fpc/compiler/ninl.pas
2006-05-14 08:39:19 +00:00

2572 lines
99 KiB
ObjectPascal

{
Copyright (c) 1998-2002 by Florian Klaempfl
Type checking and register allocation for inline nodes
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit ninl;
{$i fpcdefs.inc}
interface
uses
node,htypechk,cpuinfo,symtype;
{$i compinnr.inc}
type
tinlinenode = class(tunarynode)
inlinenumber : byte;
constructor create(number : byte;is_const:boolean;l : tnode);virtual;
constructor ppuload(t:tnodetype;ppufile:tcompilerppufile);override;
procedure ppuwrite(ppufile:tcompilerppufile);override;
function _getcopy : tnode;override;
function pass_1 : tnode;override;
function det_resulttype:tnode;override;
function docompare(p: tnode): boolean; override;
{ All the following routines currently
call compilerprocs, unless they are
overriden in which case, the code
generator handles them.
}
function first_pi: tnode ; virtual;
function first_arctan_real: tnode; virtual;
function first_abs_real: tnode; virtual;
function first_sqr_real: tnode; virtual;
function first_sqrt_real: tnode; virtual;
function first_ln_real: tnode; virtual;
function first_cos_real: tnode; virtual;
function first_sin_real: tnode; virtual;
function first_exp_real: tnode; virtual;
function first_frac_real: tnode; virtual;
function first_round_real: tnode; virtual;
function first_trunc_real: tnode; virtual;
function first_int_real: tnode; virtual;
private
function handle_str: tnode;
function handle_reset_rewrite_typed: tnode;
function handle_read_write: tnode;
function handle_val: tnode;
end;
tinlinenodeclass = class of tinlinenode;
var
cinlinenode : tinlinenodeclass;
function geninlinenode(number : byte;is_const:boolean;l : tnode) : tinlinenode;
implementation
uses
verbose,globals,systems,
globtype, cutils,
symconst,symdef,symsym,symtable,paramgr,defutil,
pass_1,
ncal,ncon,ncnv,nadd,nld,nbas,nflw,nmem,nmat,nutils,
cgbase,procinfo
;
function geninlinenode(number : byte;is_const:boolean;l : tnode) : tinlinenode;
begin
geninlinenode:=cinlinenode.create(number,is_const,l);
end;
{*****************************************************************************
TINLINENODE
*****************************************************************************}
constructor tinlinenode.create(number : byte;is_const:boolean;l : tnode);
begin
inherited create(inlinen,l);
if is_const then
include(flags,nf_inlineconst);
inlinenumber:=number;
end;
constructor tinlinenode.ppuload(t:tnodetype;ppufile:tcompilerppufile);
begin
inherited ppuload(t,ppufile);
inlinenumber:=ppufile.getbyte;
end;
procedure tinlinenode.ppuwrite(ppufile:tcompilerppufile);
begin
inherited ppuwrite(ppufile);
ppufile.putbyte(inlinenumber);
end;
function tinlinenode._getcopy : tnode;
var
n : tinlinenode;
begin
n:=tinlinenode(inherited _getcopy);
n.inlinenumber:=inlinenumber;
result:=n;
end;
function tinlinenode.handle_str : tnode;
var
lenpara,
fracpara,
newparas,
dest,
source : tcallparanode;
procname: string;
is_real : boolean;
begin
result := cerrornode.create;
{ make sure we got at least two parameters (if we got only one, }
{ this parameter may not be encapsulated in a callparan) }
if not assigned(left) or
(left.nodetype <> callparan) then
begin
CGMessage(parser_e_wrong_parameter_size);
exit;
end;
{ get destination string }
dest := tcallparanode(left);
{ get source para (number) }
source := dest;
while assigned(source.right) do
source := tcallparanode(source.right);
{ destination parameter must be a normal (not a colon) parameter, this
check is needed because str(v:len) also has 2 parameters }
if (source=dest) or
(cpf_is_colon_para in tcallparanode(dest).callparaflags) then
begin
CGMessage(parser_e_wrong_parameter_size);
exit;
end;
is_real := source.resulttype.def.deftype = floatdef;
if ((dest.left.resulttype.def.deftype<>stringdef) and
not(is_chararray(dest.left.resulttype.def))) or
not(is_real or
(source.left.resulttype.def.deftype = orddef)) then
begin
CGMessagePos(fileinfo,parser_e_illegal_expression);
exit;
end;
{ get len/frac parameters }
lenpara := nil;
fracpara := nil;
if (cpf_is_colon_para in tcallparanode(dest.right).callparaflags) then
begin
lenpara := tcallparanode(dest.right);
{ we can let the callnode do the type checking of these parameters too, }
{ but then the error messages aren't as nice }
if not is_integer(lenpara.resulttype.def) then
begin
CGMessagePos1(lenpara.fileinfo,
type_e_integer_expr_expected,lenpara.resulttype.def.typename);
exit;
end;
if (cpf_is_colon_para in tcallparanode(lenpara.right).callparaflags) then
begin
{ parameters are in reverse order! }
fracpara := lenpara;
lenpara := tcallparanode(lenpara.right);
if not is_real then
begin
CGMessagePos(lenpara.fileinfo,parser_e_illegal_colon_qualifier);
exit
end;
if not is_integer(lenpara.resulttype.def) then
begin
CGMessagePos1(lenpara.fileinfo,
type_e_integer_expr_expected,lenpara.resulttype.def.typename);
exit;
end;
end;
end;
{ generate the parameter list for the compilerproc }
newparas := dest;
{ if we have a float parameter, insert the realtype, len and fracpara parameters }
if is_real then
begin
{ insert realtype parameter }
newparas.right := ccallparanode.create(cordconstnode.create(
ord(tfloatdef(source.left.resulttype.def).typ),s32inttype,true),
newparas.right);
{ if necessary, insert a fraction parameter }
if not assigned(fracpara) then
begin
tcallparanode(newparas.right).right := ccallparanode.create(
cordconstnode.create(-1,s32inttype,false),
tcallparanode(newparas.right).right);
fracpara := tcallparanode(tcallparanode(newparas.right).right);
end;
{ if necessary, insert a length para }
if not assigned(lenpara) then
fracpara.right := ccallparanode.create(
cordconstnode.create(-32767,s32inttype,false),
fracpara.right);
end
else
{ for a normal parameter, insert a only length parameter if one is missing }
if not assigned(lenpara) then
newparas.right := ccallparanode.create(cordconstnode.create(-1,s32inttype,false),
newparas.right);
{ remove the parameters from the original node so they won't get disposed, }
{ since they're reused }
left := nil;
{ create procedure name }
if is_chararray(dest.resulttype.def) then
procname:='fpc_chararray_'
else
procname := 'fpc_' + tstringdef(dest.resulttype.def).stringtypname+'_';
if is_real then
procname := procname + 'float'
else
case torddef(source.resulttype.def).typ of
{$ifdef cpu64bit}
u64bit:
procname := procname + 'uint';
{$else}
u32bit:
procname := procname + 'uint';
u64bit:
procname := procname + 'qword';
scurrency,
s64bit:
procname := procname + 'int64';
{$endif}
else
procname := procname + 'sint';
end;
{ free the errornode we generated in the beginning }
result.free;
{ create the call node, }
result := ccallnode.createintern(procname,newparas);
end;
function tinlinenode.handle_reset_rewrite_typed: tnode;
begin
{ since this is a "in_xxxx_typedfile" node, we can be sure we have }
{ a typed file as argument and we don't have to check it again (JM) }
{ add the recsize parameter }
{ note: for some reason, the parameter of intern procedures with only one }
{ parameter is gets lifted out of its original tcallparanode (see round }
{ line 1306 of ncal.pas), so recreate a tcallparanode here (JM) }
left := ccallparanode.create(cordconstnode.create(
tfiledef(left.resulttype.def).typedfiletype.def.size,s32inttype,true),
ccallparanode.create(left,nil));
{ create the correct call }
if inlinenumber=in_reset_typedfile then
result := ccallnode.createintern('fpc_reset_typed',left)
else
result := ccallnode.createintern('fpc_rewrite_typed',left);
{ make sure left doesn't get disposed, since we use it in the new call }
left := nil;
end;
function tinlinenode.handle_read_write: tnode;
const
procnames: array[boolean,boolean] of string[11] =
(('write_text_','read_text_'),('typed_write','typed_read'));
var
filepara,
lenpara,
fracpara,
nextpara,
para : tcallparanode;
newstatement : tstatementnode;
newblock : tblocknode;
p1 : tnode;
filetemp,
temp : ttempcreatenode;
procprefix,
name : string[31];
textsym : ttypesym;
readfunctype : ttype;
is_typed,
do_read,
is_real,
error_para,
found_error : boolean;
begin
filepara := nil;
is_typed := false;
filetemp := nil;
do_read := inlinenumber in [in_read_x,in_readln_x];
{ if we fail, we can quickly exit this way. We must generate something }
{ instead of the inline node, because firstpass will bomb with an }
{ internalerror if it encounters a read/write }
result := cerrornode.create;
{ reverse the parameters (needed to get the colon parameters in the }
{ correct order when processing write(ln) }
left := reverseparameters(tcallparanode(left));
if assigned(left) then
begin
{ check if we have a file parameter and if yes, what kind it is }
filepara := tcallparanode(left);
if (filepara.resulttype.def.deftype=filedef) then
begin
if (tfiledef(filepara.resulttype.def).filetyp=ft_untyped) then
begin
CGMessagePos(fileinfo,type_e_no_read_write_for_untyped_file);
exit;
end
else
begin
if (tfiledef(filepara.resulttype.def).filetyp=ft_typed) then
begin
if (inlinenumber in [in_readln_x,in_writeln_x]) then
begin
CGMessagePos(fileinfo,type_e_no_readln_writeln_for_typed_file);
exit;
end;
is_typed := true;
end
end;
end
else
filepara := nil;
end;
{ create a blocknode in which the successive write/read statements will be }
{ put, since they belong together. Also create a dummy statement already to }
{ make inserting of additional statements easier }
newblock:=internalstatements(newstatement);
{ if we don't have a filepara, create one containing the default }
if not assigned(filepara) then
begin
{ since the input/output variables are threadvars loading them into
a temp once is faster. Create a temp which will hold a pointer to the file }
filetemp := ctempcreatenode.create(voidpointertype,voidpointertype.def.size,tt_persistent,true);
addstatement(newstatement,filetemp);
{ make sure the resulttype of the temp (and as such of the }
{ temprefs coming after it) is set (necessary because the }
{ temprefs will be part of the filepara, of which we need }
{ the resulttype later on and temprefs can only be }
{ resulttypepassed if the resulttype of the temp is known) }
resulttypepass(tnode(filetemp));
{ assign the address of the file to the temp }
if do_read then
name := 'input'
else
name := 'output';
addstatement(newstatement,
cassignmentnode.create(ctemprefnode.create(filetemp),
ccallnode.createintern('fpc_get_'+name,nil)));
{ create a new fileparameter as follows: file_type(temp^) }
{ (so that we pass the value and not the address of the temp }
{ to the read/write routine) }
textsym:=search_system_type('TEXT');
filepara := ccallparanode.create(ctypeconvnode.create_internal(
cderefnode.create(ctemprefnode.create(filetemp)),textsym.restype),nil);
end
else
{ remove filepara from the parameter chain }
begin
left := filepara.right;
filepara.right := nil;
{ the file para is a var parameter, but it must be valid already }
set_varstate(filepara.left,vs_readwritten,[vsf_must_be_valid]);
{ check if we should make a temp to store the result of a complex }
{ expression (better heuristics, anyone?) (JM) }
if (filepara.left.nodetype <> loadn) then
begin
{ create a temp which will hold a pointer to the file }
filetemp := ctempcreatenode.create(voidpointertype,voidpointertype.def.size,tt_persistent,true);
{ add it to the statements }
addstatement(newstatement,filetemp);
{ make sure the resulttype of the temp (and as such of the }
{ temprefs coming after it) is set (necessary because the }
{ temprefs will be part of the filepara, of which we need }
{ the resulttype later on and temprefs can only be }
{ resulttypepassed if the resulttype of the temp is known) }
resulttypepass(tnode(filetemp));
{ assign the address of the file to the temp }
addstatement(newstatement,
cassignmentnode.create(ctemprefnode.create(filetemp),
caddrnode.create_internal(filepara.left)));
resulttypepass(newstatement.left);
{ create a new fileparameter as follows: file_type(temp^) }
{ (so that we pass the value and not the address of the temp }
{ to the read/write routine) }
nextpara := ccallparanode.create(ctypeconvnode.create_internal(
cderefnode.create(ctemprefnode.create(filetemp)),filepara.left.resulttype),nil);
{ replace the old file para with the new one }
filepara.left := nil;
filepara.free;
filepara := nextpara;
end;
end;
{ the resulttype of the filepara must be set since it's }
{ used below }
filepara.get_paratype;
{ now, filepara is nowhere referenced anymore, so we can safely dispose it }
{ if something goes wrong or at the end of the procedure }
{ choose the correct procedure prefix }
procprefix := 'fpc_'+procnames[is_typed,do_read];
{ we're going to reuse the paranodes, so make sure they don't get freed }
{ twice }
para := tcallparanode(left);
left := nil;
{ no errors found yet... }
found_error := false;
if is_typed then
begin
{ add the typesize to the filepara }
if filepara.resulttype.def.deftype=filedef then
filepara.right := ccallparanode.create(cordconstnode.create(
tfiledef(filepara.resulttype.def).typedfiletype.def.size,s32inttype,true),nil);
{ check for "no parameters" (you need at least one extra para for typed files) }
if not assigned(para) then
begin
CGMessage(parser_e_wrong_parameter_size);
found_error := true;
end;
{ process all parameters }
while assigned(para) do
begin
{ check if valid parameter }
if para.left.nodetype=typen then
begin
CGMessagePos(para.left.fileinfo,type_e_cant_read_write_type);
found_error := true;
end;
{ support writeln(procvar) }
if (para.left.resulttype.def.deftype=procvardef) then
begin
p1:=ccallnode.create_procvar(nil,para.left);
resulttypepass(p1);
para.left:=p1;
end;
if filepara.resulttype.def.deftype=filedef then
inserttypeconv(para.left,tfiledef(filepara.resulttype.def).typedfiletype);
if assigned(para.right) and
(cpf_is_colon_para in tcallparanode(para.right).callparaflags) then
begin
CGMessagePos(para.right.fileinfo,parser_e_illegal_colon_qualifier);
{ skip all colon para's }
nextpara := tcallparanode(tcallparanode(para.right).right);
while assigned(nextpara) and
(cpf_is_colon_para in nextpara.callparaflags) do
nextpara := tcallparanode(nextpara.right);
found_error := true;
end
else
{ get next parameter }
nextpara := tcallparanode(para.right);
{ When we have a call, we have a problem: you can't pass the }
{ result of a call as a formal const parameter. Solution: }
{ assign the result to a temp and pass this temp as parameter }
{ This is not very efficient, but write(typedfile,x) is }
{ already slow by itself anyway (no buffering) (JM) }
{ Actually, thge same goes for every non-simple expression }
{ (such as an addition, ...) -> put everything but load nodes }
{ into temps (JM) }
{ of course, this must only be allowed for writes!!! (JM) }
if not(do_read) and
(para.left.nodetype <> loadn) then
begin
{ create temp for result }
temp := ctempcreatenode.create(para.left.resulttype,
para.left.resulttype.def.size,tt_persistent,false);
addstatement(newstatement,temp);
{ assign result to temp }
addstatement(newstatement,
cassignmentnode.create(ctemprefnode.create(temp),
para.left));
{ replace (reused) paranode with temp }
para.left := ctemprefnode.create(temp);
end;
{ add fileparameter }
para.right := filepara.getcopy;
{ create call statment }
{ since the parameters are in the correct order, we have to insert }
{ the statements always at the end of the current block }
addstatement(newstatement,ccallnode.createintern(procprefix,para));
{ if we used a temp, free it }
if para.left.nodetype = temprefn then
addstatement(newstatement,ctempdeletenode.create(temp));
{ process next parameter }
para := nextpara;
end;
{ free the file parameter }
filepara.free;
end
else
{ text read/write }
begin
while assigned(para) do
begin
{ is this parameter faulty? }
error_para := false;
{ is this parameter a real? }
is_real:=false;
{ type used for the read(), this is used to check
whether a temp is needed for range checking }
readfunctype.reset;
{ can't read/write types }
if para.left.nodetype=typen then
begin
CGMessagePos(para.fileinfo,type_e_cant_read_write_type);
error_para := true;
end;
{ support writeln(procvar) }
if (para.left.resulttype.def.deftype=procvardef) then
begin
p1:=ccallnode.create_procvar(nil,para.left);
resulttypepass(p1);
para.left:=p1;
end;
{ Currency will be written using the bestreal }
if is_currency(para.left.resulttype.def) then
inserttypeconv(para.left,pbestrealtype^);
case para.left.resulttype.def.deftype of
stringdef :
begin
name := procprefix+tstringdef(para.left.resulttype.def).stringtypname;
end;
pointerdef :
begin
if (not is_pchar(para.left.resulttype.def)) or do_read then
begin
CGMessagePos(para.fileinfo,type_e_cant_read_write_type);
error_para := true;
end
else
name := procprefix+'pchar_as_pointer';
end;
floatdef :
begin
is_real:=true;
name := procprefix+'float';
readfunctype:=pbestrealtype^;
end;
orddef :
begin
case torddef(para.left.resulttype.def).typ of
{$ifdef cpu64bit}
s64bit,
{$endif cpu64bit}
s8bit,
s16bit,
s32bit :
begin
name := procprefix+'sint';
readfunctype:=sinttype;
end;
{$ifdef cpu64bit}
u64bit,
{$endif cpu64bit}
u8bit,
u16bit,
u32bit :
begin
name := procprefix+'uint';
readfunctype:=uinttype;
end;
uchar :
begin
name := procprefix+'char';
readfunctype:=cchartype;
end;
uwidechar :
begin
name := procprefix+'widechar';
readfunctype:=cwidechartype;
end;
{$ifndef cpu64bit}
s64bit :
begin
name := procprefix+'int64';
readfunctype:=s64inttype;
end;
u64bit :
begin
name := procprefix+'qword';
readfunctype:=u64inttype;
end;
{$endif cpu64bit}
bool8bit,
bool16bit,
bool32bit :
begin
if do_read then
begin
CGMessagePos(para.fileinfo,type_e_cant_read_write_type);
error_para := true;
end
else
begin
name := procprefix+'boolean';
readfunctype:=booltype;
end;
end
else
begin
CGMessagePos(para.fileinfo,type_e_cant_read_write_type);
error_para := true;
end;
end;
end;
variantdef :
name:=procprefix+'variant';
arraydef :
begin
if is_chararray(para.left.resulttype.def) then
name := procprefix+'pchar_as_array'
else
begin
CGMessagePos(para.fileinfo,type_e_cant_read_write_type);
error_para := true;
end
end
else
begin
CGMessagePos(para.fileinfo,type_e_cant_read_write_type);
error_para := true;
end
end;
{ check for length/fractional colon para's }
fracpara := nil;
lenpara := nil;
if assigned(para.right) and
(cpf_is_colon_para in tcallparanode(para.right).callparaflags) then
begin
lenpara := tcallparanode(para.right);
if assigned(lenpara.right) and
(cpf_is_colon_para in tcallparanode(lenpara.right).callparaflags) then
fracpara:=tcallparanode(lenpara.right);
end;
{ get the next parameter now already, because we're going }
{ to muck around with the pointers }
if assigned(fracpara) then
nextpara := tcallparanode(fracpara.right)
else if assigned(lenpara) then
nextpara := tcallparanode(lenpara.right)
else
nextpara := tcallparanode(para.right);
{ check if a fracpara is allowed }
if assigned(fracpara) and not is_real then
begin
CGMessagePos(fracpara.fileinfo,parser_e_illegal_colon_qualifier);
error_para := true;
end
else if assigned(lenpara) and do_read then
begin
{ I think this is already filtered out by parsing, but I'm not sure (JM) }
CGMessagePos(lenpara.fileinfo,parser_e_illegal_colon_qualifier);
error_para := true;
end;
{ adjust found_error }
found_error := found_error or error_para;
if not error_para then
begin
{ create dummy frac/len para's if necessary }
if not do_read then
begin
{ difference in default value for floats and the rest :( }
if not is_real then
begin
if not assigned(lenpara) then
lenpara := ccallparanode.create(
cordconstnode.create(0,sinttype,false),nil)
else
{ make sure we don't pass the successive }
{ parameters too. We also already have a }
{ reference to the next parameter in }
{ nextpara }
lenpara.right := nil;
end
else
begin
if not assigned(lenpara) then
lenpara := ccallparanode.create(
cordconstnode.create(-32767,sinttype,false),nil);
{ also create a default fracpara if necessary }
if not assigned(fracpara) then
fracpara := ccallparanode.create(
cordconstnode.create(-1,sinttype,false),nil);
{ add it to the lenpara }
lenpara.right := fracpara;
{ and add the realtype para (this also removes the link }
{ to any parameters coming after it) }
fracpara.right := ccallparanode.create(
cordconstnode.create(ord(tfloatdef(para.left.resulttype.def).typ),
sinttype,true),nil);
end;
end;
{ special handling of reading small numbers, because the helpers }
{ expect a longint/card/bestreal var parameter. Use a temp. can't }
{ use functions because then the call to FPC_IOCHECK destroys }
{ their result before we can store it }
if do_read and
assigned(readfunctype.def) and
(para.left.resulttype.def<>readfunctype.def) then
begin
{ create the parameter list: the temp ... }
temp := ctempcreatenode.create(readfunctype,readfunctype.def.size,tt_persistent,false);
addstatement(newstatement,temp);
{ ... and the file }
p1 := ccallparanode.create(ctemprefnode.create(temp),
filepara.getcopy);
{ create the call to the helper }
addstatement(newstatement,
ccallnode.createintern(name,tcallparanode(p1)));
{ assign the result to the original var (this automatically }
{ takes care of range checking) }
addstatement(newstatement,
cassignmentnode.create(para.left,
ctemprefnode.create(temp)));
{ release the temp location }
addstatement(newstatement,ctempdeletenode.create(temp));
{ statement of para is used }
para.left := nil;
{ free the enclosing tcallparanode, but not the }
{ parameters coming after it }
para.right := nil;
para.free;
end
else
{ read of non s/u-8/16bit, or a write }
begin
{ add the filepara to the current parameter }
para.right := filepara.getcopy;
{ add the lenpara (fracpara and realtype are already linked }
{ with it if necessary) }
tcallparanode(para.right).right := lenpara;
{ in case of writing a chararray, add whether it's }
{ zero-based }
if not(do_read) and
(para.left.resulttype.def.deftype = arraydef) then
para := ccallparanode.create(cordconstnode.create(
ord(tarraydef(para.left.resulttype.def).lowrange=0),booltype,false),para);
{ create the call statement }
addstatement(newstatement,
ccallnode.createintern(name,para));
end
end
else
{ error_para = true }
begin
{ free the parameter, since it isn't referenced anywhere anymore }
para.right := nil;
para.free;
if assigned(lenpara) then
begin
lenpara.right := nil;
lenpara.free;
end;
if assigned(fracpara) then
begin
fracpara.right := nil;
fracpara.free;
end;
end;
{ process next parameter }
para := nextpara;
end;
{ if no error, add the write(ln)/read(ln) end calls }
if not found_error then
begin
case inlinenumber of
in_read_x:
name:='fpc_read_end';
in_write_x:
name:='fpc_write_end';
in_readln_x:
name:='fpc_readln_end';
in_writeln_x:
name:='fpc_writeln_end';
end;
addstatement(newstatement,ccallnode.createintern(name,filepara));
end;
end;
{ if we found an error, simply delete the generated blocknode }
if found_error then
newblock.free
else
begin
{ deallocate the temp for the file para if we used one }
if assigned(filetemp) then
addstatement(newstatement,ctempdeletenode.create(filetemp));
{ otherwise return the newly generated block of instructions, }
{ but first free the errornode we generated at the beginning }
result.free;
result := newblock
end;
end;
function tinlinenode.handle_val: tnode;
var
procname,
suffix : string[31];
sourcepara,
destpara,
codepara,
sizepara,
newparas : tcallparanode;
orgcode : tnode;
newstatement : tstatementnode;
newblock : tblocknode;
tempcode : ttempcreatenode;
begin
{ for easy exiting if something goes wrong }
result := cerrornode.create;
{ check the amount of parameters }
if not(assigned(left)) or
not(assigned(tcallparanode(left).right)) then
begin
CGMessage(parser_e_wrong_parameter_size);
exit;
end;
{ reverse parameters for easier processing }
left := reverseparameters(tcallparanode(left));
{ get the parameters }
tempcode := nil;
orgcode := nil;
sizepara := nil;
sourcepara := tcallparanode(left);
destpara := tcallparanode(sourcepara.right);
codepara := tcallparanode(destpara.right);
{ check if codepara is valid }
if assigned(codepara) and
(
(codepara.resulttype.def.deftype <> orddef)
{$ifndef cpu64bit}
or is_64bitint(codepara.resulttype.def)
{$endif cpu64bit}
) then
begin
CGMessagePos1(codepara.fileinfo,type_e_integer_expr_expected,codepara.resulttype.def.typename);
exit;
end;
{ check if dest para is valid }
if not(destpara.resulttype.def.deftype in [orddef,floatdef]) then
begin
CGMessagePos(destpara.fileinfo,type_e_integer_or_real_expr_expected);
exit;
end;
{ we're going to reuse the exisiting para's, so make sure they }
{ won't be disposed }
left := nil;
{ create the blocknode which will hold the generated statements + }
{ an initial dummy statement }
newblock:=internalstatements(newstatement);
{ do we need a temp for code? Yes, if no code specified, or if }
{ code is not a 32bit parameter (we already checked whether the }
{ the code para, if specified, was an orddef) }
if not assigned(codepara) or
(codepara.resulttype.def.size<>sinttype.def.size) then
begin
tempcode := ctempcreatenode.create(sinttype,sinttype.def.size,tt_persistent,false);
addstatement(newstatement,tempcode);
{ set the resulttype of the temp (needed to be able to get }
{ the resulttype of the tempref used in the new code para) }
resulttypepass(tnode(tempcode));
{ create a temp codepara, but save the original code para to }
{ assign the result to later on }
if assigned(codepara) then
begin
orgcode := codepara.left;
codepara.left := ctemprefnode.create(tempcode);
end
else
codepara := ccallparanode.create(ctemprefnode.create(tempcode),nil);
{ we need its resulttype later on }
codepara.get_paratype;
end
else if (torddef(codepara.resulttype.def).typ = torddef(sinttype.def).typ) then
{ because code is a var parameter, it must match types exactly }
{ however, since it will return values in [0..255], both longints }
{ and cardinals are fine. Since the formal code para type is }
{ longint, insert a typecoversion to longint for cardinal para's }
begin
codepara.left := ctypeconvnode.create_internal(codepara.left,sinttype);
{ make it explicit, oterwise you may get a nonsense range }
{ check error if the cardinal already contained a value }
{ > $7fffffff }
codepara.get_paratype;
end;
{ create the procedure name }
procname := 'fpc_val_';
case destpara.resulttype.def.deftype of
orddef:
begin
case torddef(destpara.resulttype.def).typ of
{$ifdef cpu64bit}
scurrency,
s64bit,
{$endif cpu64bit}
s8bit,
s16bit,
s32bit:
begin
suffix := 'sint_';
{ we also need a destsize para in this case }
sizepara := ccallparanode.create(cordconstnode.create
(destpara.resulttype.def.size,s32inttype,true),nil);
end;
{$ifdef cpu64bit}
u64bit,
{$endif cpu64bit}
u8bit,
u16bit,
u32bit:
suffix := 'uint_';
{$ifndef cpu64bit}
scurrency,
s64bit: suffix := 'int64_';
u64bit: suffix := 'qword_';
{$endif cpu64bit}
else
internalerror(200304225);
end;
end;
floatdef:
begin
suffix := 'real_';
end;
end;
procname := procname + suffix;
{ play a trick to have tcallnode handle invalid source parameters: }
{ the shortstring-longint val routine by default }
if (sourcepara.resulttype.def.deftype = stringdef) then
procname := procname + tstringdef(sourcepara.resulttype.def).stringtypname
else
procname := procname + 'shortstr';
{ set up the correct parameters for the call: the code para... }
newparas := codepara;
{ and the source para }
codepara.right := sourcepara;
{ sizepara either contains nil if none is needed (which is ok, since }
{ then the next statement severes any possible links with other paras }
{ that sourcepara may have) or it contains the necessary size para and }
{ its right field is nil }
sourcepara.right := sizepara;
{ create the call and assign the result to dest (val helpers are functions).
Use a trick to prevent a type size mismatch warning to be generated by the
assignment node. First convert implicitly to the resulttype. This will insert
the range check. The Second conversion is done explicitly to hide the implicit conversion
for the assignment node and therefor preventing the warning (PFV) }
addstatement(newstatement,cassignmentnode.create(
destpara.left,ctypeconvnode.create_internal(ctypeconvnode.create(ccallnode.createintern(procname,newparas),destpara.left.resulttype),destpara.left.resulttype)));
{ dispose of the enclosing paranode of the destination }
destpara.left := nil;
destpara.right := nil;
destpara.free;
{ check if we used a temp for code and whether we have to store }
{ it to the real code parameter }
if assigned(orgcode) then
addstatement(newstatement,cassignmentnode.create(
orgcode,
ctypeconvnode.create_internal(
ctemprefnode.create(tempcode),orgcode.resulttype)));
{ release the temp if we allocated one }
if assigned(tempcode) then
addstatement(newstatement,ctempdeletenode.create(tempcode));
{ free the errornode }
result.free;
{ and return it }
result := newblock;
end;
{$ifdef fpc}
{$maxfpuregisters 0}
{$endif fpc}
function getpi : bestreal;
begin
{$ifdef x86}
{ x86 has pi in hardware }
result:=pi;
{$else x86}
{$ifdef cpuextended}
result:=MathPiExtended.Value;
{$else cpuextended}
result:=MathPi.Value;
{$endif cpuextended}
{$endif x86}
end;
function tinlinenode.det_resulttype:tnode;
function do_lowhigh(const t:ttype) : tnode;
var
v : tconstexprint;
enum : tenumsym;
hp : tnode;
begin
case t.def.deftype of
orddef:
begin
if inlinenumber=in_low_x then
v:=torddef(t.def).low
else
v:=torddef(t.def).high;
{ low/high of torddef are longints, so we need special }
{ handling for cardinal and 64bit types (JM) }
{ 1.0.x doesn't support int64($ffffffff) correct, it'll expand
to -1 instead of staying $ffffffff. Therefor we use $ffff with
shl twice (PFV) }
case torddef(t.def).typ of
s64bit,scurrency :
begin
if (inlinenumber=in_low_x) then
v := int64($80000000) shl 32
else
v := (int64($7fffffff) shl 32) or int64($ffff) shl 16 or int64($ffff)
end;
u64bit :
begin
{ we have to use a dirty trick for high(qword), }
{ because it's bigger than high(tconstexprint) (JM) }
v := 0
end
else
begin
if not is_signed(t.def) then
v := cardinal(v);
end;
end;
hp:=cordconstnode.create(v,t,true);
resulttypepass(hp);
{ fix high(qword) }
if (torddef(t.def).typ=u64bit) and
(inlinenumber = in_high_x) then
tordconstnode(hp).value := -1; { is the same as qword($ffffffffffffffff) }
do_lowhigh:=hp;
end;
enumdef:
begin
enum:=tenumsym(tenumdef(t.def).firstenum);
v:=tenumdef(t.def).maxval;
if inlinenumber=in_high_x then
while assigned(enum) and (enum.value <> v) do
enum:=enum.nextenum;
if not assigned(enum) then
internalerror(309993)
else
hp:=genenumnode(enum);
do_lowhigh:=hp;
end;
else
internalerror(87);
end;
end;
function getconstrealvalue : bestreal;
begin
case left.nodetype of
ordconstn:
getconstrealvalue:=tordconstnode(left).value;
realconstn:
getconstrealvalue:=trealconstnode(left).value_real;
else
internalerror(309992);
end;
end;
procedure setconstrealvalue(r : bestreal);
begin
result:=crealconstnode.create(r,pbestrealtype^);
end;
function handle_ln_const(r : bestreal) : tnode;
begin
if r<=0.0 then
if (cs_check_range in aktlocalswitches) or
(cs_check_overflow in aktlocalswitches) then
begin
result:=crealconstnode.create(0,pbestrealtype^);
CGMessage(type_e_wrong_math_argument)
end
else
begin
if r=0.0 then
result:=crealconstnode.create(MathQNaN.Value,pbestrealtype^)
else
result:=crealconstnode.create(MathNegInf.Value,pbestrealtype^)
end
else
result:=crealconstnode.create(ln(r),pbestrealtype^)
end;
function handle_sqrt_const(r : bestreal) : tnode;
begin
if r<0.0 then
if (cs_check_range in aktlocalswitches) or
(cs_check_overflow in aktlocalswitches) then
begin
result:=crealconstnode.create(0,pbestrealtype^);
CGMessage(type_e_wrong_math_argument)
end
else
result:=crealconstnode.create(MathQNaN.Value,pbestrealtype^)
else
result:=crealconstnode.create(sqrt(r),pbestrealtype^)
end;
procedure setfloatresulttype;
begin
if (left.resulttype.def.deftype=floatdef) and
(tfloatdef(left.resulttype.def).typ in [s32real,s64real,s80real,s128real]) then
resulttype:=left.resulttype
else
begin
inserttypeconv(left,pbestrealtype^);
resulttype:=pbestrealtype^;
end;
end;
var
vl,vl2 : TConstExprInt;
vr : bestreal;
hightree,
hp : tnode;
checkrange : boolean;
label
myexit;
begin
result:=nil;
{ if we handle writeln; left contains no valid address }
if assigned(left) then
begin
if left.nodetype=callparan then
tcallparanode(left).get_paratype
else
resulttypepass(left);
end;
inc(parsing_para_level);
{ handle intern constant functions in separate case }
if nf_inlineconst in flags then
begin
{ no parameters? }
if not assigned(left) then
internalerror(200501231)
else
begin
vl:=0;
vl2:=0; { second parameter Ex: ptr(vl,vl2) }
case left.nodetype of
realconstn :
begin
{ Real functions are all handled with internproc below }
CGMessage1(type_e_integer_expr_expected,left.resulttype.def.typename)
end;
ordconstn :
vl:=tordconstnode(left).value;
callparan :
begin
{ both exists, else it was not generated }
vl:=tordconstnode(tcallparanode(left).left).value;
vl2:=tordconstnode(tcallparanode(tcallparanode(left).right).left).value;
end;
else
CGMessage(parser_e_illegal_expression);
end;
case inlinenumber of
in_const_abs :
hp:=genintconstnode(abs(vl));
in_const_sqr :
hp:=genintconstnode(sqr(vl));
in_const_odd :
hp:=cordconstnode.create(byte(odd(vl)),booltype,true);
in_const_swap_word :
hp:=cordconstnode.create((vl and $ff) shl 8+(vl shr 8),left.resulttype,true);
in_const_swap_long :
hp:=cordconstnode.create((vl and $ffff) shl 16+(vl shr 16),left.resulttype,true);
in_const_swap_qword :
hp:=cordconstnode.create((vl and $ffff) shl 32+(vl shr 32),left.resulttype,true);
in_const_ptr :
hp:=cpointerconstnode.create((vl2 shl 4)+vl,voidfarpointertype);
else
internalerror(88);
end;
end;
if hp=nil then
hp:=cerrornode.create;
result:=hp;
goto myexit;
end
else
begin
case inlinenumber of
in_lo_long,
in_hi_long,
in_lo_qword,
in_hi_qword,
in_lo_word,
in_hi_word :
begin
{ give warning for incompatibility with tp and delphi }
if (inlinenumber in [in_lo_long,in_hi_long,in_lo_qword,in_hi_qword]) and
((m_tp7 in aktmodeswitches) or
(m_delphi in aktmodeswitches)) then
CGMessage(type_w_maybe_wrong_hi_lo);
{ constant folding }
if left.nodetype=ordconstn then
begin
case inlinenumber of
in_lo_word :
hp:=cordconstnode.create(tordconstnode(left).value and $ff,left.resulttype,true);
in_hi_word :
hp:=cordconstnode.create(tordconstnode(left).value shr 8,left.resulttype,true);
in_lo_long :
hp:=cordconstnode.create(tordconstnode(left).value and $ffff,left.resulttype,true);
in_hi_long :
hp:=cordconstnode.create(tordconstnode(left).value shr 16,left.resulttype,true);
in_lo_qword :
hp:=cordconstnode.create(tordconstnode(left).value and $ffffffff,left.resulttype,true);
in_hi_qword :
hp:=cordconstnode.create(tordconstnode(left).value shr 32,left.resulttype,true);
end;
result:=hp;
goto myexit;
end;
set_varstate(left,vs_read,[vsf_must_be_valid]);
if not is_integer(left.resulttype.def) then
CGMessage1(type_e_integer_expr_expected,left.resulttype.def.typename);
case inlinenumber of
in_lo_word,
in_hi_word :
resulttype:=u8inttype;
in_lo_long,
in_hi_long :
resulttype:=u16inttype;
in_lo_qword,
in_hi_qword :
resulttype:=u32inttype;
end;
end;
in_sizeof_x:
begin
set_varstate(left,vs_read,[]);
if paramanager.push_high_param(vs_value,left.resulttype.def,current_procinfo.procdef.proccalloption) then
begin
hightree:=load_high_value_node(tparavarsym(tloadnode(left).symtableentry));
if assigned(hightree) then
begin
hp:=caddnode.create(addn,hightree,
cordconstnode.create(1,sinttype,false));
if (left.resulttype.def.deftype=arraydef) and
(tarraydef(left.resulttype.def).elesize<>1) then
hp:=caddnode.create(muln,hp,cordconstnode.create(tarraydef(
left.resulttype.def).elesize,sinttype,true));
result:=hp;
end;
end
else
resulttype:=sinttype;
end;
in_typeof_x:
begin
set_varstate(left,vs_read,[]);
resulttype:=voidpointertype;
end;
in_ord_x:
begin
if (left.nodetype=ordconstn) then
begin
hp:=cordconstnode.create(
tordconstnode(left).value,sinttype,true);
result:=hp;
goto myexit;
end;
set_varstate(left,vs_read,[vsf_must_be_valid]);
case left.resulttype.def.deftype of
orddef :
begin
case torddef(left.resulttype.def).typ of
bool8bit,
uchar:
begin
{ change to byte() }
hp:=ctypeconvnode.create_internal(left,u8inttype);
left:=nil;
result:=hp;
end;
bool16bit,
uwidechar :
begin
{ change to word() }
hp:=ctypeconvnode.create_internal(left,u16inttype);
left:=nil;
result:=hp;
end;
bool32bit :
begin
{ change to dword() }
hp:=ctypeconvnode.create_internal(left,u32inttype);
left:=nil;
result:=hp;
end;
uvoid :
CGMessage1(type_e_ordinal_expr_expected,left.resulttype.def.typename);
else
begin
{ all other orddef need no transformation }
hp:=left;
left:=nil;
result:=hp;
end;
end;
end;
enumdef :
begin
hp:=ctypeconvnode.create_internal(left,s32inttype);
left:=nil;
result:=hp;
end;
pointerdef :
begin
if m_mac in aktmodeswitches then
begin
hp:=ctypeconvnode.create_internal(left,ptrinttype);
left:=nil;
result:=hp;
end
else
CGMessage1(type_e_ordinal_expr_expected,left.resulttype.def.typename);
end
else
CGMessage1(type_e_ordinal_expr_expected,left.resulttype.def.typename);
end;
end;
in_chr_byte:
begin
{ convert to explicit char() }
set_varstate(left,vs_read,[vsf_must_be_valid]);
hp:=ctypeconvnode.create_internal(left,cchartype);
left:=nil;
result:=hp;
end;
in_length_x:
begin
set_varstate(left,vs_read,[vsf_must_be_valid]);
case left.resulttype.def.deftype of
variantdef:
begin
inserttypeconv(left,cansistringtype);
end;
stringdef :
begin
{ we don't need string convertions here }
if (left.nodetype=typeconvn) and
(ttypeconvnode(left).left.resulttype.def.deftype=stringdef) then
begin
hp:=ttypeconvnode(left).left;
ttypeconvnode(left).left:=nil;
left.free;
left:=hp;
end;
{ evaluates length of constant strings direct }
if (left.nodetype=stringconstn) then
begin
hp:=cordconstnode.create(
tstringconstnode(left).len,s32inttype,true);
result:=hp;
goto myexit;
end;
end;
orddef :
begin
{ length of char is one allways }
if is_char(left.resulttype.def) or
is_widechar(left.resulttype.def) then
begin
hp:=cordconstnode.create(1,s32inttype,false);
result:=hp;
goto myexit;
end
else
CGMessage(type_e_mismatch);
end;
pointerdef :
begin
if is_pchar(left.resulttype.def) then
begin
hp := ccallparanode.create(left,nil);
result := ccallnode.createintern('fpc_pchar_length',hp);
{ make sure the left node doesn't get disposed, since it's }
{ reused in the new node (JM) }
left:=nil;
goto myexit;
end
else if is_pwidechar(left.resulttype.def) then
begin
hp := ccallparanode.create(left,nil);
result := ccallnode.createintern('fpc_pwidechar_length',hp);
{ make sure the left node doesn't get disposed, since it's }
{ reused in the new node (JM) }
left:=nil;
goto myexit;
end
else
CGMessage(type_e_mismatch);
end;
arraydef :
begin
if is_open_array(left.resulttype.def) or
is_array_of_const(left.resulttype.def) then
begin
hightree:=load_high_value_node(tparavarsym(tloadnode(left).symtableentry));
if assigned(hightree) then
begin
hp:=caddnode.create(addn,hightree,
cordconstnode.create(1,s32inttype,false));
result:=hp;
end;
goto myexit;
end
else
if not is_dynamic_array(left.resulttype.def) then
begin
hp:=cordconstnode.create(tarraydef(left.resulttype.def).highrange-
tarraydef(left.resulttype.def).lowrange+1,
s32inttype,true);
result:=hp;
goto myexit;
end
else
begin
hp := ccallparanode.create(ctypeconvnode.create_internal(left,voidpointertype),nil);
result := ccallnode.createintern('fpc_dynarray_length',hp);
{ make sure the left node doesn't get disposed, since it's }
{ reused in the new node (JM) }
left:=nil;
goto myexit;
end;
end;
else
CGMessage(type_e_mismatch);
end;
{ shortstring return an 8 bit value as the length
is the first byte of the string }
if is_shortstring(left.resulttype.def) then
resulttype:=u8inttype
else
resulttype:=sinttype;
end;
in_typeinfo_x:
begin
set_varstate(left,vs_read,[vsf_must_be_valid]);
resulttype:=voidpointertype;
end;
in_assigned_x:
begin
{ the parser has already made sure the expression is valid }
{ handle constant expressions }
if is_constnode(tcallparanode(left).left) or
(tcallparanode(left).left.nodetype = pointerconstn) then
begin
{ let an add node figure it out }
result := caddnode.create(unequaln,tcallparanode(left).left,cnilnode.create);
tcallparanode(left).left := nil;
{ free left, because otherwise some code at 'myexit' tries }
{ to run get_paratype for it, which crashes since left.left }
{ is now nil }
left.free;
left := nil;
goto myexit;
end;
{ otherwise handle separately, because there could be a procvar, which }
{ is 2*sizeof(pointer), while we must only check the first pointer }
set_varstate(tcallparanode(left).left,vs_read,[vsf_must_be_valid]);
resulttype:=booltype;
end;
in_ofs_x :
internalerror(2000101001);
in_seg_x :
begin
set_varstate(left,vs_read,[]);
result:=cordconstnode.create(0,s32inttype,false);
goto myexit;
end;
in_pred_x,
in_succ_x:
begin
set_varstate(left,vs_read,[vsf_must_be_valid]);
resulttype:=left.resulttype;
if not is_ordinal(resulttype.def) then
CGMessage(type_e_ordinal_expr_expected)
else
begin
if (resulttype.def.deftype=enumdef) and
(tenumdef(resulttype.def).has_jumps) and
not(m_delphi in aktmodeswitches) then
CGMessage(type_e_succ_and_pred_enums_with_assign_not_possible);
end;
{ only if the result is an enum do we do range checking }
if (resulttype.def.deftype=enumdef) then
checkrange := true
else
checkrange := false;
{ do constant folding after check for jumps }
if left.nodetype=ordconstn then
begin
if inlinenumber=in_succ_x then
result:=cordconstnode.create(tordconstnode(left).value+1,left.resulttype,checkrange)
else
result:=cordconstnode.create(tordconstnode(left).value-1,left.resulttype,checkrange);
end;
end;
in_initialize_x,
in_finalize_x,
in_setlength_x:
begin
{ inlined from pinline }
internalerror(200204231);
end;
in_inc_x,
in_dec_x:
begin
resulttype:=voidtype;
if assigned(left) then
begin
{ first param must be var }
valid_for_var(tcallparanode(left).left,true);
set_varstate(tcallparanode(left).left,vs_readwritten,[vsf_must_be_valid]);
if (left.resulttype.def.deftype in [enumdef,pointerdef]) or
is_ordinal(left.resulttype.def) or
is_currency(left.resulttype.def) then
begin
{ value of left gets changed -> must be unique }
set_unique(tcallparanode(left).left);
{ two paras ? }
if assigned(tcallparanode(left).right) then
begin
if is_integer(tcallparanode(left).right.resulttype.def) then
begin
set_varstate(tcallparanode(tcallparanode(left).right).left,vs_read,[vsf_must_be_valid]);
inserttypeconv_internal(tcallparanode(tcallparanode(left).right).left,tcallparanode(left).left.resulttype);
if assigned(tcallparanode(tcallparanode(left).right).right) then
{ should be handled in the parser (JM) }
internalerror(2006020901);
end
else
CGMessagePos(tcallparanode(left).right.fileinfo,type_e_ordinal_expr_expected);
end;
end
else
CGMessagePos(left.fileinfo,type_e_ordinal_expr_expected);
end
else
CGMessagePos(fileinfo,type_e_mismatch);
end;
in_read_x,
in_readln_x,
in_write_x,
in_writeln_x :
begin
result := handle_read_write;
end;
in_settextbuf_file_x :
begin
resulttype:=voidtype;
{ now we know the type of buffer }
hp:=ccallparanode.create(cordconstnode.create(
tcallparanode(left).left.resulttype.def.size,s32inttype,true),left);
result:=ccallnode.createintern('SETTEXTBUF',hp);
left:=nil;
end;
{ the firstpass of the arg has been done in firstcalln ? }
in_reset_typedfile,
in_rewrite_typedfile :
begin
result := handle_reset_rewrite_typed;
end;
in_str_x_string :
begin
result := handle_str;
end;
in_val_x :
begin
result := handle_val;
end;
in_include_x_y,
in_exclude_x_y:
begin
resulttype:=voidtype;
{ the parser already checks whether we have two (and exectly two) }
{ parameters (JM) }
{ first param must be var }
valid_for_var(tcallparanode(left).left,true);
set_varstate(tcallparanode(left).left,vs_readwritten,[vsf_must_be_valid]);
{ check type }
if (left.resulttype.def.deftype=setdef) then
begin
{ insert a type conversion }
{ to the type of the set elements }
set_varstate(tcallparanode(tcallparanode(left).right).left,vs_read,[vsf_must_be_valid]);
inserttypeconv(tcallparanode(tcallparanode(left).right).left,
tsetdef(left.resulttype.def).elementtype);
end
else
CGMessage(type_e_mismatch);
end;
in_slice_x:
begin
result:=nil;
resulttype:=tcallparanode(left).left.resulttype;
if (resulttype.def.deftype <> arraydef) then
CGMessagePos(left.fileinfo,type_e_mismatch);
if not(is_integer(tcallparanode(tcallparanode(left).right).left.resulttype.def)) then
CGMessagePos1(tcallparanode(left).right.fileinfo,
type_e_integer_expr_expected,
tcallparanode(tcallparanode(left).right).left.resulttype.def.typename);
end;
in_low_x,
in_high_x:
begin
case left.resulttype.def.deftype of
orddef,
enumdef:
begin
result:=do_lowhigh(left.resulttype);
end;
setdef:
begin
result:=do_lowhigh(tsetdef(left.resulttype.def).elementtype);
end;
arraydef:
begin
if inlinenumber=in_low_x then
begin
result:=cordconstnode.create(tarraydef(
left.resulttype.def).lowrange,tarraydef(left.resulttype.def).rangetype,true);
end
else
begin
if is_open_array(left.resulttype.def) or
is_array_of_const(left.resulttype.def) then
begin
set_varstate(left,vs_read,[]);
result:=load_high_value_node(tparavarsym(tloadnode(left).symtableentry));
end
else
if is_dynamic_array(left.resulttype.def) then
begin
set_varstate(left,vs_read,[vsf_must_be_valid]);
{ can't use inserttypeconv because we need }
{ an explicit type conversion (JM) }
hp := ccallparanode.create(ctypeconvnode.create_internal(left,voidpointertype),nil);
result := ccallnode.createintern('fpc_dynarray_high',hp);
{ make sure the left node doesn't get disposed, since it's }
{ reused in the new node (JM) }
left:=nil;
end
else
begin
result:=cordconstnode.create(tarraydef(
left.resulttype.def).highrange,tarraydef(left.resulttype.def).rangetype,true);
end;
end;
end;
stringdef:
begin
if inlinenumber=in_low_x then
begin
result:=cordconstnode.create(0,u8inttype,false);
end
else
begin
if is_open_string(left.resulttype.def) then
begin
set_varstate(left,vs_read,[]);
result:=load_high_value_node(tparavarsym(tloadnode(left).symtableentry))
end
else
result:=cordconstnode.create(tstringdef(left.resulttype.def).len,u8inttype,true);
end;
end;
else
CGMessage(type_e_mismatch);
end;
end;
in_exp_real :
begin
if left.nodetype in [ordconstn,realconstn] then
begin
result:=crealconstnode.create(exp(getconstrealvalue),pbestrealtype^);
if (trealconstnode(result).value_real=MathInf.Value) and
((cs_check_range in aktlocalswitches) or
(cs_check_overflow in aktlocalswitches)) then
begin
result:=crealconstnode.create(0,pbestrealtype^);
CGMessage(parser_e_range_check_error);
end;
end
else
begin
set_varstate(left,vs_read,[vsf_must_be_valid]);
inserttypeconv(left,pbestrealtype^);
resulttype:=pbestrealtype^;
end;
end;
in_trunc_real :
begin
if left.nodetype in [ordconstn,realconstn] then
begin
vr:=getconstrealvalue;
if (vr>=9223372036854775807.5) or (vr<=-9223372036854775808.5) then
begin
CGMessage(parser_e_range_check_error);
result:=cordconstnode.create(1,s64inttype,false)
end
else
result:=cordconstnode.create(trunc(vr),s64inttype,true)
end
else
begin
set_varstate(left,vs_read,[vsf_must_be_valid]);
inserttypeconv(left,pbestrealtype^);
resulttype:=s64inttype;
end;
end;
in_round_real :
begin
if left.nodetype in [ordconstn,realconstn] then
begin
vr:=getconstrealvalue;
if (vr>=9223372036854775807.5) or (vr<=-9223372036854775808.5) then
begin
CGMessage(parser_e_range_check_error);
result:=cordconstnode.create(1,s64inttype,false)
end
else
result:=cordconstnode.create(round(vr),s64inttype,true)
end
else
begin
set_varstate(left,vs_read,[vsf_must_be_valid]);
inserttypeconv(left,pbestrealtype^);
resulttype:=s64inttype;
end;
end;
in_frac_real :
begin
if left.nodetype in [ordconstn,realconstn] then
setconstrealvalue(frac(getconstrealvalue))
else
begin
set_varstate(left,vs_read,[vsf_must_be_valid]);
inserttypeconv(left,pbestrealtype^);
resulttype:=pbestrealtype^;
end;
end;
in_int_real :
begin
if left.nodetype in [ordconstn,realconstn] then
setconstrealvalue(int(getconstrealvalue))
else
begin
set_varstate(left,vs_read,[vsf_must_be_valid]);
inserttypeconv(left,pbestrealtype^);
resulttype:=pbestrealtype^;
end;
end;
in_pi_real :
begin
if block_type=bt_const then
setconstrealvalue(getpi)
else
resulttype:=pbestrealtype^;
end;
in_cos_real :
begin
if left.nodetype in [ordconstn,realconstn] then
setconstrealvalue(cos(getconstrealvalue))
else
begin
set_varstate(left,vs_read,[vsf_must_be_valid]);
inserttypeconv(left,pbestrealtype^);
resulttype:=pbestrealtype^;
end;
end;
in_sin_real :
begin
if left.nodetype in [ordconstn,realconstn] then
setconstrealvalue(sin(getconstrealvalue))
else
begin
set_varstate(left,vs_read,[vsf_must_be_valid]);
inserttypeconv(left,pbestrealtype^);
resulttype:=pbestrealtype^;
end;
end;
in_arctan_real :
begin
if left.nodetype in [ordconstn,realconstn] then
setconstrealvalue(arctan(getconstrealvalue))
else
begin
set_varstate(left,vs_read,[vsf_must_be_valid]);
inserttypeconv(left,pbestrealtype^);
resulttype:=pbestrealtype^;
end;
end;
in_abs_real :
begin
if left.nodetype in [ordconstn,realconstn] then
setconstrealvalue(abs(getconstrealvalue))
else
begin
set_varstate(left,vs_read,[vsf_must_be_valid]);
inserttypeconv(left,pbestrealtype^);
resulttype:=pbestrealtype^;
end;
end;
in_sqr_real :
begin
if left.nodetype in [ordconstn,realconstn] then
setconstrealvalue(sqr(getconstrealvalue))
else
begin
set_varstate(left,vs_read,[vsf_must_be_valid]);
setfloatresulttype;
end;
end;
in_sqrt_real :
begin
if left.nodetype in [ordconstn,realconstn] then
begin
vr:=getconstrealvalue;
if vr<0.0 then
result:=handle_sqrt_const(vr)
else
setconstrealvalue(sqrt(vr));
end
else
begin
set_varstate(left,vs_read,[vsf_must_be_valid]);
setfloatresulttype;
end;
end;
in_ln_real :
begin
if left.nodetype in [ordconstn,realconstn] then
begin
vr:=getconstrealvalue;
if vr<=0.0 then
result:=handle_ln_const(vr)
else
setconstrealvalue(ln(vr));
end
else
begin
set_varstate(left,vs_read,[vsf_must_be_valid]);
inserttypeconv(left,pbestrealtype^);
resulttype:=pbestrealtype^;
end;
end;
{$ifdef SUPPORT_MMX}
in_mmx_pcmpeqb..in_mmx_pcmpgtw:
begin
end;
{$endif SUPPORT_MMX}
in_prefetch_var:
begin
resulttype:=voidtype;
end;
{$ifdef SUPPORT_UNALIGNED}
in_unaligned_x:
begin
resulttype:=left.resulttype;
end;
{$endif SUPPORT_UNALIGNED}
in_assert_x_y :
begin
resulttype:=voidtype;
if assigned(left) then
begin
set_varstate(tcallparanode(left).left,vs_read,[vsf_must_be_valid]);
{ check type }
if is_boolean(left.resulttype.def) then
begin
set_varstate(tcallparanode(tcallparanode(left).right).left,vs_read,[vsf_must_be_valid]);
{ must always be a string }
inserttypeconv(tcallparanode(tcallparanode(left).right).left,cshortstringtype);
end
else
CGMessage1(type_e_boolean_expr_expected,left.resulttype.def.typename);
end
else
CGMessage(type_e_mismatch);
{ We've checked the whole statement for correctness, now we
can remove it if assertions are off }
if not(cs_do_assertion in aktlocalswitches) then
begin
{ we need a valid node, so insert a nothingn }
result:=cnothingnode.create;
end
else
include(current_procinfo.flags,pi_do_call);
end;
in_get_frame,
in_get_caller_frame,
in_get_caller_addr:
begin
resulttype:=voidpointertype;
end;
else
internalerror(8);
end;
end;
myexit:
{ Run get_paratype again to update maybe inserted typeconvs }
if not codegenerror then
begin
if assigned(left) and
(left.nodetype=callparan) then
tcallparanode(left).get_paratype;
end;
dec(parsing_para_level);
end;
function tinlinenode.pass_1 : tnode;
var
hp,hpp : tnode;
shiftconst: longint;
tempnode: ttempcreatenode;
newstatement: tstatementnode;
newblock: tblocknode;
begin
result:=nil;
{ if we handle writeln; left contains no valid address }
if assigned(left) then
begin
if left.nodetype=callparan then
tcallparanode(left).firstcallparan
else
firstpass(left);
left_max;
end;
inc(parsing_para_level);
{ intern const should already be handled }
if nf_inlineconst in flags then
internalerror(200104044);
case inlinenumber of
in_lo_qword,
in_hi_qword,
in_lo_long,
in_hi_long,
in_lo_word,
in_hi_word:
begin
shiftconst := 0;
case inlinenumber of
in_hi_qword:
shiftconst := 32;
in_hi_long:
shiftconst := 16;
in_hi_word:
shiftconst := 8;
end;
if shiftconst <> 0 then
result := ctypeconvnode.create_internal(cshlshrnode.create(shrn,left,
cordconstnode.create(shiftconst,u32inttype,false)),resulttype)
else
result := ctypeconvnode.create_internal(left,resulttype);
left := nil;
firstpass(result);
end;
in_sizeof_x:
begin
if registersint<1 then
registersint:=1;
expectloc:=LOC_REGISTER;
end;
in_typeof_x:
begin
if registersint<1 then
registersint:=1;
expectloc:=LOC_REGISTER;
end;
in_length_x:
begin
if is_shortstring(left.resulttype.def) then
expectloc:=left.expectloc
else
begin
{ ansi/wide string }
if registersint<1 then
registersint:=1;
expectloc:=LOC_REGISTER;
end;
end;
in_typeinfo_x:
begin
expectloc:=LOC_REGISTER;
registersint:=1;
end;
in_assigned_x:
begin
expectloc := LOC_JUMP;
registersint:=1;
end;
in_pred_x,
in_succ_x:
begin
if is_64bit(resulttype.def) then
begin
if (registersint<2) then
registersint:=2
end
else
begin
if (registersint<1) then
registersint:=1;
end;
expectloc:=LOC_REGISTER;
end;
in_setlength_x,
in_initialize_x,
in_finalize_x:
begin
expectloc:=LOC_VOID;
end;
in_inc_x,
in_dec_x:
begin
expectloc:=LOC_VOID;
{ check type }
if
{$ifndef cpu64bit}
is_64bit(left.resulttype.def) or
{$endif cpu64bit}
{ range/overflow checking doesn't work properly }
{ with the inc/dec code that's generated (JM) }
(
(((left.resulttype.def.deftype = orddef) and
not(is_char(left.resulttype.def)) and
not(is_boolean(left.resulttype.def))) or
(left.resulttype.def.deftype = pointerdef)) and
(aktlocalswitches * [cs_check_overflow,cs_check_range] <> [])
) then
{ convert to simple add (JM) }
begin
newblock := internalstatements(newstatement);
{ extra parameter? }
if assigned(tcallparanode(left).right) then
begin
{ Yes, use for add node }
hpp := tcallparanode(tcallparanode(left).right).left;
tcallparanode(tcallparanode(left).right).left := nil;
if assigned(tcallparanode(tcallparanode(left).right).right) then
CGMessage(parser_e_illegal_expression);
end
else
begin
{ no, create constant 1 }
hpp := cordconstnode.create(1,tcallparanode(left).left.resulttype,false);
end;
resulttypepass(hpp);
{$ifndef cpu64bit}
if not((hpp.resulttype.def.deftype=orddef) and
(torddef(hpp.resulttype.def).typ<>u32bit)) then
{$endif cpu64bit}
inserttypeconv_internal(hpp,sinttype);
{ No overflow check for pointer operations, because inc(pointer,-1) will always
trigger an overflow. For uint32 it works because then the operation is done
in 64bit }
if (tcallparanode(left).left.resulttype.def.deftype=pointerdef) then
exclude(aktlocalswitches,cs_check_overflow);
{ make sure we don't call functions part of the left node twice (and generally }
{ optimize the code generation) }
if node_complexity(tcallparanode(left).left) > 1 then
begin
tempnode := ctempcreatenode.create(voidpointertype,voidpointertype.def.size,tt_persistent,true);
addstatement(newstatement,tempnode);
addstatement(newstatement,cassignmentnode.create(ctemprefnode.create(tempnode),
caddrnode.create_internal(tcallparanode(left).left.getcopy)));
hp := cderefnode.create(ctemprefnode.create(tempnode));
inserttypeconv_internal(hp,tcallparanode(left).left.resulttype);
end
else
begin
hp := tcallparanode(left).left.getcopy;
tempnode := nil;
end;
{ addition/substraction depending on inc/dec }
if inlinenumber = in_inc_x then
hpp := caddnode.create(addn,hp,hpp)
else
hpp := caddnode.create(subn,hp,hpp);
{ assign result of addition }
inserttypeconv_internal(hpp,hp.resulttype);
addstatement(newstatement,cassignmentnode.create(hp.getcopy,hpp));
{ deallocate the temp }
if assigned(tempnode) then
addstatement(newstatement,ctempdeletenode.create(tempnode));
{ firstpass it }
firstpass(newblock);
{ return new node }
result := newblock;
end
else if (left.resulttype.def.deftype in [enumdef,pointerdef]) or
is_ordinal(left.resulttype.def) then
begin
{ two paras ? }
if assigned(tcallparanode(left).right) then
begin
{ need we an additional register ? }
if not(is_constintnode(tcallparanode(tcallparanode(left).right).left)) and
(tcallparanode(tcallparanode(left).right).left.expectloc in [LOC_CREFERENCE,LOC_REFERENCE]) and
(tcallparanode(tcallparanode(left).right).left.registersint<=1) then
inc(registersint);
{ do we need an additional register to restore the first parameter? }
if tcallparanode(tcallparanode(left).right).left.registersint>=registersint then
inc(registersint);
end;
end;
end;
in_include_x_y,
in_exclude_x_y:
begin
expectloc:=LOC_VOID;
registersint:=left.registersint;
registersfpu:=left.registersfpu;
{$ifdef SUPPORT_MMX}
registersmmx:=left.registersmmx;
{$endif SUPPORT_MMX}
end;
in_exp_real:
begin
result:= first_exp_real;
end;
in_round_real:
begin
result:= first_round_real;
end;
in_trunc_real:
begin
result:= first_trunc_real;
end;
in_int_real:
begin
result:= first_int_real;
end;
in_frac_real:
begin
result:= first_frac_real;
end;
in_cos_real:
begin
result:= first_cos_real;
end;
in_sin_real:
begin
result := first_sin_real;
end;
in_arctan_real:
begin
result := first_arctan_real;
end;
in_pi_real :
begin
result := first_pi;
end;
in_abs_real:
begin
result := first_abs_real;
end;
in_sqr_real:
begin
result := first_sqr_real;
end;
in_sqrt_real:
begin
result := first_sqrt_real;
end;
in_ln_real:
begin
result := first_ln_real;
end;
{$ifdef SUPPORT_MMX}
in_mmx_pcmpeqb..in_mmx_pcmpgtw:
begin
end;
{$endif SUPPORT_MMX}
in_assert_x_y :
begin
expectloc:=LOC_VOID;
registersint:=left.registersint;
registersfpu:=left.registersfpu;
{$ifdef SUPPORT_MMX}
registersmmx:=left.registersmmx;
{$endif SUPPORT_MMX}
end;
in_low_x,
in_high_x:
internalerror(200104047);
in_slice_x:
internalerror(2005101501);
in_ord_x,
in_chr_byte:
begin
{ should not happend as it's converted to typeconv }
internalerror(200104045);
end;
in_ofs_x :
internalerror(2000101001);
in_seg_x :
internalerror(200104046);
in_settextbuf_file_x,
in_reset_typedfile,
in_rewrite_typedfile,
in_str_x_string,
in_val_x,
in_read_x,
in_readln_x,
in_write_x,
in_writeln_x :
begin
{ should be handled by det_resulttype }
internalerror(200108234);
end;
in_get_frame:
begin
expectloc:=LOC_CREGISTER;
end;
in_get_caller_frame:
begin
expectloc:=LOC_REGISTER;
registersint:=1;
end;
in_get_caller_addr:
begin
expectloc:=LOC_REGISTER;
registersint:=1;
end;
in_prefetch_var:
begin
expectloc:=LOC_VOID;
end;
{$ifdef SUPPORT_UNALIGNED}
in_unaligned_x:
begin
expectloc:=left.expectloc;
end;
{$endif SUPPORT_UNALIGNED}
else
internalerror(89);
end;
dec(parsing_para_level);
end;
{$ifdef fpc}
{$maxfpuregisters default}
{$endif fpc}
function tinlinenode.docompare(p: tnode): boolean;
begin
docompare :=
inherited docompare(p) and
(inlinenumber = tinlinenode(p).inlinenumber);
end;
function tinlinenode.first_pi : tnode;
begin
result:=crealconstnode.create(getpi,pbestrealtype^);
end;
function tinlinenode.first_arctan_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
first_arctan_real := ccallnode.createintern('fpc_arctan_real',
ccallparanode.create(left,nil));
left := nil;
end;
function tinlinenode.first_abs_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
first_abs_real := ccallnode.createintern('fpc_abs_real',
ccallparanode.create(left,nil));
left := nil;
end;
function tinlinenode.first_sqr_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
first_sqr_real := ctypeconvnode.create_internal(ccallnode.createintern('fpc_sqr_real',
ccallparanode.create(left,nil)),resulttype);
left := nil;
end;
function tinlinenode.first_sqrt_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
first_sqrt_real := ctypeconvnode.create_internal(ccallnode.createintern('fpc_sqrt_real',
ccallparanode.create(left,nil)),resulttype);
left := nil;
end;
function tinlinenode.first_ln_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
first_ln_real := ccallnode.createintern('fpc_ln_real',
ccallparanode.create(left,nil));
left := nil;
end;
function tinlinenode.first_cos_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
first_cos_real := ccallnode.createintern('fpc_cos_real',
ccallparanode.create(left,nil));
left := nil;
end;
function tinlinenode.first_sin_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
first_sin_real := ccallnode.createintern('fpc_sin_real',
ccallparanode.create(left,nil));
left := nil;
end;
function tinlinenode.first_exp_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
result := ccallnode.createintern('fpc_exp_real',ccallparanode.create(left,nil));
left := nil;
end;
function tinlinenode.first_int_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
result := ccallnode.createintern('fpc_int_real',ccallparanode.create(left,nil));
left := nil;
end;
function tinlinenode.first_frac_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
result := ccallnode.createintern('fpc_frac_real',ccallparanode.create(left,nil));
left := nil;
end;
function tinlinenode.first_round_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
result := ccallnode.createintern('fpc_round_real',ccallparanode.create(left,nil));
left := nil;
end;
function tinlinenode.first_trunc_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
result := ccallnode.createintern('fpc_trunc_real',ccallparanode.create(left,nil));
left := nil;
end;
begin
cinlinenode:=tinlinenode;
end.