fpc/compiler/z80/cpubase.pas
2020-10-13 19:59:01 +00:00

623 lines
20 KiB
ObjectPascal

{
Copyright (c) 2006 by Florian Klaempfl
Contains the base types for the AVR
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
{# Base unit for processor information. This unit contains
enumerations of registers, opcodes, sizes, and other
such things which are processor specific.
}
unit cpubase;
{$i fpcdefs.inc}
interface
uses
cutils,cclasses,
globtype,globals,
cpuinfo,
aasmbase,
cgbase
;
{*****************************************************************************
Assembler Opcodes
*****************************************************************************}
type
TAsmOp={$i z80op.inc}
{ This should define the array of instructions as string }
op2strtable=array[tasmop] of string[4];
const
{ First value of opcode enumeration }
firstop = low(tasmop);
{ Last value of opcode enumeration }
lastop = high(tasmop);
std_op2str:op2strtable={$i z80stdopnames.inc}
{ call/reg instructions are not considered as jmp instructions for the usage cases of
this set }
jmp_instructions = [A_JP,A_JR,A_JRJP,A_DJNZ];
call_jmp_instructions = [A_CALL]+jmp_instructions;
{ instructions that can have a condition }
cond_instructions = [A_CALL,A_JP,A_JR,A_JRJP,A_RET];
{*****************************************************************************
Registers
*****************************************************************************}
type
{ Number of registers used for indexing in tables }
tregisterindex=0..{$i rz80nor.inc}-1;
const
{ Available Superregisters }
{$i rz80sup.inc}
{ No Subregisters }
R_SUBWHOLE = R_SUBL;
{ Available Registers }
{$i rz80con.inc}
{ Integer Super registers first and last }
first_int_supreg = RS_A;
first_int_imreg = $20;
{ Float Super register first and last }
first_fpu_supreg = RS_INVALID;
first_fpu_imreg = 0;
{ MM Super register first and last }
first_mm_supreg = RS_INVALID;
first_mm_imreg = 0;
regnumber_count_bsstart = 32;
regnumber_table : array[tregisterindex] of tregister = (
{$i rz80num.inc}
);
regstabs_table : array[tregisterindex] of shortint = (
{$i rz80sta.inc}
);
regdwarf_table : array[tregisterindex] of shortint = (
{$i rz80dwa.inc}
);
{ registers which may be destroyed by calls }
VOLATILE_INTREGISTERS = [RS_A,RS_B,RS_C,RS_D,RS_E,RS_H,RS_L];
VOLATILE_FPUREGISTERS = [];
type
totherregisterset = set of tregisterindex;
{*****************************************************************************
Conditions
*****************************************************************************}
type
TAsmCond=(C_None,
C_NZ,C_Z,C_NC,C_C,C_PO,C_PE,C_P,C_M
);
const
cond2str : array[TAsmCond] of string[2]=('',
'nz','z','nc','c','po','pe','p','m'
);
uppercond2str : array[TAsmCond] of string[2]=('',
'NZ','Z','NC','C','PO','PE','P','M'
);
{*****************************************************************************
Flags
*****************************************************************************}
type
TResFlags = (F_NotPossible,F_NE,F_E,F_NC,F_C,F_PO,F_PE,F_P,F_M);
{*****************************************************************************
Constants
*****************************************************************************}
const
max_operands = 2;
maxintregs = 15;
maxfpuregs = 0;
maxaddrregs = 0;
{*****************************************************************************
Operand Sizes
*****************************************************************************}
type
topsize = (S_NO,
S_B,S_W,S_L,S_BW,S_BL,S_WL,
S_IS,S_IL,S_IQ,
S_FS,S_FL,S_FX,S_D,S_Q,S_FV,S_FXX
);
{*****************************************************************************
Constants
*****************************************************************************}
const
firstsaveintreg = RS_INVALID;
lastsaveintreg = RS_INVALID;
firstsavefpureg = RS_INVALID;
lastsavefpureg = RS_INVALID;
firstsavemmreg = RS_INVALID;
lastsavemmreg = RS_INVALID;
{*****************************************************************************
Default generic sizes
*****************************************************************************}
{ Defines the default address size for a processor, }
OS_ADDR = OS_16;
{ the natural int size for a processor,
has to match osuinttype/ossinttype as initialized in psystem,
initially, this was OS_16/OS_S16 on avr, but experience has
proven that it is better to make it 8 Bit thus having the same
size as a register.
}
OS_INT = OS_8;
OS_SINT = OS_S8;
{ the maximum float size for a processor, }
OS_FLOAT = OS_F64;
{ the size of a vector register for a processor }
OS_VECTOR = OS_M32;
{*****************************************************************************
Generic Register names
*****************************************************************************}
{ Stack pointer register }
NR_STACK_POINTER_REG = NR_SP;
RS_STACK_POINTER_REG = RS_SP;
{ Frame pointer register }
RS_FRAME_POINTER_REG = RS_IX;
NR_FRAME_POINTER_REG = NR_IX;
{ Register for addressing absolute data in a position independant way,
such as in PIC code. The exact meaning is ABI specific. For
further information look at GCC source : PIC_OFFSET_TABLE_REGNUM
}
NR_PIC_OFFSET_REG = NR_INVALID;
{ Results are returned in this register (32-bit values) }
NR_FUNCTION_RETURN_REG = NR_L;
RS_FUNCTION_RETURN_REG = RS_L;
{ Low part of 64bit return value }
NR_FUNCTION_RETURN64_LOW_REG = NR_L;
RS_FUNCTION_RETURN64_LOW_REG = RS_L;
{ High part of 64bit return value }
NR_FUNCTION_RETURN64_HIGH_REG = NR_C;
RS_FUNCTION_RETURN64_HIGH_REG = RS_C;
{ The value returned from a function is available in this register }
NR_FUNCTION_RESULT_REG = NR_FUNCTION_RETURN_REG;
RS_FUNCTION_RESULT_REG = RS_FUNCTION_RETURN_REG;
{ The lowh part of 64bit value returned from a function }
NR_FUNCTION_RESULT64_LOW_REG = NR_FUNCTION_RETURN64_LOW_REG;
RS_FUNCTION_RESULT64_LOW_REG = RS_FUNCTION_RETURN64_LOW_REG;
{ The high part of 64bit value returned from a function }
NR_FUNCTION_RESULT64_HIGH_REG = NR_FUNCTION_RETURN64_HIGH_REG;
RS_FUNCTION_RESULT64_HIGH_REG = RS_FUNCTION_RETURN64_HIGH_REG;
NR_FPU_RESULT_REG = NR_NO;
NR_MM_RESULT_REG = NR_NO;
NR_RETURN_ADDRESS_REG = NR_FUNCTION_RETURN_REG;
{ Offset where the parent framepointer is pushed }
PARENT_FRAMEPOINTER_OFFSET = 0;
NR_DEFAULTFLAGS = NR_F;
RS_DEFAULTFLAGS = RS_F;
{*****************************************************************************
GCC /ABI linking information
*****************************************************************************}
const
{ Registers which must be saved when calling a routine declared as
cppdecl, cdecl, stdcall, safecall, palmossyscall. The registers
saved should be the ones as defined in the target ABI and / or GCC.
This value can be deduced from the CALLED_USED_REGISTERS array in the
GCC source.
}
{ on avr, gen_entry/gen_exit code saves/restores registers, so
we don't need this array }
saved_standard_registers : array[0..0] of tsuperregister =
(RS_INVALID);
{ Required parameter alignment when calling a routine declared as
stdcall and cdecl. The alignment value should be the one defined
by GCC or the target ABI.
The value of this constant is equal to the constant
PARM_BOUNDARY / BITS_PER_UNIT in the GCC source.
}
std_param_align = 4;
saved_address_registers : array[0..0] of tsuperregister = (RS_INVALID);
saved_mm_registers : array[0..0] of tsuperregister = (RS_INVALID);
{*****************************************************************************
Helpers
*****************************************************************************}
{ Returns the tcgsize corresponding with the size of reg.}
function reg_cgsize(const reg: tregister) : tcgsize;
function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
procedure inverse_flags(var f: TResFlags);
function flags_to_cond(const f: TResFlags) : TAsmCond;
function findreg_by_number(r:Tregister):tregisterindex;
function std_regnum_search(const s:string):Tregister;
function std_regname(r:Tregister):string;
function is_regpair(r:Tregister):boolean;
procedure split_regpair(regpair:Tregister;out reglo,reghi:Tregister);
{ Checks if sreg is a subset of reg (e.g. NR_H is a subset of NR_HL }
function register_in(sreg,reg:Tregister):boolean;
function super_registers_equal(reg1,reg2 : TRegister) : Boolean;
function registers_interfere(reg1,reg2: TRegister) : Boolean;
function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
{ Checks if Subset is a subset of c (e.g. "less than" is a subset of "less than or equal" }
function condition_in(const Subset, c: TAsmCond): Boolean;
function dwarf_reg(r:tregister):byte;
function dwarf_reg_no_error(r:tregister):shortint;
function eh_return_data_regno(nr: longint): longint;
function is_calljmp(o:tasmop):boolean;{$ifdef USEINLINE}inline;{$endif USEINLINE}
implementation
uses
rgBase,verbose;
const
std_regname_table : TRegNameTable = (
{$i rz80std.inc}
);
regnumber_index : array[tregisterindex] of tregisterindex = (
{$i rz80rni.inc}
);
std_regname_index : array[tregisterindex] of tregisterindex = (
{$i rz80sri.inc}
);
function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
begin
case s of
OS_8,OS_S8:
cgsize2subreg:=R_SUBL;
OS_16,OS_S16:
cgsize2subreg:=R_SUBW;
OS_32,OS_S32:
cgsize2subreg:=R_SUBD;
OS_64,OS_S64:
cgsize2subreg:=R_SUBQ;
OS_NO:
{ error message should have been thrown already before, so avoid only
an internal error }
cgsize2subreg:=R_SUBNONE;
else
internalerror(200301231);
end;
end;
function reg_cgsize(const reg: tregister): tcgsize;
begin
case getregtype(reg) of
R_INTREGISTER,
R_SPECIALREGISTER:
case getsubreg(reg) of
R_SUBL,
R_SUBH:
reg_cgsize:=OS_8;
R_SUBW:
reg_cgsize:=OS_16;
else
internalerror(2020041901);
end;
else
internalerror(2011021905);
end;
end;
procedure inverse_flags(var f: TResFlags);
const
inv_flags: array[TResFlags] of TResFlags =
(F_NotPossible,F_E,F_NE,F_C,F_NC,F_PE,F_PO,F_M,F_P);
begin
f:=inv_flags[f];
end;
function flags_to_cond(const f: TResFlags) : TAsmCond;
const
flag_2_cond: array[F_NE..F_M] of TAsmCond =
(C_NZ,C_Z,C_NC,C_C,C_PO,C_PE,C_P,C_M);
begin
if f=F_NotPossible then
internalerror(2011022101);
if f>high(flag_2_cond) then
internalerror(200112301);
result:=flag_2_cond[f];
end;
function findreg_by_number(r:Tregister):tregisterindex;
begin
result:=rgBase.findreg_by_number_table(r,regnumber_index);
end;
function std_regnum_search(const s:string):Tregister;
begin
result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)];
end;
function std_regname(r:Tregister):string;
var
p : tregisterindex;
begin
p:=findreg_by_number_table(r,regnumber_index);
if p<>0 then
result:=std_regname_table[p]
else
result:=generic_regname(r);
end;
function is_regpair(r: Tregister): boolean;
begin
result:=(r=NR_AF) or (r=NR_BC) or (r=NR_DE) or (r=NR_HL);
end;
procedure split_regpair(regpair: Tregister; out reglo, reghi: Tregister);
begin
case regpair of
NR_AF:
begin
reglo:=NR_F;
reghi:=NR_A;
end;
NR_BC:
begin
reglo:=NR_C;
reghi:=NR_B;
end;
NR_DE:
begin
reglo:=NR_E;
reghi:=NR_D;
end;
NR_HL:
begin
reglo:=NR_L;
reghi:=NR_H;
end;
else
internalerror(2020042804);
end;
end;
function register_in(sreg,reg: Tregister):boolean;
var
tmpreg1, tmpreg2: Tregister;
begin
if sreg=reg then
result:=true
else if is_regpair(reg) then
begin
split_regpair(reg,tmpreg1,tmpreg2);
result:=(sreg=tmpreg1) or (sreg=tmpreg2);
end
else
result:=false;
end;
function super_registers_equal(reg1, reg2: TRegister): Boolean;
begin
case reg1 of
NR_A,NR_F,NR_AF,NR_CARRYFLAG,NR_ADDSUBTRACTFLAG,NR_PARITYOVERFLOWFLAG,NR_HALFCARRYFLAG,NR_ZEROFLAG,NR_SIGNFLAG:
result:=(reg2=NR_A) or (reg2=NR_F) or (reg2=NR_AF) or
(reg2=NR_CARRYFLAG) or (reg2=NR_ADDSUBTRACTFLAG) or
(reg2=NR_PARITYOVERFLOWFLAG) or (reg2=NR_HALFCARRYFLAG) or
(reg2=NR_ZEROFLAG) or (reg2=NR_SIGNFLAG);
NR_B,NR_C,NR_BC:
result:=(reg2=NR_B) or (reg2=NR_C) or (reg2=NR_BC);
NR_D,NR_E,NR_DE:
result:=(reg2=NR_D) or (reg2=NR_E) or (reg2=NR_DE);
NR_H,NR_L,NR_HL:
result:=(reg2=NR_H) or (reg2=NR_L) or (reg2=NR_HL);
NR_A_,NR_F_,NR_AF_,NR_CARRYFLAG_,NR_ADDSUBTRACTFLAG_,NR_PARITYOVERFLOWFLAG_,NR_HALFCARRYFLAG_,NR_ZEROFLAG_,NR_SIGNFLAG_:
result:=(reg2=NR_A_) or (reg2=NR_F_) or (reg2=NR_AF_) or
(reg2=NR_CARRYFLAG_) or (reg2=NR_ADDSUBTRACTFLAG_) or
(reg2=NR_PARITYOVERFLOWFLAG_) or (reg2=NR_HALFCARRYFLAG_) or
(reg2=NR_ZEROFLAG_) or (reg2=NR_SIGNFLAG_);
NR_B_,NR_C_,NR_BC_:
result:=(reg2=NR_B_) or (reg2=NR_C_) or (reg2=NR_BC_);
NR_D_,NR_E_,NR_DE_:
result:=(reg2=NR_D_) or (reg2=NR_E_) or (reg2=NR_DE_);
NR_H_,NR_L_,NR_HL_:
result:=(reg2=NR_H_) or (reg2=NR_L_) or (reg2=NR_HL_);
else
result:=reg1=reg2;
end;
end;
function registers_interfere(reg1, reg2: TRegister): Boolean;
begin
case reg1 of
NR_A:
result:=(reg2=NR_A) or (reg2=NR_AF);
NR_F:
result:=(reg2=NR_F) or (reg2=NR_AF) or
(reg2=NR_CARRYFLAG) or (reg2=NR_ADDSUBTRACTFLAG) or
(reg2=NR_PARITYOVERFLOWFLAG) or (reg2=NR_HALFCARRYFLAG) or
(reg2=NR_ZEROFLAG) or (reg2=NR_SIGNFLAG);
NR_AF:
result:=(reg2=NR_A) or (reg2=NR_F) or (reg2=NR_AF) or
(reg2=NR_CARRYFLAG) or (reg2=NR_ADDSUBTRACTFLAG) or
(reg2=NR_PARITYOVERFLOWFLAG) or (reg2=NR_HALFCARRYFLAG) or
(reg2=NR_ZEROFLAG) or (reg2=NR_SIGNFLAG);
NR_CARRYFLAG,NR_ADDSUBTRACTFLAG,NR_PARITYOVERFLOWFLAG,NR_HALFCARRYFLAG,NR_ZEROFLAG,NR_SIGNFLAG:
result:=(reg2=NR_F) or (reg2=NR_AF) or (reg2=reg1);
NR_B:
result:=(reg2=NR_B) or (reg2=NR_BC);
NR_C:
result:=(reg2=NR_C) or (reg2=NR_BC);
NR_BC:
result:=(reg2=NR_B) or (reg2=NR_C) or (reg2=NR_BC);
NR_D:
result:=(reg2=NR_D) or (reg2=NR_DE);
NR_E:
result:=(reg2=NR_E) or (reg2=NR_DE);
NR_DE:
result:=(reg2=NR_D) or (reg2=NR_E) or (reg2=NR_DE);
NR_H:
result:=(reg2=NR_H) or (reg2=NR_HL);
NR_L:
result:=(reg2=NR_L) or (reg2=NR_HL);
NR_HL:
result:=(reg2=NR_H) or (reg2=NR_L) or (reg2=NR_HL);
NR_A_:
result:=(reg2=NR_A_) or (reg2=NR_AF_);
NR_F_:
result:=(reg2=NR_F_) or (reg2=NR_AF_) or
(reg2=NR_CARRYFLAG_) or (reg2=NR_ADDSUBTRACTFLAG_) or
(reg2=NR_PARITYOVERFLOWFLAG_) or (reg2=NR_HALFCARRYFLAG_) or
(reg2=NR_ZEROFLAG_) or (reg2=NR_SIGNFLAG_);
NR_AF_:
result:=(reg2=NR_A_) or (reg2=NR_F_) or (reg2=NR_AF_) or
(reg2=NR_CARRYFLAG_) or (reg2=NR_ADDSUBTRACTFLAG_) or
(reg2=NR_PARITYOVERFLOWFLAG_) or (reg2=NR_HALFCARRYFLAG_) or
(reg2=NR_ZEROFLAG_) or (reg2=NR_SIGNFLAG_);
NR_CARRYFLAG_,NR_ADDSUBTRACTFLAG_,NR_PARITYOVERFLOWFLAG_,NR_HALFCARRYFLAG_,NR_ZEROFLAG_,NR_SIGNFLAG_:
result:=(reg2=NR_F_) or (reg2=NR_AF_) or (reg2=reg1);
NR_B_:
result:=(reg2=NR_B_) or (reg2=NR_BC_);
NR_C_:
result:=(reg2=NR_C_) or (reg2=NR_BC_);
NR_BC_:
result:=(reg2=NR_B_) or (reg2=NR_C_) or (reg2=NR_BC_);
NR_D_:
result:=(reg2=NR_D_) or (reg2=NR_DE_);
NR_E_:
result:=(reg2=NR_E_) or (reg2=NR_DE_);
NR_DE_:
result:=(reg2=NR_D_) or (reg2=NR_E_) or (reg2=NR_DE_);
NR_H_:
result:=(reg2=NR_H_) or (reg2=NR_HL_);
NR_L_:
result:=(reg2=NR_L_) or (reg2=NR_HL_);
NR_HL_:
result:=(reg2=NR_H_) or (reg2=NR_L_) or (reg2=NR_HL_);
else
result:=reg1=reg2;
end;
end;
function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
const
inverse: array[TAsmCond] of TAsmCond=(C_None,
C_Z,C_NZ,C_C,C_NC,C_PE,C_PO,C_M,C_P);
begin
result := inverse[c];
end;
function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
begin
result := c1 = c2;
end;
{ Checks if Subset is a subset of c (e.g. "less than" is a subset of "less than or equal" }
function condition_in(const Subset, c: TAsmCond): Boolean;
begin
{ Z80 has no condition subsets }
Result := {(c.cond = C_None) or} conditions_equal(Subset, c);
end;
function rotl(d : dword;b : byte) : dword;
begin
result:=(d shr (32-b)) or (d shl b);
end;
function dwarf_reg(r:tregister):byte;
var
reg : shortint;
begin
reg:=regdwarf_table[findreg_by_number(r)];
if reg=-1 then
internalerror(200603251);
result:=reg;
end;
function dwarf_reg_no_error(r:tregister):shortint;
begin
result:=regdwarf_table[findreg_by_number(r)];
end;
function eh_return_data_regno(nr: longint): longint;
begin
result:=-1;
end;
function is_calljmp(o:tasmop):boolean;{$ifdef USEINLINE}inline;{$endif USEINLINE}
begin
is_calljmp:= o in call_jmp_instructions;
end;
end.