fpc/rtl/inc/real2str.inc
2012-05-05 18:29:32 +00:00

544 lines
18 KiB
PHP

{
This file is part of the Free Pascal run time library.
Copyright (c) 1999-2000 by Michael Van Canneyt,
member of the Free Pascal development team
See the file COPYING.FPC, included in this distribution,
for details about the copyright.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
**********************************************************************}
type
{ See symconst.pas tfloattype }
treal_type = (
rt_s32real,rt_s64real,rt_s80real,rt_sc80real,
rt_c64bit,rt_currency,rt_s128real
);
{ corresponding to single double extended fixed comp for i386 }
{$if not declared(mul_by_power10)}
function mul_by_power10 (x : ValReal; power : integer) : ValReal; forward;
{$endif}
Procedure str_real (len,f : longint; d : ValReal; real_type :treal_type; out s : string);
{$ifdef SUPPORT_EXTENDED}
type
TSplitExtended = packed record
case byte of
0: (bytes: Array[0..9] of byte);
1: (words: Array[0..4] of word);
2: (cards: Array[0..1] of cardinal; w: word);
end;
const
maxDigits = 17;
{$else}
{$ifdef SUPPORT_DOUBLE}
{$ifndef cpujvm}
type
TSplitDouble = packed record
case byte of
0: (bytes: Array[0..7] of byte);
1: (words: Array[0..3] of word);
2: (cards: Array[0..1] of cardinal);
end;
{$endif}
const
maxDigits = 15;
{$else}
{$ifdef SUPPORT_SINGLE}
type
TSplitSingle = packed record
case byte of
0: (bytes: Array[0..3] of byte);
1: (words: Array[0..1] of word);
2: (cards: Array[0..0] of cardinal);
end;
const
maxDigits = 9;
{$endif SUPPORT_SINGLE}
{$endif SUPPORT_DOUBLE}
{$endif SUPPORT_EXTENDED}
type
{ the value in the last position is used for rounding }
TIntPartStack = array[1..maxDigits+1] of valReal;
var
{$ifdef cpujvm}
doublebits: int64;
{$endif}
roundCorr, corrVal, factor : valReal;
high_exp10_reduced,
spos, endpos, fracCount: longint;
correct, currprec: longint;
temp : string;
power : string[10];
sign : boolean;
dot : byte;
fraczero, expMaximal: boolean;
maxlen : longint; { Maximal length of string for float }
minlen : longint; { Minimal length of string for float }
explen : longint; { Length of exponent, including E and sign.
Must be strictly larger than 2 }
const
maxexp = 1e+35; { Maximum value for decimal expressions }
minexp = 1e-35; { Minimum value for decimal expressions }
zero = '0000000000000000000000000000000000000000';
procedure RoundStr(var s: string; lastPos: byte);
var carry: longint;
begin
carry := 1;
repeat
s[lastPos] := chr(ord(s[lastPos])+carry);
carry := 0;
if s[lastPos] > '9' then
begin
s[lastPos] := '0';
carry := 1;
end;
dec(lastPos);
until carry = 0;
end;
procedure getIntPart(d: valreal);
var
intPartStack: TIntPartStack;
intPart, stackPtr, endStackPtr, digits: longint;
overflow: boolean;
begin
{$ifdef DEBUG_NASM}
writeln(stderr,'getintpart(d) entry');
{$endif DEBUG_NASM}
{ position in the stack (gets increased before first write) }
stackPtr := 0;
{ number of digits processed }
digits := 0;
{ did we wrap around in the stack? Necessary to know whether we should round }
overflow :=false;
{ generate a list consisting of d, d/10, d/100, ... until d < 1.0 }
while d > 1.0-roundCorr do
begin
inc(stackPtr);
inc(digits);
if stackPtr > maxDigits+1 then
begin
stackPtr := 1;
overflow := true;
end;
intPartStack[stackPtr] := d;
d := d / 10.0;
end;
{ if no integer part, exit }
if digits = 0 then
exit;
endStackPtr := stackPtr+1;
if endStackPtr > maxDigits + 1 then
endStackPtr := 1;
{ now, all digits are calculated using trunc(d*10^(-n)-int(d*10^(-n-1))*10) }
corrVal := 0.0;
{ the power of 10 with which the resulting string has to be "multiplied" }
{ if the decimal point is placed after the first significant digit }
correct := digits-1;
{$ifdef DEBUG_NASM}
writeln(stderr,'endStackPtr = ',endStackPtr);
{$endif DEBUG_NASM}
repeat
if (currprec > 0) then
begin
intPart:= trunc(intPartStack[stackPtr]-corrVal);
dec(currPrec);
inc(spos);
temp[spos] := chr(intPart+ord('0'));
{$ifdef DEBUG_NASM}
writeln(stderr,'stackptr =',stackptr,' intpart = ',intpart);
{$endif DEBUG_NASM}
if temp[spos] > '9' then
begin
temp[spos] := chr(ord(temp[spos])-10);
roundStr(temp,spos-1);
end;
end;
corrVal := int(intPartStack[stackPtr]) * 10.0;
{$ifdef DEBUG_NASM}
writeln(stderr,'trunc(corrval) = ',trunc(corrval));
{$endif DEBUG_NASM}
dec(stackPtr);
if stackPtr = 0 then
stackPtr := maxDigits+1;
until (overflow and (stackPtr = endStackPtr)) or
(not overflow and (stackPtr = maxDigits+1)) or (currPrec = 0);
{ round if we didn't use all available digits yet and if the }
{ remainder is > 5 }
if (overflow or
(stackPtr < maxDigits+1)) then
begin
{ we didn't use all available digits of the whole part -> make sure }
{ the fractional part is not used for rounding later }
currprec := -1;
{ instead, round based on the next whole digit }
if (int(intPartStack[stackPtr]-corrVal) >= 5.0) then
roundStr(temp,spos);
end;
{$ifdef DEBUG_NASM}
writeln(stderr,'temp at getintpart exit is = ',temp);
{$endif DEBUG_NASM}
end;
function reduce_exponent (d : ValReal; out scaled : ValReal) : longint;
{ Returns decimal exponent which was used for scaling, and a scaled value out }
const
C_LN10 = ln(10);
var
log10_d : longint;
begin
reduce_exponent := 0;
if d<>0 then
begin
// get exponent approximation ["d" is assumed to be non-negative]
log10_d:=trunc(ln(d)/C_LN10);
// trying to stay at least 1 digit away from introducing integer/fractional part
if log10_d > maxDigits+1 then
reduce_exponent := log10_d-maxDigits
else
if log10_d < -(maxDigits+1) then
reduce_exponent := log10_d+maxDigits
// else
// the number is already suitable enough
end;
// do scaling if needed
if reduce_exponent<>0
then scaled := mul_by_power10(d,-reduce_exponent) // denormals should be handled properly by this call
else scaled := d;
end;
begin
case real_type of
rt_s32real :
begin
maxlen:=16;
minlen:=8;
explen:=4;
{ correction used with comparing to avoid rounding/precision errors }
roundCorr := 1.1920928955e-07;
end;
rt_s64real :
begin
maxlen := 22;
{ correction used with comparing to avoid rounding/precision errors }
roundCorr := 2.2204460493e-16;
minlen:=9;
explen:=5;
end;
rt_s80real,
rt_sc80real:
begin
{ Different in TP help, but this way the output is the same (JM) }
maxlen:=25;
minlen:=10;
explen:=6;
{ correction used with comparing to avoid rounding/precision errors }
roundCorr := 1.0842021725e-19;
end;
rt_c64bit :
begin
maxlen:=23;
minlen:=10;
{ according to TP (was 5) (FK) }
explen:=6;
{ correction used with comparing to avoid rounding/precision errors }
roundCorr := 2.2204460493e-16;
end;
rt_currency :
begin
{ Different in TP help, but this way the output is the same (JM) }
maxlen:=25;
minlen:=10;
explen:=0;
{ correction used with comparing to avoid rounding/precision errors }
roundCorr := 1.0842021725e-19;
end;
rt_s128real :
begin
{ Different in TP help, but this way the output is the same (JM) }
maxlen:=25;
minlen:=10;
explen:=6;
{ correction used with comparing to avoid rounding/precision errors }
roundCorr := 1.0842021725e-19;
end;
else
begin
{ keep JVM byte code verifier happy }
maxlen:=0;
minlen:=0;
explen:=0;
roundCorr:=0;
end;
end;
{ check parameters }
{ default value for length is -32767 }
if len=-32767 then
len:=maxlen;
{ determine sign. before precision, needs 2 less calls to abs() }
{$ifndef endian_big}
{$ifdef SUPPORT_EXTENDED}
{ extended, format (MSB): 1 Sign bit, 15 bit exponent, 64 bit mantissa }
sign := (TSplitExtended(d).w and $8000) <> 0;
expMaximal := (TSplitExtended(d).w and $7fff) = 32767;
fraczero := (TSplitExtended(d).cards[0] = 0) and
((TSplitExtended(d).cards[1] and $7fffffff) = 0);
{$else SUPPORT_EXTENDED}
{$ifdef SUPPORT_DOUBLE}
{$ifdef FPC_DOUBLE_HILO_SWAPPED}
{ double, format (MSB): 1 Sign bit, 11 bit exponent, 52 bit mantissa }
{ high and low dword are swapped when using the arm fpa }
sign := ((TSplitDouble(d).cards[0] shr 20) and $800) <> 0;
expMaximal := ((TSplitDouble(d).cards[0] shr 20) and $7ff) = 2047;
fraczero:= (TSplitDouble(d).cards[0] and $fffff = 0) and
(TSplitDouble(d).cards[1] = 0);
{$else FPC_DOUBLE_HILO_SWAPPED}
{ double, format (MSB): 1 Sign bit, 11 bit exponent, 52 bit mantissa }
sign := ((TSplitDouble(d).cards[1] shr 20) and $800) <> 0;
expMaximal := ((TSplitDouble(d).cards[1] shr 20) and $7ff) = 2047;
fraczero := (TSplitDouble(d).cards[1] and $fffff = 0) and
(TSplitDouble(d).cards[0] = 0);
{$endif FPC_DOUBLE_HILO_SWAPPED}
{$else SUPPORT_DOUBLE}
{$ifdef SUPPORT_SINGLE}
{ single, format (MSB): 1 Sign bit, 8 bit exponent, 23 bit mantissa }
sign := ((TSplitSingle(d).words[1] shr 7) and $100) <> 0;
expMaximal := ((TSplitSingle(d).words[1] shr 7) and $ff) = 255;
fraczero := (TSplitSingle(d).cards[0] and $7fffff = 0);
{$else SUPPORT_SINGLE}
{$error No little endian floating type supported yet in real2str}
{$endif SUPPORT_SINGLE}
{$endif SUPPORT_DOUBLE}
{$endif SUPPORT_EXTENDED}
{$else endian_big}
{$ifdef SUPPORT_EXTENDED}
{$error sign/NaN/Inf not yet supported for big endian CPU's in str_real}
{$else SUPPORT_EXTENDED}
{$ifdef SUPPORT_DOUBLE}
{$ifdef cpujvm}
doublebits := JLDouble.doubleToLongBits(d);
sign := doublebits<0;
expMaximal := (doublebits shr (32+20)) and $7ff = 2047;
fraczero:= (((doublebits shr 32) and $fffff) = 0) and
(longint(doublebits)=0);
{$else cpujvm}
{ double, format (MSB): 1 Sign bit, 11 bit exponent, 52 bit mantissa }
sign := ((TSplitDouble(d).cards[0] shr 20) and $800) <> 0;
expMaximal := ((TSplitDouble(d).cards[0] shr 20) and $7ff) = 2047;
fraczero:= (TSplitDouble(d).cards[0] and $fffff = 0) and
(TSplitDouble(d).cards[1] = 0);
{$endif cpujvm}
{$else SUPPORT_DOUBLE}
{$ifdef SUPPORT_SINGLE}
{ single, format (MSB): 1 Sign bit, 8 bit exponent, 23 bit mantissa }
sign := ((TSplitSingle(d).bytes[0] and $80)) <> 0;
expMaximal := ((TSplitSingle(d).words[0] shr 7) and $ff) = 255;
fraczero:= (TSplitSingle(d).cards[0] and $7fffff = 0);
{$else SUPPORT_SINGLE}
{$error No big endian floating type supported yet in real2str}
{$endif SUPPORT_SINGLE}
{$endif SUPPORT_DOUBLE}
{$endif SUPPORT_EXTENDED}
{$endif endian}
if expMaximal then
if fraczero then
if sign then
temp := '-Inf'
else temp := '+Inf'
else temp := 'Nan'
else
begin
{ d:=abs(d); this converts d to double so we loose precision }
{ for the same reason I converted d:=frac(d) to d:=d-int(d); (PM) }
if sign then
d:=-d;
{ determine precision : maximal precision is : }
currPrec := maxlen-explen-2;
{ this is also the maximal number of decimals !!}
if f>currprec then
f:=currprec;
{ when doing a fixed-point, we need less characters.}
if (f<0) {or ((d<>0) and ((d>maxexp) and (d>minexp)))} then
begin
{ determine maximal number of decimals }
if (len>=0) and (len<minlen) then
len:=minlen;
if (len>0) and (len<maxlen) then
currprec:=len-explen-2;
end;
{ leading zero, may be necessary for things like str(9.999:0:2) to }
{ be able to insert an extra character at the start of the string }
temp := ' 0';
{ position in the temporary output string }
spos := 2;
// workaround to make follow-up things go somewhat faster
high_exp10_reduced := 0;
case real_type of
// blacklist, in order of increasing headache:
//? rt_s32real :;
// ? needs additional testing to ensure any reasonable benefit
// without lost of accuracy due to an extra conversion
rt_c64bit, rt_currency :;
// no much sense to touch them
else
// acceptable:
// ? rt_s32real [see above]
// rt_s64real
// rt_s80real, rt_sc80real
// ? rt_s128real [have not tried]
high_exp10_reduced := reduce_exponent(d,d);
end;
{ get the integer part }
correct := 0;
GetIntPart(d);
inc(correct,high_exp10_reduced); // end of workaround
{ now process the fractional part }
if d > 1.0- roundCorr then
d := frac(d);
{ if we have to round earlier than the amount of available precision, }
{ only calculate digits up to that point }
if (f >= 0) and (currPrec > f) then
currPrec := f;
{ if integer part was zero, go to the first significant digit of the }
{ fractional part }
{ make sure we don't get an endless loop if d = 0 }
if (spos = 2) and (d <> 0.0) then
begin
{ take rounding errors into account }
while d < 0.1-roundCorr do
begin
d := d * 10.0;
dec(correct);
{ adjust the precision depending on how many digits we }
{ already "processed" by multiplying by 10, but only if }
{ the amount of precision is specified }
if f >= 0 then
dec(currPrec);
end;
dec(correct);
end;
{ current length of the output string in endPos }
endPos := spos;
{ always calculate at least 1 fractional digit for rounding }
if (currPrec >= 0) then
begin
corrVal := 0.5;
factor := 1;
for fracCount := 1 to currPrec do
factor := factor * 10.0;
corrval := corrval / factor;
{ for single, we may write more significant digits than are available,
so the rounding correction itself can show up -> don't round in that
case
}
if real_type<>rt_s32real then
d:=d+d*roundCorr;
if d >= corrVal then
d := d + corrVal;
if int(d) = 1 then
begin
roundStr(temp,spos);
d := frac(d);
end;
{ calculate the necessary fractional digits }
for fracCount := 1 to currPrec do
begin
if d > 1.0 then
d := frac(d) * 10.0
else d := d * 10.0;
inc(spos);
temp[spos] := chr(trunc(d)+ord('0'));
if temp[spos] > '9' then
{ possible because trunc and the "*10.0" aren't exact :( }
begin
temp[spos] := chr(ord(temp[spos]) - 10);
roundStr(temp,spos-1);
end;
end;
{ new length of string }
endPos := spos;
end;
setLength(temp,endPos);
{ delete leading zero if we didn't need it while rounding at the }
{ string level }
if temp[2] = '0' then
delete(temp,2,1)
{ the rounding caused an overflow to the next power of 10 }
else inc(correct);
if sign then
temp[1] := '-';
if (f<0) or (correct>(round(ln(maxexp)/ln(10)))) then
begin
insert ('.',temp,3);
str(abs(correct),power);
if length(power)<explen-2 then
power:=copy(zero,1,explen-2-length(power))+power;
if correct<0 then
power:='-'+power
else
power:='+'+power;
temp:=temp+'E'+power;
end
else
begin
if not sign then
begin
delete(temp,1,1);
dot := 2
end
else
dot := 3;
{ set zeroes and dot }
if correct>=0 then
begin
if length(temp)<correct+dot+f-1 then
temp:=temp+copy(zero,1,correct+dot+f-length(temp));
insert ('.',temp,correct+dot);
end
else
begin
correct:=abs(correct);
insert(copy(zero,1,correct),temp,dot-1);
insert ('.',temp,dot);
end;
{ correct length to fit precision }
if f>0 then
setlength(temp,pos('.',temp)+f)
else
setLength(temp,pos('.',temp)-1);
end;
end;
if length(temp)<len then
s:=space(len-length(temp))+temp
else s:=temp;
end;
Procedure str_real_iso (len,f : longint; d : ValReal; real_type :treal_type; out s : string);
var
i : Integer;
begin
str_real(len,f,d,real_type,s);
for i:=1 to Length(s) do
if s[i]='E' then
s[i]:='e';
end;