fpc/compiler/ncnv.pas
Jonas Maebe 10a7532968 * differentiate between typecasts on the assignment side or not, because we
cannot insert typecasting checks on the assignment side, only on the
    values that are being assigned
   o since valid_for_assignment() is called in tassignmentnode.typecheckpass()
     after typecheckpassing left and right, moved the conversion of the
     typecheck nodes into JVM-specific constructs from typecheckpass to
     pass_1, so that they can use the information whether they are on
     the assignment side or not
  * forbid casting a child type to a parent type on the assignment side on
    managed platforms, because that circumvents the type checking

git-svn-id: branches/jvmbackend@18515 -
2011-08-20 08:06:20 +00:00

3797 lines
141 KiB
ObjectPascal

{
Copyright (c) 2000-2002 by Florian Klaempfl
Type checking and register allocation for type converting nodes
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit ncnv;
{$i fpcdefs.inc}
interface
uses
node,
symtype,
defutil,defcmp,
nld
;
type
ttypeconvnode = class(tunarynode)
totypedef : tdef;
totypedefderef : tderef;
convtype : tconverttype;
warn_pointer_to_signed,
assignment_side: boolean;
constructor create(node : tnode;def:tdef);virtual;
constructor create_explicit(node : tnode;def:tdef);
constructor create_internal(node : tnode;def:tdef);
constructor create_proc_to_procvar(node : tnode);
constructor ppuload(t:tnodetype;ppufile:tcompilerppufile);override;
procedure ppuwrite(ppufile:tcompilerppufile);override;
procedure buildderefimpl;override;
procedure derefimpl;override;
function dogetcopy : tnode;override;
function actualtargetnode: tnode;override;
procedure printnodeinfo(var t : text);override;
function pass_1 : tnode;override;
function pass_typecheck:tnode;override;
function simplify(forinline : boolean):tnode; override;
procedure mark_write;override;
function docompare(p: tnode) : boolean; override;
function retains_value_location:boolean;
function assign_allowed:boolean;
procedure second_call_helper(c : tconverttype);
{ always called before any other type conversion checks. If it
returns true, the type conversion is ok and no further checks/
handling are required. }
function target_specific_general_typeconv: boolean;virtual;
{ called in case of a valid explicit type conversion. Can be used to
replace this explicit type conversion with a different node, or to
reject it after all }
function target_specific_explicit_typeconv: boolean;virtual;
protected
function typecheck_int_to_int : tnode; virtual;
function typecheck_cord_to_pointer : tnode; virtual;
function typecheck_chararray_to_string : tnode; virtual;
function typecheck_string_to_chararray : tnode; virtual;
function typecheck_char_to_string : tnode; virtual;
function typecheck_char_to_chararray : tnode; virtual;
function typecheck_int_to_real : tnode; virtual;
function typecheck_real_to_real : tnode; virtual;
function typecheck_real_to_currency : tnode; virtual;
function typecheck_cchar_to_pchar : tnode; virtual;
function typecheck_cstring_to_pchar : tnode; virtual;
function typecheck_cstring_to_int : tnode; virtual;
function typecheck_char_to_char : tnode; virtual;
function typecheck_arrayconstructor_to_set : tnode; virtual;
function typecheck_set_to_set : tnode; virtual;
function typecheck_pchar_to_string : tnode; virtual;
function typecheck_interface_to_string : tnode; virtual;
function typecheck_interface_to_guid : tnode; virtual;
function typecheck_dynarray_to_openarray : tnode; virtual;
function typecheck_pwchar_to_string : tnode; virtual;
function typecheck_variant_to_dynarray : tnode; virtual;
function typecheck_dynarray_to_variant : tnode; virtual;
function typecheck_variant_to_enum : tnode; virtual;
function typecheck_enum_to_variant : tnode; virtual;
function typecheck_proc_to_procvar : tnode; virtual;
function typecheck_variant_to_interface : tnode; virtual;
function typecheck_interface_to_variant : tnode; virtual;
function typecheck_array_2_dynarray : tnode; virtual;
private
function _typecheck_int_to_int : tnode;
function _typecheck_cord_to_pointer : tnode;
function _typecheck_chararray_to_string : tnode;
function _typecheck_string_to_chararray : tnode;
function _typecheck_char_to_string : tnode;
function _typecheck_char_to_chararray : tnode;
function _typecheck_int_to_real : tnode;
function _typecheck_real_to_real : tnode;
function _typecheck_real_to_currency : tnode;
function _typecheck_cchar_to_pchar : tnode;
function _typecheck_cstring_to_pchar : tnode;
function _typecheck_cstring_to_int : tnode;
function _typecheck_char_to_char : tnode;
function _typecheck_arrayconstructor_to_set : tnode;
function _typecheck_set_to_set : tnode;
function _typecheck_pchar_to_string : tnode;
function _typecheck_interface_to_string : tnode;
function _typecheck_interface_to_guid : tnode;
function _typecheck_dynarray_to_openarray : tnode;
function _typecheck_pwchar_to_string : tnode;
function _typecheck_variant_to_dynarray : tnode;
function _typecheck_dynarray_to_variant : tnode;
function _typecheck_variant_to_enum : tnode;
function _typecheck_enum_to_variant : tnode;
function _typecheck_proc_to_procvar : tnode;
function _typecheck_variant_to_interface : tnode;
function _typecheck_interface_to_variant : tnode;
function _typecheck_array_2_dynarray : tnode;
protected
function first_int_to_int : tnode;virtual;
function first_cstring_to_pchar : tnode;virtual;
function first_cstring_to_int : tnode;virtual;
function first_string_to_chararray : tnode;virtual;
function first_char_to_string : tnode;virtual;
function first_nothing : tnode;virtual;
function first_array_to_pointer : tnode;virtual;
function first_int_to_real : tnode;virtual;
function first_real_to_real : tnode;virtual;
function first_pointer_to_array : tnode;virtual;
function first_cchar_to_pchar : tnode;virtual;
function first_bool_to_int : tnode;virtual;
function first_int_to_bool : tnode;virtual;
function first_bool_to_bool : tnode;virtual;
function first_proc_to_procvar : tnode;virtual;
function first_nil_to_methodprocvar : tnode;virtual;
function first_set_to_set : tnode;virtual;
function first_cord_to_pointer : tnode;virtual;
function first_ansistring_to_pchar : tnode;virtual;
function first_arrayconstructor_to_set : tnode;virtual;
function first_class_to_intf : tnode;virtual;
function first_char_to_char : tnode;virtual;
function first_string_to_string : tnode;virtual;
function first_call_helper(c : tconverttype) : tnode;
function typecheck_call_helper(c : tconverttype) : tnode;
private
{ these wrapper are necessary, because the first_* stuff is called }
{ through a table. Without the wrappers override wouldn't have }
{ any effect }
function _first_int_to_int : tnode;
function _first_cstring_to_pchar : tnode;
function _first_cstring_to_int : tnode;
function _first_string_to_chararray : tnode;
function _first_char_to_string : tnode;
function _first_nothing : tnode;
function _first_array_to_pointer : tnode;
function _first_int_to_real : tnode;
function _first_real_to_real: tnode;
function _first_pointer_to_array : tnode;
function _first_cchar_to_pchar : tnode;
function _first_bool_to_int : tnode;
function _first_int_to_bool : tnode;
function _first_bool_to_bool : tnode;
function _first_proc_to_procvar : tnode;
function _first_nil_to_methodprocvar : tnode;
function _first_cord_to_pointer : tnode;
function _first_ansistring_to_pchar : tnode;
function _first_arrayconstructor_to_set : tnode;
function _first_class_to_intf : tnode;
function _first_char_to_char : tnode;
function _first_set_to_set : tnode;
function _first_string_to_string : tnode;
procedure _second_int_to_int;virtual;
procedure _second_string_to_string;virtual;
procedure _second_cstring_to_pchar;virtual;
procedure _second_cstring_to_int;virtual;
procedure _second_string_to_chararray;virtual;
procedure _second_array_to_pointer;virtual;
procedure _second_pointer_to_array;virtual;
procedure _second_chararray_to_string;virtual;
procedure _second_char_to_string;virtual;
procedure _second_int_to_real;virtual;
procedure _second_real_to_real;virtual;
procedure _second_cord_to_pointer;virtual;
procedure _second_proc_to_procvar;virtual;
procedure _second_nil_to_methodprocvar;virtual;
procedure _second_bool_to_int;virtual;
procedure _second_int_to_bool;virtual;
procedure _second_bool_to_bool;virtual;
procedure _second_set_to_set;virtual;
procedure _second_ansistring_to_pchar;virtual;
procedure _second_class_to_intf;virtual;
procedure _second_char_to_char;virtual;
procedure _second_nothing; virtual;
protected
procedure second_int_to_int;virtual;abstract;
procedure second_string_to_string;virtual;abstract;
procedure second_cstring_to_pchar;virtual;abstract;
procedure second_cstring_to_int;virtual;abstract;
procedure second_string_to_chararray;virtual;abstract;
procedure second_array_to_pointer;virtual;abstract;
procedure second_pointer_to_array;virtual;abstract;
procedure second_chararray_to_string;virtual;abstract;
procedure second_char_to_string;virtual;abstract;
procedure second_int_to_real;virtual;abstract;
procedure second_real_to_real;virtual;abstract;
procedure second_cord_to_pointer;virtual;abstract;
procedure second_proc_to_procvar;virtual;abstract;
procedure second_nil_to_methodprocvar;virtual;abstract;
procedure second_bool_to_int;virtual;abstract;
procedure second_int_to_bool;virtual;abstract;
procedure second_bool_to_bool;virtual;abstract;
procedure second_set_to_set;virtual;abstract;
procedure second_ansistring_to_pchar;virtual;abstract;
procedure second_class_to_intf;virtual;abstract;
procedure second_char_to_char;virtual;abstract;
procedure second_nothing; virtual;abstract;
end;
ttypeconvnodeclass = class of ttypeconvnode;
{ common functionality of as-nodes and is-nodes }
tasisnode = class(tbinarynode)
protected
{ if non-standard usage of as-nodes is possible, targets can override
this method and return true in case the conditions are fulfilled }
function target_specific_typecheck: boolean;virtual;
public
function pass_typecheck:tnode;override;
end;
tasnode = class(tasisnode)
{ as nodes cannot be translated directly into call nodes bcause:
When using -CR, explicit class typecasts are replaced with as-nodes to perform
class type checking. The problem is that if a typecasted class instance is
passed as a var-parameter, then you cannot replace it with a function call. So the as-node
a) call the as helper to perform the type checking
b) still pass the original instance as parameter to var-parameters
(and in general: to return it as the result of the as-node)
so the call field is required
}
call: tnode;
constructor create(l,r : tnode);virtual;
function pass_1 : tnode;override;
function dogetcopy: tnode;override;
function docompare(p: tnode): boolean; override;
destructor destroy; override;
end;
tasnodeclass = class of tasnode;
tisnode = class(tasisnode)
constructor create(l,r : tnode);virtual;
function pass_1 : tnode;override;
procedure pass_generate_code;override;
end;
tisnodeclass = class of tisnode;
var
ctypeconvnode : ttypeconvnodeclass = ttypeconvnode;
casnode : tasnodeclass = tasnode;
cisnode : tisnodeclass=tisnode;
procedure inserttypeconv(var p:tnode;def:tdef);
procedure inserttypeconv_explicit(var p:tnode;def:tdef);
procedure inserttypeconv_internal(var p:tnode;def:tdef);
procedure arrayconstructor_to_set(var p : tnode);
procedure insert_varargstypeconv(var p : tnode; iscvarargs: boolean);
function maybe_global_proc_to_nested(var fromnode: tnode; todef: tdef): boolean;
implementation
uses
globtype,systems,constexp,
cutils,verbose,globals,widestr,
symconst,symdef,symsym,symbase,symtable,
ncon,ncal,nset,nadd,ninl,nmem,nmat,nbas,nutils,
cgbase,procinfo,
htypechk,pass_1,cpuinfo;
{*****************************************************************************
Helpers
*****************************************************************************}
type
ttypeconvnodetype = (tct_implicit,tct_explicit,tct_internal);
procedure do_inserttypeconv(var p: tnode;def: tdef; convtype: ttypeconvnodetype);
begin
if not assigned(p.resultdef) then
begin
typecheckpass(p);
if codegenerror then
exit;
end;
{ don't insert superfluous type conversions, but
in case of bitpacked accesses, the original type must
remain too so that not too many/few bits are laoded.
Also, in case the deftyp changes, don't ignore because lots of code
expects that if the resultdef is set to e.g. stringdef, it remains
that way (e.g., in case of Java where java_jlstring equals
unicodestring according to equal_defs, but an add node for strings
still expects the resultdef of the node to be a stringdef) }
if equal_defs(p.resultdef,def) and
(p.resultdef.typ=def.typ) and
not is_bitpacked_access(p) then
p.resultdef:=def
else
begin
case convtype of
tct_implicit:
p:=ctypeconvnode.create(p,def);
tct_explicit:
p:=ctypeconvnode.create_explicit(p,def);
tct_internal:
p:=ctypeconvnode.create_internal(p,def);
end;
p.fileinfo:=ttypeconvnode(p).left.fileinfo;
typecheckpass(p);
end;
end;
procedure inserttypeconv(var p:tnode;def:tdef);
begin
do_inserttypeconv(p,def,tct_implicit);
end;
procedure inserttypeconv_explicit(var p: tnode; def: tdef);
begin
do_inserttypeconv(p,def,tct_explicit);
end;
procedure inserttypeconv_internal(var p:tnode;def:tdef);
begin
do_inserttypeconv(p,def,tct_internal);
end;
{*****************************************************************************
Array constructor to Set Conversion
*****************************************************************************}
procedure arrayconstructor_to_set(var p : tnode);
var
constp : tsetconstnode;
buildp,
p2,p3,p4 : tnode;
hdef : tdef;
constset : Pconstset;
constsetlo,
constsethi : TConstExprInt;
procedure update_constsethi(def:tdef; maybetruncenumrange: boolean);
begin
if (def.typ=orddef) and
((torddef(def).high>=constsethi) or
(torddef(def).low <=constsetlo)) then
begin
if torddef(def).ordtype=uwidechar then
begin
constsethi:=255;
constsetlo:=0;
if hdef=nil then
hdef:=def;
end
else
begin
if (torddef(def).high>=constsethi) then
constsethi:=torddef(def).high;
if (torddef(def).low<=constsetlo) then
constsetlo:=torddef(def).low;
if hdef=nil then
begin
if (constsethi>255) or
(torddef(def).low<0) then
hdef:=u8inttype
else
hdef:=def;
end;
if constsethi>255 then
constsethi:=255;
if constsetlo<0 then
constsetlo:=0;
end;
end
else if (def.typ=enumdef) and
((tenumdef(def).max>=constsethi) or
(tenumdef(def).min<=constsetlo)) then
begin
if hdef=nil then
hdef:=def;
if (tenumdef(def).max>=constsethi) then
constsethi:=tenumdef(def).max;
if (tenumdef(def).min<=constsetlo) then
constsetlo:=tenumdef(def).min;
{ for constant set elements, delphi allows the usage of elements of enumerations which
have value>255 if there is no element with a value > 255 used }
if (maybetruncenumrange) then
begin
if constsethi>255 then
constsethi:=255;
if constsetlo<0 then
constsetlo:=0;
end;
end;
end;
procedure do_set(pos : longint);
begin
if (pos and not $ff)<>0 then
Message(parser_e_illegal_set_expr);
if pos>constsethi then
constsethi:=pos;
if pos<constsetlo then
constsetlo:=pos;
if pos in constset^ then
Message(parser_e_illegal_set_expr);
include(constset^,pos);
end;
var
l : Longint;
lr,hr : TConstExprInt;
hp : tarrayconstructornode;
oldfilepos: tfileposinfo;
begin
if p.nodetype<>arrayconstructorn then
internalerror(200205105);
new(constset);
constset^:=[];
hdef:=nil;
{ make sure to set constsetlo correctly for empty sets }
if assigned(tarrayconstructornode(p).left) then
constsetlo:=high(aint)
else
constsetlo:=0;
constsethi:=0;
constp:=csetconstnode.create(nil,hdef);
constp.value_set:=constset;
buildp:=constp;
hp:=tarrayconstructornode(p);
if assigned(hp.left) then
begin
while assigned(hp) do
begin
p4:=nil; { will contain the tree to create the set }
{split a range into p2 and p3 }
if hp.left.nodetype=arrayconstructorrangen then
begin
p2:=tarrayconstructorrangenode(hp.left).left;
p3:=tarrayconstructorrangenode(hp.left).right;
tarrayconstructorrangenode(hp.left).left:=nil;
tarrayconstructorrangenode(hp.left).right:=nil;
end
else
begin
p2:=hp.left;
hp.left:=nil;
p3:=nil;
end;
typecheckpass(p2);
set_varstate(p2,vs_read,[vsf_must_be_valid]);
if assigned(p3) then
begin
typecheckpass(p3);
set_varstate(p3,vs_read,[vsf_must_be_valid]);
end;
if codegenerror then
break;
oldfilepos:=current_filepos;
current_filepos:=p2.fileinfo;
case p2.resultdef.typ of
enumdef,
orddef:
begin
{ widechars are not yet supported }
if is_widechar(p2.resultdef) then
begin
inserttypeconv(p2,cchartype);
if (p2.nodetype<>ordconstn) then
incompatibletypes(cwidechartype,cchartype);
end;
getrange(p2.resultdef,lr,hr);
if assigned(p3) then
begin
if is_widechar(p3.resultdef) then
begin
inserttypeconv(p3,cchartype);
if (p3.nodetype<>ordconstn) then
begin
current_filepos:=p3.fileinfo;
incompatibletypes(cwidechartype,cchartype);
end;
end;
{ this isn't good, you'll get problems with
type t010 = 0..10;
ts = set of t010;
var s : ts;b : t010
begin s:=[1,2,b]; end.
if is_integer(p3^.resultdef) then
begin
inserttypeconv(p3,u8bitdef);
end;
}
if assigned(hdef) and not(equal_defs(hdef,p3.resultdef)) then
begin
CGMessagePos(p3.fileinfo,type_e_typeconflict_in_set);
end
else
begin
if (p2.nodetype=ordconstn) and (p3.nodetype=ordconstn) then
begin
if not(is_integer(p3.resultdef)) then
hdef:=p3.resultdef
else
begin
inserttypeconv(p3,u8inttype);
inserttypeconv(p2,u8inttype);
end;
for l:=tordconstnode(p2).value.svalue to tordconstnode(p3).value.svalue do
do_set(l);
p2.free;
p3.free;
end
else
begin
update_constsethi(p2.resultdef,false);
inserttypeconv(p2,hdef);
update_constsethi(p3.resultdef,false);
inserttypeconv(p3,hdef);
if assigned(hdef) then
inserttypeconv(p3,hdef)
else
inserttypeconv(p3,u8inttype);
p4:=csetelementnode.create(p2,p3);
end;
end;
end
else
begin
{ Single value }
if p2.nodetype=ordconstn then
begin
if not(is_integer(p2.resultdef)) then
update_constsethi(p2.resultdef,true);
if assigned(hdef) then
inserttypeconv(p2,hdef)
else
inserttypeconv(p2,u8inttype);
do_set(tordconstnode(p2).value.svalue);
p2.free;
end
else
begin
update_constsethi(p2.resultdef,false);
if assigned(hdef) then
inserttypeconv(p2,hdef)
else
inserttypeconv(p2,u8inttype);
p4:=csetelementnode.create(p2,nil);
end;
end;
end;
stringdef :
begin
if (p2.nodetype<>stringconstn) then
Message(parser_e_illegal_expression)
{ if we've already set elements which are constants }
{ throw an error }
else if ((hdef=nil) and assigned(buildp)) or
not(is_char(hdef)) then
CGMessage(type_e_typeconflict_in_set)
else
for l:=1 to length(pshortstring(tstringconstnode(p2).value_str)^) do
do_set(ord(pshortstring(tstringconstnode(p2).value_str)^[l]));
if hdef=nil then
hdef:=cchartype;
p2.free;
end;
else
CGMessage(type_e_ordinal_expr_expected);
end;
{ insert the set creation tree }
if assigned(p4) then
buildp:=caddnode.create(addn,buildp,p4);
{ load next and dispose current node }
p2:=hp;
hp:=tarrayconstructornode(tarrayconstructornode(p2).right);
tarrayconstructornode(p2).right:=nil;
p2.free;
current_filepos:=oldfilepos;
end;
if (hdef=nil) then
hdef:=u8inttype;
end
else
begin
{ empty set [], only remove node }
p.free;
end;
{ set the initial set type }
constp.resultdef:=tsetdef.create(hdef,constsetlo.svalue,constsethi.svalue);
{ determine the resultdef for the tree }
typecheckpass(buildp);
{ set the new tree }
p:=buildp;
end;
procedure insert_varargstypeconv(var p : tnode; iscvarargs: boolean);
begin
{ procvars without arguments in variant arrays are always called by
Delphi }
if not(iscvarargs) then
maybe_call_procvar(p,true);
if not(iscvarargs) and
(p.nodetype=stringconstn) and
{ don't cast to AnsiString if already casted to Wide/UnicodeString, issue #18266 }
(tstringconstnode(p).cst_type in [cst_conststring,cst_shortstring,cst_longstring]) then
p:=ctypeconvnode.create_internal(p,cansistringtype)
else
case p.resultdef.typ of
enumdef :
p:=ctypeconvnode.create_internal(p,s32inttype);
arraydef :
begin
if is_chararray(p.resultdef) then
p:=ctypeconvnode.create_internal(p,charpointertype)
else
if is_widechararray(p.resultdef) then
p:=ctypeconvnode.create_internal(p,widecharpointertype)
else
CGMessagePos1(p.fileinfo,type_e_wrong_type_in_array_constructor,p.resultdef.typename);
end;
orddef :
begin
if is_integer(p.resultdef) and
not(is_64bitint(p.resultdef)) then
if not(m_delphi in current_settings.modeswitches) then
p:=ctypeconvnode.create(p,s32inttype)
else
{ delphi doesn't generate a range error when passing a
cardinal >= $80000000, but since these are seen as
longint on the callee side, this causes data loss;
as a result, we require an explicit longint()
typecast in FPC mode on the caller side if range
checking should be disabled, but not in Delphi mode }
p:=ctypeconvnode.create_internal(p,s32inttype)
else if is_void(p.resultdef) then
CGMessagePos1(p.fileinfo,type_e_wrong_type_in_array_constructor,p.resultdef.typename)
else if iscvarargs and is_currency(p.resultdef)
and (current_settings.fputype<>fpu_none) then
p:=ctypeconvnode.create(p,s64floattype);
end;
floatdef :
if not(iscvarargs) then
begin
if not(is_currency(p.resultdef)) then
p:=ctypeconvnode.create(p,pbestrealtype^);
end
else
begin
if is_constrealnode(p) and
not(nf_explicit in p.flags) then
MessagePos(p.fileinfo,type_w_double_c_varargs);
if (tfloatdef(p.resultdef).floattype in [s32real,s64currency]) or
(is_constrealnode(p) and
not(nf_explicit in p.flags)) then
p:=ctypeconvnode.create(p,s64floattype);
end;
procvardef :
p:=ctypeconvnode.create(p,voidpointertype);
stringdef:
if iscvarargs then
p:=ctypeconvnode.create(p,charpointertype);
variantdef:
if iscvarargs then
CGMessagePos1(p.fileinfo,type_e_wrong_type_in_array_constructor,p.resultdef.typename);
{ maybe warn in case it's not using "packrecords c"? }
recorddef:
if not iscvarargs then
CGMessagePos1(p.fileinfo,type_e_wrong_type_in_array_constructor,p.resultdef.typename);
pointerdef:
;
classrefdef:
if iscvarargs then
p:=ctypeconvnode.create(p,voidpointertype);
objectdef :
if (iscvarargs and
not is_objc_class_or_protocol(p.resultdef)) or
is_object(p.resultdef) then
CGMessagePos1(p.fileinfo,type_e_wrong_type_in_array_constructor,p.resultdef.typename);
else
CGMessagePos1(p.fileinfo,type_e_wrong_type_in_array_constructor,p.resultdef.typename);
end;
typecheckpass(p);
end;
{ in FPC mode, @procname immediately has to be evaluated as a
procvar. If procname is global, then this will be a global
procvar. Since converting global procvars to local procvars is
not allowed (see point d in defcmp.proc_to_procvar_equal()),
this results in errors when passing global procedures to local
procvar parameters or assigning them to nested procvars. The
solution is to remove the (wrong) conversion to a global procvar,
and instead insert a conversion to the local procvar type. }
function maybe_global_proc_to_nested(var fromnode: tnode; todef: tdef): boolean;
var
hp: tnode;
begin
result:=false;
if (m_nested_procvars in current_settings.modeswitches) and
not(m_tp_procvar in current_settings.modeswitches) and
(todef.typ=procvardef) and
is_nested_pd(tprocvardef(todef)) and
(fromnode.nodetype=typeconvn) and
(ttypeconvnode(fromnode).convtype=tc_proc_2_procvar) and
not is_nested_pd(tprocvardef(fromnode.resultdef)) and
(proc_to_procvar_equal(tprocdef(ttypeconvnode(fromnode).left.resultdef),tprocvardef(todef),false)>=te_convert_l1) then
begin
hp:=fromnode;
fromnode:=ctypeconvnode.create_proc_to_procvar(ttypeconvnode(fromnode).left);
ttypeconvnode(fromnode).totypedef:=todef;
typecheckpass(fromnode);
ttypeconvnode(hp).left:=nil;
hp.free;
result:=true;
end;
end;
{*****************************************************************************
TTYPECONVNODE
*****************************************************************************}
constructor ttypeconvnode.create(node : tnode;def:tdef);
begin
inherited create(typeconvn,node);
convtype:=tc_none;
totypedef:=def;
if def=nil then
internalerror(200103281);
fileinfo:=node.fileinfo;
{An attempt to convert the result of a floating point division
(with the / operator) to an integer type will fail. Give a hint
to use the div operator.}
if (node.nodetype=slashn) and (def.typ=orddef) then
cgmessage(type_h_use_div_for_int);
{In expressions like int64:=longint+longint, an integer overflow could be avoided
by simply converting the operands to int64 first. Give a hint to do this.}
if (node.nodetype in [addn,subn,muln]) and
(def.typ=orddef) and (node.resultdef<>nil) and (node.resultdef.typ=orddef) and
((Torddef(node.resultdef).low>=Torddef(def).low) and (Torddef(node.resultdef).high<=Torddef(def).high)) and
((Torddef(node.resultdef).low>Torddef(def).low) or (Torddef(node.resultdef).high<Torddef(def).high)) then
case node.nodetype of
addn:
cgmessage1(type_h_convert_add_operands_to_prevent_overflow,def.typename);
subn:
cgmessage1(type_h_convert_sub_operands_to_prevent_overflow,def.typename);
muln:
cgmessage1(type_h_convert_mul_operands_to_prevent_overflow,def.typename);
end;
end;
constructor ttypeconvnode.create_explicit(node : tnode;def:tdef);
begin
self.create(node,def);
include(flags,nf_explicit);
end;
constructor ttypeconvnode.create_internal(node : tnode;def:tdef);
begin
self.create(node,def);
{ handle like explicit conversions }
include(flags,nf_explicit);
include(flags,nf_internal);
end;
constructor ttypeconvnode.create_proc_to_procvar(node : tnode);
begin
self.create(node,voidtype);
convtype:=tc_proc_2_procvar;
end;
constructor ttypeconvnode.ppuload(t:tnodetype;ppufile:tcompilerppufile);
begin
inherited ppuload(t,ppufile);
ppufile.getderef(totypedefderef);
convtype:=tconverttype(ppufile.getbyte);
end;
procedure ttypeconvnode.ppuwrite(ppufile:tcompilerppufile);
begin
inherited ppuwrite(ppufile);
ppufile.putderef(totypedefderef);
ppufile.putbyte(byte(convtype));
end;
procedure ttypeconvnode.buildderefimpl;
begin
inherited buildderefimpl;
totypedefderef.build(totypedef);
end;
procedure ttypeconvnode.derefimpl;
begin
inherited derefimpl;
totypedef:=tdef(totypedefderef.resolve);
end;
function ttypeconvnode.dogetcopy : tnode;
var
n : ttypeconvnode;
begin
n:=ttypeconvnode(inherited dogetcopy);
n.convtype:=convtype;
n.totypedef:=totypedef;
n.assignment_side:=assignment_side;
dogetcopy:=n;
end;
procedure ttypeconvnode.printnodeinfo(var t : text);
const
convtyp2str : array[tconverttype] of pchar = (
'tc_none',
'tc_equal',
'tc_not_possible',
'tc_string_2_string',
'tc_char_2_string',
'tc_char_2_chararray',
'tc_pchar_2_string',
'tc_cchar_2_pchar',
'tc_cstring_2_pchar',
'tc_cstring_2_int',
'tc_ansistring_2_pchar',
'tc_string_2_chararray',
'tc_chararray_2_string',
'tc_array_2_pointer',
'tc_pointer_2_array',
'tc_int_2_int',
'tc_int_2_bool',
'tc_bool_2_bool',
'tc_bool_2_int',
'tc_real_2_real',
'tc_int_2_real',
'tc_real_2_currency',
'tc_proc_2_procvar',
'tc_nil_2_methodprocvar',
'tc_arrayconstructor_2_set',
'tc_set_2_set',
'tc_cord_2_pointer',
'tc_intf_2_string',
'tc_intf_2_guid',
'tc_class_2_intf',
'tc_char_2_char',
'tc_dynarray_2_openarray',
'tc_pwchar_2_string',
'tc_variant_2_dynarray',
'tc_dynarray_2_variant',
'tc_variant_2_enum',
'tc_enum_2_variant',
'tc_interface_2_variant',
'tc_variant_2_interface',
'tc_array_2_dynarray'
);
begin
inherited printnodeinfo(t);
write(t,', convtype = ',strpas(convtyp2str[convtype]));
end;
function ttypeconvnode.typecheck_cord_to_pointer : tnode;
begin
result:=nil;
if left.nodetype=ordconstn then
begin
{ check if we have a valid pointer constant (JM) }
{$if sizeof(pointer) > sizeof(TConstPtrUInt)}
{$if sizeof(TConstPtrUInt) = 4}
if (tordconstnode(left).value < int64(low(longint))) or
(tordconstnode(left).value > int64(high(cardinal))) then
CGMessage(parser_e_range_check_error);
{$else} {$if sizeof(TConstPtrUInt) = 8}
if (tordconstnode(left).value < int64(low(int64))) or
(tordconstnode(left).value > int64(high(qword))) then
CGMessage(parser_e_range_check_error);
{$else}
internalerror(2001020801);
{$endif} {$endif}
{$endif}
if not(nf_explicit in flags) then
if (tordconstnode(left).value.svalue=0) then
CGMessage(type_w_zero_to_nil)
else
{ in Delphi mode, these aren't caught in compare_defs_ext }
IncompatibleTypes(left.resultdef,resultdef);
result:=cpointerconstnode.create(TConstPtrUInt(tordconstnode(left).value.uvalue),resultdef);
end
else
internalerror(200104023);
end;
function ttypeconvnode.typecheck_chararray_to_string : tnode;
var
chartype : string[8];
newblock : tblocknode;
newstat : tstatementnode;
restemp : ttempcreatenode;
begin
if is_widechar(tarraydef(left.resultdef).elementdef) then
chartype:='widechar'
else
chartype:='char';
if tstringdef(resultdef).stringtype=st_shortstring then
begin
newblock:=internalstatements(newstat);
restemp:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,false);
addstatement(newstat,restemp);
addstatement(newstat,ccallnode.createintern('fpc_'+chartype+'array_to_shortstr',
ccallparanode.create(cordconstnode.create(
ord(tarraydef(left.resultdef).lowrange=0),pasbool8type,false),
ccallparanode.create(left,ccallparanode.create(
ctemprefnode.create(restemp),nil)))));
addstatement(newstat,ctempdeletenode.create_normal_temp(restemp));
addstatement(newstat,ctemprefnode.create(restemp));
result:=newblock;
end
else
result:=ccallnode.createinternres(
'fpc_'+chartype+'array_to_'+tstringdef(resultdef).stringtypname,
ccallparanode.create(cordconstnode.create(
ord(tarraydef(left.resultdef).lowrange=0),pasbool8type,false),
ccallparanode.create(left,nil)),resultdef);
left:=nil;
end;
function ttypeconvnode.typecheck_string_to_chararray : tnode;
var
newblock : tblocknode;
newstat : tstatementnode;
restemp : ttempcreatenode;
pchtemp : pchar;
arrsize : aint;
chartype : string[8];
begin
result := nil;
with tarraydef(resultdef) do
begin
if highrange<lowrange then
internalerror(200501051);
arrsize := highrange-lowrange+1;
end;
if (left.nodetype = stringconstn) and
(tstringconstnode(left).cst_type=cst_conststring) then
begin
{ if the array of char is large enough we can use the string
constant directly. This is handled in ncgcnv }
if (arrsize>=tstringconstnode(left).len) and
is_char(tarraydef(resultdef).elementdef) then
begin
{ pad the constant string with #0 to the array len }
{ (2.0.x compatible) }
if (arrsize>tstringconstnode(left).len) then
begin
pchtemp:=concatansistrings(tstringconstnode(left).value_str,pchar(StringOfChar(#0,arrsize-tstringconstnode(left).len)),tstringconstnode(left).len,arrsize-tstringconstnode(left).len);
left.free;
left:=cstringconstnode.createpchar(pchtemp,arrsize);
typecheckpass(left);
end;
exit;
end;
{ Convert to wide/short/ansistring and call default helper }
if is_widechar(tarraydef(resultdef).elementdef) then
inserttypeconv(left,cwidestringtype)
else
begin
if tstringconstnode(left).len>255 then
inserttypeconv(left,cansistringtype)
else
inserttypeconv(left,cshortstringtype);
end;
end;
if is_widechar(tarraydef(resultdef).elementdef) then
chartype:='widechar'
else
chartype:='char';
newblock:=internalstatements(newstat);
restemp:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,false);
addstatement(newstat,restemp);
addstatement(newstat,ccallnode.createintern('fpc_'+tstringdef(left.resultdef).stringtypname+
'_to_'+chartype+'array',ccallparanode.create(left,ccallparanode.create(
ctemprefnode.create(restemp),nil))));
addstatement(newstat,ctempdeletenode.create_normal_temp(restemp));
addstatement(newstat,ctemprefnode.create(restemp));
result:=newblock;
left:=nil;
end;
function ttypeconvnode.typecheck_char_to_string : tnode;
var
procname: string[31];
para : tcallparanode;
hp : tstringconstnode;
ws : pcompilerwidestring;
newblock : tblocknode;
newstat : tstatementnode;
restemp : ttempcreatenode;
begin
result:=nil;
{ we can't do widechar to ansichar conversions at compile time, since }
{ this maps all non-ascii chars to '?' -> loses information }
if (left.nodetype=ordconstn) and
((tstringdef(resultdef).stringtype in [st_widestring,st_unicodestring]) or
(torddef(left.resultdef).ordtype=uchar) or
{ widechar >=128 is destroyed }
(tordconstnode(left).value.uvalue<128)) then
begin
if (tstringdef(resultdef).stringtype in [st_widestring,st_unicodestring]) then
begin
initwidestring(ws);
if torddef(left.resultdef).ordtype=uwidechar then
concatwidestringchar(ws,tcompilerwidechar(tordconstnode(left).value.uvalue))
else
concatwidestringchar(ws,asciichar2unicode(chr(tordconstnode(left).value.uvalue)));
hp:=cstringconstnode.createwstr(ws);
hp.changestringtype(resultdef);
donewidestring(ws);
end
else
begin
if (torddef(left.resultdef).ordtype=uwidechar) then
hp:=cstringconstnode.createstr(unicode2asciichar(tcompilerwidechar(tordconstnode(left).value.uvalue)))
else
hp:=cstringconstnode.createstr(chr(tordconstnode(left).value.uvalue));
tstringconstnode(hp).changestringtype(resultdef);
end;
result:=hp;
end
else
{ shortstrings are handled 'inline' (except for widechars) }
if (tstringdef(resultdef).stringtype <> st_shortstring) or
(torddef(left.resultdef).ordtype = uwidechar) then
begin
if (tstringdef(resultdef).stringtype <> st_shortstring) then
begin
{ create the procname }
if torddef(left.resultdef).ordtype<>uwidechar then
procname := 'fpc_char_to_'
else
procname := 'fpc_uchar_to_';
procname:=procname+tstringdef(resultdef).stringtypname;
{ and the parameter }
para := ccallparanode.create(left,nil);
{ and finally the call }
result := ccallnode.createinternres(procname,para,resultdef);
end
else
begin
newblock:=internalstatements(newstat);
restemp:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,false);
addstatement(newstat,restemp);
addstatement(newstat,ccallnode.createintern('fpc_wchar_to_shortstr',ccallparanode.create(left,ccallparanode.create(
ctemprefnode.create(restemp),nil))));
addstatement(newstat,ctempdeletenode.create_normal_temp(restemp));
addstatement(newstat,ctemprefnode.create(restemp));
result:=newblock;
end;
left := nil;
end
else
begin
{ create word(byte(char) shl 8 or 1) for litte endian machines }
{ and word(byte(char) or 256) for big endian machines }
left := ctypeconvnode.create_internal(left,u8inttype);
if (target_info.endian = endian_little) then
left := caddnode.create(orn,
cshlshrnode.create(shln,left,cordconstnode.create(8,s32inttype,false)),
cordconstnode.create(1,s32inttype,false))
else
left := caddnode.create(orn,left,
cordconstnode.create(1 shl 8,s32inttype,false));
left := ctypeconvnode.create_internal(left,u16inttype);
typecheckpass(left);
end;
end;
function ttypeconvnode.typecheck_char_to_chararray : tnode;
begin
if resultdef.size <> 1 then
begin
{ convert first to string, then to chararray }
inserttypeconv(left,cshortstringtype);
inserttypeconv(left,resultdef);
result:=left;
left := nil;
exit;
end;
result := nil;
end;
function ttypeconvnode.typecheck_char_to_char : tnode;
var
hp : tordconstnode;
begin
result:=nil;
if (left.nodetype=ordconstn) and
((torddef(resultdef).ordtype<>uchar) or
(torddef(left.resultdef).ordtype<>uwidechar) or
{ >= 128 is replaced by '?' currently -> loses information }
(tordconstnode(left).value.uvalue<128)) then
begin
if (torddef(resultdef).ordtype=uchar) and
(torddef(left.resultdef).ordtype=uwidechar) then
begin
hp:=cordconstnode.create(
ord(unicode2asciichar(tcompilerwidechar(tordconstnode(left).value.uvalue))),
cchartype,true);
result:=hp;
end
else if (torddef(resultdef).ordtype=uwidechar) and
(torddef(left.resultdef).ordtype=uchar) then
begin
hp:=cordconstnode.create(
asciichar2unicode(chr(tordconstnode(left).value.uvalue)),
cwidechartype,true);
result:=hp;
end
else
internalerror(200105131);
exit;
end;
end;
function ttypeconvnode.typecheck_int_to_int : tnode;
var
v : TConstExprInt;
begin
result:=nil;
if left.nodetype=ordconstn then
begin
v:=tordconstnode(left).value;
if is_currency(resultdef) then
v:=v*10000;
if (resultdef.typ=pointerdef) then
result:=cpointerconstnode.create(TConstPtrUInt(v.uvalue),resultdef)
else
begin
if is_currency(left.resultdef) then
v:=v div 10000;
result:=cordconstnode.create(v,resultdef,false);
end;
end
else if left.nodetype=pointerconstn then
begin
v:=tpointerconstnode(left).value;
if (resultdef.typ=pointerdef) then
result:=cpointerconstnode.create(v.uvalue,resultdef)
else
begin
if is_currency(resultdef) then
v:=v*10000;
result:=cordconstnode.create(v,resultdef,false);
end;
end
else
begin
{ multiply by 10000 for currency. We need to use getcopy to pass
the argument because the current node is always disposed. Only
inserting the multiply in the left node is not possible because
it'll get in an infinite loop to convert int->currency }
if is_currency(resultdef) then
begin
result:=caddnode.create(muln,getcopy,cordconstnode.create(10000,resultdef,false));
include(result.flags,nf_is_currency);
end
else if is_currency(left.resultdef) then
begin
result:=cmoddivnode.create(divn,getcopy,cordconstnode.create(10000,resultdef,false));
include(result.flags,nf_is_currency);
end;
end;
end;
function ttypeconvnode.typecheck_int_to_real : tnode;
var
rv : bestreal;
begin
result:=nil;
if left.nodetype=ordconstn then
begin
rv:=tordconstnode(left).value;
if is_currency(resultdef) then
rv:=rv*10000.0
else if is_currency(left.resultdef) then
rv:=rv/10000.0;
result:=crealconstnode.create(rv,resultdef);
end
else
begin
{ multiply by 10000 for currency. We need to use getcopy to pass
the argument because the current node is always disposed. Only
inserting the multiply in the left node is not possible because
it'll get in an infinite loop to convert int->currency }
if is_currency(resultdef) then
begin
result:=caddnode.create(muln,getcopy,crealconstnode.create(10000.0,resultdef));
include(result.flags,nf_is_currency);
end
else if is_currency(left.resultdef) then
begin
result:=caddnode.create(slashn,getcopy,crealconstnode.create(10000.0,resultdef));
include(result.flags,nf_is_currency);
end;
end;
end;
function ttypeconvnode.typecheck_real_to_currency : tnode;
begin
if not is_currency(resultdef) then
internalerror(200304221);
result:=nil;
left:=caddnode.create(muln,left,crealconstnode.create(10000.0,left.resultdef));
include(left.flags,nf_is_currency);
typecheckpass(left);
{ Convert constants directly, else call Round() }
if left.nodetype=realconstn then
result:=cordconstnode.create(round(trealconstnode(left).value_real),resultdef,false)
else
begin
result:=ccallnode.createinternres('fpc_round_real',
ccallparanode.create(left,nil),resultdef);
left:=nil;
end;
end;
function ttypeconvnode.typecheck_real_to_real : tnode;
begin
result:=nil;
if is_currency(left.resultdef) and not(is_currency(resultdef)) then
begin
left:=caddnode.create(slashn,left,crealconstnode.create(10000.0,left.resultdef));
include(left.flags,nf_is_currency);
typecheckpass(left);
end
else
if is_currency(resultdef) and not(is_currency(left.resultdef)) then
begin
left:=caddnode.create(muln,left,crealconstnode.create(10000.0,left.resultdef));
include(left.flags,nf_is_currency);
typecheckpass(left);
end;
end;
function ttypeconvnode.typecheck_cchar_to_pchar : tnode;
begin
result:=nil;
if is_pwidechar(resultdef) then
inserttypeconv(left,cwidestringtype)
else
inserttypeconv(left,cshortstringtype);
{ evaluate again, reset resultdef so the convert_typ
will be calculated again and cstring_to_pchar will
be used for futher conversion }
convtype:=tc_none;
result:=pass_typecheck;
end;
function ttypeconvnode.typecheck_cstring_to_pchar : tnode;
begin
result:=nil;
if is_pwidechar(resultdef) then
inserttypeconv(left,cwidestringtype)
else
if is_pchar(resultdef) and
(is_widestring(left.resultdef) or
is_unicodestring(left.resultdef)) then
begin
inserttypeconv(left,cansistringtype);
{ the second pass of second_cstring_to_pchar expects a }
{ strinconstn, but this may become a call to the }
{ widestring manager in case left contains "high ascii" }
if (left.nodetype<>stringconstn) then
begin
result:=left;
left:=nil;
end;
end;
end;
function ttypeconvnode.typecheck_cstring_to_int : tnode;
var
fcc : cardinal;
pb : pbyte;
begin
result:=nil;
if left.nodetype<>stringconstn then
internalerror(200510012);
if tstringconstnode(left).len=4 then
begin
pb:=pbyte(tstringconstnode(left).value_str);
fcc:=(pb[0] shl 24) or (pb[1] shl 16) or (pb[2] shl 8) or pb[3];
result:=cordconstnode.create(fcc,u32inttype,false);
end
else
CGMessage2(type_e_illegal_type_conversion,left.resultdef.typename,resultdef.typename);
end;
function ttypeconvnode.typecheck_arrayconstructor_to_set : tnode;
var
hp : tnode;
begin
result:=nil;
if left.nodetype<>arrayconstructorn then
internalerror(5546);
{ remove typeconv node }
hp:=left;
left:=nil;
{ create a set constructor tree }
arrayconstructor_to_set(hp);
result:=hp;
end;
function ttypeconvnode.typecheck_set_to_set : tnode;
begin
result:=nil;
{ constant sets can be converted by changing the type only }
if (left.nodetype=setconstn) then
begin
left.resultdef:=resultdef;
result:=left;
left:=nil;
exit;
end;
end;
function ttypeconvnode.typecheck_pchar_to_string : tnode;
var
newblock : tblocknode;
newstat : tstatementnode;
restemp : ttempcreatenode;
begin
if tstringdef(resultdef).stringtype=st_shortstring then
begin
newblock:=internalstatements(newstat);
restemp:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,false);
addstatement(newstat,restemp);
addstatement(newstat,ccallnode.createintern('fpc_pchar_to_shortstr',ccallparanode.create(left,ccallparanode.create(
ctemprefnode.create(restemp),nil))));
addstatement(newstat,ctempdeletenode.create_normal_temp(restemp));
addstatement(newstat,ctemprefnode.create(restemp));
result:=newblock;
end
else
result := ccallnode.createinternres(
'fpc_pchar_to_'+tstringdef(resultdef).stringtypname,
ccallparanode.create(left,nil),resultdef);
left:=nil;
end;
function ttypeconvnode.typecheck_interface_to_string : tnode;
begin
if assigned(tobjectdef(left.resultdef).iidstr) then
begin
if not(oo_has_valid_guid in tobjectdef(left.resultdef).objectoptions) then
CGMessage1(type_e_interface_has_no_guid,tobjectdef(left.resultdef).typename);
result:=cstringconstnode.createstr(tobjectdef(left.resultdef).iidstr^);
tstringconstnode(result).changestringtype(cshortstringtype);
end;
end;
function ttypeconvnode.typecheck_interface_to_guid : tnode;
begin
if assigned(tobjectdef(left.resultdef).iidguid) then
begin
if not(oo_has_valid_guid in tobjectdef(left.resultdef).objectoptions) then
CGMessage1(type_e_interface_has_no_guid,tobjectdef(left.resultdef).typename);
result:=cguidconstnode.create(tobjectdef(left.resultdef).iidguid^);
end;
end;
function ttypeconvnode.typecheck_dynarray_to_openarray : tnode;
begin
{ a dynamic array is a pointer to an array, so to convert it to }
{ an open array, we have to dereference it (JM) }
result := ctypeconvnode.create_internal(left,voidpointertype);
typecheckpass(result);
{ left is reused }
left := nil;
result := cderefnode.create(result);
include(result.flags,nf_no_checkpointer);
result.resultdef := resultdef;
end;
function ttypeconvnode.typecheck_pwchar_to_string : tnode;
var
newblock : tblocknode;
newstat : tstatementnode;
restemp : ttempcreatenode;
begin
if tstringdef(resultdef).stringtype=st_shortstring then
begin
newblock:=internalstatements(newstat);
restemp:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,false);
addstatement(newstat,restemp);
addstatement(newstat,ccallnode.createintern('fpc_pwidechar_to_shortstr',ccallparanode.create(left,ccallparanode.create(
ctemprefnode.create(restemp),nil))));
addstatement(newstat,ctempdeletenode.create_normal_temp(restemp));
addstatement(newstat,ctemprefnode.create(restemp));
result:=newblock;
end
else
result := ccallnode.createinternres(
'fpc_pwidechar_to_'+tstringdef(resultdef).stringtypname,
ccallparanode.create(left,nil),resultdef);
left:=nil;
end;
function ttypeconvnode.typecheck_variant_to_dynarray : tnode;
begin
result := ccallnode.createinternres(
'fpc_variant_to_dynarray',
ccallparanode.create(caddrnode.create_internal(crttinode.create(tstoreddef(resultdef),initrtti,rdt_normal)),
ccallparanode.create(left,nil)
),resultdef);
typecheckpass(result);
left:=nil;
end;
function ttypeconvnode.typecheck_dynarray_to_variant : tnode;
begin
result := ccallnode.createinternres(
'fpc_dynarray_to_variant',
ccallparanode.create(caddrnode.create_internal(crttinode.create(tstoreddef(left.resultdef),initrtti,rdt_normal)),
ccallparanode.create(ctypeconvnode.create_explicit(left,voidpointertype),nil)
),resultdef);
typecheckpass(result);
left:=nil;
end;
function ttypeconvnode.typecheck_variant_to_interface : tnode;
begin
if tobjectdef(resultdef).is_related(tobjectdef(search_system_type('IDISPATCH').typedef)) then
result := ccallnode.createinternres(
'fpc_variant_to_idispatch',
ccallparanode.create(left,nil)
,resultdef)
else
result := ccallnode.createinternres(
'fpc_variant_to_interface',
ccallparanode.create(left,nil)
,resultdef);
typecheckpass(result);
left:=nil;
end;
function ttypeconvnode.typecheck_interface_to_variant : tnode;
begin
if tobjectdef(left.resultdef).is_related(tobjectdef(search_system_type('IDISPATCH').typedef)) then
result := ccallnode.createinternres(
'fpc_idispatch_to_variant',
ccallparanode.create(left,nil)
,resultdef)
else
result := ccallnode.createinternres(
'fpc_interface_to_variant',
ccallparanode.create(left,nil)
,resultdef);
typecheckpass(result);
left:=nil;
end;
function ttypeconvnode.typecheck_variant_to_enum : tnode;
begin
result := ctypeconvnode.create_internal(left,sinttype);
result := ctypeconvnode.create_internal(result,resultdef);
typecheckpass(result);
{ left is reused }
left := nil;
end;
function ttypeconvnode.typecheck_enum_to_variant : tnode;
begin
result := ctypeconvnode.create_internal(left,sinttype);
result := ctypeconvnode.create_internal(result,cvarianttype);
typecheckpass(result);
{ left is reused }
left := nil;
end;
function ttypeconvnode.typecheck_array_2_dynarray : tnode;
var
newstatement : tstatementnode;
temp : ttempcreatenode;
temp2 : ttempcreatenode;
begin
{ create statements with call to getmem+initialize }
result:=internalstatements(newstatement);
{ create temp for result }
temp:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,true);
addstatement(newstatement,temp);
{ get temp for array of lengths }
temp2:=ctempcreatenode.create(sinttype,sinttype.size,tt_persistent,false);
addstatement(newstatement,temp2);
{ one dimensional }
addstatement(newstatement,cassignmentnode.create(
ctemprefnode.create_offset(temp2,0),
cordconstnode.create
(tarraydef(left.resultdef).highrange+1,s32inttype,true)));
{ create call to fpc_dynarr_setlength }
addstatement(newstatement,ccallnode.createintern('fpc_dynarray_setlength',
ccallparanode.create(caddrnode.create_internal
(ctemprefnode.create(temp2)),
ccallparanode.create(cordconstnode.create
(1,s32inttype,true),
ccallparanode.create(caddrnode.create_internal
(crttinode.create(tstoreddef(resultdef),initrtti,rdt_normal)),
ccallparanode.create(
ctypeconvnode.create_internal(
ctemprefnode.create(temp),voidpointertype),
nil))))
));
addstatement(newstatement,ctempdeletenode.create(temp2));
{ copy ... }
addstatement(newstatement,cassignmentnode.create(
ctypeconvnode.create_internal(cderefnode.create(ctypeconvnode.create_internal(ctemprefnode.create(temp),voidpointertype)),left.resultdef),
left
));
{ left is reused }
left:=nil;
{ the last statement should return the value as
location and type, this is done be referencing the
temp and converting it first from a persistent temp to
normal temp }
addstatement(newstatement,ctempdeletenode.create_normal_temp(temp));
addstatement(newstatement,ctemprefnode.create(temp));
end;
function ttypeconvnode._typecheck_int_to_int : tnode;
begin
result := typecheck_int_to_int;
end;
function ttypeconvnode._typecheck_cord_to_pointer : tnode;
begin
result := typecheck_cord_to_pointer;
end;
function ttypeconvnode._typecheck_chararray_to_string : tnode;
begin
result := typecheck_chararray_to_string;
end;
function ttypeconvnode._typecheck_string_to_chararray : tnode;
begin
result := typecheck_string_to_chararray;
end;
function ttypeconvnode._typecheck_char_to_string : tnode;
begin
result := typecheck_char_to_string;
end;
function ttypeconvnode._typecheck_char_to_chararray : tnode;
begin
result := typecheck_char_to_chararray;
end;
function ttypeconvnode._typecheck_int_to_real : tnode;
begin
result := typecheck_int_to_real;
end;
function ttypeconvnode._typecheck_real_to_real : tnode;
begin
result := typecheck_real_to_real;
end;
function ttypeconvnode._typecheck_real_to_currency : tnode;
begin
result := typecheck_real_to_currency;
end;
function ttypeconvnode._typecheck_cchar_to_pchar : tnode;
begin
result := typecheck_cchar_to_pchar;
end;
function ttypeconvnode._typecheck_cstring_to_pchar : tnode;
begin
result := typecheck_cstring_to_pchar;
end;
function ttypeconvnode._typecheck_cstring_to_int : tnode;
begin
result := typecheck_cstring_to_int;
end;
function ttypeconvnode._typecheck_char_to_char : tnode;
begin
result := typecheck_char_to_char;
end;
function ttypeconvnode._typecheck_arrayconstructor_to_set : tnode;
begin
result := typecheck_arrayconstructor_to_set;
end;
function ttypeconvnode._typecheck_set_to_set : tnode;
begin
result := typecheck_set_to_set;
end;
function ttypeconvnode._typecheck_pchar_to_string : tnode;
begin
result := typecheck_pchar_to_string;
end;
function ttypeconvnode._typecheck_interface_to_string : tnode;
begin
result := typecheck_interface_to_string;
end;
function ttypeconvnode._typecheck_interface_to_guid : tnode;
begin
result := typecheck_interface_to_guid;
end;
function ttypeconvnode._typecheck_dynarray_to_openarray : tnode;
begin
result := typecheck_dynarray_to_openarray;
end;
function ttypeconvnode._typecheck_pwchar_to_string : tnode;
begin
result := typecheck_pwchar_to_string;
end;
function ttypeconvnode._typecheck_variant_to_dynarray : tnode;
begin
result := typecheck_variant_to_dynarray;
end;
function ttypeconvnode._typecheck_dynarray_to_variant : tnode;
begin
result := typecheck_dynarray_to_variant;
end;
function ttypeconvnode._typecheck_variant_to_enum : tnode;
begin
result := typecheck_variant_to_enum;
end;
function ttypeconvnode._typecheck_enum_to_variant : tnode;
begin
result := typecheck_enum_to_variant;
end;
function ttypeconvnode._typecheck_proc_to_procvar : tnode;
begin
result := typecheck_proc_to_procvar;
end;
function ttypeconvnode._typecheck_variant_to_interface : tnode;
begin
result := typecheck_variant_to_interface;
end;
function ttypeconvnode._typecheck_interface_to_variant : tnode;
begin
result := typecheck_interface_to_variant;
end;
function ttypeconvnode._typecheck_array_2_dynarray : tnode;
begin
result := typecheck_array_2_dynarray;
end;
function ttypeconvnode.target_specific_general_typeconv: boolean;
begin
result:=false;
end;
function ttypeconvnode.target_specific_explicit_typeconv: boolean;
begin
result:=false;
end;
procedure copyparasym(p:TObject;arg:pointer);
var
newparast : TSymtable absolute arg;
vs : tparavarsym;
begin
if tsym(p).typ<>paravarsym then
exit;
with tparavarsym(p) do
begin
vs:=tparavarsym.create(realname,paranr,varspez,vardef,varoptions);
vs.defaultconstsym:=defaultconstsym;
newparast.insert(vs);
end;
end;
function ttypeconvnode.typecheck_proc_to_procvar : tnode;
var
pd : tabstractprocdef;
nestinglevel : byte;
begin
result:=nil;
pd:=tabstractprocdef(left.resultdef);
{ create procvardef (default for create_proc_to_procvar is voiddef,
but if later a regular inserttypeconvnode() is used to insert a type
conversion to the actual procvardef, totypedef will be set to the
real procvartype that we are converting to) }
if assigned(totypedef) and
(totypedef.typ=procvardef) then
resultdef:=totypedef
else
begin
nestinglevel:=pd.parast.symtablelevel;
resultdef:=tprocvardef.create(nestinglevel);
tprocvardef(resultdef).proctypeoption:=pd.proctypeoption;
tprocvardef(resultdef).proccalloption:=pd.proccalloption;
tprocvardef(resultdef).procoptions:=pd.procoptions;
tprocvardef(resultdef).returndef:=pd.returndef;
{ method ? then set the methodpointer flag }
if (pd.owner.symtabletype=ObjectSymtable) then
include(tprocvardef(resultdef).procoptions,po_methodpointer);
{ only need the address of the method? this is needed
for @tobject.create. In this case there will be a loadn without
a methodpointer. }
if (left.nodetype=loadn) and
not assigned(tloadnode(left).left) and
(not(m_nested_procvars in current_settings.modeswitches) or
not is_nested_pd(tprocvardef(resultdef))) then
include(tprocvardef(resultdef).procoptions,po_addressonly);
{ Add parameters use only references, we don't need to keep the
parast. We use the parast from the original function to calculate
our parameter data and reset it afterwards }
pd.parast.SymList.ForEachCall(@copyparasym,tprocvardef(resultdef).parast);
tprocvardef(resultdef).calcparas;
end;
end;
function ttypeconvnode.typecheck_call_helper(c : tconverttype) : tnode;
const
resultdefconvert : array[tconverttype] of pointer = (
{none} nil,
{equal} nil,
{not_possible} nil,
{ string_2_string } nil,
{ char_2_string } @ttypeconvnode._typecheck_char_to_string,
{ char_2_chararray } @ttypeconvnode._typecheck_char_to_chararray,
{ pchar_2_string } @ttypeconvnode._typecheck_pchar_to_string,
{ cchar_2_pchar } @ttypeconvnode._typecheck_cchar_to_pchar,
{ cstring_2_pchar } @ttypeconvnode._typecheck_cstring_to_pchar,
{ cstring_2_int } @ttypeconvnode._typecheck_cstring_to_int,
{ ansistring_2_pchar } nil,
{ string_2_chararray } @ttypeconvnode._typecheck_string_to_chararray,
{ chararray_2_string } @ttypeconvnode._typecheck_chararray_to_string,
{ array_2_pointer } nil,
{ pointer_2_array } nil,
{ int_2_int } @ttypeconvnode._typecheck_int_to_int,
{ int_2_bool } nil,
{ bool_2_bool } nil,
{ bool_2_int } nil,
{ real_2_real } @ttypeconvnode._typecheck_real_to_real,
{ int_2_real } @ttypeconvnode._typecheck_int_to_real,
{ real_2_currency } @ttypeconvnode._typecheck_real_to_currency,
{ proc_2_procvar } @ttypeconvnode._typecheck_proc_to_procvar,
{ nil_2_methodprocvar } nil,
{ arrayconstructor_2_set } @ttypeconvnode._typecheck_arrayconstructor_to_set,
{ set_to_set } @ttypeconvnode._typecheck_set_to_set,
{ cord_2_pointer } @ttypeconvnode._typecheck_cord_to_pointer,
{ intf_2_string } @ttypeconvnode._typecheck_interface_to_string,
{ intf_2_guid } @ttypeconvnode._typecheck_interface_to_guid,
{ class_2_intf } nil,
{ char_2_char } @ttypeconvnode._typecheck_char_to_char,
{ dynarray_2_openarray} @ttypeconvnode._typecheck_dynarray_to_openarray,
{ pwchar_2_string} @ttypeconvnode._typecheck_pwchar_to_string,
{ variant_2_dynarray} @ttypeconvnode._typecheck_variant_to_dynarray,
{ dynarray_2_variant} @ttypeconvnode._typecheck_dynarray_to_variant,
{ variant_2_enum} @ttypeconvnode._typecheck_variant_to_enum,
{ enum_2_variant} @ttypeconvnode._typecheck_enum_to_variant,
{ variant_2_interface} @ttypeconvnode._typecheck_interface_to_variant,
{ interface_2_variant} @ttypeconvnode._typecheck_variant_to_interface,
{ array_2_dynarray} @ttypeconvnode._typecheck_array_2_dynarray
);
type
tprocedureofobject = function : tnode of object;
var
r : packed record
proc : pointer;
obj : pointer;
end;
begin
result:=nil;
{ this is a little bit dirty but it works }
{ and should be quite portable too }
r.proc:=resultdefconvert[c];
r.obj:=self;
if assigned(r.proc) then
result:=tprocedureofobject(r)();
end;
function ttypeconvnode.actualtargetnode: tnode;
begin
result:=self;
while (result.nodetype=typeconvn) and
ttypeconvnode(result).retains_value_location do
result:=ttypeconvnode(result).left;
end;
function ttypeconvnode.pass_typecheck:tnode;
var
hdef : tdef;
hp : tnode;
currprocdef : tabstractprocdef;
aprocdef : tprocdef;
eq : tequaltype;
cdoptions : tcompare_defs_options;
newblock: tblocknode;
newstatement: tstatementnode;
tempnode: ttempcreatenode;
begin
result:=nil;
resultdef:=totypedef;
typecheckpass(left);
if codegenerror then
exit;
{ When absolute force tc_equal }
if (nf_absolute in flags) then
begin
convtype:=tc_equal;
if not(tstoreddef(resultdef).is_intregable) and
not(tstoreddef(resultdef).is_fpuregable) then
make_not_regable(left,[ra_addr_regable]);
exit;
end;
{ tp procvar support. Skip typecasts to procvar, record or set. Those
convert on the procvar value. This is used to access the
fields of a methodpointer }
if not(nf_load_procvar in flags) and
not(resultdef.typ in [procvardef,recorddef,setdef]) then
maybe_call_procvar(left,true);
{ convert array constructors to sets, because there is no conversion
possible for array constructors }
if (resultdef.typ<>arraydef) and
is_array_constructor(left.resultdef) then
begin
arrayconstructor_to_set(left);
typecheckpass(left);
end;
if target_specific_general_typeconv then
exit;
if convtype=tc_none then
begin
cdoptions:=[cdo_check_operator,cdo_allow_variant,cdo_warn_incompatible_univ];
if nf_explicit in flags then
include(cdoptions,cdo_explicit);
if nf_internal in flags then
include(cdoptions,cdo_internal);
eq:=compare_defs_ext(left.resultdef,resultdef,left.nodetype,convtype,aprocdef,cdoptions);
case eq of
te_exact,
te_equal :
begin
result := simplify(false);
if assigned(result) then
exit;
{ in case of bitpacked accesses, the original type must
remain so that not too many/few bits are laoded }
if is_bitpacked_access(left) then
convtype:=tc_int_2_int;
{ Only leave when there is no conversion to do.
We can still need to call a conversion routine,
like the routine to convert a stringconstnode }
if (convtype in [tc_equal,tc_not_possible]) and
{ some conversions, like dynarray to pointer in Delphi
mode, must not be removed, because then we get memory
leaks due to missing temp finalization }
(not is_managed_type(left.resultdef) or
{ different kinds of refcounted types may need calls
to different kinds of refcounting helpers }
(resultdef=left.resultdef)) then
begin
left.resultdef:=resultdef;
if (nf_explicit in flags) and (left.nodetype = addrn) then
include(left.flags, nf_typedaddr);
result:=left;
left:=nil;
exit;
end;
end;
te_convert_l1,
te_convert_l2,
te_convert_l3,
te_convert_l4,
te_convert_l5:
{ nothing to do }
;
te_convert_operator :
begin
include(current_procinfo.flags,pi_do_call);
addsymref(aprocdef.procsym);
hp:=ccallnode.create(ccallparanode.create(left,nil),Tprocsym(aprocdef.procsym),nil,nil,[]);
{ tell explicitly which def we must use !! (PM) }
tcallnode(hp).procdefinition:=aprocdef;
left:=nil;
result:=hp;
exit;
end;
te_incompatible :
begin
{ Procedures have a resultdef of voiddef and functions of their
own resultdef. They will therefore always be incompatible with
a procvar. Because isconvertable cannot check for procedures we
use an extra check for them.}
if (left.nodetype=calln) and
(tcallnode(left).required_para_count=0) and
(resultdef.typ=procvardef) and
(
(m_tp_procvar in current_settings.modeswitches) or
(m_mac_procvar in current_settings.modeswitches)
) then
begin
if assigned(tcallnode(left).right) then
begin
{ this is already a procvar, if it is really equal
is checked below }
convtype:=tc_equal;
hp:=tcallnode(left).right.getcopy;
currprocdef:=tabstractprocdef(hp.resultdef);
end
else
begin
convtype:=tc_proc_2_procvar;
currprocdef:=Tprocsym(Tcallnode(left).symtableprocentry).Find_procdef_byprocvardef(Tprocvardef(resultdef));
hp:=cloadnode.create_procvar(tprocsym(tcallnode(left).symtableprocentry),
tprocdef(currprocdef),tcallnode(left).symtableproc);
if (tcallnode(left).symtableprocentry.owner.symtabletype=ObjectSymtable) then
begin
if assigned(tcallnode(left).methodpointer) then
tloadnode(hp).set_mp(tcallnode(left).methodpointer.getcopy)
else
tloadnode(hp).set_mp(load_self_node);
end;
typecheckpass(hp);
end;
left.free;
left:=hp;
{ Now check if the procedure we are going to assign to
the procvar, is compatible with the procvar's type }
if not(nf_explicit in flags) and
(proc_to_procvar_equal(currprocdef,tprocvardef(resultdef),false)=te_incompatible) then
IncompatibleTypes(left.resultdef,resultdef);
exit;
end
else if maybe_global_proc_to_nested(left,resultdef) then
begin
result:=left;
left:=nil;
exit;
end;
{ Handle explicit type conversions }
if nf_explicit in flags then
begin
{ do common tc_equal cast }
convtype:=tc_equal;
{ ordinal constants can be resized to 1,2,4,8 bytes }
if (left.nodetype=ordconstn) then
begin
{ Insert typeconv for ordinal to the correct size first on left, after
that the other conversion can be done }
hdef:=nil;
case longint(resultdef.size) of
1 :
hdef:=s8inttype;
2 :
hdef:=s16inttype;
4 :
hdef:=s32inttype;
8 :
hdef:=s64inttype;
end;
{ we need explicit, because it can also be an enum }
if assigned(hdef) then
inserttypeconv_internal(left,hdef)
else
CGMessage2(type_e_illegal_type_conversion,left.resultdef.typename,resultdef.typename);
end;
{ check if the result could be in a register }
if (not(tstoreddef(resultdef).is_intregable) and
not(tstoreddef(resultdef).is_fpuregable)) or
((left.resultdef.typ = floatdef) and
(resultdef.typ <> floatdef)) then
make_not_regable(left,[ra_addr_regable]);
{ class/interface to class/interface, with checkobject support }
if is_class_or_interface_or_objc(resultdef) and
is_class_or_interface_or_objc(left.resultdef) then
begin
{ check if the types are related }
if not(nf_internal in flags) and
(not(tobjectdef(left.resultdef).is_related(tobjectdef(resultdef)))) and
(not(tobjectdef(resultdef).is_related(tobjectdef(left.resultdef)))) then
begin
{ Give an error when typecasting class to interface, this is compatible
with delphi }
if is_interface(resultdef) and
not is_interface(left.resultdef) then
CGMessage2(type_e_classes_not_related,
FullTypeName(left.resultdef,resultdef),
FullTypeName(resultdef,left.resultdef))
else
CGMessage2(type_w_classes_not_related,
FullTypeName(left.resultdef,resultdef),
FullTypeName(resultdef,left.resultdef))
end;
{ Add runtime check? }
if not is_objc_class_or_protocol(resultdef) and
not is_objc_class_or_protocol(left.resultdef) and
(cs_check_object in current_settings.localswitches) and
not(nf_internal in flags) then
begin
{ we can translate the typeconvnode to 'as' when
typecasting to a class or interface }
{ we need to make sure the result can still be
passed as a var parameter }
newblock:=internalstatements(newstatement);
if (valid_for_var(left,false)) then
begin
tempnode:=ctempcreatenode.create(voidpointertype,voidpointertype.size,tt_persistent,true);
addstatement(newstatement,tempnode);
addstatement(newstatement,cassignmentnode.create(
ctemprefnode.create(tempnode),
caddrnode.create_internal(left)));
left:=ctypeconvnode.create_internal(cderefnode.create(ctemprefnode.create(tempnode)),left.resultdef);
end
else
begin
tempnode:=ctempcreatenode.create(left.resultdef,left.resultdef.size,tt_persistent,true);
addstatement(newstatement,tempnode);
addstatement(newstatement,cassignmentnode.create(
ctemprefnode.create(tempnode),
left));
left:=ctemprefnode.create(tempnode);
end;
addstatement(newstatement,casnode.create(left.getcopy,cloadvmtaddrnode.create(ctypenode.create(resultdef))));
addstatement(newstatement,ctempdeletenode.create_normal_temp(tempnode));
addstatement(newstatement,ctypeconvnode.create_internal(left,resultdef));
left:=nil;
result:=newblock;
exit;
end;
end
else
begin
{ only if the same size or formal def, and }
{ don't allow type casting of constants to }
{ structured types }
if not(
(left.resultdef.typ=formaldef) or
(
not(is_open_array(left.resultdef)) and
not(is_array_constructor(left.resultdef)) and
not(is_array_of_const(left.resultdef)) and
(left.resultdef.size=resultdef.size) and
{ disallow casts of const nodes }
(not is_constnode(left) or
{ however, there are some exceptions }
(not(resultdef.typ in [arraydef,recorddef,setdef,stringdef,
filedef,variantdef,objectdef]) or
is_class_or_interface_or_objc(resultdef) or
{ the softfloat code generates casts <const. float> to record }
(nf_internal in flags)
))
) or
(
is_void(left.resultdef) and
(left.nodetype=derefn)
)
) then
CGMessage2(type_e_illegal_type_conversion,left.resultdef.typename,resultdef.typename)
else
begin
{ perform target-specific explicit typecast
checks }
if target_specific_explicit_typeconv then
exit;
end;
end;
end
else
IncompatibleTypes(left.resultdef,resultdef);
end;
else
internalerror(200211231);
end;
end;
{ Give hint or warning for unportable code, exceptions are
- typecasts from constants
- void }
if not(nf_internal in flags) and
(left.nodetype<>ordconstn) and
not(is_void(left.resultdef)) and
(((left.resultdef.typ=orddef) and
(resultdef.typ in [pointerdef,procvardef,classrefdef])) or
((resultdef.typ=orddef) and
(left.resultdef.typ in [pointerdef,procvardef,classrefdef]))) then
begin
{Converting pointers to signed integers is a bad idea. Warn.}
warn_pointer_to_signed:=(resultdef.typ=orddef) and (Torddef(resultdef).ordtype in [s8bit,s16bit,s32bit,s64bit]);
{ Give a warning when sizes don't match, because then info will be lost }
if left.resultdef.size=resultdef.size then
CGMessage(type_h_pointer_to_longint_conv_not_portable)
else
CGMessage(type_w_pointer_to_longint_conv_not_portable);
end;
{ tc_cord_2_pointer still requires a type check, which
simplify does not do }
if (convtype<>tc_cord_2_pointer) then
begin
result := simplify(false);
if assigned(result) then
exit;
end;
{ now call the resultdef helper to do constant folding }
result:=typecheck_call_helper(convtype);
end;
{$ifndef cpu64bitalu}
{ checks whether we can safely remove 64 bit typeconversions }
{ in case range and overflow checking are off, and in case }
{ the result of this node tree is downcasted again to a }
{ 8/16/32 bit value afterwards }
function checkremove64bittypeconvs(n: tnode; out gotsint: boolean): boolean;
var
gotmuldivmod: boolean;
{ checks whether a node is either an u32bit, or originally }
{ was one but was implicitly converted to s64bit }
function wasoriginallyint32(n: tnode): boolean;
begin
if (n.resultdef.typ<>orddef) then
exit(false);
if (torddef(n.resultdef).ordtype in [s32bit,u32bit]) then
begin
if (torddef(n.resultdef).ordtype=s32bit) then
gotsint:=true;
exit(true);
end;
if (torddef(n.resultdef).ordtype=s64bit) and
{ nf_explicit is also set for explicitly typecasted }
{ ordconstn's }
([nf_internal,nf_explicit]*n.flags=[]) and
{ either a typeconversion node coming from u32bit }
(((n.nodetype=typeconvn) and
(ttypeconvnode(n).left.resultdef.typ=orddef) and
(torddef(ttypeconvnode(n).left.resultdef).ordtype in [s32bit,u32bit])) or
{ or an ordconstnode which was/is a valid cardinal }
((n.nodetype=ordconstn) and
(tordconstnode(n).value>=int64(low(longint))) and
(tordconstnode(n).value<=high(cardinal)))) then
begin
if ((n.nodetype=typeconvn) and
(torddef(ttypeconvnode(n).left.resultdef).ordtype=s32bit)) or
((n.nodetype=ordconstn) and
(tordconstnode(n).value<0)) then
gotsint:=true;
exit(true);
end;
result:=false;
end;
function docheckremove64bittypeconvs(n: tnode): boolean;
begin
result:=false;
if wasoriginallyint32(n) then
exit(true);
case n.nodetype of
subn,orn,xorn:
begin
{ nf_internal is set by taddnode.typecheckpass in }
{ case the arguments of this subn were u32bit, but }
{ upcasted to s64bit for calculation correctness }
{ (normally only needed when range checking, but }
{ also done otherwise so there is no difference }
{ in overload choosing etc between $r+ and $r-) }
if (nf_internal in n.flags) then
result:=true
else
result:=
docheckremove64bittypeconvs(tbinarynode(n).left) and
docheckremove64bittypeconvs(tbinarynode(n).right);
end;
addn,muln,divn,modn,andn:
begin
if n.nodetype in [muln,divn,modn] then
gotmuldivmod:=true;
result:=
docheckremove64bittypeconvs(tbinarynode(n).left) and
docheckremove64bittypeconvs(tbinarynode(n).right);
end;
end;
end;
begin { checkremove64bittypeconvs }
gotmuldivmod:=false;
gotsint:=false;
result:=
docheckremove64bittypeconvs(n) and
not(gotmuldivmod and gotsint);
end;
procedure doremove64bittypeconvs(var n: tnode; todef: tdef; forceunsigned: boolean);
begin
case n.nodetype of
subn,addn,muln,divn,modn,xorn,andn,orn:
begin
exclude(n.flags,nf_internal);
if not forceunsigned and
is_signed(n.resultdef) then
begin
doremove64bittypeconvs(tbinarynode(n).left,s32inttype,false);
doremove64bittypeconvs(tbinarynode(n).right,s32inttype,false);
n.resultdef:=s32inttype
end
else
begin
doremove64bittypeconvs(tbinarynode(n).left,u32inttype,forceunsigned);
doremove64bittypeconvs(tbinarynode(n).right,u32inttype,forceunsigned);
n.resultdef:=u32inttype
end;
end;
ordconstn:
inserttypeconv_internal(n,todef);
typeconvn:
begin
n.resultdef:=todef;
ttypeconvnode(n).totypedef:=todef;
end;
end;
end;
{$endif not cpu64bitalu}
function ttypeconvnode.simplify(forinline : boolean): tnode;
var
hp: tnode;
{$ifndef cpu64bitalu}
foundsint: boolean;
{$endif not cpu64bitalu}
begin
result := nil;
{ Constant folding and other node transitions to
remove the typeconv node }
case left.nodetype of
stringconstn :
if (convtype=tc_string_2_string) and
(
((not is_widechararray(left.resultdef) and
not is_wide_or_unicode_string(left.resultdef)) or
(tstringdef(resultdef).stringtype in [st_widestring,st_unicodestring]) or
{ non-ascii chars would be replaced with '?' -> loses info }
not hasnonasciichars(pcompilerwidestring(tstringconstnode(left).value_str)))
) then
begin
tstringconstnode(left).changestringtype(resultdef);
result:=left;
left:=nil;
exit;
end;
realconstn :
begin
if (convtype = tc_real_2_currency) then
result := typecheck_real_to_currency
else if (convtype = tc_real_2_real) then
result := typecheck_real_to_real
else
exit;
if not(assigned(result)) then
begin
result := left;
left := nil;
end;
if (result.nodetype = realconstn) then
begin
hp:=result;
result:=crealconstnode.create(trealconstnode(hp).value_real,resultdef);
if ([nf_explicit,nf_internal] * flags <> []) then
include(result.flags, nf_explicit);
hp.free;
end;
end;
niln :
begin
{ nil to ordinal node }
if (resultdef.typ=orddef) then
begin
hp:=cordconstnode.create(0,resultdef,true);
if ([nf_explicit,nf_internal] * flags <> []) then
include(hp.flags, nf_explicit);
result:=hp;
exit;
end
else
{ fold nil to any pointer type }
if (resultdef.typ=pointerdef) then
begin
hp:=cnilnode.create;
hp.resultdef:=resultdef;
if ([nf_explicit,nf_internal] * flags <> []) then
include(hp.flags, nf_explicit);
result:=hp;
exit;
end
else
{ remove typeconv after niln, but not when the result is a
methodpointer. The typeconv of the methodpointer will then
take care of updateing size of niln to OS_64 }
if not((resultdef.typ=procvardef) and
not(tprocvardef(resultdef).is_addressonly)) then
begin
left.resultdef:=resultdef;
if ([nf_explicit,nf_internal] * flags <> []) then
include(left.flags, nf_explicit);
result:=left;
left:=nil;
exit;
end;
end;
ordconstn :
begin
{ ordinal contants can be directly converted }
{ but not char to char because it is a widechar to char or via versa }
{ which needs extra code to do the code page transistion }
{ constant ordinal to pointer }
if (resultdef.typ=pointerdef) and
(convtype<>tc_cchar_2_pchar) then
begin
hp:=cpointerconstnode.create(TConstPtrUInt(tordconstnode(left).value.uvalue),resultdef);
if ([nf_explicit,nf_internal] * flags <> []) then
include(hp.flags, nf_explicit);
result:=hp;
exit;
end
else if is_ordinal(resultdef) and
not(convtype=tc_char_2_char) then
begin
{ replace the resultdef and recheck the range }
if ([nf_explicit,nf_internal] * flags <> []) then
include(left.flags, nf_explicit)
else
{ no longer an ordconst with an explicit typecast }
exclude(left.flags, nf_explicit);
{ when converting from one boolean type to another, force }
{ booleans to 0/1, and byte/word/long/qwordbool to 0/-1 }
{ (Delphi-compatibile) }
if is_boolean(left.resultdef) and
is_boolean(resultdef) and
(is_cbool(left.resultdef) or
is_cbool(resultdef)) then
begin
if is_pasbool(resultdef) then
tordconstnode(left).value:=ord(tordconstnode(left).value<>0)
else
{$ifdef VER2_2}
tordconstnode(left).value:=ord(tordconstnode(left).value<>0);
tordconstnode(left).value:=-tordconstnode(left).value;
{$else}
tordconstnode(left).value:=-ord(tordconstnode(left).value<>0);
{$endif VER2_2}
end
else
testrange(resultdef,tordconstnode(left).value,(nf_explicit in flags),false);
left.resultdef:=resultdef;
tordconstnode(left).typedef:=resultdef;
result:=left;
left:=nil;
exit;
end;
end;
pointerconstn :
begin
{ pointerconstn to any pointer is folded too }
if (resultdef.typ=pointerdef) then
begin
left.resultdef:=resultdef;
if ([nf_explicit,nf_internal] * flags <> []) then
include(left.flags, nf_explicit)
else
{ no longer an ordconst with an explicit typecast }
exclude(left.flags, nf_explicit);
result:=left;
left:=nil;
exit;
end
{ constant pointer to ordinal }
else if is_ordinal(resultdef) then
begin
hp:=cordconstnode.create(TConstExprInt(tpointerconstnode(left).value),
resultdef,not(nf_explicit in flags));
if ([nf_explicit,nf_internal] * flags <> []) then
include(hp.flags, nf_explicit);
result:=hp;
exit;
end;
end;
end;
{$ifndef cpu64bitalu}
{ must be done before code below, because we need the
typeconversions for ordconstn's as well }
case convtype of
tc_int_2_int:
begin
if (localswitches * [cs_check_range,cs_check_overflow] = []) and
(resultdef.typ in [pointerdef,orddef,enumdef]) and
(resultdef.size <= 4) and
is_64bitint(left.resultdef) and
(left.nodetype in [subn,addn,muln,divn,modn,xorn,andn,orn]) and
checkremove64bittypeconvs(left,foundsint) then
begin
{ avoid unnecessary widening of intermediary calculations }
{ to 64 bit }
doremove64bittypeconvs(left,generrordef,not foundsint);
end;
end;
end;
{$endif not cpu64bitalu}
end;
procedure Ttypeconvnode.mark_write;
begin
left.mark_write;
end;
function ttypeconvnode.first_cord_to_pointer : tnode;
begin
result:=nil;
internalerror(200104043);
end;
function ttypeconvnode.first_int_to_int : tnode;
begin
first_int_to_int:=nil;
expectloc:=left.expectloc;
if not is_void(left.resultdef) then
begin
if (left.expectloc<>LOC_REGISTER) and
((resultdef.size>left.resultdef.size) or
(left.expectloc in [LOC_SUBSETREF,LOC_CSUBSETREF,LOC_SUBSETREG,LOC_CSUBSETREG])) then
expectloc:=LOC_REGISTER
else
if (left.expectloc=LOC_CREGISTER) and
(resultdef.size<left.resultdef.size) then
expectloc:=LOC_REGISTER;
end;
end;
function ttypeconvnode.first_cstring_to_pchar : tnode;
begin
result:=nil;
expectloc:=LOC_REGISTER;
end;
function ttypeconvnode.first_cstring_to_int : tnode;
begin
result:=nil;
internalerror(200510014);
end;
function ttypeconvnode.first_string_to_chararray : tnode;
begin
first_string_to_chararray:=nil;
expectloc:=left.expectloc;
end;
function ttypeconvnode.first_char_to_string : tnode;
begin
first_char_to_string:=nil;
expectloc:=LOC_REFERENCE;
end;
function ttypeconvnode.first_nothing : tnode;
begin
first_nothing:=nil;
end;
function ttypeconvnode.first_array_to_pointer : tnode;
begin
first_array_to_pointer:=nil;
expectloc:=LOC_REGISTER;
end;
function ttypeconvnode.first_int_to_real: tnode;
var
fname: string[32];
begin
if target_info.system in systems_wince then
begin
{ converting a 64bit integer to a float requires a helper }
if is_64bitint(left.resultdef) or
is_currency(left.resultdef) then
begin
{ hack to avoid double division by 10000, as it's
already done by typecheckpass.resultdef_int_to_real }
if is_currency(left.resultdef) then
left.resultdef := s64inttype;
if is_signed(left.resultdef) then
fname:='I64TO'
else
fname:='UI64TO';
end
else
{ other integers are supposed to be 32 bit }
begin
if is_signed(left.resultdef) then
fname:='ITO'
else
fname:='UTO';
firstpass(left);
end;
if tfloatdef(resultdef).floattype=s64real then
fname:=fname+'D'
else
fname:=fname+'S';
result:=ccallnode.createintern(fname,ccallparanode.create(
left,nil));
left:=nil;
firstpass(result);
exit;
end
else
begin
{ converting a 64bit integer to a float requires a helper }
if is_64bitint(left.resultdef) or
is_currency(left.resultdef) then
begin
{ hack to avoid double division by 10000, as it's
already done by typecheckpass.resultdef_int_to_real }
if is_currency(left.resultdef) then
left.resultdef := s64inttype;
if is_signed(left.resultdef) then
fname:='int64_to_'
else
{ we can't do better currently }
fname:='qword_to_';
end
else
{ other integers are supposed to be 32 bit }
begin
if is_signed(left.resultdef) then
fname:='int32_to_'
else
fname:='int64_to_';
firstpass(left);
end;
if tfloatdef(resultdef).floattype=s64real then
fname:=fname+'float64'
else
fname:=fname+'float32';
result:=ctypeconvnode.create_internal(ccallnode.createintern(fname,ccallparanode.create(
left,nil)),resultdef);
left:=nil;
firstpass(result);
exit;
end;
end;
function ttypeconvnode.first_real_to_real : tnode;
begin
{$ifdef cpufpemu}
if cs_fp_emulation in current_settings.moduleswitches then
begin
if target_info.system in systems_wince then
begin
case tfloatdef(left.resultdef).floattype of
s32real:
case tfloatdef(resultdef).floattype of
s64real:
result:=ccallnode.createintern('STOD',ccallparanode.create(left,nil));
s32real:
begin
result:=left;
left:=nil;
end;
else
internalerror(2005082704);
end;
s64real:
case tfloatdef(resultdef).floattype of
s32real:
result:=ccallnode.createintern('DTOS',ccallparanode.create(left,nil));
s64real:
begin
result:=left;
left:=nil;
end;
else
internalerror(2005082703);
end;
else
internalerror(2005082702);
end;
left:=nil;
firstpass(result);
exit;
end
else
begin
case tfloatdef(left.resultdef).floattype of
s32real:
case tfloatdef(resultdef).floattype of
s64real:
result:=ctypeconvnode.create_explicit(ccallnode.createintern('float32_to_float64',ccallparanode.create(
ctypeconvnode.create_internal(left,search_system_type('FLOAT32REC').typedef),nil)),resultdef);
s32real:
begin
result:=left;
left:=nil;
end;
else
internalerror(200610151);
end;
s64real:
case tfloatdef(resultdef).floattype of
s32real:
result:=ctypeconvnode.create_explicit(ccallnode.createintern('float64_to_float32',ccallparanode.create(
ctypeconvnode.create_internal(left,search_system_type('FLOAT64').typedef),nil)),resultdef);
s64real:
begin
result:=left;
left:=nil;
end;
else
internalerror(200610152);
end;
else
internalerror(200610153);
end;
left:=nil;
firstpass(result);
exit;
end;
end
else
{$endif cpufpemu}
begin
first_real_to_real:=nil;
if not use_vectorfpu(resultdef) then
expectloc:=LOC_FPUREGISTER
else
expectloc:=LOC_MMREGISTER;
end;
end;
function ttypeconvnode.first_pointer_to_array : tnode;
begin
first_pointer_to_array:=nil;
expectloc:=LOC_REFERENCE;
end;
function ttypeconvnode.first_cchar_to_pchar : tnode;
begin
first_cchar_to_pchar:=nil;
internalerror(200104021);
end;
function ttypeconvnode.first_bool_to_int : tnode;
begin
first_bool_to_int:=nil;
{ byte(boolean) or word(wordbool) or longint(longbool) must
be accepted for var parameters }
if (nf_explicit in flags) and
(left.resultdef.size=resultdef.size) and
(left.expectloc in [LOC_REFERENCE,LOC_CREFERENCE,LOC_CREGISTER]) then
exit;
{ when converting to 64bit, first convert to a 32bit int and then }
{ convert to a 64bit int (only necessary for 32bit processors) (JM) }
if resultdef.size > sizeof(aint) then
begin
result := ctypeconvnode.create_internal(left,s32inttype);
result := ctypeconvnode.create(result,resultdef);
left := nil;
firstpass(result);
exit;
end;
expectloc:=LOC_REGISTER;
end;
function ttypeconvnode.first_int_to_bool : tnode;
begin
first_int_to_bool:=nil;
{ byte(boolean) or word(wordbool) or longint(longbool) must
be accepted for var parameters }
if (nf_explicit in flags) and
(left.resultdef.size=resultdef.size) and
(left.expectloc in [LOC_REFERENCE,LOC_CREFERENCE,LOC_CREGISTER]) then
exit;
{ when converting 64bit int to C-ctyle boolean, first convert to an int32 and then }
{ convert to a boolean (only necessary for 32bit processors) }
if (left.resultdef.size > sizeof(aint)) and (left.resultdef.size<>resultdef.size)
and is_cbool(resultdef) then
begin
left:=ctypeconvnode.create_internal(left,s32inttype);
firstpass(left);
exit;
end;
expectloc:=LOC_REGISTER;
end;
function ttypeconvnode.first_bool_to_bool : tnode;
begin
first_bool_to_bool:=nil;
if (left.expectloc in [LOC_FLAGS,LOC_JUMP]) then
expectloc := left.expectloc
else
expectloc:=LOC_REGISTER;
end;
function ttypeconvnode.first_char_to_char : tnode;
var
fname: string[18];
begin
if (torddef(resultdef).ordtype=uchar) and
(torddef(left.resultdef).ordtype=uwidechar) then
fname := 'fpc_uchar_to_char'
else if (torddef(resultdef).ordtype=uwidechar) and
(torddef(left.resultdef).ordtype=uchar) then
fname := 'fpc_char_to_uchar'
else
internalerror(2007081201);
result := ccallnode.createintern(fname,ccallparanode.create(left,nil));
left:=nil;
firstpass(result);
end;
function ttypeconvnode.first_proc_to_procvar : tnode;
begin
first_proc_to_procvar:=nil;
{ if we take the address of a nested function, the current function/
procedure needs a stack frame since it's required to construct
the nested procvar }
if is_nested_pd(tprocvardef(resultdef)) then
include(current_procinfo.flags,pi_needs_stackframe);
if tabstractprocdef(resultdef).is_addressonly then
expectloc:=LOC_REGISTER
else
begin
if not(left.expectloc in [LOC_CREFERENCE,LOC_REFERENCE]) then
CGMessage(parser_e_illegal_expression);
expectloc:=left.expectloc;
end;
end;
function ttypeconvnode.first_nil_to_methodprocvar : tnode;
begin
first_nil_to_methodprocvar:=nil;
expectloc:=LOC_REFERENCE;
end;
function ttypeconvnode.first_set_to_set : tnode;
var
newstatement : tstatementnode;
temp : ttempcreatenode;
begin
{ in theory, we should do range checking here,
but Delphi doesn't do it either (FK) }
if left.nodetype=setconstn then
begin
left.resultdef:=resultdef;
result:=left;
left:=nil;
end
{ equal sets for the code generator? }
else if (left.resultdef.size=resultdef.size) and
(tsetdef(left.resultdef).setbase=tsetdef(resultdef).setbase) then
{ TODO: This causes wrong (but Delphi-compatible) results for disjoint subsets}
{ e.g., this prints true because of this:
var
sa: set of 1..2;
sb: set of 5..6;
b: byte;
begin
b:=1;
sa:=[1..2];
sb:=sa;
writeln(b in sb);
end.
}
begin
result:=left;
left:=nil;
end
else
begin
result:=internalstatements(newstatement);
{ in case left is a smallset expression, it can be an addn or so. }
{ fpc_varset_load expects a formal const parameter, which doesn't }
{ accept set addn's -> assign to a temp first and pass the temp }
if not(left.expectloc in [LOC_REFERENCE,LOC_CREFERENCE]) then
begin
temp:=ctempcreatenode.create(left.resultdef,left.resultdef.size,tt_persistent,false);
addstatement(newstatement,temp);
{ temp := left }
addstatement(newstatement,cassignmentnode.create(
ctemprefnode.create(temp),left));
addstatement(newstatement,ctempdeletenode.create_normal_temp(temp));
addstatement(newstatement,ctemprefnode.create(temp));
left:=result;
firstpass(left);
{ recreate the result's internalstatements list }
result:=internalstatements(newstatement);
end;
{ create temp for result }
temp:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,true);
addstatement(newstatement,temp);
addstatement(newstatement,ccallnode.createintern('fpc_varset_load',
ccallparanode.create(cordconstnode.create(tsetdef(left.resultdef).setbase div 8 - tsetdef(resultdef).setbase div 8,sinttype,false),
ccallparanode.create(cordconstnode.create(resultdef.size,sinttype,false),
ccallparanode.create(ctemprefnode.create(temp),
ccallparanode.create(cordconstnode.create(left.resultdef.size,sinttype,false),
ccallparanode.create(left,nil))))))
);
addstatement(newstatement,ctempdeletenode.create_normal_temp(temp));
addstatement(newstatement,ctemprefnode.create(temp));
left:=nil;
end;
end;
function ttypeconvnode.first_ansistring_to_pchar : tnode;
begin
first_ansistring_to_pchar:=nil;
expectloc:=LOC_REGISTER;
end;
function ttypeconvnode.first_arrayconstructor_to_set : tnode;
begin
first_arrayconstructor_to_set:=nil;
internalerror(200104022);
end;
function ttypeconvnode.first_class_to_intf : tnode;
var
hd : tobjectdef;
ImplIntf : TImplementedInterface;
begin
result:=nil;
expectloc:=LOC_REGISTER;
hd:=tobjectdef(left.resultdef);
while assigned(hd) do
begin
ImplIntf:=hd.find_implemented_interface(tobjectdef(resultdef));
if assigned(ImplIntf) then
begin
case ImplIntf.IType of
etStandard:
{ handle in pass 2 }
;
etFieldValue, etFieldValueClass:
if is_interface(tobjectdef(resultdef)) then
begin
result:=left;
propaccesslist_to_node(result,tpropertysym(implintf.implementsgetter).owner,tpropertysym(implintf.implementsgetter).propaccesslist[palt_read]);
{ this ensures proper refcounting when field is of class type }
if not is_interface(result.resultdef) then
inserttypeconv(result, resultdef);
left:=nil;
end
else
begin
internalerror(200802213);
end;
etStaticMethodResult, etStaticMethodClass,
etVirtualMethodResult, etVirtualMethodClass:
if is_interface(tobjectdef(resultdef)) then
begin
{ TODO: generating a call to TObject.GetInterface instead could yield
smaller code size. OTOH, refcounting gotchas are possible that way. }
{ constructor create(l:tnode; v : tprocsym;st : TSymtable; mp: tnode; callflags:tcallnodeflags); }
result:=ccallnode.create(nil,tprocsym(tpropertysym(implintf.implementsgetter).propaccesslist[palt_read].firstsym^.sym),
tprocsym(tpropertysym(implintf.implementsgetter).propaccesslist[palt_read].firstsym^.sym).owner,
left,[]);
addsymref(tpropertysym(implintf.implementsgetter).propaccesslist[palt_read].firstsym^.sym);
{ if it is a class, process it further in a similar way }
if not is_interface(result.resultdef) then
inserttypeconv(result, resultdef);
left:=nil;
end
else if is_class(tobjectdef(resultdef)) then
begin
internalerror(200802211);
end
else
internalerror(200802231);
else
internalerror(200802165);
end;
break;
end;
hd:=hd.childof;
end;
if hd=nil then
internalerror(200802164);
end;
function ttypeconvnode.first_string_to_string : tnode;
var
procname: string[31];
newblock : tblocknode;
newstat : tstatementnode;
restemp : ttempcreatenode;
begin
{$if defined(jvm) and not defined(nounsupported)}
convtype:=tc_equal;
result:=nil;
exit;
{$endif}
{ get the correct procedure name }
procname := 'fpc_'+tstringdef(left.resultdef).stringtypname+
'_to_'+tstringdef(resultdef).stringtypname;
if tstringdef(resultdef).stringtype=st_shortstring then
begin
newblock:=internalstatements(newstat);
restemp:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,false);
addstatement(newstat,restemp);
addstatement(newstat,ccallnode.createintern(procname,ccallparanode.create(left,ccallparanode.create(
ctemprefnode.create(restemp),nil))));
addstatement(newstat,ctempdeletenode.create_normal_temp(restemp));
addstatement(newstat,ctemprefnode.create(restemp));
result:=newblock;
end
else
result := ccallnode.createinternres(procname,ccallparanode.create(left,nil),resultdef);
left:=nil;
end;
function ttypeconvnode._first_int_to_int : tnode;
begin
result:=first_int_to_int;
end;
function ttypeconvnode._first_cstring_to_pchar : tnode;
begin
result:=first_cstring_to_pchar;
end;
function ttypeconvnode._first_cstring_to_int : tnode;
begin
result:=first_cstring_to_int;
end;
function ttypeconvnode._first_string_to_chararray : tnode;
begin
result:=first_string_to_chararray;
end;
function ttypeconvnode._first_char_to_string : tnode;
begin
result:=first_char_to_string;
end;
function ttypeconvnode._first_nothing : tnode;
begin
result:=first_nothing;
end;
function ttypeconvnode._first_array_to_pointer : tnode;
begin
result:=first_array_to_pointer;
end;
function ttypeconvnode._first_int_to_real : tnode;
begin
result:=first_int_to_real;
end;
function ttypeconvnode._first_real_to_real : tnode;
begin
result:=first_real_to_real;
end;
function ttypeconvnode._first_pointer_to_array : tnode;
begin
result:=first_pointer_to_array;
end;
function ttypeconvnode._first_cchar_to_pchar : tnode;
begin
result:=first_cchar_to_pchar;
end;
function ttypeconvnode._first_bool_to_int : tnode;
begin
result:=first_bool_to_int;
end;
function ttypeconvnode._first_int_to_bool : tnode;
begin
result:=first_int_to_bool;
end;
function ttypeconvnode._first_bool_to_bool : tnode;
begin
result:=first_bool_to_bool;
end;
function ttypeconvnode._first_proc_to_procvar : tnode;
begin
result:=first_proc_to_procvar;
end;
function ttypeconvnode._first_nil_to_methodprocvar : tnode;
begin
result:=first_nil_to_methodprocvar;
end;
function ttypeconvnode._first_set_to_set : tnode;
begin
result:=first_set_to_set;
end;
function ttypeconvnode._first_cord_to_pointer : tnode;
begin
result:=first_cord_to_pointer;
end;
function ttypeconvnode._first_ansistring_to_pchar : tnode;
begin
result:=first_ansistring_to_pchar;
end;
function ttypeconvnode._first_arrayconstructor_to_set : tnode;
begin
result:=first_arrayconstructor_to_set;
end;
function ttypeconvnode._first_class_to_intf : tnode;
begin
result:=first_class_to_intf;
end;
function ttypeconvnode._first_char_to_char : tnode;
begin
result:=first_char_to_char;
end;
function ttypeconvnode._first_string_to_string : tnode;
begin
result:=first_string_to_string;
end;
function ttypeconvnode.first_call_helper(c : tconverttype) : tnode;
const
firstconvert : array[tconverttype] of pointer = (
nil, { none }
@ttypeconvnode._first_nothing, {equal}
@ttypeconvnode._first_nothing, {not_possible}
@ttypeconvnode._first_string_to_string,
@ttypeconvnode._first_char_to_string,
@ttypeconvnode._first_nothing, { char_2_chararray, needs nothing extra }
nil, { removed in typecheck_chararray_to_string }
@ttypeconvnode._first_cchar_to_pchar,
@ttypeconvnode._first_cstring_to_pchar,
@ttypeconvnode._first_cstring_to_int,
@ttypeconvnode._first_ansistring_to_pchar,
@ttypeconvnode._first_string_to_chararray,
nil, { removed in typecheck_chararray_to_string }
@ttypeconvnode._first_array_to_pointer,
@ttypeconvnode._first_pointer_to_array,
@ttypeconvnode._first_int_to_int,
@ttypeconvnode._first_int_to_bool,
@ttypeconvnode._first_bool_to_bool,
@ttypeconvnode._first_bool_to_int,
@ttypeconvnode._first_real_to_real,
@ttypeconvnode._first_int_to_real,
nil, { removed in typecheck_real_to_currency }
@ttypeconvnode._first_proc_to_procvar,
@ttypeconvnode._first_nil_to_methodprocvar,
@ttypeconvnode._first_arrayconstructor_to_set,
@ttypeconvnode._first_set_to_set,
@ttypeconvnode._first_cord_to_pointer,
@ttypeconvnode._first_nothing,
@ttypeconvnode._first_nothing,
@ttypeconvnode._first_class_to_intf,
@ttypeconvnode._first_char_to_char,
@ttypeconvnode._first_nothing,
@ttypeconvnode._first_nothing,
nil,
nil,
nil,
nil,
nil,
nil,
nil
);
type
tprocedureofobject = function : tnode of object;
var
r : packed record
proc : pointer;
obj : pointer;
end;
begin
{ this is a little bit dirty but it works }
{ and should be quite portable too }
r.proc:=firstconvert[c];
r.obj:=self;
if not assigned(r.proc) then
internalerror(200312081);
first_call_helper:=tprocedureofobject(r)()
end;
function ttypeconvnode.pass_1 : tnode;
begin
if warn_pointer_to_signed then
cgmessage(type_w_pointer_to_signed);
result:=nil;
firstpass(left);
if codegenerror then
exit;
expectloc:=left.expectloc;
result:=first_call_helper(convtype);
end;
function ttypeconvnode.retains_value_location:boolean;
begin
result:=(convtype=tc_equal) or
{ typecasting from void is always allowed }
is_void(left.resultdef) or
(left.resultdef.typ=formaldef) or
{ int 2 int with same size reuses same location, or for
tp7 mode also allow size < orignal size }
(
(convtype=tc_int_2_int) and
(
not is_bitpacked_access(left) and
(resultdef.size=left.resultdef.size) or
((m_tp7 in current_settings.modeswitches) and
(resultdef.size<left.resultdef.size))
)
) or
{ int 2 bool/bool 2 int, explicit typecast, see also nx86cnv }
((convtype in [tc_int_2_bool,tc_bool_2_int,tc_bool_2_bool]) and
(nf_explicit in flags) and
(resultdef.size=left.resultdef.size));
end;
function ttypeconvnode.assign_allowed:boolean;
begin
result:=retains_value_location;
{ When using only a part of the value it can't be in a register since
that will load the value in a new register first }
{ the same goes for changing the sign of equal-sized values which
are smaller than an entire register }
if result and
(resultdef.size<left.resultdef.size) or
((resultdef.size=left.resultdef.size) and
(left.resultdef.size<sizeof(aint)) and
(is_signed(resultdef) xor is_signed(left.resultdef))) then
make_not_regable(left,[ra_addr_regable]);
end;
function ttypeconvnode.docompare(p: tnode) : boolean;
begin
docompare :=
inherited docompare(p) and
(convtype = ttypeconvnode(p).convtype) and
equal_defs(totypedef,ttypeconvnode(p).totypedef);
end;
procedure ttypeconvnode._second_int_to_int;
begin
second_int_to_int;
end;
procedure ttypeconvnode._second_string_to_string;
begin
second_string_to_string;
end;
procedure ttypeconvnode._second_cstring_to_pchar;
begin
second_cstring_to_pchar;
end;
procedure ttypeconvnode._second_cstring_to_int;
begin
second_cstring_to_int;
end;
procedure ttypeconvnode._second_string_to_chararray;
begin
second_string_to_chararray;
end;
procedure ttypeconvnode._second_array_to_pointer;
begin
second_array_to_pointer;
end;
procedure ttypeconvnode._second_pointer_to_array;
begin
second_pointer_to_array;
end;
procedure ttypeconvnode._second_chararray_to_string;
begin
second_chararray_to_string;
end;
procedure ttypeconvnode._second_char_to_string;
begin
second_char_to_string;
end;
procedure ttypeconvnode._second_int_to_real;
begin
second_int_to_real;
end;
procedure ttypeconvnode._second_real_to_real;
begin
second_real_to_real;
end;
procedure ttypeconvnode._second_cord_to_pointer;
begin
second_cord_to_pointer;
end;
procedure ttypeconvnode._second_proc_to_procvar;
begin
second_proc_to_procvar;
end;
procedure ttypeconvnode._second_nil_to_methodprocvar;
begin
second_nil_to_methodprocvar;
end;
procedure ttypeconvnode._second_bool_to_int;
begin
second_bool_to_int;
end;
procedure ttypeconvnode._second_int_to_bool;
begin
second_int_to_bool;
end;
procedure ttypeconvnode._second_bool_to_bool;
begin
second_bool_to_bool;
end;
procedure ttypeconvnode._second_set_to_set;
begin
second_set_to_set;
end;
procedure ttypeconvnode._second_ansistring_to_pchar;
begin
second_ansistring_to_pchar;
end;
procedure ttypeconvnode._second_class_to_intf;
begin
second_class_to_intf;
end;
procedure ttypeconvnode._second_char_to_char;
begin
second_char_to_char;
end;
procedure ttypeconvnode._second_nothing;
begin
second_nothing;
end;
procedure ttypeconvnode.second_call_helper(c : tconverttype);
const
secondconvert : array[tconverttype] of pointer = (
@ttypeconvnode._second_nothing, {none}
@ttypeconvnode._second_nothing, {equal}
@ttypeconvnode._second_nothing, {not_possible}
@ttypeconvnode._second_nothing, {second_string_to_string, handled in resultdef pass }
@ttypeconvnode._second_char_to_string,
@ttypeconvnode._second_nothing, {char_to_charray}
@ttypeconvnode._second_nothing, { pchar_to_string, handled in resultdef pass }
@ttypeconvnode._second_nothing, {cchar_to_pchar}
@ttypeconvnode._second_cstring_to_pchar,
@ttypeconvnode._second_cstring_to_int,
@ttypeconvnode._second_ansistring_to_pchar,
@ttypeconvnode._second_string_to_chararray,
@ttypeconvnode._second_nothing, { chararray_to_string, handled in resultdef pass }
@ttypeconvnode._second_array_to_pointer,
@ttypeconvnode._second_pointer_to_array,
@ttypeconvnode._second_int_to_int,
@ttypeconvnode._second_int_to_bool,
@ttypeconvnode._second_bool_to_bool,
@ttypeconvnode._second_bool_to_int,
@ttypeconvnode._second_real_to_real,
@ttypeconvnode._second_int_to_real,
@ttypeconvnode._second_nothing, { real_to_currency, handled in resultdef pass }
@ttypeconvnode._second_proc_to_procvar,
@ttypeconvnode._second_nil_to_methodprocvar,
@ttypeconvnode._second_nothing, { arrayconstructor_to_set }
@ttypeconvnode._second_nothing, { second_set_to_set, handled in first pass }
@ttypeconvnode._second_cord_to_pointer,
@ttypeconvnode._second_nothing, { interface 2 string }
@ttypeconvnode._second_nothing, { interface 2 guid }
@ttypeconvnode._second_class_to_intf,
@ttypeconvnode._second_char_to_char,
@ttypeconvnode._second_nothing, { dynarray_2_openarray }
@ttypeconvnode._second_nothing, { pwchar_2_string }
@ttypeconvnode._second_nothing, { variant_2_dynarray }
@ttypeconvnode._second_nothing, { dynarray_2_variant}
@ttypeconvnode._second_nothing, { variant_2_enum }
@ttypeconvnode._second_nothing, { enum_2_variant }
@ttypeconvnode._second_nothing, { variant_2_interface }
@ttypeconvnode._second_nothing, { interface_2_variant }
@ttypeconvnode._second_nothing { array_2_dynarray }
);
type
tprocedureofobject = procedure of object;
var
r : packed record
proc : pointer;
obj : pointer;
end;
begin
{ this is a little bit dirty but it works }
{ and should be quite portable too }
r.proc:=secondconvert[c];
r.obj:=self;
tprocedureofobject(r)();
end;
{*****************************************************************************
TASNODE
*****************************************************************************}
function tasisnode.target_specific_typecheck: boolean;
begin
result:=false;
end;
function tasisnode.pass_typecheck: tnode;
var
hp : tnode;
begin
result:=nil;
typecheckpass(right);
typecheckpass(left);
set_varstate(right,vs_read,[vsf_must_be_valid]);
set_varstate(left,vs_read,[vsf_must_be_valid]);
if codegenerror then
exit;
if target_specific_typecheck then
begin
// ok
end
else if (right.resultdef.typ=classrefdef) then
begin
{ left maybe an interface reference }
if is_interfacecom(left.resultdef) then
begin
{ relation checks are not possible }
end
{ or left must be a class }
else if is_class(left.resultdef) or
is_javaclass(left.resultdef) then
begin
{ the operands must be related }
if (not(tobjectdef(left.resultdef).is_related(
tobjectdef(tclassrefdef(right.resultdef).pointeddef)))) and
(not(tobjectdef(tclassrefdef(right.resultdef).pointeddef).is_related(
tobjectdef(left.resultdef)))) then
CGMessage2(type_e_classes_not_related,
FullTypeName(left.resultdef,tclassrefdef(right.resultdef).pointeddef),
FullTypeName(tclassrefdef(right.resultdef).pointeddef,left.resultdef));
end
else
CGMessage1(type_e_class_or_cominterface_type_expected,left.resultdef.typename);
case nodetype of
isn:
resultdef:=pasbool8type;
asn:
resultdef:=tclassrefdef(right.resultdef).pointeddef;
end;
end
else if is_interface(right.resultdef) or is_dispinterface(right.resultdef) then
begin
{ left is a class }
if not(is_class(left.resultdef) or
is_interfacecom(left.resultdef)) then
CGMessage1(type_e_class_or_cominterface_type_expected,left.resultdef.typename);
case nodetype of
isn:
resultdef:=pasbool8type;
asn:
resultdef:=right.resultdef;
end;
{ load the GUID of the interface }
if (right.nodetype=typen) then
begin
if tobjectdef(right.resultdef).objecttype=odt_interfacecorba then
begin
if assigned(tobjectdef(right.resultdef).iidstr) then
begin
hp:=cstringconstnode.createstr(tobjectdef(right.resultdef).iidstr^);
tstringconstnode(hp).changestringtype(cshortstringtype);
right.free;
right:=hp;
end
else
internalerror(201006131);
end
else
begin
if assigned(tobjectdef(right.resultdef).iidguid) then
begin
if not(oo_has_valid_guid in tobjectdef(right.resultdef).objectoptions) then
CGMessage1(type_e_interface_has_no_guid,tobjectdef(right.resultdef).typename);
hp:=cguidconstnode.create(tobjectdef(right.resultdef).iidguid^);
right.free;
right:=hp;
end
else
internalerror(201006132);
end;
typecheckpass(right);
end;
end
else
CGMessage1(type_e_class_or_interface_type_expected,right.resultdef.typename);
end;
{*****************************************************************************
TISNODE
*****************************************************************************}
constructor tisnode.create(l,r : tnode);
begin
inherited create(isn,l,r);
end;
function tisnode.pass_1 : tnode;
var
procname: string;
begin
result:=nil;
{ Passing a class type to an "is" expression cannot result in a class
of that type to be constructed.
}
include(right.flags,nf_ignore_for_wpo);
if is_class(left.resultdef) and
(right.resultdef.typ=classrefdef) then
result := ccallnode.createinternres('fpc_do_is',
ccallparanode.create(left,ccallparanode.create(right,nil)),
resultdef)
else
begin
if is_class(left.resultdef) then
if is_shortstring(right.resultdef) then
procname := 'fpc_class_is_corbaintf'
else
procname := 'fpc_class_is_intf'
else
if right.resultdef.typ=classrefdef then
procname := 'fpc_intf_is_class'
else
procname := 'fpc_intf_is';
result := ctypeconvnode.create_internal(ccallnode.createintern(procname,
ccallparanode.create(right,ccallparanode.create(left,nil))),resultdef);
end;
left := nil;
right := nil;
//firstpass(call);
if codegenerror then
exit;
end;
{ dummy pass_2, it will never be called, but we need one since }
{ you can't instantiate an abstract class }
procedure tisnode.pass_generate_code;
begin
end;
{*****************************************************************************
TASNODE
*****************************************************************************}
constructor tasnode.create(l,r : tnode);
begin
inherited create(asn,l,r);
call := nil;
end;
destructor tasnode.destroy;
begin
call.free;
inherited destroy;
end;
function tasnode.dogetcopy: tnode;
begin
result := inherited dogetcopy;
if assigned(call) then
tasnode(result).call := call.getcopy
else
tasnode(result).call := nil;
end;
function tasnode.docompare(p: tnode): boolean;
begin
result:=
inherited docompare(p) and
tasnode(p).call.isequal(call);
end;
function tasnode.pass_1 : tnode;
var
procname: string;
begin
result:=nil;
{ Passing a class type to an "as" expression cannot result in a class
of that type to be constructed.
}
include(right.flags,nf_ignore_for_wpo);
if not assigned(call) then
begin
if is_class(left.resultdef) and
(right.resultdef.typ=classrefdef) then
call := ccallnode.createinternres('fpc_do_as',
ccallparanode.create(left,ccallparanode.create(right,nil)),
resultdef)
else
begin
if is_class(left.resultdef) then
if is_shortstring(right.resultdef) then
procname := 'fpc_class_as_corbaintf'
else
procname := 'fpc_class_as_intf'
else
if right.resultdef.typ=classrefdef then
procname := 'fpc_intf_as_class'
else
procname := 'fpc_intf_as';
call := ctypeconvnode.create_internal(ccallnode.createintern(procname,
ccallparanode.create(right,ccallparanode.create(left,nil))),resultdef);
end;
left := nil;
right := nil;
firstpass(call);
if codegenerror then
exit;
expectloc:=call.expectloc;
end;
end;
end.