optimizerswitches + [cs_useebp];
type
tcpuflags =
(CPUX86_HAS_BTX, { Bit-test instructions (BT, BTC, BTR and BTS) are available }
CPUX86_HAS_CMOV, { CMOVcc instructions are available }
CPUX86_HAS_SSEUNIT, { SSE instructions are available }
CPUX86_HAS_SSE2, { SSE2 instructions are available }
CPUX86_HAS_BSWAP { BSWAP is available }
);
{ Instruction optimisation hints }
TCPUOptimizeFlags =
(CPUX86_HINT_FAST_BT_REG_IMM, { BT instructions with register source and immediate indices are at least as fast as logical instructions }
CPUX86_HINT_FAST_BT_REG_REG, { BT instructions with register source and register indices are at least as fast as equivalent logical instructions }
CPUX86_HINT_FAST_BTX_REG_IMM, { BTC/R/S instructions with register source and immediate indices are at least as fast as logical instructions }
CPUX86_HINT_FAST_BTX_REG_REG, { BTC/R/S instructions with register source and register indices are at least as fast as equivalent logical instructions }
CPUX86_HINT_FAST_BT_MEM_IMM, { BT instructions with memory sources and inmediate indices are at least as fast as logical instructions }
CPUX86_HINT_FAST_BT_MEM_REG, { BT instructions with memory sources and register indices and a register index are at least as fast as equivalent logical instructions }
CPUX86_HINT_FAST_BTX_MEM_IMM, { BTC/R/S instructions with memory sources and immediate indices are at least as fast as logical instructions }
CPUX86_HINT_FAST_BTX_MEM_REG, { BTC/R/S instructions with memory sources and register indices are at least as fast as equivalent logical instructions }
CPUX86_HINT_FAST_XCHG, { XCHG %reg,%reg executes in 2 cycles or less }
CPUX86_HINT_FAST_3COMP_ADDR, { A 3-component address (base, index and offset) has the same latency as the 2-component version (most notable with LEA instructions) }
CPUX86_HINT_FAST_3COMP_ADDR_16{ As above, but with 16-bit addresses }
);
const
cpu_capabilities : array[tcputype] of set of tcpuflags = (
{ cpu_none } [],
{ cpu_8086 } [],
{ cpu_186 } [],
{ cpu_286 } [],
{ cpu_386 } [CPUX86_HAS_BTX],
{ cpu_486 } [CPUX86_HAS_BSWAP,CPUX86_HAS_BTX],
{ cpu_Pentium } [CPUX86_HAS_BSWAP,CPUX86_HAS_BTX],
{ cpu_Pentium2 } [CPUX86_HAS_BSWAP,CPUX86_HAS_BTX,CPUX86_HAS_CMOV],
{ cpu_Pentium3 } [CPUX86_HAS_BSWAP,CPUX86_HAS_BTX,CPUX86_HAS_CMOV,CPUX86_HAS_SSEUNIT],
{ cpu_Pentium4 } [CPUX86_HAS_BSWAP,CPUX86_HAS_BTX,CPUX86_HAS_CMOV,CPUX86_HAS_SSEUNIT,CPUX86_HAS_SSE2],
{ cpu_PentiumM } [CPUX86_HAS_BSWAP,CPUX86_HAS_BTX,CPUX86_HAS_CMOV,CPUX86_HAS_SSEUNIT,CPUX86_HAS_SSE2]
);
cpu_optimization_hints : array[TCPUType] of set of TCPUOptimizeFlags = (
{ cpu_none } [],
{ cpu_8086 } [CPUX86_HINT_FAST_3COMP_ADDR,CPUX86_HINT_FAST_3COMP_ADDR_16],
{ cpu_186 } [CPUX86_HINT_FAST_3COMP_ADDR,CPUX86_HINT_FAST_3COMP_ADDR_16],
{ cpu_286 } [CPUX86_HINT_FAST_3COMP_ADDR,CPUX86_HINT_FAST_3COMP_ADDR_16],
{ cpu_386 } [CPUX86_HINT_FAST_3COMP_ADDR,CPUX86_HINT_FAST_3COMP_ADDR_16],
{ cpu_486 } [CPUX86_HINT_FAST_3COMP_ADDR,CPUX86_HINT_FAST_3COMP_ADDR_16],
{ cpu_Pentium } [CPUX86_HINT_FAST_3COMP_ADDR,CPUX86_HINT_FAST_3COMP_ADDR_16],
{ cpu_Pentium2 } [CPUX86_HINT_FAST_BT_REG_IMM,CPUX86_HINT_FAST_BTX_REG_IMM,CPUX86_HINT_FAST_3COMP_ADDR,CPUX86_HINT_FAST_3COMP_ADDR_16],
{ cpu_Pentium3 } [CPUX86_HINT_FAST_BT_REG_IMM,CPUX86_HINT_FAST_BTX_REG_IMM,CPUX86_HINT_FAST_3COMP_ADDR,CPUX86_HINT_FAST_3COMP_ADDR_16],
{ cpu_Pentium4 } [CPUX86_HINT_FAST_BT_REG_IMM,CPUX86_HINT_FAST_BTX_REG_IMM],
{ cpu_PentiumM } [CPUX86_HINT_FAST_BT_REG_IMM,CPUX86_HINT_FAST_BTX_REG_IMM,CPUX86_HINT_FAST_XCHG,CPUX86_HINT_FAST_3COMP_ADDR,CPUX86_HINT_FAST_3COMP_ADDR_16]
);
x86_near_code_models = [mm_tiny,mm_small,mm_compact];
x86_far_code_models = [mm_medium,mm_large,mm_huge];
x86_near_data_models = [mm_tiny,mm_small,mm_medium];
x86_far_data_models = [mm_compact,mm_large,mm_huge];
Implementation
end.