mirror of
https://gitlab.com/freepascal.org/fpc/source.git
synced 2025-04-05 18:47:54 +02:00
2093 lines
83 KiB
ObjectPascal
2093 lines
83 KiB
ObjectPascal
{
|
|
Copyright (c) 2002 by Florian Klaempfl
|
|
|
|
Generates the argument location information for x86-64 target
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
|
|
****************************************************************************
|
|
}
|
|
unit cpupara;
|
|
|
|
{$i fpcdefs.inc}
|
|
|
|
interface
|
|
|
|
uses
|
|
globtype,
|
|
cpubase,cgbase,cgutils,
|
|
symconst,symtype,symsym,symdef,
|
|
parabase,paramgr;
|
|
|
|
type
|
|
tcpuparamanager = class(tparamanager)
|
|
private
|
|
procedure create_paraloc_info_intern(p : tabstractprocdef; side: tcallercallee;paras:tparalist;
|
|
var intparareg,mmparareg,parasize:longint;varargsparas: boolean);
|
|
public
|
|
function param_use_paraloc(const cgpara:tcgpara):boolean;override;
|
|
function push_addr_param(varspez:tvarspez;def : tdef;calloption : tproccalloption) : boolean;override;
|
|
function ret_in_param(def:tdef;pd:tabstractprocdef):boolean;override;
|
|
function get_volatile_registers_int(calloption : tproccalloption):tcpuregisterset;override;
|
|
function get_volatile_registers_mm(calloption : tproccalloption):tcpuregisterset;override;
|
|
function get_volatile_registers_fpu(calloption : tproccalloption):tcpuregisterset;override;
|
|
function get_saved_registers_int(calloption : tproccalloption):tcpuregisterarray;override;
|
|
function get_saved_registers_mm(calloption: tproccalloption):tcpuregisterarray;override;
|
|
function create_paraloc_info(p : tabstractprocdef; side: tcallercallee):longint;override;
|
|
function create_varargs_paraloc_info(p : tabstractprocdef; side: tcallercallee; varargspara:tvarargsparalist):longint;override;
|
|
function get_funcretloc(p : tabstractprocdef; side: tcallercallee; forcetempdef: tdef): tcgpara;override;
|
|
end;
|
|
|
|
implementation
|
|
|
|
uses
|
|
cutils,verbose,
|
|
systems,
|
|
globals,defutil,
|
|
symtable,symutil,
|
|
cpupi,cpuinfo,
|
|
cgx86,cgobj,cgcpu;
|
|
|
|
const
|
|
paraintsupregs : array[0..5] of tsuperregister = (RS_RDI,RS_RSI,RS_RDX,RS_RCX,RS_R8,RS_R9);
|
|
parammsupregs : array[0..7] of tsuperregister = (RS_XMM0,RS_XMM1,RS_XMM2,RS_XMM3,RS_XMM4,RS_XMM5,RS_XMM6,RS_XMM7);
|
|
|
|
paraintsupregs_winx64 : array[0..3] of tsuperregister = (RS_RCX,RS_RDX,RS_R8,RS_R9);
|
|
parammsupregs_winx64 : array[0..3] of tsuperregister = (RS_XMM0,RS_XMM1,RS_XMM2,RS_XMM3);
|
|
parammsupregs_vectorcall : array[0..5] of tsuperregister = (RS_XMM0,RS_XMM1,RS_XMM2,RS_XMM3,RS_XMM4,RS_XMM5);
|
|
{
|
|
The argument classification code largely comes from libffi:
|
|
|
|
ffi64.c - Copyright (c) 2002, 2007 Bo Thorsen <bo@suse.de>
|
|
Copyright (c) 2008 Red Hat, Inc.
|
|
|
|
x86-64 Foreign Function Interface
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining
|
|
a copy of this software and associated documentation files (the
|
|
``Software''), to deal in the Software without restriction, including
|
|
without limitation the rights to use, copy, modify, merge, publish,
|
|
distribute, sublicense, and/or sell copies of the Software, and to
|
|
permit persons to whom the Software is furnished to do so, subject to
|
|
the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included
|
|
in all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
|
|
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
|
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
|
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
DEALINGS IN THE SOFTWARE.
|
|
----------------------------------------------------------------------- *)
|
|
}
|
|
|
|
const
|
|
{ This many classes are required in order to support 4 YMMs (_m256) in a
|
|
homogeneous vector aggregate under vectorcall. [Kit] }
|
|
MAX_PARA_CLASSES = 16;
|
|
|
|
type
|
|
tx64paraclasstype = (
|
|
X86_64_NO_CLASS,
|
|
X86_64_INTEGER_CLASS,X86_64_INTEGERSI_CLASS,
|
|
X86_64_SSE_CLASS,X86_64_SSESF_CLASS,X86_64_SSEDF_CLASS,X86_64_SSEUP_CLASS,
|
|
X86_64_X87_CLASS,X86_64_X87UP_CLASS,
|
|
X86_64_COMPLEX_X87_CLASS,
|
|
X86_64_MEMORY_CLASS
|
|
);
|
|
|
|
tx64paraclass = record
|
|
def: tdef;
|
|
typ: tx64paraclasstype;
|
|
end;
|
|
|
|
tx64paraclasses = array[0..MAX_PARA_CLASSES-1] of tx64paraclass;
|
|
|
|
{ Win64-specific helper }
|
|
function aggregate_in_registers_win64(varspez:tvarspez;size:longint):boolean;
|
|
begin
|
|
{ TODO: Temporary hack: vs_const parameters are always passed by reference for win64}
|
|
result:=(varspez=vs_value) and (size in [1,2,4,8])
|
|
end;
|
|
|
|
(* x86-64 register passing implementation. See x86-64 ABI for details. Goal
|
|
of this code is to classify each 8bytes of incoming argument by the register
|
|
class and assign registers accordingly. *)
|
|
|
|
|
|
function classify_representative_def(def1, def2: tdef): tdef;
|
|
var
|
|
def1size, def2size: asizeint;
|
|
begin
|
|
if not assigned(def1) then
|
|
result:=def2
|
|
else if not assigned(def2) then
|
|
result:=def1
|
|
else
|
|
begin
|
|
def1size:=def1.size;
|
|
def2size:=def2.size;
|
|
if def1size>def2size then
|
|
result:=def1
|
|
else if def2size>def1size then
|
|
result:=def2
|
|
else if def1.alignment>def2.alignment then
|
|
result:=def1
|
|
else
|
|
result:=def2;
|
|
end;
|
|
end;
|
|
|
|
(* Classify the argument of type TYPE and mode MODE.
|
|
CLASSES will be filled by the register class used to pass each word
|
|
of the operand. The number of words is returned. In case the parameter
|
|
should be passed in memory, 0 is returned. As a special case for zero
|
|
sized containers, classes[0] will be NO_CLASS and 1 is returned.
|
|
|
|
real_size contains either def.size, or a value derived from
|
|
def.bitpackedsize and the field offset denoting the number of bytes
|
|
spanned by a bitpacked field
|
|
|
|
See the x86-64 PS ABI for details.
|
|
*)
|
|
procedure classify_single_integer_class(def: tdef; size,real_size: aint; var cl: tx64paraclass; byte_offset: aint);
|
|
begin
|
|
if (byte_offset=0) and
|
|
(real_size in [1,2,4,8]) and
|
|
(not assigned(cl.def) or
|
|
(def.alignment>=cl.def.alignment)) then
|
|
cl.def:=def;
|
|
if size<=4 then
|
|
begin
|
|
cl.typ:=X86_64_INTEGERSI_CLASS;
|
|
{ The ABI does not require any sign/zero extension for parameters,
|
|
except for _Bool (= Pascal boolean) to 8 bits. However, some
|
|
compilers (clang) extend them to 32 bits anyway and rely on it
|
|
-> also do it for compatibility when calling such code }
|
|
if not assigned(cl.def) or
|
|
(cl.def.typ<>orddef) or
|
|
(torddef(cl.def).ordtype<>pasbool1) then
|
|
cl.def:=u32inttype;
|
|
end
|
|
else
|
|
begin
|
|
cl.typ:=X86_64_INTEGER_CLASS;
|
|
if not assigned(cl.def) or
|
|
(cl.def.size<size) or
|
|
(not(cl.def.typ in [orddef,floatdef,pointerdef,classrefdef]) and
|
|
not is_implicit_pointer_object_type(cl.def) and
|
|
not is_dynamicstring(cl.def) and
|
|
not is_dynamic_array(cl.def)) then
|
|
cl.def:=u64inttype;
|
|
end;
|
|
end;
|
|
|
|
|
|
function classify_as_integer_argument(def: tdef; real_size: aint; var classes: tx64paraclasses; byte_offset: aint): longint;
|
|
var
|
|
size: aint;
|
|
begin
|
|
size:=byte_offset+real_size;
|
|
classify_single_integer_class(def,size,real_size,classes[0],byte_offset);
|
|
if size<=8 then
|
|
result:=1
|
|
else
|
|
begin
|
|
classify_single_integer_class(def,size-8,real_size,classes[1],byte_offset-8);
|
|
if size>16 then
|
|
internalerror(2010021401);
|
|
result:=2;
|
|
end
|
|
end;
|
|
|
|
|
|
(* Return the union class of CLASS1 and CLASS2.
|
|
See the x86-64 PS ABI for details. *)
|
|
|
|
function merge_classes(class1, class2: tx64paraclass): tx64paraclass;
|
|
begin
|
|
(* Rule #1: If both classes are equal, this is the resulting class. *)
|
|
if (class1.typ=class2.typ) then
|
|
begin
|
|
result.typ:=class1.typ;
|
|
result.def:=classify_representative_def(class1.def,class2.def);
|
|
exit;
|
|
end;
|
|
|
|
(* Rule #2: If one of the classes is NO_CLASS, the resulting class is
|
|
the other class. *)
|
|
if (class1.typ=X86_64_NO_CLASS) then
|
|
exit(class2);
|
|
if (class2.typ=X86_64_NO_CLASS) then
|
|
exit(class1);
|
|
|
|
(* Rule #3: If one of the classes is MEMORY, the result is MEMORY. *)
|
|
if (class1.typ=X86_64_MEMORY_CLASS) then
|
|
exit(class1)
|
|
else if (class2.typ=X86_64_MEMORY_CLASS) then
|
|
exit(class2);
|
|
|
|
(* Rule #4: If one of the classes is INTEGER, the result is INTEGER. *)
|
|
{ 32 bit }
|
|
if ((class1.typ=X86_64_INTEGERSI_CLASS) and
|
|
(class2.typ=X86_64_SSESF_CLASS)) then
|
|
exit(class1)
|
|
else if ((class2.typ=X86_64_INTEGERSI_CLASS) and
|
|
(class1.typ=X86_64_SSESF_CLASS)) then
|
|
exit(class2);
|
|
{ 64 bit }
|
|
if (class1.typ in [X86_64_INTEGER_CLASS,X86_64_INTEGERSI_CLASS]) then
|
|
begin
|
|
result:=class1;
|
|
if result.def.size<8 then
|
|
begin
|
|
result.typ:=X86_64_INTEGER_CLASS;
|
|
result.def:=s64inttype;
|
|
end;
|
|
exit
|
|
end
|
|
else if (class2.typ in [X86_64_INTEGER_CLASS,X86_64_INTEGERSI_CLASS]) then
|
|
begin
|
|
result:=class2;
|
|
if result.def.size<8 then
|
|
begin
|
|
result.typ:=X86_64_INTEGER_CLASS;
|
|
result.def:=s64inttype;
|
|
end;
|
|
exit
|
|
end;
|
|
|
|
(* Rule #5: If one of the classes is X87, X87UP, or COMPLEX_X87 class,
|
|
MEMORY is used. *)
|
|
if (class1.typ in [X86_64_X87_CLASS,X86_64_X87UP_CLASS,X86_64_COMPLEX_X87_CLASS]) then
|
|
begin
|
|
result:=class1;
|
|
result.typ:=X86_64_MEMORY_CLASS;
|
|
exit;
|
|
end
|
|
else if (class2.typ in [X86_64_X87_CLASS,X86_64_X87UP_CLASS,X86_64_COMPLEX_X87_CLASS]) then
|
|
begin
|
|
result:=class2;
|
|
result.typ:=X86_64_MEMORY_CLASS;
|
|
exit;
|
|
end;
|
|
|
|
(* Rule #6: Otherwise class SSE is used. *)
|
|
if class1.def.size>class2.def.size then
|
|
result:=class1
|
|
else
|
|
result:=class2;
|
|
result.typ:=X86_64_SSE_CLASS;
|
|
result.def:=s64floattype;
|
|
end;
|
|
|
|
|
|
function classify_argument(calloption: tproccalloption; def: tdef; parentdef: tdef; varspez: tvarspez; real_size: aint; var classes: tx64paraclasses; byte_offset: aint; round_to_8: Boolean): longint; forward;
|
|
|
|
function init_aggregate_classification(calloption: tproccalloption; def: tdef; parentdef: tdef; varspez: tvarspez; byte_offset: aint; out words: longint; out classes: tx64paraclasses): longint;
|
|
var
|
|
i: longint;
|
|
begin
|
|
words:=0;
|
|
|
|
{ we'll be merging the classes elements with the subclasses
|
|
elements, so initialise them first }
|
|
for i:=low(classes) to high(classes) do
|
|
begin
|
|
classes[i].typ:=X86_64_NO_CLASS;
|
|
classes[i].def:=nil;
|
|
end;
|
|
|
|
{ win64 follows a different convention here }
|
|
if x86_64_use_ms_abi(calloption) then
|
|
begin
|
|
if aggregate_in_registers_win64(varspez,def.size) then
|
|
begin
|
|
classes[0].typ:=X86_64_INTEGER_CLASS;
|
|
classes[0].def:=def;
|
|
result:=1;
|
|
end
|
|
else if (calloption = pocall_vectorcall) then
|
|
begin
|
|
words := (def.size+byte_offset mod 8+7) div 8;
|
|
case words of
|
|
0:
|
|
Exit(0);
|
|
1..4:
|
|
{ Aligned vector or array elements }
|
|
Result := words;
|
|
else
|
|
if ((def.aggregatealignment mod (words shl 3)) = 0) or
|
|
Assigned(parentdef) and ((parentdef.aggregatealignment mod 16) = 0)
|
|
then
|
|
begin
|
|
{ Field of aligned vector type }
|
|
if words = 0 then
|
|
begin
|
|
classes[0].typ:=X86_64_NO_CLASS;
|
|
classes[0].def:=def;
|
|
Result := 1;
|
|
end
|
|
else
|
|
Result := words;
|
|
end
|
|
else
|
|
Result := 0;
|
|
end;
|
|
end
|
|
else
|
|
Result := 0;
|
|
|
|
Exit;
|
|
end;
|
|
|
|
(* If the struct is larger than 32 bytes, pass it on the stack. *)
|
|
if def.size > 32 then
|
|
exit(0);
|
|
|
|
{ if a struct starts an offset not divisible by 8, it can span extra
|
|
words }
|
|
words:=(def.size+byte_offset mod 8+7) div 8;
|
|
|
|
(* Zero sized arrays or structures are NO_CLASS. We return 0 to
|
|
signal memory class, so handle it as special case. *)
|
|
if (words=0) then
|
|
begin
|
|
classes[0].typ:=X86_64_NO_CLASS;
|
|
classes[0].def:=def;
|
|
exit(1);
|
|
end;
|
|
|
|
result:=words;
|
|
end;
|
|
|
|
|
|
function classify_aggregate_element(calloption: tproccalloption; def: tdef; parentdef: tdef; varspez: tvarspez; real_size: aint; var classes: tx64paraclasses; new_byte_offset: aint): longint;
|
|
var
|
|
subclasses: tx64paraclasses;
|
|
i,
|
|
pos: longint;
|
|
begin
|
|
fillchar(subclasses,sizeof(subclasses),0);
|
|
result:=classify_argument(calloption,def,parentdef,varspez,real_size,subclasses,new_byte_offset, True);
|
|
if (result=0) then
|
|
exit;
|
|
|
|
pos:=new_byte_offset div 8;
|
|
if result-1+pos>high(classes) then
|
|
internalerror(2010053108);
|
|
for i:=0 to result-1 do
|
|
begin
|
|
classes[i+pos] :=
|
|
merge_classes(subclasses[i],classes[i+pos]);
|
|
end;
|
|
inc(result,pos);
|
|
end;
|
|
|
|
|
|
function finalize_aggregate_classification(calloption: tproccalloption; def: tdef; words: longint; var classes: tx64paraclasses): longint;
|
|
var
|
|
i, vecsize, maxvecsize: longint;
|
|
begin
|
|
{ Workaround: It's not immediately possible to determine if a Double is
|
|
by itself or is part of an aligned vector. If the latter, correct the
|
|
class definitions here. [Kit] }
|
|
|
|
if (classes[0].typ = X86_64_SSEDF_CLASS) and (classes[1].typ = X86_64_SSEUP_CLASS) then
|
|
classes[0].typ := X86_64_SSE_CLASS;
|
|
|
|
if (words>2) then
|
|
begin
|
|
{ When size > 16 bytes, if the first one isn't
|
|
X86_64_SSE_CLASS or any other ones aren't
|
|
X86_64_SSEUP_CLASS, everything should be passed in
|
|
memory... }
|
|
if (classes[0].typ<>X86_64_SSE_CLASS) then
|
|
begin
|
|
{ ... except if the calling convention is 'vectorcall', then
|
|
check to see if we don't have an HFA of 3 or 4 Doubles }
|
|
if (calloption <> pocall_vectorcall) or (words > 4) then
|
|
Exit(0);
|
|
|
|
for i := 0 to words - 1 do
|
|
if classes[i].typ <> X86_64_SSEDF_CLASS then
|
|
Exit(0);
|
|
|
|
Exit(words);
|
|
end;
|
|
|
|
if ((words shl 3) > def.aggregatealignment) then
|
|
{ The alignment is wrong for this vector size, hence it is unaligned }
|
|
Exit(0);
|
|
|
|
vecsize := 1;
|
|
maxvecsize := words;
|
|
|
|
for i:=1 to words-1 do
|
|
if (classes[i].typ=X86_64_SSEUP_CLASS) then
|
|
Inc(vecsize)
|
|
else
|
|
begin
|
|
{ Exceptional case. Check that we're not dealing an array of
|
|
aligned vectors that is itself aligned to a stricter
|
|
boundary (e.g. 4 XMM registers that can be merged into a
|
|
single ZMM register). }
|
|
if
|
|
(classes[i].typ <> X86_64_SSE_CLASS) or { Easy case first - is it actually another SSE vector? }
|
|
((vecsize and (vecsize - 1)) <> 0) or { If vecsize is not a power of two, then it is definitely not a valid vector }
|
|
(vecsize > maxvecsize) or ((maxvecsize < words) and (vecsize <> maxvecsize)) { Mixture of XMMs and YMMs, for example, is not valid }
|
|
then
|
|
Exit(0);
|
|
|
|
classes[i].typ := X86_64_SSEUP_CLASS;
|
|
maxvecsize := vecsize;
|
|
vecsize := 1;
|
|
end;
|
|
|
|
if vecsize <> maxvecsize then
|
|
{ Last vector is of a different size }
|
|
Exit(0);
|
|
|
|
if vecsize > 2 then
|
|
begin
|
|
{ Cannot use 256-bit and 512-bit vectors if we're not using AVX }
|
|
if not UseAVX then
|
|
Exit(0);
|
|
|
|
{ WARNING: There is currently no support for 256-bit and 512-bit
|
|
aligned vectors, so if an aggregate contains more than two
|
|
eightbyte words, it must be passed in memory. When 256-bit and
|
|
512-bit vectors are fully supported, remove the following
|
|
line. [Kit] }
|
|
Exit(0);
|
|
end;
|
|
end;
|
|
|
|
(* Final merger cleanup. *)
|
|
(* The first one must never be X86_64_SSEUP_CLASS or
|
|
X86_64_X87UP_CLASS. *)
|
|
if (classes[0].typ=X86_64_SSEUP_CLASS) or
|
|
(classes[0].typ=X86_64_X87UP_CLASS) then
|
|
internalerror(2010021402);
|
|
|
|
for i:=0 to words-1 do
|
|
begin
|
|
(* If one class is MEMORY, everything should be passed in
|
|
memory. *)
|
|
if (classes[i].typ=X86_64_MEMORY_CLASS) then
|
|
exit(0);
|
|
|
|
(* The X86_64_SSEUP_CLASS should be always preceded by
|
|
X86_64_SSE_CLASS or X86_64_SSEUP_CLASS. *)
|
|
if (classes[i].typ=X86_64_SSEUP_CLASS) and
|
|
(classes[i-1].typ<>X86_64_SSE_CLASS) and
|
|
(classes[i-1].typ<>X86_64_SSEUP_CLASS) then
|
|
begin
|
|
classes[i].typ:=X86_64_SSE_CLASS;
|
|
classes[i].def:=carraydef.getreusable_no_free(s32floattype,2);
|
|
end;
|
|
|
|
(* If X86_64_X87UP_CLASS isn't preceded by X86_64_X87_CLASS,
|
|
everything should be passed in memory. *)
|
|
if (classes[i].typ=X86_64_X87UP_CLASS) and
|
|
(classes[i-1].typ<>X86_64_X87_CLASS) then
|
|
exit(0);
|
|
|
|
(* FPC addition: because we store an extended in 10 bytes, the
|
|
X86_64_X87UP_CLASS can be replaced with e.g. INTEGER if an
|
|
extended is followed by e.g. an array [0..5] of byte -> we also
|
|
have to check whether each X86_64_X87_CLASS is followed by
|
|
X86_64_X87UP_CLASS -- if not, pass in memory
|
|
|
|
This cannot happen in the original ABI, because there
|
|
sizeof(extended) = 16 and hence nothing can be merged with
|
|
X86_64_X87UP_CLASS and change it into something else *)
|
|
if (classes[i].typ=X86_64_X87_CLASS) and
|
|
((i=(words-1)) or
|
|
(classes[i+1].typ<>X86_64_X87UP_CLASS)) then
|
|
exit(0);
|
|
end;
|
|
|
|
{$ifndef llvm}
|
|
{ FIXME: in case a record contains empty padding space, e.g. a
|
|
"single" field followed by a "double", then we have a problem
|
|
because the cgpara helpers cannot figure out that they should
|
|
skip 4 bytes after storing the single (LOC_MMREGISTER with size
|
|
OS_F32) to memory before storing the double -> for now scale
|
|
such locations always up to 64 bits, although this loads/stores
|
|
some superfluous data }
|
|
{ 1) the first part is 32 bit while there is still a second part }
|
|
if (classes[1].typ<>X86_64_NO_CLASS) then
|
|
case classes[0].typ of
|
|
X86_64_INTEGERSI_CLASS:
|
|
begin
|
|
classes[0].typ:=X86_64_INTEGER_CLASS;
|
|
classes[0].def:=s64inttype;
|
|
end;
|
|
X86_64_SSESF_CLASS:
|
|
begin
|
|
classes[0].typ:=X86_64_SSE_CLASS;
|
|
classes[0].def:=carraydef.getreusable_no_free(s32floattype,2);
|
|
end;
|
|
else
|
|
;
|
|
end;
|
|
{ 2) the second part is 32 bit, but the total size is > 12 bytes }
|
|
if (def.size>12) then
|
|
case classes[1].typ of
|
|
X86_64_INTEGERSI_CLASS:
|
|
begin
|
|
classes[1].typ:=X86_64_INTEGER_CLASS;
|
|
classes[1].def:=s64inttype;
|
|
end;
|
|
X86_64_SSESF_CLASS:
|
|
begin
|
|
classes[1].typ:=X86_64_SSE_CLASS;
|
|
classes[1].def:=carraydef.getreusable_no_free(s32floattype,2);
|
|
end;
|
|
else
|
|
;
|
|
end;
|
|
{$endif not llvm}
|
|
result:=words;
|
|
end;
|
|
|
|
|
|
function try_build_homogeneous_aggregate(def: tdef; words: longint; var classes: tx64paraclasses): longint;
|
|
var
|
|
i, vecsize, maxvecsize, veccount: longint;
|
|
{size, }byte_offset: aint;
|
|
vs: TFieldVarSym;
|
|
checkalignment: Boolean;
|
|
begin
|
|
if (words = 0) then
|
|
{ Should be at least 1 word at this point }
|
|
InternalError(2018013100);
|
|
|
|
case classes[0].typ of
|
|
X86_64_SSESF_CLASS:
|
|
begin
|
|
{ Should be an HFA of only a Single }
|
|
for i := 1 to High(classes) do
|
|
if classes[i].typ <> X86_64_NO_CLASS then
|
|
Exit(0);
|
|
|
|
result := 1;
|
|
end;
|
|
X86_64_SSEDF_CLASS:
|
|
begin
|
|
{ Possibly an HFA of Doubles }
|
|
|
|
if TAbstractRecordDef(def).symtable.symlist.count = 0 then
|
|
Exit(0);
|
|
|
|
{ Get the information and position on the last entry }
|
|
vs:=TFieldVarSym(TAbstractRecordDef(def).symtable.symlist[TAbstractRecordDef(def).symtable.symlist.count - 1]);
|
|
//size:=vs.vardef.size;
|
|
|
|
checkalignment:=true;
|
|
if not TAbstractRecordSymtable(TAbstractRecordDef(def).symtable).is_packed then
|
|
begin
|
|
byte_offset:=vs.fieldoffset;
|
|
//size:=vs.vardef.size;
|
|
end
|
|
else
|
|
begin
|
|
byte_offset:=vs.fieldoffset div 8;
|
|
if (vs.vardef.typ in [orddef,enumdef]) then
|
|
begin
|
|
{ calculate the number of bytes spanned by
|
|
this bitpacked field }
|
|
//size:=((vs.fieldoffset+vs.vardef.packedbitsize+7) div 8)-(vs.fieldoffset div 8);
|
|
{ our bitpacked fields are interpreted as always being
|
|
aligned, because unlike in C we don't have char:1, int:1
|
|
etc (so everything is basically a char:x) }
|
|
checkalignment:=false;
|
|
end
|
|
else
|
|
;//size:=vs.vardef.size;
|
|
end;
|
|
{ If [..] an object [..] contains unaligned fields, it has class
|
|
MEMORY }
|
|
if checkalignment and
|
|
(align(byte_offset,vs.vardef.structalignment)<>byte_offset) then
|
|
begin
|
|
result:=0;
|
|
exit;
|
|
end;
|
|
|
|
if words > 4 then
|
|
{ HFA too large }
|
|
Exit(0);
|
|
|
|
for i := 1 to words - 1 do
|
|
if classes[i].typ <> X86_64_SSEDF_CLASS then
|
|
Exit(0);
|
|
|
|
result := words;
|
|
end;
|
|
X86_64_SSE_CLASS:
|
|
begin
|
|
{ Determine the nature of the classes.
|
|
- If the SSE is by itself, then it is an HFA consisting of 2 Singles.
|
|
- If the SSE is followed by an SSESF, then it is an HFA consisting of 3 Singles.
|
|
- If the SSE is followed by an SSE and nothing else, then it is an HFA consisting of 4 Singles.
|
|
- If the SSE is followed by an SSE, but another class follows, then it is an HFA that is too large.
|
|
- If the SSE is followed by an SSEUP, then it is an HVA of some kind.
|
|
}
|
|
case classes[1].typ of
|
|
X86_64_NO_CLASS:
|
|
begin
|
|
for i := 2 to words - 1 do
|
|
if classes[i].typ <> X86_64_NO_CLASS then
|
|
{ Compound type }
|
|
Exit(0);
|
|
|
|
{ Split into 2 Singles again so they correctly fall into separate XMM registers }
|
|
classes[0].typ := X86_64_SSESF_CLASS;
|
|
if classes[0].def.typ = arraydef then
|
|
{ Break up the array }
|
|
classes[0].def := tdef(tarraydef(classes[0].def).elementdef); { Break up the array }
|
|
classes[1].typ := X86_64_SSESF_CLASS;
|
|
classes[1].def := classes[0].def;
|
|
result := 2;
|
|
end;
|
|
X86_64_SSESF_CLASS:
|
|
begin
|
|
for i := 2 to words - 1 do
|
|
if classes[i].typ <> X86_64_NO_CLASS then
|
|
{ Compound type }
|
|
Exit(0);
|
|
|
|
classes[2].typ := X86_64_SSESF_CLASS;
|
|
classes[2].def := classes[1].def; { Transfer class 1 to class 2 }
|
|
classes[0].typ := X86_64_SSESF_CLASS;
|
|
if classes[0].def.typ = arraydef then
|
|
{ Break up the array }
|
|
classes[0].def := tdef(tarraydef(classes[0].def).elementdef);
|
|
classes[1].typ := X86_64_SSESF_CLASS;
|
|
classes[1].def := classes[0].def;
|
|
result := 3;
|
|
end;
|
|
X86_64_SSE_CLASS:
|
|
begin
|
|
for i := 2 to words - 1 do
|
|
if classes[i].typ <> X86_64_NO_CLASS then
|
|
{ HFA too large (or not a true HFA) }
|
|
Exit(0);
|
|
|
|
if classes[0].def.typ = arraydef then
|
|
{ Break up the array }
|
|
classes[0].def := tdef(tarraydef(classes[0].def).elementdef);
|
|
if classes[1].def.typ = arraydef then
|
|
{ Break up the array }
|
|
classes[2].def := tdef(tarraydef(classes[1].def).elementdef);
|
|
|
|
classes[1].def := classes[0].def;
|
|
classes[3].def := classes[2].def;
|
|
|
|
classes[0].typ := X86_64_SSESF_CLASS;
|
|
classes[1].typ := X86_64_SSESF_CLASS;
|
|
classes[2].typ := X86_64_SSESF_CLASS;
|
|
classes[3].typ := X86_64_SSESF_CLASS;
|
|
result := 4;
|
|
end;
|
|
X86_64_SSEUP_CLASS:
|
|
begin
|
|
{ Determine vector size }
|
|
veccount := 1;
|
|
vecsize := 2;
|
|
maxvecsize := words;
|
|
|
|
for i := 2 to words - 1 do
|
|
if (classes[i].typ=X86_64_SSEUP_CLASS) then
|
|
Inc(vecsize)
|
|
else
|
|
begin
|
|
if
|
|
(classes[i].typ <> X86_64_SSE_CLASS) or { Easy case first - is it actually another SSE vector? }
|
|
((vecsize and (vecsize - 1)) <> 0) or { If vecsize is not a power of two, then it is definitely not a valid aggregate }
|
|
(vecsize > maxvecsize) or ((maxvecsize < words) and (vecsize <> maxvecsize)) { Mixture of XMMs and YMMs, for example, is not valid }
|
|
then
|
|
Exit(0);
|
|
|
|
Inc(veccount);
|
|
maxvecsize := vecsize;
|
|
vecsize := 1;
|
|
end;
|
|
|
|
if vecsize <> maxvecsize then
|
|
{ Last vector is of a different size }
|
|
Exit(0);
|
|
|
|
if veccount > 4 then
|
|
{ HVA too large }
|
|
Exit(0);
|
|
|
|
Result := words;
|
|
end;
|
|
else
|
|
Exit(0);
|
|
end;
|
|
end;
|
|
else
|
|
Exit(0);
|
|
end;
|
|
|
|
end;
|
|
|
|
|
|
function classify_record(calloption: tproccalloption; def: tdef; parentdef: tdef; varspez: tvarspez; var classes: tx64paraclasses; byte_offset: aint): longint;
|
|
var
|
|
vs: tfieldvarsym;
|
|
size,
|
|
new_byte_offset: aint;
|
|
i,
|
|
words,
|
|
num: longint;
|
|
checkalignment: boolean;
|
|
begin
|
|
result:=init_aggregate_classification(calloption,def,parentdef,varspez,byte_offset,words,classes);
|
|
if (words=0) then
|
|
exit;
|
|
|
|
(* Merge the fields of the structure. *)
|
|
for i:=0 to tabstractrecorddef(def).symtable.symlist.count-1 do
|
|
begin
|
|
if not is_normal_fieldvarsym(tsym(tabstractrecorddef(def).symtable.symlist[i])) then
|
|
continue;
|
|
vs:=tfieldvarsym(tabstractrecorddef(def).symtable.symlist[i]);
|
|
checkalignment:=true;
|
|
if not tabstractrecordsymtable(tabstractrecorddef(def).symtable).is_packed then
|
|
begin
|
|
new_byte_offset:=byte_offset+vs.fieldoffset;
|
|
size:=vs.vardef.size;
|
|
end
|
|
else
|
|
begin
|
|
new_byte_offset:=byte_offset+vs.fieldoffset div 8;
|
|
if (vs.vardef.typ in [orddef,enumdef]) then
|
|
begin
|
|
{ calculate the number of bytes spanned by
|
|
this bitpacked field }
|
|
size:=((vs.fieldoffset+vs.vardef.packedbitsize+7) div 8)-(vs.fieldoffset div 8);
|
|
{ our bitpacked fields are interpreted as always being
|
|
aligned, because unlike in C we don't have char:1, int:1
|
|
etc (so everything is basically a char:x) }
|
|
checkalignment:=false;
|
|
end
|
|
else
|
|
size:=vs.vardef.size;
|
|
end;
|
|
{ If [..] an object [..] contains unaligned fields, it has class
|
|
MEMORY }
|
|
if checkalignment and
|
|
(align(new_byte_offset,vs.vardef.structalignment)<>new_byte_offset) then
|
|
begin
|
|
result:=0;
|
|
exit;
|
|
end;
|
|
num:=classify_aggregate_element(calloption,vs.vardef,def,varspez,size,classes,new_byte_offset);
|
|
if (num=0) then
|
|
exit(0);
|
|
end;
|
|
|
|
result:=finalize_aggregate_classification(calloption,def,words,classes);
|
|
|
|
{ There is still one case where it might not have to be passed on the
|
|
stack, and that's a homogeneous vector aggregate (HVA) or a
|
|
homogeneous float aggregate (HFA) under vectorcall. }
|
|
if (calloption = pocall_vectorcall) then
|
|
begin
|
|
if (result = 0) then
|
|
result := try_build_homogeneous_aggregate(def,words,classes)
|
|
else
|
|
{ If we're dealing with an HFA that has 3 or 4 Singles, pairs of
|
|
Singles may be merged into a single SSE_CLASS, which must be
|
|
split into separate SSESF_CLASS references for vectorcall; this
|
|
is only performed in "try_build_homogeneous_aggregate" and not
|
|
elsewhere, so accommodate for this exceptional case. [Kit] }
|
|
if (result = 2) then
|
|
begin
|
|
num := try_build_homogeneous_aggregate(def,words,classes);
|
|
if num <> 0 then
|
|
{ If it's equal to zero, just pass 2 and handle the record
|
|
type normally }
|
|
result := num;
|
|
end;
|
|
end;
|
|
end;
|
|
|
|
|
|
function classify_normal_array(calloption: tproccalloption; def: tarraydef; parentdef: tdef; varspez: tvarspez; var classes: tx64paraclasses; byte_offset: aint): longint;
|
|
var
|
|
i, elecount: aword;
|
|
size,
|
|
elesize,
|
|
new_byte_offset,
|
|
bitoffset: aint;
|
|
words,
|
|
num: longint;
|
|
isbitpacked: boolean;
|
|
begin
|
|
size:=0;
|
|
bitoffset:=0;
|
|
result:=init_aggregate_classification(calloption,def,parentdef,varspez,byte_offset,words,classes);
|
|
|
|
if (words=0) then
|
|
exit;
|
|
|
|
isbitpacked:=is_packed_array(def);
|
|
if not isbitpacked then
|
|
begin
|
|
elesize:=def.elesize;
|
|
size:=elesize;
|
|
end
|
|
else
|
|
begin
|
|
elesize:=def.elepackedbitsize;
|
|
bitoffset:=0;
|
|
end;
|
|
|
|
(* Merge the elements of the array. *)
|
|
i:=0;
|
|
elecount:=def.elecount;
|
|
repeat
|
|
if not isbitpacked then
|
|
begin
|
|
{ size does not change }
|
|
new_byte_offset:=byte_offset+i*elesize;
|
|
{ If [..] an object [..] contains unaligned fields, it has class
|
|
MEMORY }
|
|
if align(new_byte_offset,def.alignment)<>new_byte_offset then
|
|
begin
|
|
result:=0;
|
|
exit;
|
|
end;
|
|
end
|
|
else
|
|
begin
|
|
{ calculate the number of bytes spanned by this bitpacked
|
|
element }
|
|
size:=((bitoffset+elesize+7) div 8)-(bitoffset div 8);
|
|
new_byte_offset:=byte_offset+(elesize*i) div 8;
|
|
{ bit offset of next element }
|
|
inc(bitoffset,elesize);
|
|
end;
|
|
num:=classify_aggregate_element(calloption,def.elementdef,def,varspez,size,classes,new_byte_offset);
|
|
if (num=0) then
|
|
exit(0);
|
|
inc(i);
|
|
until (i=elecount);
|
|
|
|
result:=finalize_aggregate_classification(calloption,def,words,classes);
|
|
end;
|
|
|
|
|
|
function classify_argument(calloption: tproccalloption; def: tdef; parentdef: tdef; varspez: tvarspez; real_size: aint; var classes: tx64paraclasses; byte_offset: aint; round_to_8: Boolean): longint;
|
|
var
|
|
rounded_offset: aint;
|
|
begin
|
|
if round_to_8 then
|
|
rounded_offset := byte_offset mod 8
|
|
else
|
|
rounded_offset := byte_offset;
|
|
|
|
case def.typ of
|
|
orddef,
|
|
enumdef,
|
|
pointerdef,
|
|
classrefdef:
|
|
result:=classify_as_integer_argument(def,real_size,classes,rounded_offset);
|
|
formaldef:
|
|
result:=classify_as_integer_argument(voidpointertype,voidpointertype.size,classes,rounded_offset);
|
|
floatdef:
|
|
begin
|
|
classes[0].def:=def;
|
|
case tfloatdef(def).floattype of
|
|
s32real:
|
|
begin
|
|
if (byte_offset mod 8) = 0 then { Check regardless of the round_to_8 flag }
|
|
begin
|
|
if Assigned(parentdef) and ((parentdef.aggregatealignment mod 16) = 0) and ((byte_offset mod parentdef.aggregatealignment) <> 0) then
|
|
{ Third element of an aligned vector }
|
|
classes[0].typ:=X86_64_SSEUP_CLASS
|
|
else
|
|
classes[0].typ:=X86_64_SSESF_CLASS
|
|
end
|
|
else
|
|
begin
|
|
if Assigned(parentdef) and ((parentdef.aggregatealignment mod 16) = 0) then
|
|
{ Fourth element of an aligned vector }
|
|
classes[0].typ:=X86_64_SSEUP_CLASS
|
|
else
|
|
{ if we have e.g. a record with two successive "single"
|
|
fields, we need a 64 bit rather than a 32 bit load }
|
|
classes[0].typ:=X86_64_SSE_CLASS;
|
|
|
|
classes[0].def:=carraydef.getreusable_no_free(s32floattype,2);
|
|
end;
|
|
result:=1;
|
|
end;
|
|
s64real:
|
|
begin
|
|
if Assigned(parentdef) and ((parentdef.aggregatealignment mod 16) = 0) and ((byte_offset mod parentdef.aggregatealignment) <> 0) then
|
|
{ Aligned vector of type double }
|
|
classes[0].typ:=X86_64_SSEUP_CLASS
|
|
else
|
|
classes[0].typ:=X86_64_SSEDF_CLASS;
|
|
result:=1;
|
|
end;
|
|
s80real,
|
|
sc80real:
|
|
begin
|
|
classes[0].typ:=X86_64_X87_CLASS;
|
|
classes[1].typ:=X86_64_X87UP_CLASS;
|
|
classes[1].def:=def;
|
|
result:=2;
|
|
end;
|
|
s64comp,
|
|
s64currency:
|
|
begin
|
|
classes[0].typ:=X86_64_INTEGER_CLASS;
|
|
result:=1;
|
|
end;
|
|
s128real:
|
|
begin
|
|
classes[0].typ:=X86_64_SSE_CLASS;
|
|
classes[0].def:=carraydef.getreusable_no_free(s32floattype,2);
|
|
classes[1].typ:=X86_64_SSEUP_CLASS;
|
|
classes[1].def:=carraydef.getreusable_no_free(s32floattype,2);
|
|
result:=2;
|
|
end;
|
|
end;
|
|
end;
|
|
recorddef:
|
|
result:=classify_record(calloption,def,parentdef,varspez,classes,rounded_offset);
|
|
objectdef:
|
|
begin
|
|
if is_object(def) then
|
|
{ pass by reference, like ppc and i386 }
|
|
result:=0
|
|
else
|
|
{ all kinds of pointer types: class, objcclass, interface, ... }
|
|
result:=classify_as_integer_argument(def,voidpointertype.size,classes,rounded_offset);
|
|
end;
|
|
setdef:
|
|
begin
|
|
if is_smallset(def) then
|
|
result:=classify_as_integer_argument(def,def.size,classes,rounded_offset)
|
|
else
|
|
result:=0;
|
|
end;
|
|
stringdef:
|
|
begin
|
|
if (tstringdef(def).stringtype in [st_shortstring,st_longstring]) then
|
|
result:=0
|
|
else
|
|
result:=classify_as_integer_argument(def,def.size,classes,rounded_offset);
|
|
end;
|
|
arraydef:
|
|
begin
|
|
{ a dynamic array is treated like a pointer }
|
|
if is_dynamic_array(def) then
|
|
result:=classify_as_integer_argument(def,voidpointertype.size,classes,rounded_offset)
|
|
{ other special arrays are passed on the stack }
|
|
else if is_open_array(def) or
|
|
is_array_of_const(def) then
|
|
result:=0
|
|
else
|
|
{ normal array }
|
|
result:=classify_normal_array(calloption,tarraydef(def),parentdef,varspez,classes,rounded_offset);
|
|
end;
|
|
{ the file record is definitely too big }
|
|
filedef:
|
|
result:=0;
|
|
procvardef:
|
|
begin
|
|
if (po_methodpointer in tprocvardef(def).procoptions) then
|
|
begin
|
|
{ treat as TMethod record }
|
|
def:=search_system_type('TMETHOD').typedef;
|
|
result:=classify_argument(calloption,def,parentdef,varspez,def.size,classes,rounded_offset, False);
|
|
end
|
|
else
|
|
{ pointer }
|
|
result:=classify_as_integer_argument(def,def.size,classes,rounded_offset);
|
|
end;
|
|
variantdef:
|
|
begin
|
|
{ same as tvardata record }
|
|
def:=search_system_type('TVARDATA').typedef;
|
|
result:=classify_argument(calloption,def,parentdef,varspez,def.size,classes,rounded_offset, False);
|
|
end;
|
|
undefineddef:
|
|
{ show shall we know?
|
|
since classify_argument is called during parsing, see tw27685.pp,
|
|
we handle undefineddef here }
|
|
result:=0;
|
|
errordef:
|
|
{ error message should have been thrown already before, so avoid only
|
|
an internal error }
|
|
result:=0;
|
|
else
|
|
internalerror(2010021405);
|
|
end;
|
|
end;
|
|
|
|
|
|
{ Returns the size of a single element in the aggregate, or the entire vector, if it is one of these types, 0 otherwise }
|
|
function is_simd_vector_type_or_homogeneous_aggregate(calloption: tproccalloption; def: tdef; varspez: tvarspez): aint;
|
|
var
|
|
numclasses,i,vecsize,veccount,maxvecsize:longint;
|
|
classes: tx64paraclasses;
|
|
firstclass: tx64paraclasstype;
|
|
begin
|
|
for i := Low(classes) to High(classes) do
|
|
begin
|
|
classes[i].typ := X86_64_NO_CLASS;
|
|
classes[i].def := nil;
|
|
end;
|
|
|
|
numclasses:=classify_argument(calloption,def,nil,vs_value,def.size,classes,0,False);
|
|
if numclasses = 0 then
|
|
Exit(0);
|
|
|
|
firstclass := classes[0].typ;
|
|
case firstclass of
|
|
X86_64_SSESF_CLASS: { Only valid if the aggregate contains a lone Single }
|
|
begin
|
|
if (numclasses = 1) and (calloption = pocall_vectorcall) then
|
|
Result := 4
|
|
else
|
|
Result := 0;
|
|
Exit;
|
|
end;
|
|
X86_64_SSEDF_CLASS:
|
|
begin
|
|
if (numclasses > 1) and (calloption <> pocall_vectorcall) then
|
|
Result := 0
|
|
else
|
|
begin
|
|
for i := 1 to numclasses - 1 do
|
|
if classes[i].typ <> X86_64_SSEDF_CLASS then
|
|
begin
|
|
Result := 0;
|
|
Exit;
|
|
end;
|
|
|
|
if (def.size div 8) <> numclasses then
|
|
{ Wrong alignment or compound size }
|
|
Result := 0
|
|
else
|
|
Result := 8;
|
|
end;
|
|
end;
|
|
X86_64_SSE_CLASS:
|
|
begin
|
|
maxvecsize := numclasses * 2;
|
|
|
|
if numclasses = 1 then
|
|
begin
|
|
{ 2 Singles }
|
|
if calloption = pocall_vectorcall then
|
|
Result := 4
|
|
else
|
|
Result := 0;
|
|
|
|
Exit;
|
|
end;
|
|
|
|
if classes[1].typ = X86_64_SSESF_CLASS then
|
|
begin
|
|
{ 3 Singles }
|
|
if numclasses <> 2 then
|
|
Result := 0
|
|
else
|
|
Result := 4;
|
|
|
|
Exit;
|
|
end;
|
|
|
|
vecsize := 2;
|
|
veccount := 1;
|
|
for i := 1 to numclasses - 1 do
|
|
case classes[i].typ of
|
|
X86_64_SSEUP_CLASS:
|
|
Inc(vecsize, 2);
|
|
X86_64_SSE_CLASS:
|
|
begin
|
|
if (maxvecsize < numclasses * 2) and (vecsize <> maxvecsize) then
|
|
{ Different vector sizes }
|
|
Exit(0);
|
|
|
|
maxvecsize := vecsize;
|
|
vecsize := 2;
|
|
Inc(veccount);
|
|
end;
|
|
else
|
|
Exit(0);
|
|
end;
|
|
|
|
if vecsize <> maxvecsize then
|
|
{ Last vector has to be the same size }
|
|
Exit(0);
|
|
|
|
{ Either an HFA with 4 Singles, or an HVA with up to 4 vectors
|
|
(or a lone SIMD vector if veccount = 1) }
|
|
if (veccount < 4) then
|
|
begin
|
|
if (veccount > 1) and (calloption <> pocall_vectorcall) then
|
|
Result := 0
|
|
else
|
|
if vecsize = 2 then
|
|
{ Packed, unaligned array of Singles }
|
|
Result := 4
|
|
else
|
|
Result := vecsize * 8
|
|
end
|
|
else
|
|
Result := 0;
|
|
end;
|
|
else
|
|
Exit(0);
|
|
end;
|
|
end;
|
|
|
|
|
|
procedure getvalueparaloc(calloption: tproccalloption;varspez:tvarspez;def:tdef;var classes: tx64paraclasses);
|
|
var
|
|
size: aint;
|
|
i: longint;
|
|
numclasses: longint;
|
|
begin
|
|
{ init the classes array, because even if classify_argument inits only
|
|
one element we copy both to loc1/loc2 in case "1" is returned }
|
|
for i:=low(classes) to high(classes) do
|
|
begin
|
|
classes[i].typ:=X86_64_NO_CLASS;
|
|
classes[i].def:=nil;
|
|
end;
|
|
|
|
{ def.size internalerrors for open arrays and dynamic arrays, since
|
|
their size cannot be determined at compile-time.
|
|
classify_argument does not look at the realsize argument for arrays
|
|
cases, but we obviously do have to pass something... }
|
|
if is_special_array(def) then
|
|
size:=-1
|
|
else
|
|
size:=def.size;
|
|
numclasses:=classify_argument(calloption,def,nil,varspez,size,classes,0,False);
|
|
case numclasses of
|
|
0:
|
|
begin
|
|
classes[0].typ:=X86_64_MEMORY_CLASS;
|
|
classes[0].def:=def;
|
|
end;
|
|
1..4:
|
|
begin
|
|
{ If the class is X87, X87UP or COMPLEX_X87, it is passed in memory }
|
|
for i := 0 to numclasses - 1 do
|
|
begin
|
|
if classes[i].typ in [X86_64_X87_CLASS,X86_64_X87UP_CLASS,X86_64_COMPLEX_X87_CLASS] then
|
|
classes[i].typ:=X86_64_MEMORY_CLASS;
|
|
end;
|
|
end;
|
|
else
|
|
{ 8 can happen for _m512 vectors, but are not yet supported }
|
|
internalerror(2010021501);
|
|
end;
|
|
end;
|
|
|
|
|
|
function tcpuparamanager.ret_in_param(def:tdef;pd:tabstractprocdef):boolean;
|
|
var
|
|
classes: tx64paraclasses;
|
|
numclasses: longint;
|
|
begin
|
|
if handle_common_ret_in_param(def,pd,result) then
|
|
exit;
|
|
fillchar(classes,sizeof(classes),0);
|
|
case def.typ of
|
|
{ for records it depends on their contents and size }
|
|
recorddef,
|
|
{ make sure we handle 'procedure of object' correctly }
|
|
procvardef:
|
|
begin
|
|
numclasses:=classify_argument(pd.proccalloption,def,nil,vs_value,def.size,classes,0,False);
|
|
result:=(numclasses=0);
|
|
end;
|
|
else
|
|
result:=inherited ret_in_param(def,pd);
|
|
end;
|
|
end;
|
|
|
|
|
|
function tcpuparamanager.param_use_paraloc(const cgpara:tcgpara):boolean;
|
|
var
|
|
paraloc : pcgparalocation;
|
|
begin
|
|
if not assigned(cgpara.location) then
|
|
internalerror(200410102);
|
|
result:=true;
|
|
{ All locations are LOC_REFERENCE }
|
|
paraloc:=cgpara.location;
|
|
while assigned(paraloc) do
|
|
begin
|
|
if (paraloc^.loc<>LOC_REFERENCE) then
|
|
begin
|
|
result:=false;
|
|
exit;
|
|
end;
|
|
paraloc:=paraloc^.next;
|
|
end;
|
|
end;
|
|
|
|
|
|
{ true if a parameter is too large to copy and only the address is pushed }
|
|
function tcpuparamanager.push_addr_param(varspez:tvarspez;def : tdef;calloption : tproccalloption) : boolean;
|
|
var
|
|
classes: tx64paraclasses;
|
|
numclasses: longint;
|
|
begin
|
|
fillchar(classes,sizeof(classes),0);
|
|
result:=false;
|
|
{ var,out,constref always require address }
|
|
if varspez in [vs_var,vs_out,vs_constref] then
|
|
begin
|
|
result:=true;
|
|
exit;
|
|
end;
|
|
{ Only vs_const, vs_value here }
|
|
case def.typ of
|
|
formaldef :
|
|
result:=true;
|
|
recorddef :
|
|
begin
|
|
{ MetroWerks Pascal: const records always passed by reference
|
|
(for Mac OS X interfaces) }
|
|
if (calloption=pocall_mwpascal) and
|
|
(varspez=vs_const) then
|
|
result:=true
|
|
{ Win ABI depends on size to pass it in a register or not }
|
|
else if x86_64_use_ms_abi(calloption) then
|
|
begin
|
|
if calloption = pocall_vectorcall then
|
|
begin
|
|
{ "vectorcall" has the addition that it allows for aligned SSE types }
|
|
result :=
|
|
not aggregate_in_registers_win64(varspez,def.size) and
|
|
(is_simd_vector_type_or_homogeneous_aggregate(pocall_vectorcall,def,vs_value) = 0);
|
|
end
|
|
else
|
|
result:=not aggregate_in_registers_win64(varspez,def.size)
|
|
end
|
|
{ pass constant parameters that would be passed via memory by
|
|
reference for non-cdecl/cppdecl, and make sure that the tmethod
|
|
record (size=16) is passed the same way as a complex procvar }
|
|
else if ((varspez=vs_const) and
|
|
not(calloption in cdecl_pocalls)) or
|
|
(def.size=16) then
|
|
begin
|
|
numclasses:=classify_argument(calloption,def,nil,vs_value,def.size,classes,0,False);
|
|
result:=numclasses=0;
|
|
end
|
|
else
|
|
{ SysV ABI always passes it as value parameter }
|
|
result:=false;
|
|
end;
|
|
arraydef :
|
|
begin
|
|
{ cdecl array of const need to be ignored and therefor be pushed
|
|
as value parameter with length 0 }
|
|
if ((calloption in cdecl_pocalls) and
|
|
is_array_of_const(def)) or
|
|
is_dynamic_array(def) then
|
|
result:=false
|
|
else if (calloption = pocall_vectorcall) then
|
|
begin
|
|
{ Pass all arrays by reference unless they are a valid, aligned SIMD type (arrays can't be homogeneous aggregates) }
|
|
result := (is_simd_vector_type_or_homogeneous_aggregate(pocall_vectorcall,def,vs_value) = 0);
|
|
end
|
|
else
|
|
{ pass all arrays by reference to be compatible with C (passing
|
|
an array by value (= copying it on the stack) does not exist,
|
|
because an array is the same as a pointer there }
|
|
result:=true
|
|
end;
|
|
objectdef :
|
|
begin
|
|
{ don't treat objects like records, because we only know wheter
|
|
or not they'll have a VMT after the entire object is parsed
|
|
-> if they are used as function result from one of their own
|
|
methods, their size can still change after we've determined
|
|
whether this function result should be returned by reference or
|
|
by value }
|
|
if is_object(def) then
|
|
result:=true;
|
|
end;
|
|
variantdef,
|
|
stringdef,
|
|
procvardef,
|
|
setdef :
|
|
begin
|
|
numclasses:=classify_argument(calloption,def,nil,vs_value,def.size,classes,0,False);
|
|
result:=numclasses=0;
|
|
end;
|
|
else
|
|
;
|
|
end;
|
|
end;
|
|
|
|
|
|
function tcpuparamanager.get_volatile_registers_int(calloption : tproccalloption):tcpuregisterset;
|
|
begin
|
|
if x86_64_use_ms_abi(calloption) then
|
|
result:=[RS_RAX,RS_RCX,RS_RDX,RS_R8,RS_R9,RS_R10,RS_R11]
|
|
else
|
|
result:=[RS_RAX,RS_RCX,RS_RDX,RS_RSI,RS_RDI,RS_R8,RS_R9,RS_R10,RS_R11];
|
|
end;
|
|
|
|
|
|
function tcpuparamanager.get_volatile_registers_mm(calloption : tproccalloption):tcpuregisterset;
|
|
begin
|
|
if x86_64_use_ms_abi(calloption) then
|
|
result:=[RS_XMM0..RS_XMM5]
|
|
else
|
|
result:=[RS_XMM0..RS_XMM15];
|
|
|
|
{ Don't list registers that aren't available }
|
|
if FPUX86_HAS_32MMREGS in fpu_capabilities[current_settings.fputype] then
|
|
result:=result+[RS_XMM16..RS_XMM31];
|
|
end;
|
|
|
|
|
|
function tcpuparamanager.get_volatile_registers_fpu(calloption : tproccalloption):tcpuregisterset;
|
|
begin
|
|
result:=[RS_ST0..RS_ST7];
|
|
end;
|
|
|
|
|
|
function tcpuparamanager.get_saved_registers_int(calloption : tproccalloption):tcpuregisterarray;
|
|
const
|
|
win64_saved_std_regs : tcpuregisterarray = (RS_RBX,RS_RDI,RS_RSI,RS_R12,RS_R13,RS_R14,RS_R15,RS_RBP);
|
|
others_saved_std_regs : tcpuregisterarray = (RS_RBX,RS_R12,RS_R13,RS_R14,RS_R15);
|
|
begin
|
|
if tcgx86_64(cg).use_ms_abi then
|
|
result:=win64_saved_std_regs
|
|
else
|
|
result:=others_saved_std_regs;
|
|
end;
|
|
|
|
|
|
function tcpuparamanager.get_saved_registers_mm(calloption: tproccalloption):tcpuregisterarray;
|
|
const
|
|
win64_saved_xmm_regs : tcpuregisterarray = (RS_XMM6,RS_XMM7,
|
|
RS_XMM8,RS_XMM9,RS_XMM10,RS_XMM11,RS_XMM12,RS_XMM13,RS_XMM14,RS_XMM15);
|
|
begin
|
|
if tcgx86_64(cg).use_ms_abi then
|
|
result:=win64_saved_xmm_regs
|
|
else
|
|
SetLength(result,0);
|
|
end;
|
|
|
|
|
|
function tcpuparamanager.get_funcretloc(p : tabstractprocdef; side: tcallercallee; forcetempdef: tdef): tcgpara;
|
|
const
|
|
intretregs: array[0..1] of tregister = (NR_FUNCTION_RETURN_REG,NR_FUNCTION_RETURN_REG_HIGH);
|
|
mmretregs: array[0..1] of tregister = (NR_MM_RESULT_REG,NR_MM_RESULT_REG_HIGH);
|
|
mmretregs_vectorcall: array[0..3] of tregister = (NR_XMM0,NR_XMM1,NR_XMM2,NR_XMM3);
|
|
|
|
var
|
|
classes: tx64paraclasses;
|
|
i,j,
|
|
numclasses: longint;
|
|
intretregidx,
|
|
mmretregidx: longint;
|
|
retcgsize : tcgsize;
|
|
paraloc : pcgparalocation;
|
|
begin
|
|
if set_common_funcretloc_info(p,forcetempdef,retcgsize,result) then
|
|
exit;
|
|
|
|
{ Return in FPU register? -> don't use classify_argument(), because
|
|
currency and comp need special treatment here (they are integer class
|
|
when passing as parameter, but LOC_FPUREGISTER as function result) }
|
|
if result.def.typ=floatdef then
|
|
begin
|
|
paraloc:=result.add_location;
|
|
paraloc^.def:=result.def;
|
|
case tfloatdef(result.def).floattype of
|
|
s32real:
|
|
begin
|
|
paraloc^.loc:=LOC_MMREGISTER;
|
|
paraloc^.register:=newreg(R_MMREGISTER,RS_MM_RESULT_REG,R_SUBMMS);
|
|
paraloc^.size:=OS_F32;
|
|
end;
|
|
s64real:
|
|
begin
|
|
paraloc^.loc:=LOC_MMREGISTER;
|
|
paraloc^.register:=newreg(R_MMREGISTER,RS_MM_RESULT_REG,R_SUBMMD);
|
|
paraloc^.size:=OS_F64;
|
|
end;
|
|
{ the first two only exist on targets with an x87, on others
|
|
they are replace by int64 }
|
|
s64currency,
|
|
s64comp,
|
|
s80real,
|
|
sc80real:
|
|
begin
|
|
paraloc^.loc:=LOC_FPUREGISTER;
|
|
paraloc^.register:=NR_FPU_RESULT_REG;
|
|
paraloc^.size:=retcgsize;
|
|
end;
|
|
else
|
|
internalerror(200405034);
|
|
end;
|
|
end
|
|
else
|
|
{ Return in register }
|
|
begin
|
|
fillchar(classes,sizeof(classes),0);
|
|
numclasses:=classify_argument(p.proccalloption,result.def,nil,vs_value,result.def.size,classes,0,False);
|
|
{ this would mean a memory return }
|
|
if (numclasses=0) then
|
|
begin
|
|
{ we got an error before, so we just skip all the return type generation }
|
|
if result.def.typ=errordef then
|
|
exit;
|
|
internalerror(2010021502);
|
|
end;
|
|
|
|
if (numclasses > MAX_PARA_CLASSES) then
|
|
internalerror(2010021503);
|
|
|
|
intretregidx:=0;
|
|
mmretregidx:=0;
|
|
i := 0;
|
|
{ We can't use a for-loop here because the treatment of the SSEUP class requires skipping over i's }
|
|
while i < numclasses do
|
|
begin
|
|
paraloc:=result.add_location;
|
|
paraloc^.def:=classes[i].def;
|
|
case classes[i].typ of
|
|
X86_64_INTEGERSI_CLASS,
|
|
X86_64_INTEGER_CLASS:
|
|
begin
|
|
paraloc^.loc:=LOC_REGISTER;
|
|
paraloc^.register:=intretregs[intretregidx];
|
|
if classes[i].typ=X86_64_INTEGER_CLASS then
|
|
begin
|
|
paraloc^.size:=OS_64;
|
|
if paraloc^.def.size<>8 then
|
|
paraloc^.def:=u64inttype;
|
|
end
|
|
else if result.intsize in [1,2,4] then
|
|
begin
|
|
{ The ABI does not require sign/zero-extended function
|
|
results, but older versions of clang did so and
|
|
on Darwin current versions of clang keep doing so
|
|
for backward compatibility. On other platforms, it
|
|
doesn't and hence we don't either }
|
|
if (i=0) and
|
|
not(target_info.system in systems_darwin) and
|
|
(result.intsize in [1,2]) then
|
|
begin
|
|
paraloc^.size:=int_cgsize(result.intsize);
|
|
paraloc^.def:=cgsize_orddef(paraloc^.size);
|
|
end
|
|
else
|
|
paraloc^.size:=def_cgsize(paraloc^.def);
|
|
end
|
|
else
|
|
begin
|
|
paraloc^.size:=OS_32;
|
|
if paraloc^.def.size<>4 then
|
|
paraloc^.def:=u32inttype;
|
|
end;
|
|
setsubreg(paraloc^.register,cgsize2subreg(R_INTREGISTER,paraloc^.size));
|
|
inc(intretregidx);
|
|
end;
|
|
X86_64_SSE_CLASS,
|
|
X86_64_SSEUP_CLASS,
|
|
X86_64_SSESF_CLASS,
|
|
X86_64_SSEDF_CLASS:
|
|
begin
|
|
paraloc^.loc:=LOC_MMREGISTER;
|
|
|
|
if p.proccalloption = pocall_vectorcall then
|
|
paraloc^.register:=mmretregs_vectorcall[mmretregidx]
|
|
else
|
|
paraloc^.register:=mmretregs[mmretregidx];
|
|
|
|
case classes[i].typ of
|
|
X86_64_SSESF_CLASS:
|
|
begin
|
|
setsubreg(paraloc^.register,R_SUBMMS);
|
|
paraloc^.size:=OS_F32;
|
|
end;
|
|
X86_64_SSEDF_CLASS:
|
|
begin
|
|
setsubreg(paraloc^.register,R_SUBMMD);
|
|
paraloc^.size:=OS_F64;
|
|
end;
|
|
X86_64_SSE_CLASS:
|
|
begin
|
|
j := 1;
|
|
if not (x86_64_use_ms_abi(p.proccalloption) and (p.proccalloption <> pocall_vectorcall)) then
|
|
while i + j <= numclasses do
|
|
begin
|
|
if classes[i+j].typ <> X86_64_SSEUP_CLASS then
|
|
Break;
|
|
|
|
Inc(j);
|
|
end;
|
|
|
|
{ j = MM word count }
|
|
Inc(i, j - 1);
|
|
case j of
|
|
1:
|
|
begin
|
|
setsubreg(paraloc^.register,R_SUBQ);
|
|
paraloc^.size:=OS_M64;
|
|
end;
|
|
2:
|
|
begin
|
|
setsubreg(paraloc^.register,R_SUBMMX);
|
|
paraloc^.size:=OS_M128;
|
|
end;
|
|
4:
|
|
begin
|
|
setsubreg(paraloc^.register,R_SUBMMY);
|
|
paraloc^.size:=OS_M256; { Currently unsupported }
|
|
end;
|
|
8:
|
|
begin
|
|
setsubreg(paraloc^.register,R_SUBMMZ);
|
|
paraloc^.size:=OS_M512; { Currently unsupported }
|
|
end;
|
|
else
|
|
InternalError(2018012901);
|
|
end;
|
|
paraloc^.def:=carraydef.getreusable_no_free_vector(paraloc^.def,j);
|
|
end;
|
|
else
|
|
if (x86_64_use_ms_abi(p.proccalloption) and (p.proccalloption <> pocall_vectorcall)) then
|
|
begin
|
|
setsubreg(paraloc^.register,R_SUBQ);
|
|
paraloc^.size:=OS_M64;
|
|
end
|
|
else
|
|
{ Should not get here }
|
|
InternalError(2018012900);
|
|
end;
|
|
inc(mmretregidx);
|
|
end;
|
|
X86_64_X87_CLASS:
|
|
begin
|
|
{ must be followed by X86_64_X87UP_CLASS and that must be
|
|
the last class }
|
|
if (i<>(numclasses-2)) or
|
|
(classes[i+1].typ<>X86_64_X87UP_CLASS) then
|
|
internalerror(2014110401);
|
|
paraloc^.loc:=LOC_FPUREGISTER;
|
|
paraloc^.register:=NR_FPU_RESULT_REG;
|
|
paraloc^.size:=OS_F80;
|
|
break;
|
|
end;
|
|
X86_64_NO_CLASS:
|
|
begin
|
|
{ empty record/array }
|
|
if (i<>0) or
|
|
(numclasses<>1) then
|
|
internalerror(2010060302);
|
|
paraloc^.loc:=LOC_VOID;
|
|
paraloc^.def:=voidtype;
|
|
end;
|
|
else
|
|
internalerror(2010021504);
|
|
end;
|
|
Inc(i);
|
|
end;
|
|
end;
|
|
end;
|
|
|
|
|
|
procedure tcpuparamanager.create_paraloc_info_intern(p : tabstractprocdef; side: tcallercallee;paras:tparalist;
|
|
var intparareg,mmparareg,parasize:longint;varargsparas: boolean);
|
|
var
|
|
hp : tparavarsym;
|
|
fdef,
|
|
paradef,
|
|
paralocdef : tdef;
|
|
paraloc : pcgparalocation;
|
|
subreg : tsubregister;
|
|
pushaddr : boolean;
|
|
paracgsize : tcgsize;
|
|
{ loc[2] onwards are only used for _m256 under vectorcall/SysV, and
|
|
homogeneous vector aggregates and homogeneous float aggreates under
|
|
the vectorcall calling convention. [Kit] }
|
|
loc : tx64paraclasses;
|
|
needintloc,
|
|
needmmloc,
|
|
paralen,
|
|
locidx,
|
|
i,j,
|
|
varalign,
|
|
procparaalign,
|
|
paraalign : longint;
|
|
use_ms_abi : boolean;
|
|
begin
|
|
procparaalign:=get_para_align(p.proccalloption);
|
|
use_ms_abi:=x86_64_use_ms_abi(p.proccalloption);
|
|
{ Register parameters are assigned from left to right }
|
|
for i:=0 to paras.count-1 do
|
|
begin
|
|
hp:=tparavarsym(paras[i]);
|
|
paradef:=hp.vardef;
|
|
paralocdef:=hp.vardef;
|
|
|
|
{ in syscalls the libbase might be set as explicit paraloc }
|
|
if (vo_has_explicit_paraloc in hp.varoptions) then
|
|
if not (vo_is_syscall_lib in hp.varoptions) then
|
|
internalerror(2022010501)
|
|
else
|
|
begin
|
|
paracgsize:=def_cgsize(paradef);
|
|
hp.paraloc[side].def:=paradef;
|
|
hp.paraloc[side].size:=paracgsize;
|
|
hp.paraloc[side].intsize:=tcgsize2size[paracgsize];
|
|
hp.paraloc[side].alignment:=sizeof(pint);
|
|
continue;
|
|
end;
|
|
|
|
{ on vectorcall, if a record has only one field and that field is a
|
|
single or double, it has to be handled like a single/double }
|
|
if (p.proccalloption=pocall_vectorcall) and
|
|
((paradef.typ=recorddef) {or
|
|
is_object(paradef)}) and
|
|
tabstractrecordsymtable(tabstractrecorddef(paradef).symtable).has_single_field(fdef) and
|
|
(fdef.typ=floatdef) and
|
|
(tfloatdef(fdef).floattype in [s32real,s64real]) then
|
|
paralocdef:=fdef;
|
|
|
|
pushaddr:=push_addr_param(hp.varspez,paralocdef,p.proccalloption);
|
|
if pushaddr then
|
|
begin
|
|
loc[0].typ:=X86_64_INTEGER_CLASS;
|
|
loc[1].typ:=X86_64_NO_CLASS;
|
|
paracgsize:=OS_ADDR;
|
|
paralen:=sizeof(pint);
|
|
paradef:=cpointerdef.getreusable_no_free(paradef);
|
|
paralocdef:=paradef;
|
|
paraalign:=procparaalign;
|
|
loc[0].def:=paralocdef;
|
|
loc[1].def:=nil;
|
|
for j:=2 to high(loc) do
|
|
begin
|
|
loc[j].typ:=X86_64_NO_CLASS;
|
|
loc[j].def:=nil;
|
|
end;
|
|
end
|
|
else
|
|
begin
|
|
getvalueparaloc(p.proccalloption,hp.varspez,paralocdef,loc);
|
|
paralen:=push_size(hp.varspez,paralocdef,p.proccalloption);
|
|
paraalign:=max(procparaalign,paradef.alignment);
|
|
if p.proccalloption = pocall_vectorcall then
|
|
begin
|
|
{ TODO: Can this set of instructions be put into 'defutil' without it relying on the argument classification? [Kit] }
|
|
|
|
{ The SIMD vector types have to be OS_M128 etc., not OS_128 etc.}
|
|
case is_simd_vector_type_or_homogeneous_aggregate(pocall_vectorcall,paralocdef,vs_value) of
|
|
0:
|
|
{ Not a vector or valid aggregate }
|
|
paracgsize:=def_cgsize(paralocdef);
|
|
4:
|
|
paracgsize:=OS_F32;
|
|
8:
|
|
paracgsize:=OS_F64;
|
|
16:
|
|
paracgsize:=OS_M128;
|
|
32:
|
|
paracgsize:=OS_M256;
|
|
64:
|
|
paracgsize:=OS_M512;
|
|
else
|
|
InternalError(2018012910);
|
|
end;
|
|
end
|
|
else
|
|
paracgsize:=def_cgsize(paralocdef);
|
|
end;
|
|
|
|
{ cheat for now, we should copy the value to an mm reg as well (FK) }
|
|
if varargsparas and
|
|
use_ms_abi and
|
|
(paralocdef.typ = floatdef) then
|
|
begin
|
|
loc[1].typ:=X86_64_NO_CLASS;
|
|
if paracgsize=OS_F64 then
|
|
begin
|
|
loc[0].typ:=X86_64_INTEGER_CLASS;
|
|
paracgsize:=OS_64;
|
|
paralocdef:=u64inttype;
|
|
end
|
|
else
|
|
begin
|
|
loc[0].typ:=X86_64_INTEGERSI_CLASS;
|
|
paracgsize:=OS_32;
|
|
paralocdef:=u32inttype;
|
|
end;
|
|
loc[0].def:=paralocdef;
|
|
end;
|
|
|
|
hp.paraloc[side].reset;
|
|
hp.paraloc[side].size:=paracgsize;
|
|
hp.paraloc[side].intsize:=paralen;
|
|
hp.paraloc[side].Alignment:=paraalign;
|
|
hp.paraloc[side].def:=paradef;
|
|
if paralen>0 then
|
|
begin
|
|
{ Enough registers free? }
|
|
needintloc:=0;
|
|
needmmloc:=0;
|
|
for locidx:=low(loc) to high(loc) do
|
|
case loc[locidx].typ of
|
|
X86_64_INTEGER_CLASS,
|
|
X86_64_INTEGERSI_CLASS:
|
|
inc(needintloc);
|
|
{ Note, do NOT include X86_64_SSEUP_CLASS because this links with
|
|
X86_64_SSE_CLASS and we only need one register, not two. [Kit] }
|
|
X86_64_SSE_CLASS,
|
|
X86_64_SSESF_CLASS,
|
|
X86_64_SSEDF_CLASS:
|
|
inc(needmmloc);
|
|
else
|
|
;
|
|
end;
|
|
{ the "-1" is because we can also use the current register }
|
|
if (use_ms_abi and
|
|
((intparareg+needintloc-1 > high(paraintsupregs_winx64)) or
|
|
((p.proccalloption = pocall_vectorcall) and (mmparareg+needmmloc-1 > high(parammsupregs_vectorcall))) or
|
|
((p.proccalloption <> pocall_vectorcall) and (mmparareg+needmmloc-1 > high(parammsupregs_winx64))))) or
|
|
(not use_ms_abi and
|
|
((intparareg+needintloc-1 > high(paraintsupregs)) or
|
|
(mmparareg+needmmloc-1 > high(parammsupregs)))) then
|
|
begin
|
|
{ If there are no registers available for any
|
|
eightbyte of an argument, the whole argument is
|
|
passed on the stack. }
|
|
loc[low(loc)].typ:=X86_64_MEMORY_CLASS;
|
|
loc[low(loc)].def:=paralocdef;
|
|
for locidx:=succ(low(loc)) to high(loc) do
|
|
loc[locidx].typ:=X86_64_NO_CLASS;
|
|
end;
|
|
|
|
locidx:=0;
|
|
while (paralen>0) and
|
|
(locidx<=high(loc)) and
|
|
(loc[locidx].typ<>X86_64_NO_CLASS) do
|
|
begin
|
|
{ Allocate }
|
|
case loc[locidx].typ of
|
|
X86_64_INTEGER_CLASS,
|
|
X86_64_INTEGERSI_CLASS:
|
|
begin
|
|
paraloc:=hp.paraloc[side].add_location;
|
|
paraloc^.loc:=LOC_REGISTER;
|
|
paraloc^.def:=loc[locidx].def;
|
|
if (paracgsize=OS_NO) or ((locidx<high(loc)) and (loc[locidx+1].typ<>X86_64_NO_CLASS)) then
|
|
begin
|
|
if loc[locidx].typ=X86_64_INTEGER_CLASS then
|
|
begin
|
|
paraloc^.size:=OS_INT;
|
|
paraloc^.def:=u64inttype;
|
|
subreg:=R_SUBWHOLE;
|
|
end
|
|
else
|
|
begin
|
|
paraloc^.size:=OS_32;
|
|
paraloc^.def:=u32inttype;
|
|
subreg:=R_SUBD;
|
|
end;
|
|
end
|
|
else
|
|
begin
|
|
{ some compilers sign/zero-extend on the callerside,
|
|
others don't. To be compatible with both, FPC
|
|
extends on the callerside, and assumes no
|
|
extension has been performed on the calleeside.
|
|
This is less efficient, but the alternative is
|
|
occasional crashes when calling code generated
|
|
by certain other compilers, or being called from
|
|
code generated by other compilers.
|
|
|
|
Exception: Darwin, since everyone there needs to
|
|
be compatible with the system compiler clang
|
|
(which extends on the caller side).
|
|
|
|
Not for LLVM, since there the zero/signext
|
|
attributes by definition only apply to the
|
|
caller side }
|
|
{$ifndef LLVM}
|
|
if not(target_info.system in systems_darwin) and
|
|
(side=calleeside) and
|
|
(hp.paraloc[side].intsize in [1,2]) then
|
|
begin
|
|
paraloc^.def:=hp.paraloc[side].def
|
|
end;
|
|
{$endif not LLVM}
|
|
paraloc^.size:=def_cgsize(paraloc^.def);
|
|
{ s64comp/s64currency is pushed in an int register }
|
|
if paraloc^.size=OS_C64 then
|
|
begin
|
|
paraloc^.size:=OS_64;
|
|
paraloc^.def:=u64inttype;
|
|
end;
|
|
subreg:=cgsize2subreg(R_INTREGISTER,paraloc^.size);
|
|
end;
|
|
|
|
{ winx64 uses different registers }
|
|
if use_ms_abi then
|
|
paraloc^.register:=newreg(R_INTREGISTER,paraintsupregs_winx64[intparareg],subreg)
|
|
else
|
|
paraloc^.register:=newreg(R_INTREGISTER,paraintsupregs[intparareg],subreg);
|
|
|
|
{ matching mm register must be skipped }
|
|
if use_ms_abi then
|
|
inc(mmparareg);
|
|
|
|
inc(intparareg);
|
|
dec(paralen,tcgsize2size[paraloc^.size]);
|
|
end;
|
|
X86_64_SSE_CLASS,
|
|
X86_64_SSESF_CLASS,
|
|
X86_64_SSEDF_CLASS:
|
|
begin
|
|
paraloc:=hp.paraloc[side].add_location;
|
|
paraloc^.loc:=LOC_MMREGISTER;
|
|
paraloc^.def:=loc[locidx].def;
|
|
|
|
case loc[locidx].typ of
|
|
X86_64_SSESF_CLASS:
|
|
begin
|
|
subreg:=R_SUBMMS;
|
|
paraloc^.size:=OS_F32;
|
|
end;
|
|
X86_64_SSEDF_CLASS:
|
|
begin
|
|
subreg:=R_SUBMMD;
|
|
paraloc^.size:=OS_F64;
|
|
end;
|
|
X86_64_SSE_CLASS:
|
|
begin
|
|
subreg:=R_SUBQ;
|
|
paraloc^.size:=OS_M64;
|
|
j := 1;
|
|
if not (use_ms_abi and (p.proccalloption <> pocall_vectorcall)) then
|
|
while locidx + j <= high(loc) do
|
|
begin
|
|
if loc[locidx+j].typ <> X86_64_SSEUP_CLASS then
|
|
Break;
|
|
|
|
Inc(j);
|
|
end;
|
|
|
|
{ j = MM word count }
|
|
Inc(locidx, j - 1);
|
|
case j of
|
|
1:
|
|
begin
|
|
subreg:=R_SUBQ;
|
|
paraloc^.size:=OS_M64;
|
|
end;
|
|
2:
|
|
begin
|
|
subreg:=R_SUBMMX;
|
|
paraloc^.size:=OS_M128;
|
|
end;
|
|
4:
|
|
begin
|
|
subreg:=R_SUBMMY;
|
|
paraloc^.size:=OS_M256; { Currently unsupported }
|
|
end;
|
|
8:
|
|
begin
|
|
subreg:=R_SUBMMZ;
|
|
paraloc^.size:=OS_M512; { Currently unsupported }
|
|
end;
|
|
else
|
|
InternalError(2018012903);
|
|
end;
|
|
paraloc^.def:=carraydef.getreusable_no_free_vector(paraloc^.def,j);
|
|
end;
|
|
else
|
|
if (use_ms_abi and (p.proccalloption <> pocall_vectorcall)) then
|
|
begin
|
|
subreg:=R_SUBQ;
|
|
paraloc^.size:=OS_M64;
|
|
end
|
|
else
|
|
{ Should not get here }
|
|
InternalError(2018012902);
|
|
end;
|
|
|
|
{ winx64 uses different registers }
|
|
if use_ms_abi then
|
|
begin
|
|
if p.proccalloption = pocall_vectorcall then
|
|
paraloc^.register:=newreg(R_MMREGISTER,parammsupregs_vectorcall[mmparareg],subreg)
|
|
else
|
|
paraloc^.register:=newreg(R_MMREGISTER,parammsupregs_winx64[mmparareg],subreg);
|
|
end
|
|
else
|
|
paraloc^.register:=newreg(R_MMREGISTER,parammsupregs[mmparareg],subreg);
|
|
|
|
{ matching int register must be skipped }
|
|
if use_ms_abi then
|
|
inc(intparareg);
|
|
|
|
inc(mmparareg);
|
|
dec(paralen,tcgsize2size[paraloc^.size]);
|
|
end;
|
|
X86_64_MEMORY_CLASS :
|
|
begin
|
|
paraloc:=hp.paraloc[side].add_location;
|
|
paraloc^.loc:=LOC_REFERENCE;
|
|
paraloc^.def:=loc[locidx].def;
|
|
|
|
{ s64comp/s64currency are passed as integer types
|
|
(important for LLVM here) }
|
|
if paracgsize=OS_C64 then
|
|
begin
|
|
paraloc^.size:=OS_64;
|
|
paraloc^.def:=u64inttype;
|
|
end;
|
|
|
|
{Hack alert!!! We should modify int_cgsize to handle OS_128,
|
|
however, since int_cgsize is called in many places in the
|
|
compiler where only a few can already handle OS_128, fixing it
|
|
properly is out of the question to release 2.2.0 in time. (DM)}
|
|
if paracgsize=OS_128 then
|
|
if paralen=8 then
|
|
paraloc^.size:=OS_64
|
|
else if paralen=16 then
|
|
paraloc^.size:=OS_128
|
|
else
|
|
internalerror(200707143)
|
|
else if paracgsize in [OS_F32,OS_F64,OS_F80,OS_F128] then
|
|
paraloc^.size:=int_float_cgsize(paralen)
|
|
else
|
|
paraloc^.size:=int_cgsize(paralen);
|
|
if side=callerside then
|
|
paraloc^.reference.index:=NR_STACK_POINTER_REG
|
|
else
|
|
paraloc^.reference.index:=NR_FRAME_POINTER_REG;
|
|
varalign:=used_align(size_2_align(paralen),paraalign,paraalign);
|
|
paraloc^.reference.offset:=align(parasize,varalign);
|
|
parasize:=align(parasize+paralen,varalign);
|
|
paralen:=0;
|
|
end;
|
|
else
|
|
internalerror(2010053113);
|
|
end;
|
|
inc(locidx);
|
|
end;
|
|
end
|
|
else
|
|
begin
|
|
paraloc:=hp.paraloc[side].add_location;
|
|
paraloc^.loc:=LOC_VOID;
|
|
paraloc^.def:=paralocdef;
|
|
end;
|
|
end;
|
|
{ Register parameters are assigned from left-to-right, but the
|
|
offsets on the stack are right-to-left. There is no need
|
|
to reverse the offset, only adapt the calleeside with the
|
|
start offset of the first param on the stack }
|
|
if side=calleeside then
|
|
begin
|
|
for i:=0 to paras.count-1 do
|
|
begin
|
|
hp:=tparavarsym(paras[i]);
|
|
paraloc:=hp.paraloc[side].location;
|
|
while paraloc<>nil do
|
|
begin
|
|
with paraloc^ do
|
|
if (loc=LOC_REFERENCE) then
|
|
inc(reference.offset,target_info.first_parm_offset);
|
|
paraloc:=paraloc^.next;
|
|
end;
|
|
end;
|
|
end;
|
|
end;
|
|
|
|
|
|
function tcpuparamanager.create_varargs_paraloc_info(p : tabstractprocdef; side: tcallercallee; varargspara:tvarargsparalist):longint;
|
|
var
|
|
intparareg,mmparareg,
|
|
parasize : longint;
|
|
begin
|
|
intparareg:=0;
|
|
mmparareg:=0;
|
|
if x86_64_use_ms_abi(p.proccalloption) then
|
|
parasize:=4*8
|
|
else
|
|
parasize:=0;
|
|
{ calculate the registers for the normal parameters }
|
|
create_paraloc_info_intern(p,side,p.paras,intparareg,mmparareg,parasize,false);
|
|
{ append the varargs }
|
|
if assigned(varargspara) then
|
|
begin
|
|
if side=callerside then
|
|
create_paraloc_info_intern(p,side,varargspara,intparareg,mmparareg,parasize,true)
|
|
else
|
|
internalerror(2019021917);
|
|
{ store used no. of SSE registers, that needs to be passed in %AL }
|
|
varargspara.mmregsused:=mmparareg;
|
|
end;
|
|
create_funcretloc_info(p,side);
|
|
result:=parasize;
|
|
end;
|
|
|
|
|
|
function tcpuparamanager.create_paraloc_info(p : tabstractprocdef; side: tcallercallee):longint;
|
|
var
|
|
intparareg,mmparareg,
|
|
parasize : longint;
|
|
begin
|
|
intparareg:=0;
|
|
mmparareg:=0;
|
|
if x86_64_use_ms_abi(p.proccalloption) then
|
|
parasize:=4*8
|
|
else
|
|
parasize:=0;
|
|
create_paraloc_info_intern(p,side,p.paras,intparareg,mmparareg,parasize,false);
|
|
{ Create Function result paraloc }
|
|
create_funcretloc_info(p,side);
|
|
{ We need to return the size allocated on the stack }
|
|
result:=parasize;
|
|
end;
|
|
|
|
|
|
begin
|
|
paramanager:=tcpuparamanager.create;
|
|
end.
|