fpc/compiler/tcadd.pas

1419 lines
55 KiB
ObjectPascal

{
$Id$
Copyright (c) 1998-2000 by Florian Klaempfl
Type checking and register allocation for add node
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit tcadd;
interface
uses
tree;
procedure firstadd(var p : ptree);
function isbinaryoverloaded(var p : ptree) : boolean;
implementation
uses
globtype,systems,tokens,
cobjects,verbose,globals,
symconst,symtable,aasm,types,
{$ifdef newcg}
cgbase,
{$else newcg}
hcodegen,
{$endif newcg}
htypechk,pass_1,
cpubase,tccnv
;
function isbinaryoverloaded(var p : ptree) : boolean;
var
rd,ld : pdef;
t : ptree;
optoken : ttoken;
begin
isbinaryoverloaded:=false;
{ overloaded operator ? }
{ load easier access variables }
rd:=p^.right^.resulttype;
ld:=p^.left^.resulttype;
if (p^.treetype=starstarn) or
(ld^.deftype=recorddef) or
(rd^.deftype=recorddef) or
{ array def, but not mmx or chararray+char }
((ld^.deftype=arraydef) and
not((cs_mmx in aktlocalswitches) and
is_mmx_able_array(ld)) and
not(is_char(rd) and
is_chararray(ld))
) or
((rd^.deftype=arraydef) and
not((cs_mmx in aktlocalswitches) and
is_mmx_able_array(rd)) and
not(is_char(ld) and
is_chararray(rd))
) or
{ <> and = are defined for classes }
((ld^.deftype=objectdef) and
(not(pobjectdef(ld)^.is_class) or
not(p^.treetype in [equaln,unequaln])
)
) or
((rd^.deftype=objectdef) and
(not(pobjectdef(rd)^.is_class) or
not(p^.treetype in [equaln,unequaln])
)
) then
begin
isbinaryoverloaded:=true;
{!!!!!!!!! handle paras }
case p^.treetype of
{ the nil as symtable signs firstcalln that this is
an overloaded operator }
addn:
optoken:=_PLUS;
subn:
optoken:=_MINUS;
muln:
optoken:=_STAR;
starstarn:
optoken:=_STARSTAR;
slashn:
optoken:=_SLASH;
ltn:
optoken:=tokens._lt;
gtn:
optoken:=tokens._gt;
lten:
optoken:=_lte;
gten:
optoken:=_gte;
equaln,unequaln :
optoken:=_EQUAL;
symdifn :
optoken:=_SYMDIF;
modn :
optoken:=_OP_MOD;
orn :
optoken:=_OP_OR;
xorn :
optoken:=_OP_XOR;
andn :
optoken:=_OP_AND;
divn :
optoken:=_OP_DIV;
shln :
optoken:=_OP_SHL;
shrn :
optoken:=_OP_SHR;
else
exit;
end;
t:=gencallnode(overloaded_operators[optoken],nil);
{ we have to convert p^.left and p^.right into
callparanodes }
if t^.symtableprocentry=nil then
begin
CGMessage(parser_e_operator_not_overloaded);
putnode(t);
end
else
begin
inc(t^.symtableprocentry^.refs);
t^.left:=gencallparanode(p^.left,nil);
t^.left:=gencallparanode(p^.right,t^.left);
if p^.treetype=unequaln then
t:=gensinglenode(notn,t);
firstpass(t);
putnode(p);
p:=t;
end;
end;
end;
{*****************************************************************************
FirstAdd
*****************************************************************************}
{$ifdef fpc}
{$maxfpuregisters 0}
{$endif fpc}
procedure firstadd(var p : ptree);
procedure make_bool_equal_size(var p:ptree);
begin
if porddef(p^.left^.resulttype)^.typ>porddef(p^.right^.resulttype)^.typ then
begin
p^.right:=gentypeconvnode(p^.right,porddef(p^.left^.resulttype));
p^.right^.convtyp:=tc_bool_2_int;
p^.right^.explizit:=true;
firstpass(p^.right);
end
else
if porddef(p^.left^.resulttype)^.typ<porddef(p^.right^.resulttype)^.typ then
begin
p^.left:=gentypeconvnode(p^.left,porddef(p^.right^.resulttype));
p^.left^.convtyp:=tc_bool_2_int;
p^.left^.explizit:=true;
firstpass(p^.left);
end;
end;
var
t,hp : ptree;
ot,
lt,rt : ttreetyp;
rv,lv : longint;
rvd,lvd : bestreal;
resdef,
rd,ld : pdef;
tempdef : pdef;
concatstrings : boolean;
{ to evalute const sets }
resultset : pconstset;
i : longint;
b : boolean;
convdone : boolean;
s1,s2 : pchar;
l1,l2 : longint;
begin
{ first do the two subtrees }
firstpass(p^.left);
firstpass(p^.right);
if codegenerror then
exit;
{ convert array constructors to sets, because there is no other operator
possible for array constructors }
if is_array_constructor(p^.left^.resulttype) then
arrayconstructor_to_set(p^.left);
if is_array_constructor(p^.right^.resulttype) then
arrayconstructor_to_set(p^.right);
{ both left and right need to be valid }
set_varstate(p^.left,true);
set_varstate(p^.right,true);
{ load easier access variables }
lt:=p^.left^.treetype;
rt:=p^.right^.treetype;
rd:=p^.right^.resulttype;
ld:=p^.left^.resulttype;
convdone:=false;
if isbinaryoverloaded(p) then
exit;
{ compact consts }
{ convert int consts to real consts, if the }
{ other operand is a real const }
if (rt=realconstn) and is_constintnode(p^.left) then
begin
t:=genrealconstnode(p^.left^.value,p^.right^.resulttype);
disposetree(p^.left);
p^.left:=t;
lt:=realconstn;
end;
if (lt=realconstn) and is_constintnode(p^.right) then
begin
t:=genrealconstnode(p^.right^.value,p^.left^.resulttype);
disposetree(p^.right);
p^.right:=t;
rt:=realconstn;
end;
{ both are int constants, also allow operations on two equal enums
in fpc mode (Needed for conversion of C code) }
if ((lt=ordconstn) and (rt=ordconstn)) and
((is_constintnode(p^.left) and is_constintnode(p^.right)) or
(is_constboolnode(p^.left) and is_constboolnode(p^.right) and
(p^.treetype in [ltn,lten,gtn,gten,equaln,unequaln,andn,xorn,orn]))) then
begin
{ return a boolean for boolean operations (and,xor,or) }
if is_constboolnode(p^.left) then
resdef:=booldef
else
resdef:=s32bitdef;
lv:=p^.left^.value;
rv:=p^.right^.value;
case p^.treetype of
addn : t:=genordinalconstnode(lv+rv,resdef);
subn : t:=genordinalconstnode(lv-rv,resdef);
muln : t:=genordinalconstnode(lv*rv,resdef);
xorn : t:=genordinalconstnode(lv xor rv,resdef);
orn : t:=genordinalconstnode(lv or rv,resdef);
andn : t:=genordinalconstnode(lv and rv,resdef);
ltn : t:=genordinalconstnode(ord(lv<rv),booldef);
lten : t:=genordinalconstnode(ord(lv<=rv),booldef);
gtn : t:=genordinalconstnode(ord(lv>rv),booldef);
gten : t:=genordinalconstnode(ord(lv>=rv),booldef);
equaln : t:=genordinalconstnode(ord(lv=rv),booldef);
unequaln : t:=genordinalconstnode(ord(lv<>rv),booldef);
slashn : begin
{ int/int becomes a real }
if int(rv)=0 then
begin
Message(parser_e_invalid_float_operation);
t:=genrealconstnode(0,bestrealdef^);
end
else
t:=genrealconstnode(int(lv)/int(rv),bestrealdef^);
firstpass(t);
end;
else
CGMessage(type_e_mismatch);
end;
disposetree(p);
firstpass(t);
p:=t;
exit;
end;
{ both real constants ? }
if (lt=realconstn) and (rt=realconstn) then
begin
lvd:=p^.left^.value_real;
rvd:=p^.right^.value_real;
case p^.treetype of
addn : t:=genrealconstnode(lvd+rvd,bestrealdef^);
subn : t:=genrealconstnode(lvd-rvd,bestrealdef^);
muln : t:=genrealconstnode(lvd*rvd,bestrealdef^);
starstarn,
caretn : begin
if lvd<0 then
begin
Message(parser_e_invalid_float_operation);
t:=genrealconstnode(0,bestrealdef^);
end
else if lvd=0 then
t:=genrealconstnode(1.0,bestrealdef^)
else
t:=genrealconstnode(exp(ln(lvd)*rvd),bestrealdef^);
end;
slashn :
begin
if rvd=0 then
begin
Message(parser_e_invalid_float_operation);
t:=genrealconstnode(0,bestrealdef^);
end
else
t:=genrealconstnode(lvd/rvd,bestrealdef^);
end;
ltn : t:=genordinalconstnode(ord(lvd<rvd),booldef);
lten : t:=genordinalconstnode(ord(lvd<=rvd),booldef);
gtn : t:=genordinalconstnode(ord(lvd>rvd),booldef);
gten : t:=genordinalconstnode(ord(lvd>=rvd),booldef);
equaln : t:=genordinalconstnode(ord(lvd=rvd),booldef);
unequaln : t:=genordinalconstnode(ord(lvd<>rvd),booldef);
else
CGMessage(type_e_mismatch);
end;
disposetree(p);
p:=t;
firstpass(p);
exit;
end;
{ concating strings ? }
concatstrings:=false;
s1:=nil;
s2:=nil;
if (lt=ordconstn) and (rt=ordconstn) and
is_char(ld) and is_char(rd) then
begin
s1:=strpnew(char(byte(p^.left^.value)));
s2:=strpnew(char(byte(p^.right^.value)));
l1:=1;
l2:=1;
concatstrings:=true;
end
else
if (lt=stringconstn) and (rt=ordconstn) and is_char(rd) then
begin
s1:=getpcharcopy(p^.left);
l1:=p^.left^.length;
s2:=strpnew(char(byte(p^.right^.value)));
l2:=1;
concatstrings:=true;
end
else
if (lt=ordconstn) and (rt=stringconstn) and is_char(ld) then
begin
s1:=strpnew(char(byte(p^.left^.value)));
l1:=1;
s2:=getpcharcopy(p^.right);
l2:=p^.right^.length;
concatstrings:=true;
end
else if (lt=stringconstn) and (rt=stringconstn) then
begin
s1:=getpcharcopy(p^.left);
l1:=p^.left^.length;
s2:=getpcharcopy(p^.right);
l2:=p^.right^.length;
concatstrings:=true;
end;
{ I will need to translate all this to ansistrings !!! }
if concatstrings then
begin
case p^.treetype of
addn :
t:=genpcharconstnode(concatansistrings(s1,s2,l1,l2),l1+l2);
ltn :
t:=genordinalconstnode(byte(compareansistrings(s1,s2,l1,l2)<0),booldef);
lten :
t:=genordinalconstnode(byte(compareansistrings(s1,s2,l1,l2)<=0),booldef);
gtn :
t:=genordinalconstnode(byte(compareansistrings(s1,s2,l1,l2)>0),booldef);
gten :
t:=genordinalconstnode(byte(compareansistrings(s1,s2,l1,l2)>=0),booldef);
equaln :
t:=genordinalconstnode(byte(compareansistrings(s1,s2,l1,l2)=0),booldef);
unequaln :
t:=genordinalconstnode(byte(compareansistrings(s1,s2,l1,l2)<>0),booldef);
end;
ansistringdispose(s1,l1);
ansistringdispose(s2,l2);
disposetree(p);
firstpass(t);
p:=t;
exit;
end;
{ if both are orddefs then check sub types }
if (ld^.deftype=orddef) and (rd^.deftype=orddef) then
begin
{ 2 booleans ? }
if is_boolean(ld) and is_boolean(rd) then
begin
case p^.treetype of
andn,
orn:
begin
make_bool_equal_size(p);
calcregisters(p,0,0,0);
p^.location.loc:=LOC_JUMP;
end;
xorn,ltn,lten,gtn,gten:
begin
make_bool_equal_size(p);
if (p^.left^.location.loc in [LOC_JUMP,LOC_FLAGS]) and
(p^.left^.location.loc in [LOC_JUMP,LOC_FLAGS]) then
calcregisters(p,2,0,0)
else
calcregisters(p,1,0,0);
end;
unequaln,
equaln:
begin
make_bool_equal_size(p);
{ Remove any compares with constants }
if (p^.left^.treetype=ordconstn) then
begin
hp:=p^.right;
b:=(p^.left^.value<>0);
ot:=p^.treetype;
disposetree(p^.left);
putnode(p);
p:=hp;
if (not(b) and (ot=equaln)) or
(b and (ot=unequaln)) then
begin
p:=gensinglenode(notn,p);
firstpass(p);
end;
exit;
end;
if (p^.right^.treetype=ordconstn) then
begin
hp:=p^.left;
b:=(p^.right^.value<>0);
ot:=p^.treetype;
disposetree(p^.right);
putnode(p);
p:=hp;
if (not(b) and (ot=equaln)) or
(b and (ot=unequaln)) then
begin
p:=gensinglenode(notn,p);
firstpass(p);
end;
exit;
end;
if (p^.left^.location.loc in [LOC_JUMP,LOC_FLAGS]) and
(p^.left^.location.loc in [LOC_JUMP,LOC_FLAGS]) then
calcregisters(p,2,0,0)
else
calcregisters(p,1,0,0);
end;
else
CGMessage(type_e_mismatch);
end;
{ these one can't be in flags! }
if p^.treetype in [xorn,unequaln,equaln] then
begin
if p^.left^.location.loc=LOC_FLAGS then
begin
p^.left:=gentypeconvnode(p^.left,porddef(p^.left^.resulttype));
p^.left^.convtyp:=tc_bool_2_int;
p^.left^.explizit:=true;
firstpass(p^.left);
end;
if p^.right^.location.loc=LOC_FLAGS then
begin
p^.right:=gentypeconvnode(p^.right,porddef(p^.right^.resulttype));
p^.right^.convtyp:=tc_bool_2_int;
p^.right^.explizit:=true;
firstpass(p^.right);
end;
{ readjust registers }
calcregisters(p,1,0,0);
end;
convdone:=true;
end
else
{ Both are chars? only convert to shortstrings for addn }
if is_char(rd) and is_char(ld) then
begin
if p^.treetype=addn then
begin
p^.left:=gentypeconvnode(p^.left,cshortstringdef);
p^.right:=gentypeconvnode(p^.right,cshortstringdef);
firstpass(p^.left);
firstpass(p^.right);
{ here we call STRCOPY }
procinfo^.flags:=procinfo^.flags or pi_do_call;
calcregisters(p,0,0,0);
p^.location.loc:=LOC_MEM;
end
else
calcregisters(p,1,0,0);
convdone:=true;
end
{ is there a 64 bit type ? }
else if ((porddef(rd)^.typ=s64bit) or (porddef(ld)^.typ=s64bit)) and
{ the / operator is handled later }
(p^.treetype<>slashn) then
begin
if (porddef(ld)^.typ<>s64bit) then
begin
p^.left:=gentypeconvnode(p^.left,cs64bitdef);
firstpass(p^.left);
end;
if (porddef(rd)^.typ<>s64bit) then
begin
p^.right:=gentypeconvnode(p^.right,cs64bitdef);
firstpass(p^.right);
end;
calcregisters(p,2,0,0);
convdone:=true;
end
else if ((porddef(rd)^.typ=u64bit) or (porddef(ld)^.typ=u64bit)) and
{ the / operator is handled later }
(p^.treetype<>slashn) then
begin
if (porddef(ld)^.typ<>u64bit) then
begin
p^.left:=gentypeconvnode(p^.left,cu64bitdef);
firstpass(p^.left);
end;
if (porddef(rd)^.typ<>u64bit) then
begin
p^.right:=gentypeconvnode(p^.right,cu64bitdef);
firstpass(p^.right);
end;
calcregisters(p,2,0,0);
convdone:=true;
end
else
{ is there a cardinal? }
if ((porddef(rd)^.typ=u32bit) or (porddef(ld)^.typ=u32bit)) and
{ the / operator is handled later }
(p^.treetype<>slashn) then
begin
{ convert constants to u32bit }
{$ifndef cardinalmulfix}
if (porddef(ld)^.typ<>u32bit) then
begin
{ s32bit will be used for when the other is also s32bit }
{ the following line doesn't make any sense: it's the same as }
{ if ((porddef(rd)^.typ=u32bit) or (porddef(ld)^.typ=u32bit)) and }
{ (porddef(ld)^.typ<>u32bit) and (porddef(rd)^.typ=s32bit) then }
{ which can be simplified to }
{ if ((porddef(rd)^.typ=u32bit) and (porddef(rd)^.typ=s32bit) then }
{ which can never be true (JM) }
if (porddef(rd)^.typ=s32bit) and (lt<>ordconstn) then
p^.left:=gentypeconvnode(p^.left,s32bitdef)
else
p^.left:=gentypeconvnode(p^.left,u32bitdef);
firstpass(p^.left);
end;
if (porddef(rd)^.typ<>u32bit) then
begin
{ s32bit will be used for when the other is also s32bit }
if (porddef(ld)^.typ=s32bit) and (rt<>ordconstn) then
p^.right:=gentypeconvnode(p^.right,s32bitdef)
else
p^.right:=gentypeconvnode(p^.right,u32bitdef);
firstpass(p^.right);
end;
{$else cardinalmulfix}
{ only do a conversion if the nodes have different signs }
if (porddef(rd)^.typ=u32bit) xor (porddef(ld)^.typ=u32bit) then
if (porddef(rd)^.typ=u32bit) then
begin
{ can we make them both unsigned? }
if is_constintnode(p^.left) and
((p^.treetype <> subn) and
(p^.left^.value > 0)) then
p^.left:=gentypeconvnode(p^.left,u32bitdef)
else
p^.left:=gentypeconvnode(p^.left,s32bitdef);
firstpass(p^.left);
end
else {if (porddef(ld)^.typ=u32bit) then}
begin
{ can we make them both unsigned? }
if is_constintnode(p^.right) and
(p^.right^.value > 0) then
p^.right:=gentypeconvnode(p^.right,u32bitdef)
else
p^.right:=gentypeconvnode(p^.right,s32bitdef);
firstpass(p^.right);
end;
{$endif cardinalmulfix}
calcregisters(p,1,0,0);
{ for unsigned mul we need an extra register }
{ p^.registers32:=p^.left^.registers32+p^.right^.registers32; }
if p^.treetype=muln then
inc(p^.registers32);
convdone:=true;
end;
end
else
{ left side a setdef, must be before string processing,
else array constructor can be seen as array of char (PFV) }
if (ld^.deftype=setdef) {or is_array_constructor(ld)} then
begin
{ trying to add a set element? }
if (p^.treetype=addn) and (rd^.deftype<>setdef) then
begin
if (rt=setelementn) then
begin
if not(is_equal(psetdef(ld)^.elementtype.def,rd)) then
CGMessage(type_e_set_element_are_not_comp);
end
else
CGMessage(type_e_mismatch)
end
else
begin
if not(p^.treetype in [addn,subn,symdifn,muln,equaln,unequaln
{$IfNDef NoSetInclusion}
,lten,gten
{$EndIf NoSetInclusion}
]) then
CGMessage(type_e_set_operation_unknown);
{ right def must be a also be set }
if (rd^.deftype<>setdef) or not(is_equal(rd,ld)) then
CGMessage(type_e_set_element_are_not_comp);
end;
{ ranges require normsets }
if (psetdef(ld)^.settype=smallset) and
(rt=setelementn) and
assigned(p^.right^.right) then
begin
{ generate a temporary normset def }
tempdef:=new(psetdef,init(psetdef(ld)^.elementtype.def,255));
p^.left:=gentypeconvnode(p^.left,tempdef);
firstpass(p^.left);
dispose(tempdef,done);
ld:=p^.left^.resulttype;
end;
{ if the destination is not a smallset then insert a typeconv
which loads a smallset into a normal set }
if (psetdef(ld)^.settype<>smallset) and
(psetdef(rd)^.settype=smallset) then
begin
if (p^.right^.treetype=setconstn) then
begin
t:=gensetconstnode(p^.right^.value_set,psetdef(p^.left^.resulttype));
t^.left:=p^.right^.left;
putnode(p^.right);
p^.right:=t;
end
else
p^.right:=gentypeconvnode(p^.right,psetdef(p^.left^.resulttype));
firstpass(p^.right);
end;
{ do constant evaluation }
if (p^.right^.treetype=setconstn) and
not assigned(p^.right^.left) and
(p^.left^.treetype=setconstn) and
not assigned(p^.left^.left) then
begin
new(resultset);
case p^.treetype of
addn : begin
for i:=0 to 31 do
resultset^[i]:=
p^.right^.value_set^[i] or p^.left^.value_set^[i];
t:=gensetconstnode(resultset,psetdef(ld));
end;
muln : begin
for i:=0 to 31 do
resultset^[i]:=
p^.right^.value_set^[i] and p^.left^.value_set^[i];
t:=gensetconstnode(resultset,psetdef(ld));
end;
subn : begin
for i:=0 to 31 do
resultset^[i]:=
p^.left^.value_set^[i] and not(p^.right^.value_set^[i]);
t:=gensetconstnode(resultset,psetdef(ld));
end;
symdifn : begin
for i:=0 to 31 do
resultset^[i]:=
p^.left^.value_set^[i] xor p^.right^.value_set^[i];
t:=gensetconstnode(resultset,psetdef(ld));
end;
unequaln : begin
b:=true;
for i:=0 to 31 do
if p^.right^.value_set^[i]=p^.left^.value_set^[i] then
begin
b:=false;
break;
end;
t:=genordinalconstnode(ord(b),booldef);
end;
equaln : begin
b:=true;
for i:=0 to 31 do
if p^.right^.value_set^[i]<>p^.left^.value_set^[i] then
begin
b:=false;
break;
end;
t:=genordinalconstnode(ord(b),booldef);
end;
{$IfNDef NoSetInclusion}
lten : Begin
b := true;
For i := 0 to 31 Do
If (p^.right^.value_set^[i] And p^.left^.value_set^[i]) <>
p^.left^.value_set^[i] Then
Begin
b := false;
Break
End;
t := genordinalconstnode(ord(b),booldef);
End;
gten : Begin
b := true;
For i := 0 to 31 Do
If (p^.left^.value_set^[i] And p^.right^.value_set^[i]) <>
p^.right^.value_set^[i] Then
Begin
b := false;
Break
End;
t := genordinalconstnode(ord(b),booldef);
End;
{$EndIf NoSetInclusion}
end;
dispose(resultset);
disposetree(p);
p:=t;
firstpass(p);
exit;
end
else
if psetdef(ld)^.settype=smallset then
begin
{ are we adding set elements ? }
if p^.right^.treetype=setelementn then
calcregisters(p,2,0,0)
else
calcregisters(p,1,0,0);
p^.location.loc:=LOC_REGISTER;
end
else
begin
calcregisters(p,0,0,0);
{ here we call SET... }
procinfo^.flags:=procinfo^.flags or pi_do_call;
p^.location.loc:=LOC_MEM;
end;
convdone:=true;
end
else
{ compare pchar to char arrays by addresses
like BP/Delphi }
if (is_pchar(ld) and is_chararray(rd)) or
(is_pchar(rd) and is_chararray(ld)) then
begin
if is_chararray(rd) then
begin
p^.right:=gentypeconvnode(p^.right,ld);
firstpass(p^.right);
end
else
begin
p^.left:=gentypeconvnode(p^.left,rd);
firstpass(p^.left);
end;
p^.location.loc:=LOC_REGISTER;
calcregisters(p,1,0,0);
convdone:=true;
end
else
{ is one of the operands a string?,
chararrays are also handled as strings (after conversion) }
if (rd^.deftype=stringdef) or (ld^.deftype=stringdef) or
((is_chararray(rd) or is_char(rd)) and
(is_chararray(ld) or is_char(ld))) then
begin
if is_widestring(rd) or is_widestring(ld) then
begin
if not(is_widestring(rd)) then
p^.right:=gentypeconvnode(p^.right,cwidestringdef);
if not(is_widestring(ld)) then
p^.left:=gentypeconvnode(p^.left,cwidestringdef);
p^.resulttype:=cwidestringdef;
{ this is only for add, the comparisaion is handled later }
p^.location.loc:=LOC_REGISTER;
end
else if is_ansistring(rd) or is_ansistring(ld) then
begin
if not(is_ansistring(rd)) then
p^.right:=gentypeconvnode(p^.right,cansistringdef);
if not(is_ansistring(ld)) then
p^.left:=gentypeconvnode(p^.left,cansistringdef);
{ we use ansistrings so no fast exit here }
procinfo^.no_fast_exit:=true;
p^.resulttype:=cansistringdef;
{ this is only for add, the comparisaion is handled later }
p^.location.loc:=LOC_REGISTER;
end
else if is_longstring(rd) or is_longstring(ld) then
begin
if not(is_longstring(rd)) then
p^.right:=gentypeconvnode(p^.right,clongstringdef);
if not(is_longstring(ld)) then
p^.left:=gentypeconvnode(p^.left,clongstringdef);
p^.resulttype:=clongstringdef;
{ this is only for add, the comparisaion is handled later }
p^.location.loc:=LOC_MEM;
end
else
begin
if not(is_shortstring(rd))
{$ifdef newoptimizations2}
{$ifdef i386}
{ shortstring + char handled seperately (JM) }
and (not(cs_optimize in aktglobalswitches) or
(p^.treetype <> addn) or not(is_char(rd)))
{$endif i386}
{$endif newoptimizations2}
then
p^.right:=gentypeconvnode(p^.right,cshortstringdef);
if not(is_shortstring(ld)) then
p^.left:=gentypeconvnode(p^.left,cshortstringdef);
p^.resulttype:=cshortstringdef;
{ this is only for add, the comparisaion is handled later }
p^.location.loc:=LOC_MEM;
end;
{ only if there is a type cast we need to do again }
{ the first pass }
if p^.left^.treetype=typeconvn then
firstpass(p^.left);
if p^.right^.treetype=typeconvn then
firstpass(p^.right);
{ here we call STRCONCAT or STRCMP or STRCOPY }
procinfo^.flags:=procinfo^.flags or pi_do_call;
if p^.location.loc=LOC_MEM then
calcregisters(p,0,0,0)
else
calcregisters(p,1,0,0);
{$ifdef newoptimizations}
{$ifdef i386}
{ not always necessary, only if it is not a constant char and }
{ not a regvar, but don't know how to check this here (JM) }
if is_char(rd) then
inc(p^.registers32);
{$endif i386}
{$endif newoptimizations}
convdone:=true;
end
else
{ is one a real float ? }
if (rd^.deftype=floatdef) or (ld^.deftype=floatdef) then
begin
{ if one is a fixed, then convert to f32bit }
if ((rd^.deftype=floatdef) and (pfloatdef(rd)^.typ=f32bit)) or
((ld^.deftype=floatdef) and (pfloatdef(ld)^.typ=f32bit)) then
begin
if not is_integer(rd) or (p^.treetype<>muln) then
p^.right:=gentypeconvnode(p^.right,s32fixeddef);
if not is_integer(ld) or (p^.treetype<>muln) then
p^.left:=gentypeconvnode(p^.left,s32fixeddef);
firstpass(p^.left);
firstpass(p^.right);
calcregisters(p,1,0,0);
p^.location.loc:=LOC_REGISTER;
end
else
{ convert both to bestreal }
begin
p^.right:=gentypeconvnode(p^.right,bestrealdef^);
p^.left:=gentypeconvnode(p^.left,bestrealdef^);
firstpass(p^.left);
firstpass(p^.right);
calcregisters(p,0,1,0);
p^.location.loc:=LOC_FPU;
end;
convdone:=true;
end
else
{ pointer comperation and subtraction }
if (rd^.deftype=pointerdef) and (ld^.deftype=pointerdef) then
begin
p^.location.loc:=LOC_REGISTER;
{ p^.right:=gentypeconvnode(p^.right,ld); }
{ firstpass(p^.right); }
calcregisters(p,1,0,0);
case p^.treetype of
equaln,unequaln :
begin
if is_equal(p^.right^.resulttype,voidpointerdef) then
begin
p^.right:=gentypeconvnode(p^.right,ld);
firstpass(p^.right);
end
else if is_equal(p^.left^.resulttype,voidpointerdef) then
begin
p^.left:=gentypeconvnode(p^.left,rd);
firstpass(p^.left);
end
else if not(is_equal(ld,rd)) then
CGMessage(type_e_mismatch);
end;
ltn,lten,gtn,gten:
begin
if is_equal(p^.right^.resulttype,voidpointerdef) then
begin
p^.right:=gentypeconvnode(p^.right,ld);
firstpass(p^.right);
end
else if is_equal(p^.left^.resulttype,voidpointerdef) then
begin
p^.left:=gentypeconvnode(p^.left,rd);
firstpass(p^.left);
end
else if not(is_equal(ld,rd)) then
CGMessage(type_e_mismatch);
if not(cs_extsyntax in aktmoduleswitches) then
CGMessage(type_e_mismatch);
end;
subn:
begin
if not(is_equal(ld,rd)) then
CGMessage(type_e_mismatch);
if not(cs_extsyntax in aktmoduleswitches) then
CGMessage(type_e_mismatch);
p^.resulttype:=s32bitdef;
exit;
end;
else CGMessage(type_e_mismatch);
end;
convdone:=true;
end
else
if (rd^.deftype=objectdef) and (ld^.deftype=objectdef) and
pobjectdef(rd)^.is_class and pobjectdef(ld)^.is_class then
begin
p^.location.loc:=LOC_REGISTER;
if pobjectdef(rd)^.is_related(pobjectdef(ld)) then
p^.right:=gentypeconvnode(p^.right,ld)
else
p^.left:=gentypeconvnode(p^.left,rd);
firstpass(p^.right);
firstpass(p^.left);
calcregisters(p,1,0,0);
case p^.treetype of
equaln,unequaln : ;
else CGMessage(type_e_mismatch);
end;
convdone:=true;
end
else
if (rd^.deftype=classrefdef) and (ld^.deftype=classrefdef) then
begin
p^.location.loc:=LOC_REGISTER;
if pobjectdef(pclassrefdef(rd)^.pointertype.def)^.is_related(pobjectdef(
pclassrefdef(ld)^.pointertype.def)) then
p^.right:=gentypeconvnode(p^.right,ld)
else
p^.left:=gentypeconvnode(p^.left,rd);
firstpass(p^.right);
firstpass(p^.left);
calcregisters(p,1,0,0);
case p^.treetype of
equaln,unequaln : ;
else CGMessage(type_e_mismatch);
end;
convdone:=true;
end
else
{ allows comperasion with nil pointer }
if (rd^.deftype=objectdef) and
pobjectdef(rd)^.is_class then
begin
p^.location.loc:=LOC_REGISTER;
p^.left:=gentypeconvnode(p^.left,rd);
firstpass(p^.left);
calcregisters(p,1,0,0);
case p^.treetype of
equaln,unequaln : ;
else CGMessage(type_e_mismatch);
end;
convdone:=true;
end
else
if (ld^.deftype=objectdef) and
pobjectdef(ld)^.is_class then
begin
p^.location.loc:=LOC_REGISTER;
p^.right:=gentypeconvnode(p^.right,ld);
firstpass(p^.right);
calcregisters(p,1,0,0);
case p^.treetype of
equaln,unequaln : ;
else CGMessage(type_e_mismatch);
end;
convdone:=true;
end
else
if (rd^.deftype=classrefdef) then
begin
p^.left:=gentypeconvnode(p^.left,rd);
firstpass(p^.left);
calcregisters(p,1,0,0);
case p^.treetype of
equaln,unequaln : ;
else CGMessage(type_e_mismatch);
end;
convdone:=true;
end
else
if (ld^.deftype=classrefdef) then
begin
p^.right:=gentypeconvnode(p^.right,ld);
firstpass(p^.right);
calcregisters(p,1,0,0);
case p^.treetype of
equaln,unequaln : ;
else
CGMessage(type_e_mismatch);
end;
convdone:=true;
end
else
{ support procvar=nil,procvar<>nil }
if ((ld^.deftype=procvardef) and (rt=niln)) or
((rd^.deftype=procvardef) and (lt=niln)) then
begin
calcregisters(p,1,0,0);
p^.location.loc:=LOC_REGISTER;
case p^.treetype of
equaln,unequaln : ;
else
CGMessage(type_e_mismatch);
end;
convdone:=true;
end
else
{$ifdef SUPPORT_MMX}
if (cs_mmx in aktlocalswitches) and is_mmx_able_array(ld) and
is_mmx_able_array(rd) and is_equal(ld,rd) then
begin
firstpass(p^.right);
firstpass(p^.left);
case p^.treetype of
addn,subn,xorn,orn,andn:
;
{ mul is a little bit restricted }
muln:
if not(mmx_type(p^.left^.resulttype) in
[mmxu16bit,mmxs16bit,mmxfixed16]) then
CGMessage(type_e_mismatch);
else
CGMessage(type_e_mismatch);
end;
p^.location.loc:=LOC_MMXREGISTER;
calcregisters(p,0,0,1);
convdone:=true;
end
else
{$endif SUPPORT_MMX}
{ this is a little bit dangerous, also the left type }
{ should be checked! This broke the mmx support }
if (rd^.deftype=pointerdef) or
is_zero_based_array(rd) then
begin
if is_zero_based_array(rd) then
begin
p^.resulttype:=new(ppointerdef,init(parraydef(rd)^.elementtype));
p^.right:=gentypeconvnode(p^.right,p^.resulttype);
firstpass(p^.right);
end;
p^.location.loc:=LOC_REGISTER;
p^.left:=gentypeconvnode(p^.left,s32bitdef);
firstpass(p^.left);
calcregisters(p,1,0,0);
if p^.treetype=addn then
begin
if not(cs_extsyntax in aktmoduleswitches) or
(not(is_pchar(ld)) and not(m_add_pointer in aktmodeswitches)) then
CGMessage(type_e_mismatch);
{ Dirty hack, to support multiple firstpasses (PFV) }
if (p^.resulttype=nil) and
(rd^.deftype=pointerdef) and
(ppointerdef(rd)^.pointertype.def^.size>1) then
begin
p^.left:=gennode(muln,p^.left,genordinalconstnode(ppointerdef(rd)^.pointertype.def^.size,s32bitdef));
firstpass(p^.left);
end;
end
else
CGMessage(type_e_mismatch);
convdone:=true;
end
else
if (ld^.deftype=pointerdef) or
is_zero_based_array(ld) then
begin
if is_zero_based_array(ld) then
begin
p^.resulttype:=new(ppointerdef,init(parraydef(ld)^.elementtype));
p^.left:=gentypeconvnode(p^.left,p^.resulttype);
firstpass(p^.left);
end;
p^.location.loc:=LOC_REGISTER;
p^.right:=gentypeconvnode(p^.right,s32bitdef);
firstpass(p^.right);
calcregisters(p,1,0,0);
case p^.treetype of
addn,subn : begin
if not(cs_extsyntax in aktmoduleswitches) or
(not(is_pchar(ld)) and not(m_add_pointer in aktmodeswitches)) then
CGMessage(type_e_mismatch);
{ Dirty hack, to support multiple firstpasses (PFV) }
if (p^.resulttype=nil) and
(ld^.deftype=pointerdef) and
(ppointerdef(ld)^.pointertype.def^.size>1) then
begin
p^.right:=gennode(muln,p^.right,
genordinalconstnode(ppointerdef(ld)^.pointertype.def^.size,s32bitdef));
firstpass(p^.right);
end;
end;
else
CGMessage(type_e_mismatch);
end;
convdone:=true;
end
else
if (rd^.deftype=procvardef) and (ld^.deftype=procvardef) and is_equal(rd,ld) then
begin
calcregisters(p,1,0,0);
p^.location.loc:=LOC_REGISTER;
case p^.treetype of
equaln,unequaln : ;
else
CGMessage(type_e_mismatch);
end;
convdone:=true;
end
else
if (ld^.deftype=enumdef) and (rd^.deftype=enumdef) and (is_equal(ld,rd)) then
begin
calcregisters(p,1,0,0);
case p^.treetype of
equaln,unequaln,
ltn,lten,gtn,gten : ;
else CGMessage(type_e_mismatch);
end;
convdone:=true;
end;
{ the general solution is to convert to 32 bit int }
if not convdone then
begin
{ but an int/int gives real/real! }
if p^.treetype=slashn then
begin
CGMessage(type_h_use_div_for_int);
p^.right:=gentypeconvnode(p^.right,bestrealdef^);
p^.left:=gentypeconvnode(p^.left,bestrealdef^);
firstpass(p^.left);
firstpass(p^.right);
{ maybe we need an integer register to save }
{ a reference }
if ((p^.left^.location.loc<>LOC_FPU) or
(p^.right^.location.loc<>LOC_FPU)) and
(p^.left^.registers32=p^.right^.registers32) then
calcregisters(p,1,1,0)
else
calcregisters(p,0,1,0);
p^.location.loc:=LOC_FPU;
end
else
begin
p^.right:=gentypeconvnode(p^.right,s32bitdef);
p^.left:=gentypeconvnode(p^.left,s32bitdef);
firstpass(p^.left);
firstpass(p^.right);
calcregisters(p,1,0,0);
p^.location.loc:=LOC_REGISTER;
end;
end;
if codegenerror then
exit;
{ determines result type for comparions }
{ here the is a problem with multiple passes }
{ example length(s)+1 gets internal 'longint' type first }
{ if it is a arg it is converted to 'LONGINT' }
{ but a second first pass will reset this to 'longint' }
case p^.treetype of
ltn,lten,gtn,gten,equaln,unequaln:
begin
if (not assigned(p^.resulttype)) or
(p^.resulttype^.deftype=stringdef) then
p^.resulttype:=booldef;
if is_64bitint(p^.left^.resulttype) then
p^.location.loc:=LOC_JUMP
else
p^.location.loc:=LOC_FLAGS;
end;
xorn:
begin
if not assigned(p^.resulttype) then
p^.resulttype:=p^.left^.resulttype;
p^.location.loc:=LOC_REGISTER;
end;
addn:
begin
if not assigned(p^.resulttype) then
begin
{ for strings, return is always a 255 char string }
if is_shortstring(p^.left^.resulttype) then
p^.resulttype:=cshortstringdef
else
p^.resulttype:=p^.left^.resulttype;
end;
end;
{$ifdef cardinalmulfix}
muln:
{ if we multiply an unsigned with a signed number, the result is signed }
{ in the other cases, the result remains signed or unsigned depending on }
{ the multiplication factors (JM) }
if (p^.left^.resulttype^.deftype = orddef) and
(p^.right^.resulttype^.deftype = orddef) and
is_signed(p^.right^.resulttype) then
p^.resulttype := p^.right^.resulttype
else p^.resulttype := p^.left^.resulttype;
(*
subn:
{ if we substract a u32bit from a positive constant, the result becomes }
{ s32bit as well (JM) }
begin
if (p^.right^.resulttype^.deftype = orddef) and
(p^.left^.resulttype^.deftype = orddef) and
(porddef(p^.right^.resulttype)^.typ = u32bit) and
is_constintnode(p^.left) and
{ (porddef(p^.left^.resulttype)^.typ <> u32bit) and}
(p^.left^.value > 0) then
begin
p^.left := gentypeconvnode(p^.left,u32bitdef);
firstpass(p^.left);
end;
p^.resulttype:=p^.left^.resulttype;
end;
*)
{$endif cardinalmulfix}
else
p^.resulttype:=p^.left^.resulttype;
end;
end;
end.
{
$Log$
Revision 1.76 2000-05-11 16:47:37 peter
* fixed check for overloaded operator with array and chararray check
Revision 1.75 2000/04/25 14:43:36 jonas
- disabled "string_var := string_var + ... " and "string_var + char_var"
optimizations (were only active with -dnewoptimizations) because of
several internal issues
Revision 1.74 2000/04/21 12:35:05 jonas
+ special code for string + char, between -dnewoptimizations
Revision 1.73 2000/03/28 21:14:18 pierre
* fix for bug 891
Revision 1.72 2000/03/20 10:16:51 florian
* fixed <dword>/<dword>, <int64>/<int64> and <qword>/<qword>
Revision 1.71 2000/03/18 15:01:19 jonas
* moved a $maxfpuregisters directive a bit up because it was being
ignored
Revision 1.70 2000/02/19 10:12:48 florian
* fixed one more internalerror 10
Revision 1.69 2000/02/17 14:53:42 florian
* some updates for the newcg
Revision 1.68 2000/02/14 22:34:28 florian
* fixed another internalerror
Revision 1.67 2000/02/13 22:46:28 florian
* fixed an internalerror with writeln
* fixed arrayconstructor_to_set to force the generation of better code
and added a more strict type checking
Revision 1.66 2000/02/13 14:21:51 jonas
* modifications to make the compiler functional when compiled with
-Or
Revision 1.65 2000/02/09 13:23:06 peter
* log truncated
Revision 1.64 2000/02/04 08:47:10 florian
* better register variable allocation in -Or mode
Revision 1.63 2000/01/07 01:14:43 peter
* updated copyright to 2000
Revision 1.62 2000/01/04 20:10:20 florian
* mmx support fixed
Revision 1.61 1999/12/11 18:53:31 jonas
* fixed type conversions of results of operations with cardinals
(between -dcardinalmulfix)
Revision 1.60 1999/12/09 23:18:04 pierre
* no_fast_exit if procedure contains implicit termination code
Revision 1.59 1999/12/01 12:42:33 peter
* fixed bug 698
* removed some notes about unused vars
Revision 1.58 1999/11/30 10:40:56 peter
+ ttype, tsymlist
Revision 1.57 1999/11/26 13:51:29 pierre
* fix for overloading of shr shl mod and div
Revision 1.56 1999/11/18 15:34:48 pierre
* Notes/Hints for local syms changed to
Set_varstate function
Revision 1.55 1999/11/17 17:05:06 pierre
* Notes/hints changes
Revision 1.54 1999/11/16 23:45:28 pierre
* global var token was changed by overload code (form bug 707)
Revision 1.53 1999/11/15 21:53:42 peter
* fixed constant eval for bool xor/or/and bool
Revision 1.52 1999/11/15 17:53:00 pierre
+ one field added for ttoken record for operator
linking the id to the corresponding operator token that
can now now all be overloaded
* overloaded operators are resetted to nil in InitSymtable
(bug when trying to compile a uint that overloads operators twice)
Revision 1.51 1999/11/06 14:34:29 peter
* truncated log to 20 revs
Revision 1.50 1999/09/27 23:45:00 peter
* procinfo is now a pointer
* support for result setting in sub procedure
Revision 1.49 1999/09/16 13:39:14 peter
* arrayconstructor 2 set conversion is now called always in the
beginning of firstadd
Revision 1.48 1999/09/15 20:35:45 florian
* small fix to operator overloading when in MMX mode
+ the compiler uses now fldz and fld1 if possible
+ some fixes to floating point registers
+ some math. functions (arctan, ln, sin, cos, sqrt, sqr, pi) are now inlined
* .... ???
Revision 1.47 1999/09/13 16:28:05 peter
* typo in previous commit open_array -> chararray :(
Revision 1.46 1999/09/10 15:40:46 peter
* fixed array check for operators, becuase array can also be a set
Revision 1.45 1999/09/08 16:05:29 peter
* pointer add/sub is now as expected and the same results as inc/dec
}