fpc/compiler/types.pas
2000-03-01 15:36:11 +00:00

1132 lines
40 KiB
ObjectPascal

{
$Id$
Copyright (C) 1998-2000 by Florian Klaempfl
This unit provides some help routines for type handling
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit types;
interface
uses
cobjects,symtable
{$IFDEF NEWST}
,defs
{$ENDIF NEWST};
type
tmmxtype = (mmxno,mmxu8bit,mmxs8bit,mmxu16bit,mmxs16bit,
mmxu32bit,mmxs32bit,mmxfixed16,mmxsingle);
const
{ true if we must never copy this parameter }
never_copy_const_param : boolean = false;
{*****************************************************************************
Basic type functions
*****************************************************************************}
{ returns true, if def defines an ordinal type }
function is_ordinal(def : pdef) : boolean;
{ returns the min. value of the type }
function get_min_value(def : pdef) : longint;
{ returns true, if def defines an ordinal type }
function is_integer(def : pdef) : boolean;
{ true if p is a boolean }
function is_boolean(def : pdef) : boolean;
{ true if p is a char }
function is_char(def : pdef) : boolean;
{ true if p is a void}
function is_void(def : pdef) : boolean;
{ true if p is a smallset def }
function is_smallset(p : pdef) : boolean;
{ returns true, if def defines a signed data type (only for ordinal types) }
function is_signed(def : pdef) : boolean;
{*****************************************************************************
Array helper functions
*****************************************************************************}
{ true, if p points to a zero based (non special like open or
dynamic array def, mainly this is used to see if the array
is convertable to a pointer }
function is_zero_based_array(p : pdef) : boolean;
{ true if p points to an open array def }
function is_open_array(p : pdef) : boolean;
{ true, if p points to an array of const def }
function is_array_constructor(p : pdef) : boolean;
{ true, if p points to a variant array }
function is_variant_array(p : pdef) : boolean;
{ true, if p points to an array of const }
function is_array_of_const(p : pdef) : boolean;
{ true, if p points any kind of special array }
function is_special_array(p : pdef) : boolean;
{ true if p is a char array def }
function is_chararray(p : pdef) : boolean;
{*****************************************************************************
String helper functions
*****************************************************************************}
{ true if p points to an open string def }
function is_open_string(p : pdef) : boolean;
{ true if p is an ansi string def }
function is_ansistring(p : pdef) : boolean;
{ true if p is a long string def }
function is_longstring(p : pdef) : boolean;
{ true if p is a wide string def }
function is_widestring(p : pdef) : boolean;
{ true if p is a short string def }
function is_shortstring(p : pdef) : boolean;
{ true if p is a pchar def }
function is_pchar(p : pdef) : boolean;
{ true if p is a voidpointer def }
function is_voidpointer(p : pdef) : boolean;
{ returns true, if def uses FPU }
function is_fpu(def : pdef) : boolean;
{ true if the return value is in EAX }
function ret_in_acc(def : pdef) : boolean;
{ true if uses a parameter as return value }
function ret_in_param(def : pdef) : boolean;
{ true, if def is a 64 bit int type }
function is_64bitint(def : pdef) : boolean;
function push_high_param(def : pdef) : boolean;
{ true if a parameter is too large to copy and only the address is pushed }
function push_addr_param(def : pdef) : boolean;
{ true, if def1 and def2 are semantical the same }
function is_equal(def1,def2 : pdef) : boolean;
{ checks for type compatibility (subgroups of type) }
{ used for case statements... probably missing stuff }
{ to use on other types }
function is_subequal(def1, def2: pdef): boolean;
{ same as is_equal, but with error message if failed }
function CheckTypes(def1,def2 : pdef) : boolean;
{ true, if two parameter lists are equal }
{ if value_equal_const is true, call by value }
{ and call by const parameter are assumed as }
{ equal }
function equal_paras(paralist1,paralist2 : plinkedlist;value_equal_const : boolean) : boolean;
{ true if a type can be allowed for another one
in a func var }
function convertable_paras(paralist1,paralist2 : plinkedlist;value_equal_const : boolean) : boolean;
{ true if a function can be assigned to a procvar }
function proc_to_procvar_equal(def1:pprocdef;def2:pprocvardef) : boolean;
{ if l isn't in the range of def a range check error is generated and
the value is placed within the range }
procedure testrange(def : pdef;var l : longint);
{ returns the range of def }
procedure getrange(def : pdef;var l : longint;var h : longint);
{ some type helper routines for MMX support }
function is_mmx_able_array(p : pdef) : boolean;
{ returns the mmx type }
function mmx_type(p : pdef) : tmmxtype;
{ returns true, if sym needs an entry in the proplist of a class rtti }
function needs_prop_entry(sym : psym) : boolean;
{ returns true, if p contains data which needs init/final code }
function needs_init_final(p : psymtable) : boolean;
implementation
uses
strings,globtype,globals,htypechk,
tree,verbose,symconst;
var
b_needs_init_final : boolean;
procedure _needs_init_final(p : pnamedindexobject);{$ifndef FPC}far;{$endif}
begin
if (psym(p)^.typ=varsym) and
assigned(pvarsym(p)^.vartype.def) and
not((pvarsym(p)^.vartype.def^.deftype=objectdef) and
pobjectdef(pvarsym(p)^.vartype.def)^.is_class) and
pvarsym(p)^.vartype.def^.needs_inittable then
b_needs_init_final:=true;
end;
{ returns true, if p contains data which needs init/final code }
function needs_init_final(p : psymtable) : boolean;
begin
b_needs_init_final:=false;
p^.foreach({$ifndef TP}@{$endif}_needs_init_final);
needs_init_final:=b_needs_init_final;
end;
function needs_prop_entry(sym : psym) : boolean;
begin
needs_prop_entry:=(sp_published in psym(sym)^.symoptions) and
(sym^.typ in [propertysym,varsym]);
end;
function equal_paras(paralist1,paralist2 : plinkedlist;value_equal_const : boolean) : boolean;
var
def1,def2 : pparaitem;
begin
def1:=pparaitem(paralist1^.first);
def2:=pparaitem(paralist2^.first);
while (assigned(def1)) and (assigned(def2)) do
begin
if value_equal_const then
begin
if not(is_equal(def1^.paratype.def,def2^.paratype.def)) or
((def1^.paratyp<>def2^.paratyp) and
((def1^.paratyp=vs_var) or
(def1^.paratyp=vs_var)
)
) then
begin
equal_paras:=false;
exit;
end;
end
else
begin
if not(is_equal(def1^.paratype.def,def2^.paratype.def)) or
(def1^.paratyp<>def2^.paratyp) then
begin
equal_paras:=false;
exit;
end;
end;
def1:=pparaitem(def1^.next);
def2:=pparaitem(def2^.next);
end;
if (def1=nil) and (def2=nil) then
equal_paras:=true
else
equal_paras:=false;
end;
function convertable_paras(paralist1,paralist2 : plinkedlist;value_equal_const : boolean) : boolean;
var
def1,def2 : pparaitem;
doconv : tconverttype;
begin
def1:=pparaitem(paralist1^.first);
def2:=pparaitem(paralist2^.first);
while (assigned(def1)) and (assigned(def2)) do
begin
if value_equal_const then
begin
if (isconvertable(def1^.paratype.def,def2^.paratype.def,doconv,callparan,false)=0) or
((def1^.paratyp<>def2^.paratyp) and
((def1^.paratyp=vs_var) or
(def1^.paratyp=vs_var)
)
) then
begin
convertable_paras:=false;
exit;
end;
end
else
begin
if (isconvertable(def1^.paratype.def,def2^.paratype.def,doconv,callparan,false)=0) or
(def1^.paratyp<>def2^.paratyp) then
begin
convertable_paras:=false;
exit;
end;
end;
def1:=pparaitem(def1^.next);
def2:=pparaitem(def2^.next);
end;
if (def1=nil) and (def2=nil) then
convertable_paras:=true
else
convertable_paras:=false;
end;
{ true if a function can be assigned to a procvar }
function proc_to_procvar_equal(def1:pprocdef;def2:pprocvardef) : boolean;
const
po_comp = po_compatibility_options-[po_methodpointer];
var
ismethod : boolean;
begin
proc_to_procvar_equal:=false;
if not(assigned(def1)) or not(assigned(def2)) then
exit;
{ check for method pointer }
ismethod:=assigned(def1^.owner) and
(def1^.owner^.symtabletype=objectsymtable);
{ I think methods of objects are also not compatible }
{ with procedure variables! (FK)
and
assigned(def1^.owner^.defowner) and
(pobjectdef(def1^.owner^.defowner)^.is_class); }
if (ismethod and not (po_methodpointer in def2^.procoptions)) or
(not(ismethod) and (po_methodpointer in def2^.procoptions)) then
begin
Message(type_e_no_method_and_procedure_not_compatible);
exit;
end;
{ check return value and para's and options, methodpointer is already checked
parameters may also be convertable }
if is_equal(def1^.rettype.def,def2^.rettype.def) and
(equal_paras(def1^.para,def2^.para,false) or
convertable_paras(def1^.para,def2^.para,false)) and
((po_comp * def1^.procoptions)= (po_comp * def2^.procoptions)) then
proc_to_procvar_equal:=true
else
proc_to_procvar_equal:=false;
end;
{ returns true, if def uses FPU }
function is_fpu(def : pdef) : boolean;
begin
is_fpu:=(def^.deftype=floatdef) and (pfloatdef(def)^.typ<>f32bit);
end;
{ true if p is an ordinal }
function is_ordinal(def : pdef) : boolean;
var
dt : tbasetype;
begin
case def^.deftype of
orddef :
begin
dt:=porddef(def)^.typ;
is_ordinal:=dt in [uchar,
u8bit,u16bit,u32bit,u64bit,
s8bit,s16bit,s32bit,s64bit,
bool8bit,bool16bit,bool32bit];
end;
enumdef :
is_ordinal:=true;
else
is_ordinal:=false;
end;
end;
{ returns the min. value of the type }
function get_min_value(def : pdef) : longint;
begin
case def^.deftype of
orddef:
get_min_value:=porddef(def)^.low;
enumdef:
get_min_value:=penumdef(def)^.min;
else
get_min_value:=0;
end;
end;
{ true if p is an integer }
function is_integer(def : pdef) : boolean;
begin
is_integer:=(def^.deftype=orddef) and
(porddef(def)^.typ in [uauto,u8bit,u16bit,u32bit,u64bit,
s8bit,s16bit,s32bit,s64bit]);
end;
{ true if p is a boolean }
function is_boolean(def : pdef) : boolean;
begin
is_boolean:=(def^.deftype=orddef) and
(porddef(def)^.typ in [bool8bit,bool16bit,bool32bit]);
end;
{ true if p is a void }
function is_void(def : pdef) : boolean;
begin
is_void:=(def^.deftype=orddef) and
(porddef(def)^.typ=uvoid);
end;
{ true if p is a char }
function is_char(def : pdef) : boolean;
begin
is_char:=(def^.deftype=orddef) and
(porddef(def)^.typ=uchar);
end;
{ true if p is signed (integer) }
function is_signed(def : pdef) : boolean;
var
dt : tbasetype;
begin
case def^.deftype of
orddef :
begin
dt:=porddef(def)^.typ;
is_signed:=(dt in [s8bit,s16bit,s32bit,s64bit]);
end;
enumdef :
is_signed:=false;
else
is_signed:=false;
end;
end;
{ true, if p points to an open array def }
function is_open_string(p : pdef) : boolean;
begin
is_open_string:=(p^.deftype=stringdef) and
(pstringdef(p)^.string_typ=st_shortstring) and
(pstringdef(p)^.len=0);
end;
{ true, if p points to a zero based array def }
function is_zero_based_array(p : pdef) : boolean;
begin
is_zero_based_array:=(p^.deftype=arraydef) and
(parraydef(p)^.lowrange=0) and
not(is_special_array(p));
end;
{ true, if p points to an open array def }
function is_open_array(p : pdef) : boolean;
begin
{ check for s32bitdef is needed, because for u32bit the high
range is also -1 ! (PFV) }
is_open_array:=(p^.deftype=arraydef) and
(parraydef(p)^.rangetype.def=pdef(s32bitdef)) and
(parraydef(p)^.lowrange=0) and
(parraydef(p)^.highrange=-1) and
not(parraydef(p)^.IsConstructor) and
not(parraydef(p)^.IsVariant) and
not(parraydef(p)^.IsArrayOfConst);
end;
{ true, if p points to an array of const def }
function is_array_constructor(p : pdef) : boolean;
begin
is_array_constructor:=(p^.deftype=arraydef) and
(parraydef(p)^.IsConstructor);
end;
{ true, if p points to a variant array }
function is_variant_array(p : pdef) : boolean;
begin
is_variant_array:=(p^.deftype=arraydef) and
(parraydef(p)^.IsVariant);
end;
{ true, if p points to an array of const }
function is_array_of_const(p : pdef) : boolean;
begin
is_array_of_const:=(p^.deftype=arraydef) and
(parraydef(p)^.IsArrayOfConst);
end;
{ true, if p points to a special array }
function is_special_array(p : pdef) : boolean;
begin
is_special_array:=(p^.deftype=arraydef) and
((parraydef(p)^.IsVariant) or
(parraydef(p)^.IsArrayOfConst) or
(parraydef(p)^.IsConstructor) or
is_open_array(p)
);
end;
{ true if p is an ansi string def }
function is_ansistring(p : pdef) : boolean;
begin
is_ansistring:=(p^.deftype=stringdef) and
(pstringdef(p)^.string_typ=st_ansistring);
end;
{ true if p is an long string def }
function is_longstring(p : pdef) : boolean;
begin
is_longstring:=(p^.deftype=stringdef) and
(pstringdef(p)^.string_typ=st_longstring);
end;
{ true if p is an wide string def }
function is_widestring(p : pdef) : boolean;
begin
is_widestring:=(p^.deftype=stringdef) and
(pstringdef(p)^.string_typ=st_widestring);
end;
{ true if p is an short string def }
function is_shortstring(p : pdef) : boolean;
begin
is_shortstring:=(p^.deftype=stringdef) and
(pstringdef(p)^.string_typ=st_shortstring);
end;
{ true if p is a char array def }
function is_chararray(p : pdef) : boolean;
begin
is_chararray:=(p^.deftype=arraydef) and
is_equal(parraydef(p)^.elementtype.def,cchardef) and
not(is_special_array(p));
end;
{ true if p is a pchar def }
function is_pchar(p : pdef) : boolean;
begin
is_pchar:=(p^.deftype=pointerdef) and
is_equal(Ppointerdef(p)^.pointertype.def,cchardef);
end;
{ true if p is a voidpointer def }
function is_voidpointer(p : pdef) : boolean;
begin
is_voidpointer:=(p^.deftype=pointerdef) and
is_equal(Ppointerdef(p)^.pointertype.def,voiddef);
end;
{ true if p is a smallset def }
function is_smallset(p : pdef) : boolean;
begin
is_smallset:=(p^.deftype=setdef) and
(psetdef(p)^.settype=smallset);
end;
{ true if the return value is in accumulator (EAX for i386), D0 for 68k }
function ret_in_acc(def : pdef) : boolean;
begin
ret_in_acc:=(def^.deftype in [orddef,pointerdef,enumdef,classrefdef]) or
((def^.deftype=stringdef) and (pstringdef(def)^.string_typ in [st_ansistring,st_widestring])) or
((def^.deftype=procvardef) and not(po_methodpointer in pprocvardef(def)^.procoptions)) or
((def^.deftype=objectdef) and pobjectdef(def)^.is_class) or
((def^.deftype=setdef) and (psetdef(def)^.settype=smallset)) or
((def^.deftype=floatdef) and (pfloatdef(def)^.typ=f32bit));
end;
{ true, if def is a 64 bit int type }
function is_64bitint(def : pdef) : boolean;
begin
is_64bitint:=(def^.deftype=orddef) and (porddef(def)^.typ in [u64bit,s64bit])
end;
{ true if uses a parameter as return value }
function ret_in_param(def : pdef) : boolean;
begin
ret_in_param:=(def^.deftype in [arraydef,recorddef]) or
((def^.deftype=stringdef) and (pstringdef(def)^.string_typ in [st_shortstring,st_longstring])) or
((def^.deftype=procvardef) and (po_methodpointer in pprocvardef(def)^.procoptions)) or
((def^.deftype=objectdef) and not(pobjectdef(def)^.is_class)) or
((def^.deftype=setdef) and (psetdef(def)^.settype<>smallset));
end;
function push_high_param(def : pdef) : boolean;
begin
push_high_param:=is_open_array(def) or
is_open_string(def) or
is_array_of_const(def);
end;
{ true if a parameter is too large to copy and only the address is pushed }
function push_addr_param(def : pdef) : boolean;
begin
push_addr_param:=false;
if never_copy_const_param then
push_addr_param:=true
else
begin
case def^.deftype of
formaldef :
push_addr_param:=true;
recorddef :
push_addr_param:=(def^.size>4);
arraydef :
push_addr_param:=((Parraydef(def)^.highrange>Parraydef(def)^.lowrange) and (def^.size>4)) or
is_open_array(def) or
is_array_of_const(def) or
is_array_constructor(def);
objectdef :
push_addr_param:=not(pobjectdef(def)^.is_class);
stringdef :
push_addr_param:=pstringdef(def)^.string_typ in [st_shortstring,st_longstring];
procvardef :
push_addr_param:=(po_methodpointer in pprocvardef(def)^.procoptions);
setdef :
push_addr_param:=(psetdef(def)^.settype<>smallset);
end;
end;
end;
{ test if l is in the range of def, outputs error if out of range }
procedure testrange(def : pdef;var l : longint);
var
lv,hv: longint;
begin
{ for 64 bit types we need only to check if it is less than }
{ zero, if def is a qword node }
if is_64bitint(def) then
begin
if (l<0) and (porddef(def)^.typ=u64bit) then
begin
l:=0;
if (cs_check_range in aktlocalswitches) then
Message(parser_e_range_check_error)
else
Message(parser_w_range_check_error);
end;
end
else
begin
getrange(def,lv,hv);
if (def^.deftype=orddef) and
(porddef(def)^.typ=u32bit) then
begin
if lv<=hv then
begin
if (l<lv) or (l>hv) then
begin
if (cs_check_range in aktlocalswitches) then
Message(parser_e_range_check_error)
else
Message(parser_w_range_check_error);
end;
end
else
{ this happens with the wrap around problem }
{ if lv is positive and hv is over $7ffffff }
{ so it seems negative }
begin
if ((l>=0) and (l<lv)) or
((l<0) and (l>hv)) then
begin
if (cs_check_range in aktlocalswitches) then
Message(parser_e_range_check_error)
else
Message(parser_w_range_check_error);
end;
end;
end
else if (l<lv) or (l>hv) then
begin
if (def^.deftype=enumdef) or
(cs_check_range in aktlocalswitches) then
Message(parser_e_range_check_error)
else
Message(parser_w_range_check_error);
{ Fix the value to fit in the allocated space for this type of variable }
case def^.size of
1: l := l and $ff;
2: l := l and $ffff;
end
{ l:=lv+(l mod (hv-lv+1));}
end;
end;
end;
{ return the range from def in l and h }
procedure getrange(def : pdef;var l : longint;var h : longint);
begin
case def^.deftype of
orddef :
begin
l:=porddef(def)^.low;
h:=porddef(def)^.high;
end;
enumdef :
begin
l:=penumdef(def)^.min;
h:=penumdef(def)^.max;
end;
arraydef :
begin
l:=parraydef(def)^.lowrange;
h:=parraydef(def)^.highrange;
end;
else
internalerror(987);
end;
end;
function mmx_type(p : pdef) : tmmxtype;
begin
mmx_type:=mmxno;
if is_mmx_able_array(p) then
begin
if parraydef(p)^.elementtype.def^.deftype=floatdef then
case pfloatdef(parraydef(p)^.elementtype.def)^.typ of
s32real:
mmx_type:=mmxsingle;
f16bit:
mmx_type:=mmxfixed16
end
else
case porddef(parraydef(p)^.elementtype.def)^.typ of
u8bit:
mmx_type:=mmxu8bit;
s8bit:
mmx_type:=mmxs8bit;
u16bit:
mmx_type:=mmxu16bit;
s16bit:
mmx_type:=mmxs16bit;
u32bit:
mmx_type:=mmxu32bit;
s32bit:
mmx_type:=mmxs32bit;
end;
end;
end;
function is_mmx_able_array(p : pdef) : boolean;
begin
{$ifdef SUPPORT_MMX}
if (cs_mmx_saturation in aktlocalswitches) then
begin
is_mmx_able_array:=(p^.deftype=arraydef) and
not(is_special_array(p)) and
(
(
(parraydef(p)^.elementtype.def^.deftype=orddef) and
(
(
(parraydef(p)^.lowrange=0) and
(parraydef(p)^.highrange=1) and
(porddef(parraydef(p)^.elementtype.def)^.typ in [u32bit,s32bit])
)
or
(
(parraydef(p)^.lowrange=0) and
(parraydef(p)^.highrange=3) and
(porddef(parraydef(p)^.elementtype.def)^.typ in [u16bit,s16bit])
)
)
)
or
(
(
(parraydef(p)^.elementtype.def^.deftype=floatdef) and
(
(parraydef(p)^.lowrange=0) and
(parraydef(p)^.highrange=3) and
(pfloatdef(parraydef(p)^.elementtype.def)^.typ=f16bit)
) or
(
(parraydef(p)^.lowrange=0) and
(parraydef(p)^.highrange=1) and
(pfloatdef(parraydef(p)^.elementtype.def)^.typ=s32real)
)
)
)
);
end
else
begin
is_mmx_able_array:=(p^.deftype=arraydef) and
(
(
(parraydef(p)^.elementtype.def^.deftype=orddef) and
(
(
(parraydef(p)^.lowrange=0) and
(parraydef(p)^.highrange=1) and
(porddef(parraydef(p)^.elementtype.def)^.typ in [u32bit,s32bit])
)
or
(
(parraydef(p)^.lowrange=0) and
(parraydef(p)^.highrange=3) and
(porddef(parraydef(p)^.elementtype.def)^.typ in [u16bit,s16bit])
)
or
(
(parraydef(p)^.lowrange=0) and
(parraydef(p)^.highrange=7) and
(porddef(parraydef(p)^.elementtype.def)^.typ in [u8bit,s8bit])
)
)
)
or
(
(parraydef(p)^.elementtype.def^.deftype=floatdef) and
(
(
(parraydef(p)^.lowrange=0) and
(parraydef(p)^.highrange=3) and
(pfloatdef(parraydef(p)^.elementtype.def)^.typ=f32bit)
)
or
(
(parraydef(p)^.lowrange=0) and
(parraydef(p)^.highrange=1) and
(pfloatdef(parraydef(p)^.elementtype.def)^.typ=s32real)
)
)
)
);
end;
{$else SUPPORT_MMX}
is_mmx_able_array:=false;
{$endif SUPPORT_MMX}
end;
function is_equal(def1,def2 : pdef) : boolean;
var
b : boolean;
hd : pdef;
begin
{ both types must exists }
if not (assigned(def1) and assigned(def2)) then
begin
is_equal:=false;
exit;
end;
{ be sure, that if there is a stringdef, that this is def1 }
if def2^.deftype=stringdef then
begin
hd:=def1;
def1:=def2;
def2:=hd;
end;
b:=false;
{ both point to the same definition ? }
if def1=def2 then
b:=true
else
{ pointer with an equal definition are equal }
if (def1^.deftype=pointerdef) and (def2^.deftype=pointerdef) then
begin
{ here a problem detected in tabsolutesym }
{ the types can be forward type !! }
if assigned(def1^.typesym) and (ppointerdef(def1)^.pointertype.def^.deftype=forwarddef) then
b:=(def1^.typesym=def2^.typesym)
else
b:=ppointerdef(def1)^.pointertype.def=ppointerdef(def2)^.pointertype.def;
end
else
{ ordinals are equal only when the ordinal type is equal }
if (def1^.deftype=orddef) and (def2^.deftype=orddef) then
begin
case porddef(def1)^.typ of
u8bit,u16bit,u32bit,
s8bit,s16bit,s32bit:
b:=((porddef(def1)^.typ=porddef(def2)^.typ) and
(porddef(def1)^.low=porddef(def2)^.low) and
(porddef(def1)^.high=porddef(def2)^.high));
uvoid,uchar,
bool8bit,bool16bit,bool32bit:
b:=(porddef(def1)^.typ=porddef(def2)^.typ);
end;
end
else
if (def1^.deftype=floatdef) and (def2^.deftype=floatdef) then
b:=pfloatdef(def1)^.typ=pfloatdef(def2)^.typ
else
{ strings with the same length are equal }
if (def1^.deftype=stringdef) and (def2^.deftype=stringdef) and
(pstringdef(def1)^.string_typ=pstringdef(def2)^.string_typ) then
begin
b:=not(is_shortstring(def1)) or
(pstringdef(def1)^.len=pstringdef(def2)^.len);
end
else
if (def1^.deftype=formaldef) and (def2^.deftype=formaldef) then
b:=true
{ file types with the same file element type are equal }
{ this is a problem for assign !! }
{ changed to allow if one is untyped }
{ all typed files are equal to the special }
{ typed file that has voiddef as elemnt type }
{ but must NOT match for text file !!! }
else
if (def1^.deftype=filedef) and (def2^.deftype=filedef) then
b:=(pfiledef(def1)^.filetyp=pfiledef(def2)^.filetyp) and
((
((pfiledef(def1)^.typedfiletype.def=nil) and
(pfiledef(def2)^.typedfiletype.def=nil)) or
(
(pfiledef(def1)^.typedfiletype.def<>nil) and
(pfiledef(def2)^.typedfiletype.def<>nil) and
is_equal(pfiledef(def1)^.typedfiletype.def,pfiledef(def2)^.typedfiletype.def)
) or
( (pfiledef(def1)^.typedfiletype.def=pdef(voiddef)) or
(pfiledef(def2)^.typedfiletype.def=pdef(voiddef))
)))
{ sets with the same element type are equal }
else
if (def1^.deftype=setdef) and (def2^.deftype=setdef) then
begin
if assigned(psetdef(def1)^.elementtype.def) and
assigned(psetdef(def2)^.elementtype.def) then
b:=(psetdef(def1)^.elementtype.def^.deftype=psetdef(def2)^.elementtype.def^.deftype)
else
b:=true;
end
else
if (def1^.deftype=procvardef) and (def2^.deftype=procvardef) then
begin
{ poassembler isn't important for compatibility }
{ if a method is assigned to a methodpointer }
{ is checked before }
b:=(pprocvardef(def1)^.proctypeoption=pprocvardef(def2)^.proctypeoption) and
(pprocvardef(def1)^.proccalloptions=pprocvardef(def2)^.proccalloptions) and
((pprocvardef(def1)^.procoptions * po_compatibility_options)=
(pprocvardef(def2)^.procoptions * po_compatibility_options)) and
is_equal(pprocvardef(def1)^.rettype.def,pprocvardef(def2)^.rettype.def) and
equal_paras(pprocvardef(def1)^.para,pprocvardef(def2)^.para,false);
end
else
if (def1^.deftype=arraydef) and (def2^.deftype=arraydef) then
begin
if is_open_array(def1) or is_open_array(def2) or
is_array_of_const(def1) or is_array_of_const(def2) then
begin
if parraydef(def1)^.IsArrayOfConst or parraydef(def2)^.IsArrayOfConst then
b:=true
else
b:=is_equal(parraydef(def1)^.elementtype.def,parraydef(def2)^.elementtype.def);
end
else
begin
b:=not(m_tp in aktmodeswitches) and
not(m_delphi in aktmodeswitches) and
(parraydef(def1)^.lowrange=parraydef(def2)^.lowrange) and
(parraydef(def1)^.highrange=parraydef(def2)^.highrange) and
is_equal(parraydef(def1)^.elementtype.def,parraydef(def2)^.elementtype.def) and
is_equal(parraydef(def1)^.rangetype.def,parraydef(def2)^.rangetype.def);
end;
end
else
if (def1^.deftype=classrefdef) and (def2^.deftype=classrefdef) then
begin
{ similar to pointerdef: }
if assigned(def1^.typesym) and (pclassrefdef(def1)^.pointertype.def^.deftype=forwarddef) then
b:=(def1^.typesym=def2^.typesym)
else
b:=is_equal(pclassrefdef(def1)^.pointertype.def,pclassrefdef(def2)^.pointertype.def);
end;
is_equal:=b;
end;
function is_subequal(def1, def2: pdef): boolean;
Begin
is_subequal := false;
if assigned(def1) and assigned(def2) then
Begin
if (def1^.deftype = orddef) and (def2^.deftype = orddef) then
Begin
{ see p.47 of Turbo Pascal 7.01 manual for the separation of types }
{ range checking for case statements is done with testrange }
case porddef(def1)^.typ of
u8bit,u16bit,u32bit,
s8bit,s16bit,s32bit :
is_subequal:=(porddef(def2)^.typ in [s32bit,u32bit,u8bit,s8bit,s16bit,u16bit]);
bool8bit,bool16bit,bool32bit :
is_subequal:=(porddef(def2)^.typ in [bool8bit,bool16bit,bool32bit]);
uchar :
is_subequal:=(porddef(def2)^.typ=uchar);
end;
end
else
Begin
{ I assume that both enumerations are equal when the first }
{ pointers are equal. }
if (def1^.deftype = enumdef) and (def2^.deftype =enumdef) then
Begin
if penumdef(def1)^.firstenum = penumdef(def2)^.firstenum then
is_subequal := TRUE;
end;
end;
end; { endif assigned ... }
end;
function CheckTypes(def1,def2 : pdef) : boolean;
var
s1,s2 : string;
begin
if not is_equal(def1,def2) then
begin
{ Crash prevention }
if (not assigned(def1)) or (not assigned(def2)) then
Message(type_e_mismatch)
else
begin
s1:=def1^.typename;
s2:=def2^.typename;
if (s1<>'<unknown type>') and (s2<>'<unknown type>') then
Message2(type_e_not_equal_types,def1^.typename,def2^.typename)
else
Message(type_e_mismatch);
end;
CheckTypes:=false;
end
else
CheckTypes:=true;
end;
end.
{
$Log$
Revision 1.99 2000-03-01 15:36:12 florian
* some new stuff for the new cg
Revision 1.98 2000/02/28 17:23:57 daniel
* Current work of symtable integration committed. The symtable can be
activated by defining 'newst', but doesn't compile yet. Changes in type
checking and oop are completed. What is left is to write a new
symtablestack and adapt the parser to use it.
Revision 1.97 2000/02/09 13:23:09 peter
* log truncated
Revision 1.96 2000/02/01 09:44:03 peter
* is_voidpointer
Revision 1.95 2000/01/07 01:14:49 peter
* updated copyright to 2000
Revision 1.94 2000/01/04 16:35:58 jonas
* when range checking is off, constants that are out of bound are no longer
truncated to their max/min legal value but left alone (jsut an "and" is done to
make sure they fit in the allocated space if necessary)
Revision 1.93 1999/12/31 14:26:28 peter
* fixed crash with empty array constructors
Revision 1.92 1999/11/30 10:40:59 peter
+ ttype, tsymlist
Revision 1.91 1999/11/06 14:34:31 peter
* truncated log to 20 revs
Revision 1.90 1999/10/26 12:30:46 peter
* const parameter is now checked
* better and generic check if a node can be used for assigning
* export fixes
* procvar equal works now (it never had worked at least from 0.99.8)
* defcoll changed to linkedlist with pparaitem so it can easily be
walked both directions
Revision 1.89 1999/10/01 10:04:07 peter
* fixed is_equal for proc -> procvar which didn't check the
callconvention and type anymore since the splitting of procoptions
Revision 1.88 1999/10/01 08:02:51 peter
* forward type declaration rewritten
Revision 1.87 1999/09/15 22:09:27 florian
+ rtti is now automatically generated for published classes, i.e.
they are handled like an implicit property
Revision 1.86 1999/09/11 09:08:35 florian
* fixed bug 596
* fixed some problems with procedure variables and procedures of object,
especially in TP mode. Procedure of object doesn't apply only to classes,
it is also allowed for objects !!
Revision 1.85 1999/08/13 21:27:08 peter
* more fixes for push_addr
Revision 1.84 1999/08/13 15:38:23 peter
* fixed push_addr_param for records < 4, the array high<low range check
broke this code.
Revision 1.83 1999/08/07 14:21:06 florian
* some small problems fixed
Revision 1.82 1999/08/07 13:36:56 daniel
* Recommitted the arraydef overflow bugfix.
Revision 1.80 1999/08/05 22:42:49 daniel
* Fixed potential bug for open arrays (Their size is not known at
compilation time).
Revision 1.79 1999/08/03 22:03:41 peter
* moved bitmask constants to sets
* some other type/const renamings
Revision 1.78 1999/07/30 12:26:42 peter
* array is_equal disabled for tp,delphi mode
Revision 1.77 1999/07/29 11:41:51 peter
* array is_equal extended
Revision 1.76 1999/07/27 23:39:15 peter
* open array checks also for s32bitdef, because u32bit also has a
high range of -1
}