fpc/packages/ptc/examples/save.pp
nickysn 6a0078e38a * Updated PTCPas to version 0.99.12
git-svn-id: trunk@19633 -
2011-11-12 18:28:40 +00:00

275 lines
5.9 KiB
ObjectPascal

{
Ported to FPC by Nikolay Nikolov (nickysn@users.sourceforge.net)
}
{
Save example for OpenPTC 1.0 C++ implementation
Copyright (c) Glenn Fiedler (ptc@gaffer.org)
This source code is in the public domain
}
program SaveExample;
{$MODE objfpc}
uses
ptc, Math;
procedure save(surface: IPTCSurface; filename: string);
var
F: File;
width, height: Integer;
size: Integer;
y: Integer;
pixels: PUint8 = nil;
format: IPTCFormat;
{ generate the header for a true color targa image }
header: array [0..17] of Uint8 =
(0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
begin
{ open image file for writing }
AssignFile(F, filename);
Rewrite(F, 1);
try
{ get surface dimensions }
width := surface.width;
height := surface.height;
{ set targa image width }
header[12] := width and $FF;
header[13] := width shr 8;
{ set targa image height }
header[14] := height and $FF;
header[15] := height shr 8;
{ set bits per pixel }
header[16] := 24;
{ write tga header }
BlockWrite(F, header, 18);
{ calculate size of image pixels }
size := width * height * 3;
{ allocate image pixels }
pixels := GetMem(size);
{$IFDEF FPC_LITTLE_ENDIAN}
format := TPTCFormatFactory.CreateNew(24, $00FF0000, $0000FF00, $000000FF);
{$ELSE FPC_LITTLE_ENDIAN}
format := TPTCFormatFactory.CreateNew(24, $000000FF, $0000FF00, $00FF0000);
{$ENDIF FPC_LITTLE_ENDIAN}
{ save surface to image pixels }
surface.save(pixels, width, height, width * 3, format, TPTCPaletteFactory.CreateNew);
{ write image pixels one line at a time }
for y := height - 1 DownTo 0 do
BlockWrite(F, pixels[width * y * 3], width * 3);
finally
{ free image pixels }
FreeMem(pixels);
CloseFile(F);
end;
end;
function calculate(real, imaginary: Single; maximum: Integer): Integer;
var
c_r, c_i: Single;
z_r, z_i: Single;
z_r_squared, z_i_squared: Single;
z_squared_magnitude: Single;
count: Integer;
begin
{ complex number 'c' }
c_r := real;
c_i := imaginary;
{ complex 'z' }
z_r := 0;
z_i := 0;
{ complex 'z' squares }
z_r_squared := 0;
z_i_squared := 0;
{ mandelbrot function iteration loop }
for count := 0 to maximum - 1 do
begin
{ square 'z' and add 'c' }
z_i := 2 * z_r * z_i + c_i;
z_r := z_r_squared - z_i_squared + c_r;
{ update 'z' squares }
z_r_squared := z_r * z_r;
z_i_squared := z_i * z_i;
{ calculate squared magnitude of complex 'z' }
z_squared_magnitude := z_r_squared + z_i_squared;
{ stop iterating if the magnitude of 'z' is greater than two }
if z_squared_magnitude > 4 then
begin
calculate := Count;
exit;
end;
end;
{ maximum }
calculate := 0;
end;
procedure mandelbrot(console: IPTCConsole; surface: IPTCSurface;
x1, y1, x2, y2: Single);
const
{ constant values }
entries = 1024;
maximum = 1024;
var
{ fractal color table }
table: array [0..entries - 1] of Uint32;
i: Integer;
f_index: Single;
time: Single;
intensity: Single;
pixels, pixel: PUint32;
width, height: Integer;
dx, dy: Single;
real, imaginary: Single;
x, y: Integer;
count: Integer;
index: Integer;
color: Uint32;
area: IPTCArea;
begin
{ generate fractal color table }
for i := 0 to entries - 1 do
begin
{ calculate normalized index }
f_index := i / entries;
{ calculate sine curve time value }
time := f_index * pi - pi / 2;
{ lookup sine curve intensity at time and scale to [0,1] }
intensity := (sin(time) + 1) / 2;
{ raise the intensity to a power }
intensity := power(intensity, 0.1);
{ store intensity as a shade of blue }
table[i] := Trunc(255 * intensity);
end;
{ lock surface pixels }
pixels := surface.lock;
try
{ get surface dimensions }
width := surface.width;
height := surface.height;
{ current pixel pointer }
pixel := pixels;
{ calculate real x,y deltas }
dx := (x2 - x1) / width;
dy := (y2 - y1) / height;
{ imaginary axis }
imaginary := y1;
{ iterate down surface y }
for y := 0 to height - 1 do
begin
{ real axis }
real := x1;
{ iterate across surface x }
for x := 0 to width - 1 do
begin
{ calculate the mandelbrot interation count }
count := calculate(real, imaginary, maximum);
{ calculate color table index }
index := count mod entries;
{ lookup color from iteration }
color := table[index];
{ store color }
pixel^ := color;
{ next pixel }
Inc(pixel);
{ update real }
real := real + dx;
end;
{ update imaginary }
imaginary := imaginary + dy;
{ setup line area }
area := TPTCAreaFactory.CreateNew(0, y, width, y + 1);
{ copy surface area to console }
surface.copy(console, area, area);
{ update console area }
console.update;
end;
finally
{ unlock surface }
surface.unlock;
end;
end;
var
console: IPTCConsole;
surface: IPTCSurface;
format: IPTCFormat;
x1, y1, x2, y2: Single;
begin
try
try
{ create console }
console := TPTCConsoleFactory.CreateNew;
{ create format }
format := TPTCFormatFactory.CreateNew(32, $00FF0000, $0000FF00, $000000FF);
{ open the console with a single page }
console.open('Save example', format, 1);
{ create surface matching console dimensions }
surface := TPTCSurfaceFactory.CreateNew(console.width, console.height, format);
{ setup viewing area }
x1 := -2.00;
y1 := -1.25;
x2 := +1.00;
y2 := +1.25;
{ render the mandelbrot fractal }
mandelbrot(console, surface, x1, y1, x2, y2);
{ save mandelbrot image }
save(surface, 'save.tga');
{ read key }
console.ReadKey;
finally
if Assigned(console) then
console.close;
end;
except
on error: TPTCError do
{ report error }
error.report;
end;
end.