fpc/compiler/nadd.pas
Jonas Maebe 769eb3f604 * moved the initialisation of the nodetree and tai class reference constants
from the unit initialisation sections to the variable declaration sections
    to prevent the base units from overriding derived classes (based on patch
    by Hans-Peter Dietrich, mantis #17516)

git-svn-id: trunk@16118 -
2010-10-09 18:52:22 +00:00

2810 lines
111 KiB
ObjectPascal

{
Copyright (c) 1998-2002 by Florian Klaempfl
Type checking and simplification for add nodes
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit nadd;
{$i fpcdefs.inc}
{ define addstringopt}
interface
uses
node,symtype;
type
taddnode = class(tbinopnode)
private
resultrealdefderef: tderef;
function pass_typecheck_internal:tnode;
public
resultrealdef : tdef;
constructor create(tt : tnodetype;l,r : tnode);override;
constructor ppuload(t:tnodetype;ppufile:tcompilerppufile);override;
procedure ppuwrite(ppufile:tcompilerppufile);override;
procedure buildderefimpl;override;
procedure derefimpl;override;
function pass_1 : tnode;override;
function pass_typecheck:tnode;override;
function simplify(forinline: boolean) : tnode;override;
function dogetcopy : tnode;override;
function docompare(p: tnode): boolean; override;
{$ifdef state_tracking}
function track_state_pass(exec_known:boolean):boolean;override;
{$endif}
protected
{ override the following if you want to implement }
{ parts explicitely in the code generator (JM) }
function first_addstring: tnode; virtual;
function first_addset: tnode; virtual;
{ only implements "muln" nodes, the rest always has to be done in }
{ the code generator for performance reasons (JM) }
function first_add64bitint: tnode; virtual;
{ override and return false if you can handle 32x32->64 }
{ bit multiplies directly in your code generator. If }
{ this function is overridden to return false, you can }
{ get multiplies with left/right both s32bit or u32bit, }
{ and resultdef of the muln s64bit or u64bit }
function use_generic_mul32to64: boolean; virtual;
{ This routine calls internal runtime library helpers
for all floating point arithmetic in the case
where the emulation switches is on. Otherwise
returns nil, and everything must be done in
the code generation phase.
}
function first_addfloat : tnode; virtual;
private
{ checks whether a muln can be calculated as a 32bit }
{ * 32bit -> 64 bit }
function try_make_mul32to64: boolean;
end;
taddnodeclass = class of taddnode;
var
{ caddnode is used to create nodes of the add type }
{ the virtual constructor allows to assign }
{ another class type to caddnode => processor }
{ specific node types can be created }
caddnode : taddnodeclass = taddnode;
implementation
uses
{$IFNDEF USE_FAKE_SYSUTILS}
sysutils,
{$ELSE}
fksysutl,
{$ENDIF}
globtype,systems,constexp,
cutils,verbose,globals,widestr,
symconst,symdef,symsym,symtable,defutil,defcmp,
cgbase,
htypechk,pass_1,
nld,nbas,nmat,ncnv,ncon,nset,nopt,ncal,ninl,nmem,nutils,
{$ifdef state_tracking}
nstate,
{$endif}
cpuinfo,procinfo;
{*****************************************************************************
TADDNODE
*****************************************************************************}
{$maxfpuregisters 0}
function getbestreal(t1,t2 : tdef) : tdef;
const
floatweight : array[tfloattype] of byte =
(2,3,4,5,0,1,6);
begin
if t1.typ=floatdef then
begin
result:=t1;
if t2.typ=floatdef then
begin
{ when a comp or currency is used, use always the
best float type to calculate the result }
if (tfloatdef(t2).floattype in [s64comp,s64currency]) or
(tfloatdef(t2).floattype in [s64comp,s64currency]) then
result:=pbestrealtype^
else
if floatweight[tfloatdef(t2).floattype]>floatweight[tfloatdef(t1).floattype] then
result:=t2;
end;
end
else if t2.typ=floatdef then
result:=t2
else internalerror(200508061);
end;
constructor taddnode.create(tt : tnodetype;l,r : tnode);
begin
inherited create(tt,l,r);
end;
constructor taddnode.ppuload(t: tnodetype; ppufile: tcompilerppufile);
begin
inherited ppuload(t, ppufile);
ppufile.getderef(resultrealdefderef);
end;
procedure taddnode.ppuwrite(ppufile: tcompilerppufile);
begin
inherited ppuwrite(ppufile);
ppufile.putderef(resultrealdefderef);
end;
procedure taddnode.buildderefimpl;
begin
inherited buildderefimpl;
resultrealdefderef.build(resultrealdef);
end;
procedure taddnode.derefimpl;
begin
inherited derefimpl;
resultrealdef:=tdef(resultrealdefderef.resolve);
end;
function taddnode.simplify(forinline : boolean) : tnode;
var
t, hp : tnode;
lt,rt : tnodetype;
realdef : tdef;
rd,ld : tdef;
rv,lv,v : tconstexprint;
rvd,lvd : bestreal;
ws1,ws2 : pcompilerwidestring;
concatstrings : boolean;
c1,c2 : array[0..1] of char;
s1,s2 : pchar;
l1,l2 : longint;
resultset : Tconstset;
b : boolean;
begin
result:=nil;
{ load easier access variables }
rd:=right.resultdef;
ld:=left.resultdef;
rt:=right.nodetype;
lt:=left.nodetype;
if (nodetype = slashn) and
(((rt = ordconstn) and
(tordconstnode(right).value = 0)) or
((rt = realconstn) and
(trealconstnode(right).value_real = 0.0))) then
begin
if floating_point_range_check_error then
begin
result:=crealconstnode.create(1,pbestrealtype^);
Message(parser_e_division_by_zero);
exit;
end;
end;
{ both are int constants }
if (
(
is_constintnode(left) and
is_constintnode(right)
) or
(
is_constboolnode(left) and
is_constboolnode(right) and
(nodetype in [slashn,ltn,lten,gtn,gten,equaln,unequaln,andn,xorn,orn])
) or
(
is_constenumnode(left) and
is_constenumnode(right) and
allowenumop(nodetype))
) or
(
(lt = pointerconstn) and
is_constintnode(right) and
(nodetype in [addn,subn])
) or
(
(lt in [pointerconstn,niln]) and
(rt in [pointerconstn,niln]) and
(nodetype in [ltn,lten,gtn,gten,equaln,unequaln,subn])
) then
begin
t:=nil;
{ load values }
case lt of
ordconstn:
lv:=tordconstnode(left).value;
pointerconstn:
lv:=tpointerconstnode(left).value;
niln:
lv:=0;
else
internalerror(2002080202);
end;
case rt of
ordconstn:
rv:=tordconstnode(right).value;
pointerconstn:
rv:=tpointerconstnode(right).value;
niln:
rv:=0;
else
internalerror(2002080203);
end;
{ type checking already took care of multiplying }
{ integer constants with pointeddef.size if necessary }
case nodetype of
addn :
begin
v:=lv+rv;
if v.overflow then
begin
Message(parser_e_arithmetic_operation_overflow);
{ Recover }
t:=genintconstnode(0)
end
else if (lt=pointerconstn) then
t := cpointerconstnode.create(qword(v),resultdef)
else
if is_integer(ld) then
t := create_simplified_ord_const(v,resultdef,forinline)
else
t := cordconstnode.create(v,resultdef,(ld.typ<>enumdef));
end;
subn :
begin
v:=lv-rv;
if v.overflow then
begin
Message(parser_e_arithmetic_operation_overflow);
{ Recover }
t:=genintconstnode(0)
end
else if (lt=pointerconstn) then
{ pointer-pointer results in an integer }
if (rt=pointerconstn) then
begin
if not(nf_has_pointerdiv in flags) then
internalerror(2008030101);
t := cpointerconstnode.create(qword(v),resultdef)
end
else
t := cpointerconstnode.create(qword(v),resultdef)
else
if is_integer(ld) then
t := create_simplified_ord_const(v,resultdef,forinline)
else
t:=cordconstnode.create(v,resultdef,(ld.typ<>enumdef));
end;
muln :
begin
v:=lv*rv;
if v.overflow then
begin
message(parser_e_arithmetic_operation_overflow);
{ Recover }
t:=genintconstnode(0)
end
else
t := create_simplified_ord_const(v,resultdef,forinline)
end;
xorn :
if is_integer(ld) then
t := create_simplified_ord_const(lv xor rv,resultdef,forinline)
else
t:=cordconstnode.create(lv xor rv,resultdef,true);
orn :
if is_integer(ld) then
t:=create_simplified_ord_const(lv or rv,resultdef,forinline)
else
t:=cordconstnode.create(lv or rv,resultdef,true);
andn :
if is_integer(ld) then
t:=create_simplified_ord_const(lv and rv,resultdef,forinline)
else
t:=cordconstnode.create(lv and rv,resultdef,true);
ltn :
t:=cordconstnode.create(ord(lv<rv),booltype,true);
lten :
t:=cordconstnode.create(ord(lv<=rv),booltype,true);
gtn :
t:=cordconstnode.create(ord(lv>rv),booltype,true);
gten :
t:=cordconstnode.create(ord(lv>=rv),booltype,true);
equaln :
t:=cordconstnode.create(ord(lv=rv),booltype,true);
unequaln :
t:=cordconstnode.create(ord(lv<>rv),booltype,true);
slashn :
begin
{ int/int becomes a real }
rvd:=rv;
lvd:=lv;
t:=crealconstnode.create(lvd/rvd,resultrealdef);
end;
else
internalerror(2008022101);
end;
result:=t;
exit;
end
{Match against the ranges, i.e.:
var a:1..10;
begin
if a>0 then
... always evaluates to true. (DM)}
else if is_constintnode(left) and (right.resultdef.typ=orddef) and
{ don't ignore type checks }
is_subequal(left.resultdef,right.resultdef) then
begin
t:=nil;
hp:=right;
realdef:=hp.resultdef;
{ stop with finding the real def when we either encounter
a) an explicit type conversion (then the value has to be
re-interpreted)
b) an "absolute" type conversion (also requires
re-interpretation)
}
while (hp.nodetype=typeconvn) and
([nf_internal,nf_explicit,nf_absolute] * hp.flags = []) do
begin
hp:=ttypeconvnode(hp).left;
realdef:=hp.resultdef;
end;
lv:=Tordconstnode(left).value;
with torddef(realdef) do
case nodetype of
ltn:
if lv<low then
t:=Cordconstnode.create(1,booltype,true)
else if lv>=high then
t:=Cordconstnode.create(0,booltype,true);
lten:
if lv<=low then
t:=Cordconstnode.create(1,booltype,true)
else if lv>high then
t:=Cordconstnode.create(0,booltype,true);
gtn:
if lv<=low then
t:=Cordconstnode.create(0,booltype,true)
else if lv>high then
t:=Cordconstnode.create(1,booltype,true);
gten :
if lv<low then
t:=Cordconstnode.create(0,booltype,true)
else if lv>=high then
t:=Cordconstnode.create(1,booltype,true);
equaln:
if (lv<low) or (lv>high) then
t:=Cordconstnode.create(0,booltype,true);
unequaln:
if (lv<low) or (lv>high) then
t:=Cordconstnode.create(1,booltype,true);
end;
if t<>nil then
begin
result:=t;
exit;
end
end
else if (left.resultdef.typ=orddef) and is_constintnode(right) and
{ don't ignore type checks }
is_subequal(left.resultdef,right.resultdef) then
begin
t:=nil;
hp:=left;
realdef:=hp.resultdef;
while (hp.nodetype=typeconvn) and
([nf_internal,nf_explicit,nf_absolute] * hp.flags = []) do
begin
hp:=ttypeconvnode(hp).left;
realdef:=hp.resultdef;
end;
rv:=Tordconstnode(right).value;
with torddef(realdef) do
case nodetype of
ltn:
if high<rv then
t:=Cordconstnode.create(1,booltype,true)
else if low>=rv then
t:=Cordconstnode.create(0,booltype,true);
lten:
if high<=rv then
t:=Cordconstnode.create(1,booltype,true)
else if low>rv then
t:=Cordconstnode.create(0,booltype,true);
gtn:
if high<=rv then
t:=Cordconstnode.create(0,booltype,true)
else if low>rv then
t:=Cordconstnode.create(1,booltype,true);
gten:
if high<rv then
t:=Cordconstnode.create(0,booltype,true)
else if low>=rv then
t:=Cordconstnode.create(1,booltype,true);
equaln:
if (rv<low) or (rv>high) then
t:=Cordconstnode.create(0,booltype,true);
unequaln:
if (rv<low) or (rv>high) then
t:=Cordconstnode.create(1,booltype,true);
end;
if t<>nil then
begin
result:=t;
exit;
end
end;
{ Add,Sub,Mul with constant 0, 1 or -1? }
if is_constintnode(right) and is_integer(left.resultdef) then
begin
if tordconstnode(right).value = 0 then
begin
case nodetype of
addn,subn:
result := left.getcopy;
muln:
result:=cordconstnode.create(0,resultdef,true);
end;
end
else if tordconstnode(right).value = 1 then
begin
case nodetype of
muln:
result := left.getcopy;
end;
end
{$ifdef VER2_2}
else if (tordconstnode(right).value.svalue = -1) and (tordconstnode(right).value.signed) then
{$else}
else if tordconstnode(right).value = -1 then
{$endif}
begin
case nodetype of
muln:
result := cunaryminusnode.create(left.getcopy);
end;
end;
if assigned(result) then
exit;
end;
if is_constintnode(left) and is_integer(right.resultdef) then
begin
if tordconstnode(left).value = 0 then
begin
case nodetype of
addn:
result := right.getcopy;
subn:
result := cunaryminusnode.create(right.getcopy);
muln:
result:=cordconstnode.create(0,right.resultdef,true);
end;
end
else if tordconstnode(left).value = 1 then
begin
case nodetype of
muln:
result := right.getcopy;
end;
end
{$ifdef VER2_2}
else if (tordconstnode(left).value.svalue = -1) and (tordconstnode(left).value.signed) then
{$else}
else if tordconstnode(left).value = -1 then
{$endif}
begin
case nodetype of
muln:
result := cunaryminusnode.create(right.getcopy);
end;
end;
if assigned(result) then
exit;
end;
{ both real constants ? }
if (lt=realconstn) and (rt=realconstn) then
begin
lvd:=trealconstnode(left).value_real;
rvd:=trealconstnode(right).value_real;
case nodetype of
addn :
t:=crealconstnode.create(lvd+rvd,resultrealdef);
subn :
t:=crealconstnode.create(lvd-rvd,resultrealdef);
muln :
t:=crealconstnode.create(lvd*rvd,resultrealdef);
starstarn:
begin
if lvd<0 then
begin
Message(parser_e_invalid_float_operation);
t:=crealconstnode.create(0,resultrealdef);
end
else if lvd=0 then
t:=crealconstnode.create(1.0,resultrealdef)
else
t:=crealconstnode.create(exp(ln(lvd)*rvd),resultrealdef);
end;
slashn :
t:=crealconstnode.create(lvd/rvd,resultrealdef);
ltn :
t:=cordconstnode.create(ord(lvd<rvd),booltype,true);
lten :
t:=cordconstnode.create(ord(lvd<=rvd),booltype,true);
gtn :
t:=cordconstnode.create(ord(lvd>rvd),booltype,true);
gten :
t:=cordconstnode.create(ord(lvd>=rvd),booltype,true);
equaln :
t:=cordconstnode.create(ord(lvd=rvd),booltype,true);
unequaln :
t:=cordconstnode.create(ord(lvd<>rvd),booltype,true);
else
internalerror(2008022102);
end;
result:=t;
exit;
end;
{ first, we handle widestrings, so we can check later for }
{ stringconstn only }
{ widechars are converted above to widestrings too }
{ this isn't ver y efficient, but I don't think }
{ that it does matter that much (FK) }
if (lt=stringconstn) and (rt=stringconstn) and
(tstringconstnode(left).cst_type in [cst_widestring,cst_unicodestring]) and
(tstringconstnode(right).cst_type in [cst_widestring,cst_unicodestring]) then
begin
initwidestring(ws1);
initwidestring(ws2);
copywidestring(pcompilerwidestring(tstringconstnode(left).value_str),ws1);
copywidestring(pcompilerwidestring(tstringconstnode(right).value_str),ws2);
case nodetype of
addn :
begin
concatwidestrings(ws1,ws2);
t:=cstringconstnode.createwstr(ws1);
end;
ltn :
t:=cordconstnode.create(byte(comparewidestrings(ws1,ws2)<0),booltype,true);
lten :
t:=cordconstnode.create(byte(comparewidestrings(ws1,ws2)<=0),booltype,true);
gtn :
t:=cordconstnode.create(byte(comparewidestrings(ws1,ws2)>0),booltype,true);
gten :
t:=cordconstnode.create(byte(comparewidestrings(ws1,ws2)>=0),booltype,true);
equaln :
t:=cordconstnode.create(byte(comparewidestrings(ws1,ws2)=0),booltype,true);
unequaln :
t:=cordconstnode.create(byte(comparewidestrings(ws1,ws2)<>0),booltype,true);
else
internalerror(2008022103);
end;
donewidestring(ws1);
donewidestring(ws2);
result:=t;
exit;
end;
{ concating strings ? }
concatstrings:=false;
if (lt=ordconstn) and (rt=ordconstn) and
is_char(ld) and is_char(rd) then
begin
c1[0]:=char(int64(tordconstnode(left).value));
c1[1]:=#0;
l1:=1;
c2[0]:=char(int64(tordconstnode(right).value));
c2[1]:=#0;
l2:=1;
s1:=@c1[0];
s2:=@c2[0];
concatstrings:=true;
end
else if (lt=stringconstn) and (rt=ordconstn) and is_char(rd) then
begin
s1:=tstringconstnode(left).value_str;
l1:=tstringconstnode(left).len;
c2[0]:=char(int64(tordconstnode(right).value));
c2[1]:=#0;
s2:=@c2[0];
l2:=1;
concatstrings:=true;
end
else if (lt=ordconstn) and (rt=stringconstn) and is_char(ld) then
begin
c1[0]:=char(int64(tordconstnode(left).value));
c1[1]:=#0;
l1:=1;
s1:=@c1[0];
s2:=tstringconstnode(right).value_str;
l2:=tstringconstnode(right).len;
concatstrings:=true;
end
else if (lt=stringconstn) and (rt=stringconstn) then
begin
s1:=tstringconstnode(left).value_str;
l1:=tstringconstnode(left).len;
s2:=tstringconstnode(right).value_str;
l2:=tstringconstnode(right).len;
concatstrings:=true;
end;
if concatstrings then
begin
case nodetype of
addn :
begin
t:=cstringconstnode.createpchar(concatansistrings(s1,s2,l1,l2),l1+l2);
typecheckpass(t);
tstringconstnode(t).changestringtype(resultdef);
end;
ltn :
t:=cordconstnode.create(byte(compareansistrings(s1,s2,l1,l2)<0),booltype,true);
lten :
t:=cordconstnode.create(byte(compareansistrings(s1,s2,l1,l2)<=0),booltype,true);
gtn :
t:=cordconstnode.create(byte(compareansistrings(s1,s2,l1,l2)>0),booltype,true);
gten :
t:=cordconstnode.create(byte(compareansistrings(s1,s2,l1,l2)>=0),booltype,true);
equaln :
t:=cordconstnode.create(byte(compareansistrings(s1,s2,l1,l2)=0),booltype,true);
unequaln :
t:=cordconstnode.create(byte(compareansistrings(s1,s2,l1,l2)<>0),booltype,true);
else
internalerror(2008022104);
end;
result:=t;
exit;
end;
{ set constant evaluation }
if (right.nodetype=setconstn) and
not assigned(tsetconstnode(right).left) and
(left.nodetype=setconstn) and
not assigned(tsetconstnode(left).left) then
begin
case nodetype of
addn :
begin
resultset:=tsetconstnode(right).value_set^ + tsetconstnode(left).value_set^;
t:=csetconstnode.create(@resultset,resultdef);
end;
muln :
begin
resultset:=tsetconstnode(right).value_set^ * tsetconstnode(left).value_set^;
t:=csetconstnode.create(@resultset,resultdef);
end;
subn :
begin
resultset:=tsetconstnode(left).value_set^ - tsetconstnode(right).value_set^;
t:=csetconstnode.create(@resultset,resultdef);
end;
symdifn :
begin
resultset:=tsetconstnode(right).value_set^ >< tsetconstnode(left).value_set^;
t:=csetconstnode.create(@resultset,resultdef);
end;
unequaln :
begin
b:=tsetconstnode(right).value_set^ <> tsetconstnode(left).value_set^;
t:=cordconstnode.create(byte(b),booltype,true);
end;
equaln :
begin
b:=tsetconstnode(right).value_set^ = tsetconstnode(left).value_set^;
t:=cordconstnode.create(byte(b),booltype,true);
end;
lten :
begin
b:=tsetconstnode(left).value_set^ <= tsetconstnode(right).value_set^;
t:=cordconstnode.create(byte(b),booltype,true);
end;
gten :
begin
b:=tsetconstnode(left).value_set^ >= tsetconstnode(right).value_set^;
t:=cordconstnode.create(byte(b),booltype,true);
end;
else
internalerror(2008022105);
end;
result:=t;
exit;
end;
{ the comparison is might be expensive and the nodes are usually only
equal if some previous optimizations were done so don't check
this simplification always
}
if (cs_opt_level2 in current_settings.optimizerswitches) and
is_boolean(left.resultdef) and is_boolean(right.resultdef) and
{ since the expressions might have sideeffects, we may only remove them
if short boolean evaluation is turned on }
(nf_short_bool in flags) then
begin
if left.isequal(right) then
begin
case nodetype of
andn,orn:
begin
result:=left;
left:=nil;
exit;
end;
{
xorn:
begin
result:=cordconstnode.create(0,resultdef,true);
exit;
end;
}
end;
end;
end;
end;
function taddnode.dogetcopy: tnode;
var
n: taddnode;
begin
n:=taddnode(inherited dogetcopy);
n.resultrealdef:=resultrealdef;
result:=n;
end;
function taddnode.docompare(p: tnode): boolean;
begin
result:=
inherited docompare(p) and
equal_defs(taddnode(p).resultrealdef,resultrealdef);
end;
function taddnode.pass_typecheck:tnode;
begin
{ This function is small to keep the stack small for recursive of
large + operations }
typecheckpass(left);
typecheckpass(right);
result:=pass_typecheck_internal;
end;
function taddnode.pass_typecheck_internal:tnode;
var
hp : tnode;
rd,ld,nd : tdef;
hsym : tfieldvarsym;
llow,lhigh,
rlow,rhigh : tconstexprint;
strtype : tstringtype;
b : boolean;
lt,rt : tnodetype;
ot : tnodetype;
{$ifdef state_tracking}
factval : Tnode;
change : boolean;
{$endif}
begin
result:=nil;
{ both left and right need to be valid }
set_varstate(left,vs_read,[vsf_must_be_valid]);
set_varstate(right,vs_read,[vsf_must_be_valid]);
if codegenerror then
exit;
{ tp procvar support }
maybe_call_procvar(left,true);
maybe_call_procvar(right,true);
{ convert array constructors to sets, because there is no other operator
possible for array constructors }
if is_array_constructor(left.resultdef) then
begin
arrayconstructor_to_set(left);
typecheckpass(left);
end;
if is_array_constructor(right.resultdef) then
begin
arrayconstructor_to_set(right);
typecheckpass(right);
end;
{ allow operator overloading }
hp:=self;
if isbinaryoverloaded(hp) then
begin
result:=hp;
exit;
end;
{ Stop checking when an error was found in the operator checking }
if codegenerror then
begin
result:=cerrornode.create;
exit;
end;
{ Kylix allows enum+ordconstn in an enum type declaration, we need to do
the conversion here before the constant folding }
if (m_delphi in current_settings.modeswitches) and
(blocktype in [bt_type,bt_const_type,bt_var_type]) then
begin
if (left.resultdef.typ=enumdef) and
(right.resultdef.typ=orddef) then
begin
{ insert explicit typecast to default signed int }
left:=ctypeconvnode.create_internal(left,sinttype);
typecheckpass(left);
end
else
if (left.resultdef.typ=orddef) and
(right.resultdef.typ=enumdef) then
begin
{ insert explicit typecast to default signed int }
right:=ctypeconvnode.create_internal(right,sinttype);
typecheckpass(right);
end;
end;
{ is one a real float, then both need to be floats, this
need to be done before the constant folding so constant
operation on a float and int are also handled }
{$ifdef x86}
{ use extended as default real type only when the x87 fpu is used }
{$ifdef i386}
if not(current_settings.fputype=fpu_x87) then
{$endif i386}
{$ifdef x86_64}
{ x86-64 has no x87 only mode, so use always double as default }
if true then
{$endif x86_6}
resultrealdef:=s64floattype
else
{$endif x86}
resultrealdef:=pbestrealtype^;
if (right.resultdef.typ=floatdef) or (left.resultdef.typ=floatdef) then
begin
{ when both floattypes are already equal then use that
floattype for results }
if (right.resultdef.typ=floatdef) and
(left.resultdef.typ=floatdef) and
(tfloatdef(left.resultdef).floattype=tfloatdef(right.resultdef).floattype) then
resultrealdef:=left.resultdef
{ when there is a currency type then use currency, but
only when currency is defined as float }
else
if (is_currency(right.resultdef) or
is_currency(left.resultdef)) and
((s64currencytype.typ = floatdef) or
(nodetype <> slashn)) then
begin
resultrealdef:=s64currencytype;
inserttypeconv(right,resultrealdef);
inserttypeconv(left,resultrealdef);
end
else
begin
resultrealdef:=getbestreal(left.resultdef,right.resultdef);
inserttypeconv(right,resultrealdef);
inserttypeconv(left,resultrealdef);
end;
end;
{ If both operands are constant and there is a unicodestring
or unicodestring then convert everything to unicodestring }
if is_constnode(right) and is_constnode(left) and
(is_unicodestring(right.resultdef) or
is_unicodestring(left.resultdef)) then
begin
inserttypeconv(right,cunicodestringtype);
inserttypeconv(left,cunicodestringtype);
end;
{ If both operands are constant and there is a widechar
or widestring then convert everything to widestring. This
allows constant folding like char+widechar }
if is_constnode(right) and is_constnode(left) and
(is_widestring(right.resultdef) or
is_widestring(left.resultdef) or
is_widechar(right.resultdef) or
is_widechar(left.resultdef)) then
begin
inserttypeconv(right,cwidestringtype);
inserttypeconv(left,cwidestringtype);
end;
{ load easier access variables }
rd:=right.resultdef;
ld:=left.resultdef;
rt:=right.nodetype;
lt:=left.nodetype;
{ 4 character constant strings are compatible with orddef }
{ in macpas mode (become cardinals) }
if (m_mac in current_settings.modeswitches) and
{ only allow for comparisons, additions etc are }
{ normally program errors }
(nodetype in [ltn,lten,gtn,gten,unequaln,equaln]) and
(((lt=stringconstn) and
(tstringconstnode(left).len=4) and
(rd.typ=orddef)) or
((rt=stringconstn) and
(tstringconstnode(right).len=4) and
(ld.typ=orddef))) then
begin
if (rt=stringconstn) then
begin
inserttypeconv(right,u32inttype);
rt:=right.nodetype;
rd:=right.resultdef;
end
else
begin
inserttypeconv(left,u32inttype);
lt:=left.nodetype;
ld:=left.resultdef;
end;
end;
{ but an int/int gives real/real! }
if (nodetype=slashn) and not(is_vector(left.resultdef)) and not(is_vector(right.resultdef)) then
begin
if is_currency(left.resultdef) and
is_currency(right.resultdef) then
{ In case of currency, converting to float means dividing by 10000 }
{ However, since this is already a division, both divisions by }
{ 10000 are eliminated when we divide the results -> we can skip }
{ them. }
if s64currencytype.typ = floatdef then
begin
{ there's no s64comptype or so, how do we avoid the type conversion?
left.resultdef := s64comptype;
right.resultdef := s64comptype; }
end
else
begin
left.resultdef := s64inttype;
right.resultdef := s64inttype;
end;
inserttypeconv(right,resultrealdef);
inserttypeconv(left,resultrealdef);
end
{ if both are orddefs then check sub types }
else if (ld.typ=orddef) and (rd.typ=orddef) then
begin
{ set for & and | operations in macpas mode: they only work on }
{ booleans, and always short circuit evaluation }
if (nf_short_bool in flags) then
begin
if not is_boolean(ld) then
begin
inserttypeconv(left,booltype);
ld := left.resultdef;
end;
if not is_boolean(rd) then
begin
inserttypeconv(right,booltype);
rd := right.resultdef;
end;
end;
{ 2 booleans? Make them equal to the largest boolean }
if (is_boolean(ld) and is_boolean(rd)) or
(nf_short_bool in flags) then
begin
if (torddef(left.resultdef).size>torddef(right.resultdef).size) or
(is_cbool(left.resultdef) and not is_cbool(right.resultdef)) then
begin
right:=ctypeconvnode.create_internal(right,left.resultdef);
ttypeconvnode(right).convtype:=tc_bool_2_bool;
typecheckpass(right);
end
else if (torddef(left.resultdef).size<torddef(right.resultdef).size) or
(not is_cbool(left.resultdef) and is_cbool(right.resultdef)) then
begin
left:=ctypeconvnode.create_internal(left,right.resultdef);
ttypeconvnode(left).convtype:=tc_bool_2_bool;
typecheckpass(left);
end;
case nodetype of
xorn,
ltn,
lten,
gtn,
gten,
andn,
orn:
begin
end;
unequaln,
equaln:
begin
if not(cs_full_boolean_eval in current_settings.localswitches) or
(nf_short_bool in flags) then
begin
{ Remove any compares with constants }
if (left.nodetype=ordconstn) then
begin
hp:=right;
b:=(tordconstnode(left).value<>0);
ot:=nodetype;
left.free;
left:=nil;
right:=nil;
if (not(b) and (ot=equaln)) or
(b and (ot=unequaln)) then
begin
hp:=cnotnode.create(hp);
end;
result:=hp;
exit;
end;
if (right.nodetype=ordconstn) then
begin
hp:=left;
b:=(tordconstnode(right).value<>0);
ot:=nodetype;
right.free;
right:=nil;
left:=nil;
if (not(b) and (ot=equaln)) or
(b and (ot=unequaln)) then
begin
hp:=cnotnode.create(hp);
end;
result:=hp;
exit;
end;
end;
end;
else
begin
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
result:=cnothingnode.create;
exit;
end;
end;
end
{ Both are chars? }
else if is_char(rd) and is_char(ld) then
begin
if nodetype=addn then
begin
resultdef:=cshortstringtype;
if not(is_constcharnode(left) and is_constcharnode(right)) then
begin
inserttypeconv(left,cshortstringtype);
{$ifdef addstringopt}
hp := genaddsstringcharoptnode(self);
result := hp;
exit;
{$endif addstringopt}
end
end
else if not(nodetype in [ltn,lten,gtn,gten,unequaln,equaln]) then
begin
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
result:=cnothingnode.create;
exit;
end;
end
{ There is a widechar? }
else if is_widechar(rd) or is_widechar(ld) then
begin
{ widechar+widechar gives widestring }
if nodetype=addn then
begin
inserttypeconv(left,cwidestringtype);
if (torddef(rd).ordtype<>uwidechar) then
inserttypeconv(right,cwidechartype);
resultdef:=cwidestringtype;
end
else
begin
if (torddef(ld).ordtype<>uwidechar) then
inserttypeconv(left,cwidechartype);
if (torddef(rd).ordtype<>uwidechar) then
inserttypeconv(right,cwidechartype);
end;
end
{ is there a currency type ? }
else if ((torddef(rd).ordtype=scurrency) or (torddef(ld).ordtype=scurrency)) then
begin
if (torddef(ld).ordtype<>scurrency) then
inserttypeconv(left,s64currencytype);
if (torddef(rd).ordtype<>scurrency) then
inserttypeconv(right,s64currencytype);
end
{ "and" does't care about the sign of integers }
{ "xor", "or" and compares don't need extension to native int }
{ size either as long as both values are signed or unsigned }
{ "xor" and "or" also don't care about the sign if the values }
{ occupy an entire register }
{ don't do it if either type is 64 bit, since in that case we }
{ can't safely find a "common" type }
else if is_integer(ld) and is_integer(rd) and
not is_64bitint(ld) and not is_64bitint(rd) and
((nodetype=andn) or
((nodetype in [orn,xorn,equaln,unequaln,gtn,gten,ltn,lten]) and
not(is_signed(ld) xor is_signed(rd)))) then
begin
if (rd.size>ld.size) or
{ Delphi-compatible: prefer unsigned type for "and" with equal size }
((rd.size=ld.size) and
not is_signed(rd)) then
begin
if (rd.size=ld.size) and
is_signed(ld) then
inserttypeconv_internal(left,rd)
else
begin
{ not to left right.resultdef, because that may
cause a range error if left and right's def don't
completely overlap }
nd:=get_common_intdef(torddef(ld),torddef(rd),true);
inserttypeconv(left,nd);
inserttypeconv(right,nd);
end;
end
else
begin
if (rd.size=ld.size) and
is_signed(rd) then
inserttypeconv_internal(right,ld)
else
begin
nd:=get_common_intdef(torddef(ld),torddef(rd),true);
inserttypeconv(left,nd);
inserttypeconv(right,nd);
end;
end
end
{ is there a signed 64 bit type ? }
else if ((torddef(rd).ordtype=s64bit) or (torddef(ld).ordtype=s64bit)) then
begin
if (torddef(ld).ordtype<>s64bit) then
inserttypeconv(left,s64inttype);
if (torddef(rd).ordtype<>s64bit) then
inserttypeconv(right,s64inttype);
end
{ is there a unsigned 64 bit type ? }
else if ((torddef(rd).ordtype=u64bit) or (torddef(ld).ordtype=u64bit)) then
begin
if (torddef(ld).ordtype<>u64bit) then
inserttypeconv(left,u64inttype);
if (torddef(rd).ordtype<>u64bit) then
inserttypeconv(right,u64inttype);
end
{ 64 bit cpus do calculations always in 64 bit }
{$ifndef cpu64bitaddr}
{ is there a cardinal? }
else if ((torddef(rd).ordtype=u32bit) or (torddef(ld).ordtype=u32bit)) then
begin
{ convert positive constants to u32bit }
if (torddef(ld).ordtype<>u32bit) and
is_constintnode(left) and
(tordconstnode(left).value >= 0) then
inserttypeconv(left,u32inttype);
if (torddef(rd).ordtype<>u32bit) and
is_constintnode(right) and
(tordconstnode(right).value >= 0) then
inserttypeconv(right,u32inttype);
{ when one of the operand is signed or the operation is subn then perform
the operation in 64bit, can't use rd/ld here because there
could be already typeconvs inserted.
This is compatible with the code below for other unsigned types (PFV) }
if is_signed(left.resultdef) or
is_signed(right.resultdef) or
(nodetype=subn) then
begin
if nodetype<>subn then
CGMessage(type_h_mixed_signed_unsigned);
{ mark as internal in case added for a subn, so }
{ ttypeconvnode.simplify can remove the 64 bit }
{ typecast again if semantically correct. Even }
{ if we could detect that here already, we }
{ mustn't do it here because that would change }
{ overload choosing behaviour etc. The code in }
{ ncnv.pas is run after that is already decided }
if (not is_signed(left.resultdef) and
not is_signed(right.resultdef)) or
(nodetype in [orn,xorn]) then
include(flags,nf_internal);
inserttypeconv(left,s64inttype);
inserttypeconv(right,s64inttype);
end
else
begin
if (torddef(left.resultdef).ordtype<>u32bit) then
inserttypeconv(left,u32inttype);
if (torddef(right.resultdef).ordtype<>u32bit) then
inserttypeconv(right,u32inttype);
end;
end
{$endif cpu64bitaddr}
{ generic ord conversion is sinttype }
else
begin
{ if the left or right value is smaller than the normal
type sinttype and is unsigned, and the other value
is a constant < 0, the result will always be false/true
for equal / unequal nodes.
}
if (
{ left : unsigned ordinal var, right : < 0 constant }
(
((is_signed(ld)=false) and (is_constintnode(left) =false)) and
((is_constintnode(right)) and (tordconstnode(right).value < 0))
) or
{ right : unsigned ordinal var, left : < 0 constant }
(
((is_signed(rd)=false) and (is_constintnode(right) =false)) and
((is_constintnode(left)) and (tordconstnode(left).value < 0))
)
) then
begin
if nodetype = equaln then
CGMessage(type_w_signed_unsigned_always_false)
else
if nodetype = unequaln then
CGMessage(type_w_signed_unsigned_always_true)
else
if (is_constintnode(left) and (nodetype in [ltn,lten])) or
(is_constintnode(right) and (nodetype in [gtn,gten])) then
CGMessage(type_w_signed_unsigned_always_true)
else
if (is_constintnode(right) and (nodetype in [ltn,lten])) or
(is_constintnode(left) and (nodetype in [gtn,gten])) then
CGMessage(type_w_signed_unsigned_always_false);
end;
{ When there is a signed type or there is a minus operation
we convert to signed int. Otherwise (both are unsigned) we keep
the result also unsigned. This is compatible with Delphi (PFV) }
if is_signed(ld) or
is_signed(rd) or
(nodetype=subn) then
begin
{$ifdef cpunodefaultint}
{ for small cpus we use the smallest common type }
nd:=get_common_intdef(torddef(ld),torddef(rd),false);
inserttypeconv(right,nd);
inserttypeconv(left,nd);
{$else cpunodefaultint}
inserttypeconv(right,sinttype);
inserttypeconv(left,sinttype);
{$endif cpunodefaultint}
end
else
begin
inserttypeconv(right,uinttype);
inserttypeconv(left,uinttype);
end;
end;
end
{ if both are floatdefs, conversion is already done before constant folding }
else if (ld.typ=floatdef) then
begin
if not(nodetype in [addn,subn,muln,slashn,equaln,unequaln,ltn,lten,gtn,gten]) then
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
end
{ left side a setdef, must be before string processing,
else array constructor can be seen as array of char (PFV) }
else if (ld.typ=setdef) then
begin
if not(nodetype in [addn,subn,symdifn,muln,equaln,unequaln,lten,gten]) then
CGMessage(type_e_set_operation_unknown);
{ right must either be a set or a set element }
if (rd.typ<>setdef) and
(rt<>setelementn) then
CGMessage(type_e_mismatch)
{ Make operands the same setdef. If one's elementtype fits }
{ entirely inside the other's, pick the one with the largest }
{ range. Otherwise create a new setdef with a range which }
{ can contain both. }
else if not(equal_defs(ld,rd)) then
begin
{ note: ld cannot be an empty set with elementdef=nil in }
{ case right is not a set, arrayconstructor_to_set takes }
{ care of that }
{ 1: rd is a set with an assigned elementdef, and ld is }
{ either an empty set without elementdef or a set whose }
{ elementdef fits in rd's elementdef -> convert to rd }
if ((rd.typ=setdef) and
assigned(tsetdef(rd).elementdef) and
(not assigned(tsetdef(ld).elementdef) or
is_in_limit(ld,rd))) then
inserttypeconv(left,rd)
{ 2: rd is either an empty set without elementdef or a set }
{ whose elementdef fits in ld's elementdef, or a set }
{ element whose def fits in ld's elementdef -> convert }
{ to ld. ld's elementdef can't be nil here, is caught }
{ previous case and "note:" above }
else if ((rd.typ=setdef) and
(not assigned(tsetdef(rd).elementdef) or
is_in_limit(rd,ld))) or
((rd.typ<>setdef) and
is_in_limit(rd,tsetdef(ld).elementdef)) then
if (rd.typ=setdef) then
inserttypeconv(right,ld)
else
inserttypeconv(right,tsetdef(ld).elementdef)
{ 3: otherwise create setdef which encompasses both, taking }
{ into account empty sets without elementdef }
else
begin
if assigned(tsetdef(ld).elementdef) then
begin
llow:=tsetdef(ld).setbase;
lhigh:=tsetdef(ld).setmax;
end;
if (rd.typ=setdef) then
if assigned(tsetdef(rd).elementdef) then
begin
rlow:=tsetdef(rd).setbase;
rhigh:=tsetdef(rd).setmax;
end
else
begin
{ ld's elementdef must have been valid }
rlow:=llow;
rhigh:=lhigh;
end
else
getrange(rd,rlow,rhigh);
if not assigned(tsetdef(ld).elementdef) then
begin
llow:=rlow;
lhigh:=rhigh;
end;
nd:=tsetdef.create(tsetdef(ld).elementdef,min(llow,rlow),max(lhigh,rhigh));
inserttypeconv(left,nd);
if (rd.typ=setdef) then
inserttypeconv(right,nd)
else
inserttypeconv(right,tsetdef(nd).elementdef);
end;
end;
end
{ pointer comparision and subtraction }
else if (
(rd.typ=pointerdef) and (ld.typ=pointerdef)
) or
{ compare/add pchar to variable (not stringconst) char arrays
by addresses like BP/Delphi }
(
(nodetype in [equaln,unequaln,subn,addn]) and
(
((is_pchar(ld) or (lt=niln)) and is_chararray(rd) and (rt<>stringconstn)) or
((is_pchar(rd) or (rt=niln)) and is_chararray(ld) and (lt<>stringconstn))
)
) then
begin
{ convert char array to pointer }
if is_chararray(rd) then
begin
inserttypeconv(right,charpointertype);
rd:=right.resultdef;
end
else if is_chararray(ld) then
begin
inserttypeconv(left,charpointertype);
ld:=left.resultdef;
end;
case nodetype of
equaln,unequaln :
begin
if is_voidpointer(right.resultdef) then
inserttypeconv(right,left.resultdef)
else if is_voidpointer(left.resultdef) then
inserttypeconv(left,right.resultdef)
else if not(equal_defs(ld,rd)) then
IncompatibleTypes(ld,rd);
{ now that the type checking is done, convert both to charpointer, }
{ because methodpointers are 8 bytes even though only the first 4 }
{ bytes must be compared. This can happen here if we are in }
{ TP/Delphi mode, because there @methodpointer = voidpointer (but }
{ a voidpointer of 8 bytes). A conversion to voidpointer would be }
{ optimized away, since the result already was a voidpointer, so }
{ use a charpointer instead (JM) }
inserttypeconv_internal(left,charpointertype);
inserttypeconv_internal(right,charpointertype);
end;
ltn,lten,gtn,gten:
begin
if (cs_extsyntax in current_settings.moduleswitches) then
begin
if is_voidpointer(right.resultdef) then
inserttypeconv(right,left.resultdef)
else if is_voidpointer(left.resultdef) then
inserttypeconv(left,right.resultdef)
else if not(equal_defs(ld,rd)) then
IncompatibleTypes(ld,rd);
end
else
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
end;
subn:
begin
if (cs_extsyntax in current_settings.moduleswitches) then
begin
if is_voidpointer(right.resultdef) then
begin
if is_big_untyped_addrnode(right) then
CGMessage1(type_w_untyped_arithmetic_unportable,node2opstr(nodetype));
inserttypeconv(right,left.resultdef)
end
else if is_voidpointer(left.resultdef) then
inserttypeconv(left,right.resultdef)
else if not(equal_defs(ld,rd)) then
IncompatibleTypes(ld,rd);
end
else
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
if not(nf_has_pointerdiv in flags) and
(tpointerdef(rd).pointeddef.size>1) then
begin
hp:=getcopy;
include(hp.flags,nf_has_pointerdiv);
result:=cmoddivnode.create(divn,hp,cordconstnode.create(tpointerdef(rd).pointeddef.size,sinttype,false));
end;
resultdef:=sinttype;
exit;
end;
else
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
end;
end
{ is one of the operands a string?,
chararrays are also handled as strings (after conversion), also take
care of chararray+chararray and chararray+char.
Note: Must be done after pointerdef+pointerdef has been checked, else
pchar is converted to string }
else if (rd.typ=stringdef) or
(ld.typ=stringdef) or
{ stringconstn's can be arraydefs }
(lt=stringconstn) or
(rt=stringconstn) or
((is_pchar(rd) or is_chararray(rd) or is_char(rd) or is_open_chararray(rd) or
is_pwidechar(rd) or is_widechararray(rd) or is_widechar(rd) or is_open_widechararray(rd)) and
(is_pchar(ld) or is_chararray(ld) or is_char(ld) or is_open_chararray(ld) or
is_pwidechar(ld) or is_widechararray(ld) or is_widechar(ld) or is_open_widechararray(ld))) then
begin
if (nodetype in [addn,equaln,unequaln,lten,gten,ltn,gtn]) then
begin
{ Is there a unicodestring? }
if is_unicodestring(rd) or is_unicodestring(ld) then
strtype:=st_unicodestring
else
{ Is there a widestring? }
if is_widestring(rd) or is_widestring(ld) or
is_pwidechar(rd) or is_widechararray(rd) or is_widechar(rd) or is_open_widechararray(rd) or
is_pwidechar(ld) or is_widechararray(ld) or is_widechar(ld) or is_open_widechararray(ld) then
strtype:=st_widestring
else
if is_ansistring(rd) or is_ansistring(ld) or
((cs_ansistrings in current_settings.localswitches) and
//todo: Move some of this to longstring's then they are implemented?
(
is_pchar(rd) or (is_chararray(rd) and (rd.size > 255)) or is_open_chararray(rd) or (lt = stringconstn) or
is_pchar(ld) or (is_chararray(ld) and (ld.size > 255)) or is_open_chararray(ld) or (rt = stringconstn)
)
) then
strtype:=st_ansistring
else
if is_longstring(rd) or is_longstring(ld) then
strtype:=st_longstring
else
begin
{ TODO: todo: add a warning/hint here if one converting a too large array}
{ nodes is PChar, array [with size > 255] or OpenArrayOfChar.
Note: Delphi halts with error if "array [0..xx] of char"
is assigned to ShortString and string length is less
then array size }
strtype:= st_shortstring;
end;
// Now convert nodes to common string type
case strtype of
st_widestring :
begin
if not(is_widestring(rd)) then
inserttypeconv(right,cwidestringtype);
if not(is_widestring(ld)) then
inserttypeconv(left,cwidestringtype);
end;
st_unicodestring :
begin
if not(is_unicodestring(rd)) then
inserttypeconv(right,cunicodestringtype);
if not(is_unicodestring(ld)) then
inserttypeconv(left,cunicodestringtype);
end;
st_ansistring :
begin
if not(is_ansistring(rd)) then
inserttypeconv(right,cansistringtype);
if not(is_ansistring(ld)) then
inserttypeconv(left,cansistringtype);
end;
st_longstring :
begin
if not(is_longstring(rd)) then
inserttypeconv(right,clongstringtype);
if not(is_longstring(ld)) then
inserttypeconv(left,clongstringtype);
end;
st_shortstring :
begin
if not(is_shortstring(ld)) then
inserttypeconv(left,cshortstringtype);
{ don't convert char, that can be handled by the optimized node }
if not(is_shortstring(rd) or is_char(rd)) then
inserttypeconv(right,cshortstringtype);
end;
else
internalerror(2005101);
end;
end
else
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
end
{ class or interface equation }
else if is_class_or_interface_or_dispinterface_or_objc(rd) or is_class_or_interface_or_dispinterface_or_objc(ld) then
begin
if (nodetype in [equaln,unequaln]) then
begin
if is_class_or_interface_or_dispinterface_or_objc(rd) and is_class_or_interface_or_dispinterface_or_objc(ld) then
begin
if tobjectdef(rd).is_related(tobjectdef(ld)) then
inserttypeconv(right,left.resultdef)
else
inserttypeconv(left,right.resultdef);
end
else if is_class_or_interface_or_dispinterface_or_objc(rd) then
inserttypeconv(left,right.resultdef)
else
inserttypeconv(right,left.resultdef);
end
else
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
end
else if (rd.typ=classrefdef) and (ld.typ=classrefdef) then
begin
if (nodetype in [equaln,unequaln]) then
begin
if tobjectdef(tclassrefdef(rd).pointeddef).is_related(
tobjectdef(tclassrefdef(ld).pointeddef)) then
inserttypeconv(right,left.resultdef)
else
inserttypeconv(left,right.resultdef);
end
else
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
end
{ allows comperasion with nil pointer }
else if is_class_or_interface_or_dispinterface_or_objc(rd) or (rd.typ=classrefdef) then
begin
if (nodetype in [equaln,unequaln]) then
inserttypeconv(left,right.resultdef)
else
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
end
else if is_class_or_interface_or_dispinterface_or_objc(ld) or (ld.typ=classrefdef) then
begin
if (nodetype in [equaln,unequaln]) then
inserttypeconv(right,left.resultdef)
else
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
end
{ support procvar=nil,procvar<>nil }
else if ((ld.typ=procvardef) and (rt=niln)) or
((rd.typ=procvardef) and (lt=niln)) then
begin
if not(nodetype in [equaln,unequaln]) then
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
{ find proc field in methodpointer record }
hsym:=tfieldvarsym(trecorddef(methodpointertype).symtable.Find('proc'));
if not assigned(hsym) then
internalerror(200412043);
{ For methodpointers compare only tmethodpointer.proc }
if (rd.typ=procvardef) and
(not tprocvardef(rd).is_addressonly) then
begin
right:=csubscriptnode.create(
hsym,
ctypeconvnode.create_internal(right,methodpointertype));
typecheckpass(right);
end;
if (ld.typ=procvardef) and
(not tprocvardef(ld).is_addressonly) then
begin
left:=csubscriptnode.create(
hsym,
ctypeconvnode.create_internal(left,methodpointertype));
typecheckpass(left);
end;
end
{ support dynamicarray=nil,dynamicarray<>nil }
else if (is_dynamic_array(ld) and (rt=niln)) or
(is_dynamic_array(rd) and (lt=niln)) or
(is_dynamic_array(ld) and is_dynamic_array(rd)) then
begin
if not(nodetype in [equaln,unequaln]) then
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
end
{$ifdef SUPPORT_MMX}
{ mmx support, this must be before the zero based array
check }
else if (cs_mmx in current_settings.localswitches) and
is_mmx_able_array(ld) and
is_mmx_able_array(rd) and
equal_defs(ld,rd) then
begin
case nodetype of
addn,subn,xorn,orn,andn:
;
{ mul is a little bit restricted }
muln:
if not(mmx_type(ld) in [mmxu16bit,mmxs16bit,mmxfixed16]) then
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
else
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
end;
end
{$endif SUPPORT_MMX}
{ vector support, this must be before the zero based array
check }
else if (cs_support_vectors in current_settings.globalswitches) and
is_vector(ld) and
is_vector(rd) and
equal_defs(ld,rd) then
begin
if not(nodetype in [addn,subn,xorn,orn,andn,muln,slashn]) then
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
{ both defs must be equal, so taking left or right as resultdef doesn't matter }
resultdef:=left.resultdef;
end
{ this is a little bit dangerous, also the left type }
{ pointer to should be checked! This broke the mmx support }
else if (rd.typ=pointerdef) or
(is_zero_based_array(rd) and (rt<>stringconstn)) then
begin
if is_zero_based_array(rd) then
begin
resultdef:=tpointerdef.create(tarraydef(rd).elementdef);
inserttypeconv(right,resultdef);
end
else
resultdef:=right.resultdef;
inserttypeconv(left,sinttype);
if nodetype=addn then
begin
if not(cs_extsyntax in current_settings.moduleswitches) or
(not(is_pchar(ld)) and not(m_add_pointer in current_settings.modeswitches)) then
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
if (rd.typ=pointerdef) and
(tpointerdef(rd).pointeddef.size>1) then
begin
left:=caddnode.create(muln,left,
cordconstnode.create(tpointerdef(rd).pointeddef.size,sinttype,true));
typecheckpass(left);
end;
end
else
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
end
else if (ld.typ=pointerdef) or
(is_zero_based_array(ld) and (lt<>stringconstn)) then
begin
if is_zero_based_array(ld) then
begin
resultdef:=tpointerdef.create(tarraydef(ld).elementdef);
inserttypeconv(left,resultdef);
end
else
resultdef:=left.resultdef;
inserttypeconv(right,sinttype);
if nodetype in [addn,subn] then
begin
if (lt=niln) then
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),'NIL',rd.typename);
if not(cs_extsyntax in current_settings.moduleswitches) or
(not(is_pchar(ld)) and not(m_add_pointer in current_settings.modeswitches)) then
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
if (ld.typ=pointerdef) then
begin
if is_big_untyped_addrnode(left) then
CGMessage1(type_w_untyped_arithmetic_unportable,node2opstr(nodetype));
if (tpointerdef(ld).pointeddef.size>1) then
begin
right:=caddnode.create(muln,right,
cordconstnode.create(tpointerdef(ld).pointeddef.size,sinttype,true));
typecheckpass(right);
end
end else
if is_zero_based_array(ld) and
(tarraydef(ld).elementdef.size>1) then
begin
right:=caddnode.create(muln,right,
cordconstnode.create(tarraydef(ld).elementdef.size,sinttype,true));
typecheckpass(right);
end;
end
else
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
end
else if (rd.typ=procvardef) and
(ld.typ=procvardef) and
equal_defs(rd,ld) then
begin
if (nodetype in [equaln,unequaln]) then
begin
if tprocvardef(rd).is_addressonly then
begin
inserttypeconv_internal(right,voidpointertype);
inserttypeconv_internal(left,voidpointertype);
end
else
begin
{ find proc field in methodpointer record }
hsym:=tfieldvarsym(trecorddef(methodpointertype).symtable.Find('proc'));
if not assigned(hsym) then
internalerror(200412043);
{ Compare tmehodpointer(left).proc }
right:=csubscriptnode.create(
hsym,
ctypeconvnode.create_internal(right,methodpointertype));
typecheckpass(right);
left:=csubscriptnode.create(
hsym,
ctypeconvnode.create_internal(left,methodpointertype));
typecheckpass(left);
end;
end
else
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
end
{ enums }
else if (ld.typ=enumdef) and (rd.typ=enumdef) then
begin
if allowenumop(nodetype) then
inserttypeconv(right,left.resultdef)
else
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
end
{ generic conversion, this is for error recovery }
else
begin
inserttypeconv(left,sinttype);
inserttypeconv(right,sinttype);
end;
{ set resultdef if not already done }
if not assigned(resultdef) then
begin
case nodetype of
ltn,lten,gtn,gten,equaln,unequaln :
resultdef:=booltype;
slashn :
resultdef:=resultrealdef;
addn:
begin
{ for strings, return is always a 255 char string }
if is_shortstring(left.resultdef) then
resultdef:=cshortstringtype
else
resultdef:=left.resultdef;
end;
else
resultdef:=left.resultdef;
end;
end;
{ when the result is currency we need some extra code for
multiplication and division. this should not be done when
the muln or slashn node is created internally }
if not(nf_is_currency in flags) and
is_currency(resultdef) then
begin
case nodetype of
slashn :
begin
{ slashn will only work with floats }
hp:=caddnode.create(muln,getcopy,crealconstnode.create(10000.0,s64currencytype));
include(hp.flags,nf_is_currency);
result:=hp;
end;
muln :
begin
if s64currencytype.typ=floatdef then
hp:=caddnode.create(slashn,getcopy,crealconstnode.create(10000.0,s64currencytype))
else
hp:=cmoddivnode.create(divn,getcopy,cordconstnode.create(10000,s64currencytype,false));
include(hp.flags,nf_is_currency);
result:=hp
end;
end;
end;
if not codegenerror and
not assigned(result) then
result:=simplify(false);
end;
function taddnode.first_addstring: tnode;
const
swap_relation: array [ltn..unequaln] of Tnodetype=(gtn, gten, ltn, lten, equaln, unequaln);
var
p: tnode;
newstatement : tstatementnode;
tempnode (*,tempnode2*) : ttempcreatenode;
cmpfuncname: string;
begin
{ when we get here, we are sure that both the left and the right }
{ node are both strings of the same stringtype (JM) }
case nodetype of
addn:
begin
if (left.nodetype=stringconstn) and (tstringconstnode(left).len=0) then
begin
result:=right;
left.free;
left:=nil;
right:=nil;
exit;
end;
if (right.nodetype=stringconstn) and (tstringconstnode(right).len=0) then
begin
result:=left;
left:=nil;
right.free;
right:=nil;
exit;
end;
{ create the call to the concat routine both strings as arguments }
if assigned(aktassignmentnode) and
(aktassignmentnode.right=self) and
(aktassignmentnode.left.resultdef=resultdef) and
valid_for_var(aktassignmentnode.left,false) then
begin
result:=ccallnode.createintern('fpc_'+
tstringdef(resultdef).stringtypname+'_concat',
ccallparanode.create(right,
ccallparanode.create(left,
ccallparanode.create(aktassignmentnode.left.getcopy,nil))));
include(aktassignmentnode.flags,nf_assign_done_in_right);
firstpass(result);
end
else
begin
result:=internalstatements(newstatement);
tempnode:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,true);
addstatement(newstatement,tempnode);
addstatement(newstatement,ccallnode.createintern('fpc_'+
tstringdef(resultdef).stringtypname+'_concat',
ccallparanode.create(right,
ccallparanode.create(left,
ccallparanode.create(ctemprefnode.create(tempnode),nil)))));
addstatement(newstatement,ctempdeletenode.create_normal_temp(tempnode));
addstatement(newstatement,ctemprefnode.create(tempnode));
end;
{ we reused the arguments }
left := nil;
right := nil;
end;
ltn,lten,gtn,gten,equaln,unequaln :
begin
{ generate better code for comparison with empty string, we
only need to compare the length with 0 }
if (nodetype in [equaln,unequaln,gtn,gten,ltn,lten]) and
{ windows widestrings are too complicated to be handled optimized }
not(is_widestring(left.resultdef) and (target_info.system in systems_windows)) and
(((left.nodetype=stringconstn) and (tstringconstnode(left).len=0)) or
((right.nodetype=stringconstn) and (tstringconstnode(right).len=0))) then
begin
{ switch so that the constant is always on the right }
if left.nodetype = stringconstn then
begin
p := left;
left := right;
right := p;
nodetype:=swap_relation[nodetype];
end;
if is_shortstring(left.resultdef) or
(nodetype in [gtn,gten,ltn,lten]) then
{ compare the length with 0 }
result := caddnode.create(nodetype,
cinlinenode.create(in_length_x,false,left),
cordconstnode.create(0,s32inttype,false))
else
begin
(*
if is_widestring(left.resultdef) and
(target_info.system in system_windows) then
begin
{ windows like widestrings requires that we also check the length }
result:=internalstatements(newstatement);
tempnode:=ctempcreatenode.create(voidpointertype,voidpointertype.size,tt_persistent,true);
tempnode2:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,true);
addstatement(newstatement,tempnode);
addstatement(newstatement,tempnode2);
{ poor man's cse }
addstatement(newstatement,cassignmentnode.create(ctemprefnode.create(tempnode),
ctypeconvnode.create_internal(left,voidpointertype))
);
addstatement(newstatement,cassignmentnode.create(ctemprefnode.create(tempnode2),
caddnode.create(orn,
caddnode.create(nodetype,
ctemprefnode.create(tempnode),
cpointerconstnode.create(0,voidpointertype)
),
caddnode.create(nodetype,
ctypeconvnode.create_internal(cderefnode.create(ctemprefnode.create(tempnode)),s32inttype),
cordconstnode.create(0,s32inttype,false)
)
)
));
addstatement(newstatement,ctempdeletenode.create_normal_temp(tempnode));
addstatement(newstatement,ctempdeletenode.create_normal_temp(tempnode2));
addstatement(newstatement,ctemprefnode.create(tempnode2));
end
else
*)
begin
{ compare the pointer with nil (for ansistrings etc), }
{ faster than getting the length (JM) }
result:= caddnode.create(nodetype,
ctypeconvnode.create_internal(left,voidpointertype),
cpointerconstnode.create(0,voidpointertype));
end;
end;
{ left is reused }
left := nil;
{ right isn't }
right.free;
right := nil;
exit;
end;
{ no string constant -> call compare routine }
cmpfuncname := 'fpc_'+tstringdef(left.resultdef).stringtypname+'_compare';
{ for equality checks use optimized version }
if nodetype in [equaln,unequaln] then
cmpfuncname := cmpfuncname + '_equal';
result := ccallnode.createintern(cmpfuncname,
ccallparanode.create(right,ccallparanode.create(left,nil)));
{ and compare its result with 0 according to the original operator }
result := caddnode.create(nodetype,result,
cordconstnode.create(0,s32inttype,false));
left := nil;
right := nil;
end;
end;
end;
function taddnode.first_addset : tnode;
procedure call_varset_helper(const n : string);
var
newstatement : tstatementnode;
temp : ttempcreatenode;
begin
{ add two var sets }
result:=internalstatements(newstatement);
{ create temp for result }
temp:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,true);
addstatement(newstatement,temp);
addstatement(newstatement,ccallnode.createintern(n,
ccallparanode.create(cordconstnode.create(resultdef.size,sinttype,false),
ccallparanode.create(ctemprefnode.create(temp),
ccallparanode.create(right,
ccallparanode.create(left,nil)))))
);
{ remove reused parts from original node }
left:=nil;
right:=nil;
{ the last statement should return the value as
location and type, this is done be referencing the
temp and converting it first from a persistent temp to
normal temp }
addstatement(newstatement,ctempdeletenode.create_normal_temp(temp));
addstatement(newstatement,ctemprefnode.create(temp));
end;
var
procname: string[31];
tempn: tnode;
newstatement : tstatementnode;
temp : ttempcreatenode;
begin
result:=nil;
case nodetype of
equaln,unequaln,lten,gten:
begin
case nodetype of
equaln,unequaln:
procname := 'fpc_varset_comp_sets';
lten,gten:
begin
procname := 'fpc_varset_contains_sets';
{ (left >= right) = (right <= left) }
if nodetype = gten then
begin
tempn := left;
left := right;
right := tempn;
end;
end;
end;
result := ccallnode.createinternres(procname,
ccallparanode.create(cordconstnode.create(left.resultdef.size,sinttype,false),
ccallparanode.create(right,
ccallparanode.create(left,nil))),resultdef);
{ left and right are reused as parameters }
left := nil;
right := nil;
{ for an unequaln, we have to negate the result of comp_sets }
if nodetype = unequaln then
result := cnotnode.create(result);
end;
addn:
begin
{ optimize first loading of a set }
if (right.nodetype=setelementn) and
not(assigned(tsetelementnode(right).right)) and
is_emptyset(left) then
begin
result:=internalstatements(newstatement);
{ create temp for result }
temp:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,true);
addstatement(newstatement,temp);
{ adjust for set base }
tsetelementnode(right).left:=caddnode.create(subn,
ctypeconvnode.create_internal(tsetelementnode(right).left,sinttype),
cordconstnode.create(tsetdef(resultdef).setbase,sinttype,false));
addstatement(newstatement,ccallnode.createintern('fpc_varset_create_element',
ccallparanode.create(ctemprefnode.create(temp),
ccallparanode.create(cordconstnode.create(resultdef.size,sinttype,false),
ccallparanode.create(tsetelementnode(right).left,nil))))
);
{ the last statement should return the value as
location and type, this is done be referencing the
temp and converting it first from a persistent temp to
normal temp }
addstatement(newstatement,ctempdeletenode.create_normal_temp(temp));
addstatement(newstatement,ctemprefnode.create(temp));
tsetelementnode(right).left := nil;
end
else
begin
if right.nodetype=setelementn then
begin
result:=internalstatements(newstatement);
{ create temp for result }
temp:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,true);
addstatement(newstatement,temp);
{ adjust for set base }
tsetelementnode(right).left:=caddnode.create(subn,
ctypeconvnode.create_internal(tsetelementnode(right).left,sinttype),
cordconstnode.create(tsetdef(resultdef).setbase,sinttype,false));
{ add a range or a single element? }
if assigned(tsetelementnode(right).right) then
begin
{ adjust for set base }
tsetelementnode(right).right:=caddnode.create(subn,
ctypeconvnode.create_internal(tsetelementnode(right).right,sinttype),
cordconstnode.create(tsetdef(resultdef).setbase,sinttype,false));
addstatement(newstatement,ccallnode.createintern('fpc_varset_set_range',
ccallparanode.create(cordconstnode.create(resultdef.size,sinttype,false),
ccallparanode.create(tsetelementnode(right).right,
ccallparanode.create(tsetelementnode(right).left,
ccallparanode.create(ctemprefnode.create(temp),
ccallparanode.create(left,nil))))))
);
end
else
addstatement(newstatement,ccallnode.createintern('fpc_varset_set',
ccallparanode.create(cordconstnode.create(resultdef.size,sinttype,false),
ccallparanode.create(ctypeconvnode.create_internal(tsetelementnode(right).left,sinttype),
ccallparanode.create(ctemprefnode.create(temp),
ccallparanode.create(left,nil)))))
);
{ remove reused parts from original node }
tsetelementnode(right).right:=nil;
tsetelementnode(right).left:=nil;
left:=nil;
{ the last statement should return the value as
location and type, this is done be referencing the
temp and converting it first from a persistent temp to
normal temp }
addstatement(newstatement,ctempdeletenode.create_normal_temp(temp));
addstatement(newstatement,ctemprefnode.create(temp));
end
else
call_varset_helper('fpc_varset_add_sets');
end
end;
subn:
call_varset_helper('fpc_varset_sub_sets');
symdifn:
call_varset_helper('fpc_varset_symdif_sets');
muln:
call_varset_helper('fpc_varset_mul_sets');
else
internalerror(200609241);
end;
end;
function taddnode.use_generic_mul32to64: boolean;
begin
result := true;
end;
function taddnode.try_make_mul32to64: boolean;
function canbe32bitint(v: tconstexprint): boolean;
begin
result := ((v >= int64(low(longint))) and (v <= int64(high(longint)))) or
((v >= qword(low(cardinal))) and (v <= qword(high(cardinal))))
end;
var
temp: tnode;
begin
result := false;
if ((left.nodetype = typeconvn) and
is_integer(ttypeconvnode(left).left.resultdef) and
(not(torddef(ttypeconvnode(left).left.resultdef).ordtype in [u64bit,s64bit])) and
(((right.nodetype = ordconstn) and canbe32bitint(tordconstnode(right).value)) or
((right.nodetype = typeconvn) and
is_integer(ttypeconvnode(right).left.resultdef) and
not(torddef(ttypeconvnode(right).left.resultdef).ordtype in [u64bit,s64bit])) and
((is_signed(ttypeconvnode(left).left.resultdef) =
is_signed(ttypeconvnode(right).left.resultdef)) or
(is_signed(ttypeconvnode(left).left.resultdef) and
(torddef(ttypeconvnode(right).left.resultdef).ordtype in [u8bit,u16bit]))))) then
begin
temp := ttypeconvnode(left).left;
ttypeconvnode(left).left := nil;
left.free;
left := temp;
if (right.nodetype = typeconvn) then
begin
temp := ttypeconvnode(right).left;
ttypeconvnode(right).left := nil;
right.free;
right := temp;
end;
if (is_signed(left.resultdef)) then
begin
inserttypeconv(left,s32inttype);
inserttypeconv(right,s32inttype);
end
else
begin
inserttypeconv(left,u32inttype);
inserttypeconv(right,u32inttype);
end;
firstpass(left);
firstpass(right);
result := true;
end;
end;
function taddnode.first_add64bitint: tnode;
var
procname: string[31];
temp: tnode;
power: longint;
begin
result := nil;
{ create helper calls mul }
if nodetype <> muln then
exit;
{ make sure that if there is a constant, that it's on the right }
if left.nodetype = ordconstn then
begin
temp := right;
right := left;
left := temp;
end;
{ can we use a shift instead of a mul? }
if not (cs_check_overflow in current_settings.localswitches) and
(right.nodetype = ordconstn) and
ispowerof2(tordconstnode(right).value,power) then
begin
tordconstnode(right).value := power;
result := cshlshrnode.create(shln,left,right);
{ left and right are reused }
left := nil;
right := nil;
{ return firstpassed new node }
exit;
end;
if not(use_generic_mul32to64) and
try_make_mul32to64 then
exit;
{ when currency is used set the result of the
parameters to s64bit, so they are not converted }
if is_currency(resultdef) then
begin
left.resultdef:=s64inttype;
right.resultdef:=s64inttype;
end;
{ otherwise, create the parameters for the helper }
right := ccallparanode.create(
cordconstnode.create(ord(cs_check_overflow in current_settings.localswitches),booltype,true),
ccallparanode.create(right,ccallparanode.create(left,nil)));
left := nil;
{ only qword needs the unsigned code, the
signed code is also used for currency }
if is_signed(resultdef) then
procname := 'fpc_mul_int64'
else
procname := 'fpc_mul_qword';
result := ccallnode.createintern(procname,right);
right := nil;
end;
function taddnode.first_addfloat : tnode;
var
procname: string[31];
{ do we need to reverse the result ? }
notnode : boolean;
fdef : tdef;
begin
result := nil;
notnode := false;
{ In non-emulation mode, real opcodes are
emitted for floating point values.
}
if not (cs_fp_emulation in current_settings.moduleswitches) then
exit;
if not(target_info.system in systems_wince) then
begin
case tfloatdef(left.resultdef).floattype of
s32real:
begin
fdef:=search_system_type('FLOAT32REC').typedef;
procname:='float32';
end;
s64real:
begin
fdef:=search_system_type('FLOAT64').typedef;
procname:='float64';
end;
{!!! not yet implemented
s128real:
}
else
internalerror(2005082601);
end;
case nodetype of
addn:
procname:=procname+'_add';
muln:
procname:=procname+'_mul';
subn:
procname:=procname+'_sub';
slashn:
procname:=procname+'_div';
ltn:
procname:=procname+'_lt';
lten:
procname:=procname+'_le';
gtn:
begin
procname:=procname+'_le';
notnode:=true;
end;
gten:
begin
procname:=procname+'_lt';
notnode:=true;
end;
equaln:
procname:=procname+'_eq';
unequaln:
begin
procname:=procname+'_eq';
notnode:=true;
end;
else
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),left.resultdef.typename,right.resultdef.typename);
end;
end
else
begin
case nodetype of
addn:
procname:='ADD';
muln:
procname:='MUL';
subn:
procname:='SUB';
slashn:
procname:='DIV';
ltn:
procname:='LT';
lten:
procname:='LE';
gtn:
procname:='GT';
gten:
procname:='GE';
equaln:
procname:='EQ';
unequaln:
procname:='NE';
else
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),left.resultdef.typename,right.resultdef.typename);
end;
case tfloatdef(left.resultdef).floattype of
s32real:
begin
procname:=procname+'S';
if nodetype in [addn,muln,subn,slashn] then
procname:=lower(procname);
end;
s64real:
procname:=procname+'D';
{!!! not yet implemented
s128real:
}
else
internalerror(2005082602);
end;
end;
{ cast softfpu result? }
if not(target_info.system in systems_wince) then
begin
if nodetype in [ltn,lten,gtn,gten,equaln,unequaln] then
resultdef:=booltype;
result:=ctypeconvnode.create_internal(ccallnode.createintern(procname,ccallparanode.create(
ctypeconvnode.create_internal(right,fdef),
ccallparanode.create(
ctypeconvnode.create_internal(left,fdef),nil))),resultdef);
end
else
result:=ccallnode.createintern(procname,ccallparanode.create(right,
ccallparanode.create(left,nil)));
left:=nil;
right:=nil;
{ do we need to reverse the result }
if notnode then
result:=cnotnode.create(result);
end;
function taddnode.pass_1 : tnode;
var
{$ifdef addstringopt}
hp : tnode;
{$endif addstringopt}
rd,ld : tdef;
i : longint;
lt,rt : tnodetype;
begin
result:=nil;
{ Can we optimize multiple string additions into a single call?
This need to be done on a complete tree to detect the multiple
add nodes and is therefor done before the subtrees are processed }
if canbemultistringadd(self) then
begin
result := genmultistringadd(self);
exit;
end;
{ first do the two subtrees }
firstpass(left);
firstpass(right);
if codegenerror then
exit;
{ load easier access variables }
rd:=right.resultdef;
ld:=left.resultdef;
rt:=right.nodetype;
lt:=left.nodetype;
{ int/int gives real/real! }
if nodetype=slashn then
begin
{$ifdef cpufpemu}
if (current_settings.fputype=fpu_soft) or (cs_fp_emulation in current_settings.moduleswitches) then
begin
result:=first_addfloat;
if assigned(result) then
exit;
end;
{$endif cpufpemu}
expectloc:=LOC_FPUREGISTER;
end
{ if both are orddefs then check sub types }
else if (ld.typ=orddef) and (rd.typ=orddef) then
begin
{ optimize multiplacation by a power of 2 }
if not(cs_check_overflow in current_settings.localswitches) and
(nodetype = muln) and
(((left.nodetype = ordconstn) and
ispowerof2(tordconstnode(left).value,i)) or
((right.nodetype = ordconstn) and
ispowerof2(tordconstnode(right).value,i))) then
begin
if left.nodetype = ordconstn then
begin
tordconstnode(left).value := i;
result := cshlshrnode.create(shln,right,left);
end
else
begin
tordconstnode(right).value := i;
result := cshlshrnode.create(shln,left,right);
end;
left := nil;
right := nil;
exit;
end;
{ 2 booleans ? }
if is_boolean(ld) and is_boolean(rd) then
begin
if (not(cs_full_boolean_eval in current_settings.localswitches) or
(nf_short_bool in flags)) and
(nodetype in [andn,orn]) then
expectloc:=LOC_JUMP
else
begin
if nodetype in [ltn,lten,gtn,gten,equaln,unequaln] then
expectloc:=LOC_FLAGS
else
expectloc:=LOC_REGISTER;
end;
end
else
{ Both are chars? only convert to shortstrings for addn }
if is_char(ld) then
begin
if nodetype=addn then
internalerror(200103291);
expectloc:=LOC_FLAGS;
end
{$ifndef cpu64bitaddr}
{ is there a 64 bit type ? }
else if (torddef(ld).ordtype in [s64bit,u64bit,scurrency]) then
begin
result := first_add64bitint;
if assigned(result) then
exit;
if nodetype in [addn,subn,muln,andn,orn,xorn] then
expectloc:=LOC_REGISTER
else
expectloc:=LOC_JUMP;
end
{$endif cpu64bitaddr}
{ is there a cardinal? }
else if (torddef(ld).ordtype=u32bit) then
begin
if nodetype in [addn,subn,muln,andn,orn,xorn] then
expectloc:=LOC_REGISTER
else
expectloc:=LOC_FLAGS;
end
{ generic s32bit conversion }
else
begin
if nodetype in [addn,subn,muln,andn,orn,xorn] then
expectloc:=LOC_REGISTER
else
expectloc:=LOC_FLAGS;
end;
end
{ left side a setdef, must be before string processing,
else array constructor can be seen as array of char (PFV) }
else if (ld.typ=setdef) then
begin
{ small sets are handled inline by the compiler.
small set doesn't have support for adding ranges }
if is_smallset(ld) and
not(
(right.nodetype=setelementn) and
assigned(tsetelementnode(right).right)
) then
begin
if nodetype in [ltn,lten,gtn,gten,equaln,unequaln] then
expectloc:=LOC_FLAGS
else
expectloc:=LOC_REGISTER;
end
else
begin
result := first_addset;
if assigned(result) then
exit;
expectloc:=LOC_CREFERENCE;
end;
end
{ compare pchar by addresses like BP/Delphi }
else if is_pchar(ld) then
begin
if nodetype in [addn,subn,muln,andn,orn,xorn] then
expectloc:=LOC_REGISTER
else
expectloc:=LOC_FLAGS;
end
{ is one of the operands a string }
else if (ld.typ=stringdef) then
begin
if is_widestring(ld) then
begin
{ this is only for add, the comparisaion is handled later }
expectloc:=LOC_REGISTER;
end
else if is_unicodestring(ld) then
begin
{ this is only for add, the comparisaion is handled later }
expectloc:=LOC_REGISTER;
end
else if is_ansistring(ld) then
begin
{ this is only for add, the comparisaion is handled later }
expectloc:=LOC_REGISTER;
end
else if is_longstring(ld) then
begin
{ this is only for add, the comparisaion is handled later }
expectloc:=LOC_REFERENCE;
end
else
begin
{$ifdef addstringopt}
{ can create a call which isn't handled by callparatemp }
if canbeaddsstringcharoptnode(self) then
begin
hp := genaddsstringcharoptnode(self);
pass_1 := hp;
exit;
end
else
{$endif addstringopt}
begin
{ Fix right to be shortstring }
if is_char(right.resultdef) then
begin
inserttypeconv(right,cshortstringtype);
firstpass(right);
end;
end;
{$ifdef addstringopt}
{ can create a call which isn't handled by callparatemp }
if canbeaddsstringcsstringoptnode(self) then
begin
hp := genaddsstringcsstringoptnode(self);
pass_1 := hp;
exit;
end;
{$endif addstringopt}
end;
{ otherwise, let addstring convert everything }
result := first_addstring;
exit;
end
{ is one a real float ? }
else if (rd.typ=floatdef) or (ld.typ=floatdef) then
begin
{$ifdef cpufpemu}
if (current_settings.fputype=fpu_soft) or (cs_fp_emulation in current_settings.moduleswitches) then
begin
result:=first_addfloat;
if assigned(result) then
exit;
end;
{$endif cpufpemu}
if nodetype in [addn,subn,muln,andn,orn,xorn] then
expectloc:=LOC_FPUREGISTER
else
expectloc:=LOC_FLAGS;
end
{ pointer comperation and subtraction }
else if (ld.typ=pointerdef) then
begin
if nodetype in [addn,subn,muln,andn,orn,xorn] then
expectloc:=LOC_REGISTER
else
expectloc:=LOC_FLAGS;
end
else if is_class_or_interface_or_dispinterface_or_objc(ld) then
begin
expectloc:=LOC_FLAGS;
end
else if (ld.typ=classrefdef) then
begin
expectloc:=LOC_FLAGS;
end
{ support procvar=nil,procvar<>nil }
else if ((ld.typ=procvardef) and (rt=niln)) or
((rd.typ=procvardef) and (lt=niln)) then
begin
expectloc:=LOC_FLAGS;
end
{$ifdef SUPPORT_MMX}
{ mmx support, this must be before the zero based array
check }
else if (cs_mmx in current_settings.localswitches) and is_mmx_able_array(ld) and
is_mmx_able_array(rd) then
begin
expectloc:=LOC_MMXREGISTER;
end
{$endif SUPPORT_MMX}
else if (rd.typ=pointerdef) or (ld.typ=pointerdef) then
begin
expectloc:=LOC_REGISTER;
end
else if (rd.typ=procvardef) and
(ld.typ=procvardef) and
equal_defs(rd,ld) then
begin
expectloc:=LOC_FLAGS;
end
else if (ld.typ=enumdef) then
begin
expectloc:=LOC_FLAGS;
end
{$ifdef SUPPORT_MMX}
else if (cs_mmx in current_settings.localswitches) and
is_mmx_able_array(ld) and
is_mmx_able_array(rd) then
begin
expectloc:=LOC_MMXREGISTER;
end
{$endif SUPPORT_MMX}
{ the general solution is to convert to 32 bit int }
else
begin
expectloc:=LOC_REGISTER;
end;
end;
{$ifdef state_tracking}
function Taddnode.track_state_pass(exec_known:boolean):boolean;
var factval:Tnode;
begin
track_state_pass:=false;
if left.track_state_pass(exec_known) then
begin
track_state_pass:=true;
left.resultdef:=nil;
do_typecheckpass(left);
end;
factval:=aktstate.find_fact(left);
if factval<>nil then
begin
track_state_pass:=true;
left.destroy;
left:=factval.getcopy;
end;
if right.track_state_pass(exec_known) then
begin
track_state_pass:=true;
right.resultdef:=nil;
do_typecheckpass(right);
end;
factval:=aktstate.find_fact(right);
if factval<>nil then
begin
track_state_pass:=true;
right.destroy;
right:=factval.getcopy;
end;
end;
{$endif}
end.