fpc/compiler/ncnv.pas
2005-10-23 19:41:16 +00:00

2688 lines
93 KiB
ObjectPascal

{
Copyright (c) 2000-2002 by Florian Klaempfl
Type checking and register allocation for type converting nodes
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit ncnv;
{$i fpcdefs.inc}
interface
uses
node,
symtype,
defutil,defcmp,
nld
;
type
ttypeconvnode = class(tunarynode)
totype : ttype;
convtype : tconverttype;
constructor create(node : tnode;const t : ttype);virtual;
constructor create_explicit(node : tnode;const t : ttype);
constructor create_internal(node : tnode;const t : ttype);
constructor create_proc_to_procvar(node : tnode);
constructor ppuload(t:tnodetype;ppufile:tcompilerppufile);override;
procedure ppuwrite(ppufile:tcompilerppufile);override;
procedure buildderefimpl;override;
procedure derefimpl;override;
function _getcopy : tnode;override;
procedure printnodeinfo(var t : text);override;
function pass_1 : tnode;override;
function det_resulttype:tnode;override;
procedure mark_write;override;
function docompare(p: tnode) : boolean; override;
function assign_allowed:boolean;
procedure second_call_helper(c : tconverttype);
private
function resulttype_int_to_int : tnode;
function resulttype_cord_to_pointer : tnode;
function resulttype_chararray_to_string : tnode;
function resulttype_string_to_chararray : tnode;
function resulttype_string_to_string : tnode;
function resulttype_char_to_string : tnode;
function resulttype_char_to_chararray : tnode;
function resulttype_int_to_real : tnode;
function resulttype_real_to_real : tnode;
function resulttype_real_to_currency : tnode;
function resulttype_cchar_to_pchar : tnode;
function resulttype_cstring_to_pchar : tnode;
function resulttype_cstring_to_int : tnode;
function resulttype_char_to_char : tnode;
function resulttype_arrayconstructor_to_set : tnode;
function resulttype_pchar_to_string : tnode;
function resulttype_interface_to_guid : tnode;
function resulttype_dynarray_to_openarray : tnode;
function resulttype_pwchar_to_string : tnode;
function resulttype_variant_to_dynarray : tnode;
function resulttype_dynarray_to_variant : tnode;
function resulttype_call_helper(c : tconverttype) : tnode;
function resulttype_variant_to_enum : tnode;
function resulttype_enum_to_variant : tnode;
function resulttype_proc_to_procvar : tnode;
function resulttype_variant_to_interface : tnode;
function resulttype_interface_to_variant : tnode;
function resulttype_array_2_dynarray : tnode;
protected
function first_int_to_int : tnode;virtual;
function first_cstring_to_pchar : tnode;virtual;
function first_cstring_to_int : tnode;virtual;
function first_string_to_chararray : tnode;virtual;
function first_char_to_string : tnode;virtual;
function first_nothing : tnode;virtual;
function first_array_to_pointer : tnode;virtual;
function first_int_to_real : tnode;virtual;
function first_real_to_real : tnode;virtual;
function first_pointer_to_array : tnode;virtual;
function first_cchar_to_pchar : tnode;virtual;
function first_bool_to_int : tnode;virtual;
function first_int_to_bool : tnode;virtual;
function first_bool_to_bool : tnode;virtual;
function first_proc_to_procvar : tnode;virtual;
function first_load_smallset : tnode;virtual;
function first_cord_to_pointer : tnode;virtual;
function first_ansistring_to_pchar : tnode;virtual;
function first_arrayconstructor_to_set : tnode;virtual;
function first_class_to_intf : tnode;virtual;
function first_char_to_char : tnode;virtual;
function first_call_helper(c : tconverttype) : tnode;
{ these wrapper are necessary, because the first_* stuff is called }
{ through a table. Without the wrappers override wouldn't have }
{ any effect }
function _first_int_to_int : tnode;
function _first_cstring_to_pchar : tnode;
function _first_cstring_to_int : tnode;
function _first_string_to_chararray : tnode;
function _first_char_to_string : tnode;
function _first_nothing : tnode;
function _first_array_to_pointer : tnode;
function _first_int_to_real : tnode;
function _first_real_to_real: tnode;
function _first_pointer_to_array : tnode;
function _first_cchar_to_pchar : tnode;
function _first_bool_to_int : tnode;
function _first_int_to_bool : tnode;
function _first_bool_to_bool : tnode;
function _first_proc_to_procvar : tnode;
function _first_load_smallset : tnode;
function _first_cord_to_pointer : tnode;
function _first_ansistring_to_pchar : tnode;
function _first_arrayconstructor_to_set : tnode;
function _first_class_to_intf : tnode;
function _first_char_to_char : tnode;
procedure _second_int_to_int;virtual;
procedure _second_string_to_string;virtual;
procedure _second_cstring_to_pchar;virtual;
procedure _second_cstring_to_int;virtual;
procedure _second_string_to_chararray;virtual;
procedure _second_array_to_pointer;virtual;
procedure _second_pointer_to_array;virtual;
procedure _second_chararray_to_string;virtual;
procedure _second_char_to_string;virtual;
procedure _second_int_to_real;virtual;
procedure _second_real_to_real;virtual;
procedure _second_cord_to_pointer;virtual;
procedure _second_proc_to_procvar;virtual;
procedure _second_bool_to_int;virtual;
procedure _second_int_to_bool;virtual;
procedure _second_bool_to_bool;virtual;
procedure _second_load_smallset;virtual;
procedure _second_ansistring_to_pchar;virtual;
procedure _second_class_to_intf;virtual;
procedure _second_char_to_char;virtual;
procedure _second_nothing; virtual;
procedure second_int_to_int;virtual;abstract;
procedure second_string_to_string;virtual;abstract;
procedure second_cstring_to_pchar;virtual;abstract;
procedure second_cstring_to_int;virtual;abstract;
procedure second_string_to_chararray;virtual;abstract;
procedure second_array_to_pointer;virtual;abstract;
procedure second_pointer_to_array;virtual;abstract;
procedure second_chararray_to_string;virtual;abstract;
procedure second_char_to_string;virtual;abstract;
procedure second_int_to_real;virtual;abstract;
procedure second_real_to_real;virtual;abstract;
procedure second_cord_to_pointer;virtual;abstract;
procedure second_proc_to_procvar;virtual;abstract;
procedure second_bool_to_int;virtual;abstract;
procedure second_int_to_bool;virtual;abstract;
procedure second_bool_to_bool;virtual;abstract;
procedure second_load_smallset;virtual;abstract;
procedure second_ansistring_to_pchar;virtual;abstract;
procedure second_class_to_intf;virtual;abstract;
procedure second_char_to_char;virtual;abstract;
procedure second_nothing; virtual;abstract;
end;
ttypeconvnodeclass = class of ttypeconvnode;
tasnode = class(tbinarynode)
constructor create(l,r : tnode);virtual;
function pass_1 : tnode;override;
function det_resulttype:tnode;override;
function _getcopy: tnode;override;
destructor destroy; override;
protected
call: tnode;
end;
tasnodeclass = class of tasnode;
tisnode = class(tbinarynode)
constructor create(l,r : tnode);virtual;
function pass_1 : tnode;override;
function det_resulttype:tnode;override;
procedure pass_2;override;
end;
tisnodeclass = class of tisnode;
var
ctypeconvnode : ttypeconvnodeclass;
casnode : tasnodeclass;
cisnode : tisnodeclass;
procedure inserttypeconv(var p:tnode;const t:ttype);
procedure inserttypeconv_internal(var p:tnode;const t:ttype);
procedure arrayconstructor_to_set(var p : tnode);
implementation
uses
cclasses,globtype,systems,
cutils,verbose,globals,widestr,
symconst,symdef,symsym,symbase,symtable,
ncon,ncal,nset,nadd,ninl,nmem,nmat,nbas,nutils,
cgbase,procinfo,
htypechk,pass_1,cpuinfo;
{*****************************************************************************
Helpers
*****************************************************************************}
procedure inserttypeconv(var p:tnode;const t:ttype);
begin
if not assigned(p.resulttype.def) then
begin
resulttypepass(p);
if codegenerror then
exit;
end;
{ don't insert obsolete type conversions }
if equal_defs(p.resulttype.def,t.def) and
not ((p.resulttype.def.deftype=setdef) and
(tsetdef(p.resulttype.def).settype <>
tsetdef(t.def).settype)) then
begin
p.resulttype:=t;
end
else
begin
p:=ctypeconvnode.create(p,t);
resulttypepass(p);
end;
end;
procedure inserttypeconv_internal(var p:tnode;const t:ttype);
begin
if not assigned(p.resulttype.def) then
begin
resulttypepass(p);
if codegenerror then
exit;
end;
{ don't insert obsolete type conversions }
if equal_defs(p.resulttype.def,t.def) and
not ((p.resulttype.def.deftype=setdef) and
(tsetdef(p.resulttype.def).settype <>
tsetdef(t.def).settype)) then
begin
p.resulttype:=t;
end
else
begin
p:=ctypeconvnode.create_internal(p,t);
resulttypepass(p);
end;
end;
{*****************************************************************************
Array constructor to Set Conversion
*****************************************************************************}
procedure arrayconstructor_to_set(var p : tnode);
var
constp : tsetconstnode;
buildp,
p2,p3,p4 : tnode;
htype : ttype;
constset : Pconstset;
constsetlo,
constsethi : TConstExprInt;
procedure update_constsethi(t:ttype);
begin
if ((t.def.deftype=orddef) and
(torddef(t.def).high>=constsethi)) then
begin
if torddef(t.def).typ=uwidechar then
begin
constsethi:=255;
if htype.def=nil then
htype:=t;
end
else
begin
constsethi:=torddef(t.def).high;
if htype.def=nil then
begin
if (constsethi>255) or
(torddef(t.def).low<0) then
htype:=u8inttype
else
htype:=t;
end;
if constsethi>255 then
constsethi:=255;
end;
end
else if ((t.def.deftype=enumdef) and
(tenumdef(t.def).max>=constsethi)) then
begin
if htype.def=nil then
htype:=t;
constsethi:=tenumdef(t.def).max;
end;
end;
procedure do_set(pos : longint);
begin
if (pos and not $ff)<>0 then
Message(parser_e_illegal_set_expr);
if pos>constsethi then
constsethi:=pos;
if pos<constsetlo then
constsetlo:=pos;
if pos in constset^ then
Message(parser_e_illegal_set_expr);
include(constset^,pos);
end;
var
l : Longint;
lr,hr : TConstExprInt;
hp : tarrayconstructornode;
begin
if p.nodetype<>arrayconstructorn then
internalerror(200205105);
new(constset);
constset^:=[];
htype.reset;
constsetlo:=0;
constsethi:=0;
constp:=csetconstnode.create(nil,htype);
constp.value_set:=constset;
buildp:=constp;
hp:=tarrayconstructornode(p);
if assigned(hp.left) then
begin
while assigned(hp) do
begin
p4:=nil; { will contain the tree to create the set }
{split a range into p2 and p3 }
if hp.left.nodetype=arrayconstructorrangen then
begin
p2:=tarrayconstructorrangenode(hp.left).left;
p3:=tarrayconstructorrangenode(hp.left).right;
tarrayconstructorrangenode(hp.left).left:=nil;
tarrayconstructorrangenode(hp.left).right:=nil;
end
else
begin
p2:=hp.left;
hp.left:=nil;
p3:=nil;
end;
resulttypepass(p2);
set_varstate(p2,vs_used,[vsf_must_be_valid]);
if assigned(p3) then
begin
resulttypepass(p3);
set_varstate(p3,vs_used,[vsf_must_be_valid]);
end;
if codegenerror then
break;
case p2.resulttype.def.deftype of
enumdef,
orddef:
begin
getrange(p2.resulttype.def,lr,hr);
if assigned(p3) then
begin
{ this isn't good, you'll get problems with
type t010 = 0..10;
ts = set of t010;
var s : ts;b : t010
begin s:=[1,2,b]; end.
if is_integer(p3^.resulttype.def) then
begin
inserttypeconv(p3,u8bitdef);
end;
}
if assigned(htype.def) and not(equal_defs(htype.def,p3.resulttype.def)) then
begin
aktfilepos:=p3.fileinfo;
CGMessage(type_e_typeconflict_in_set);
end
else
begin
if (p2.nodetype=ordconstn) and (p3.nodetype=ordconstn) then
begin
if not(is_integer(p3.resulttype.def)) then
htype:=p3.resulttype
else
begin
inserttypeconv(p3,u8inttype);
inserttypeconv(p2,u8inttype);
end;
for l:=tordconstnode(p2).value to tordconstnode(p3).value do
do_set(l);
p2.free;
p3.free;
end
else
begin
update_constsethi(p2.resulttype);
inserttypeconv(p2,htype);
update_constsethi(p3.resulttype);
inserttypeconv(p3,htype);
if assigned(htype.def) then
inserttypeconv(p3,htype)
else
inserttypeconv(p3,u8inttype);
p4:=csetelementnode.create(p2,p3);
end;
end;
end
else
begin
{ Single value }
if p2.nodetype=ordconstn then
begin
if not(is_integer(p2.resulttype.def)) then
begin
{ for constant set elements, delphi allows the usage of elements of enumerations which
have value>255 if there is no element with a value > 255 used }
if (m_delphi in aktmodeswitches) and (p2.resulttype.def.deftype=enumdef) then
begin
if tordconstnode(p2).value>constsethi then
constsethi:=tordconstnode(p2).value;
if htype.def=nil then
htype:=p2.resulttype;
end
else
update_constsethi(p2.resulttype);
end;
if assigned(htype.def) then
inserttypeconv(p2,htype)
else
inserttypeconv(p2,u8inttype);
do_set(tordconstnode(p2).value);
p2.free;
end
else
begin
update_constsethi(p2.resulttype);
if assigned(htype.def) then
inserttypeconv(p2,htype)
else
inserttypeconv(p2,u8inttype);
p4:=csetelementnode.create(p2,nil);
end;
end;
end;
stringdef :
begin
{ if we've already set elements which are constants }
{ throw an error }
if ((htype.def=nil) and assigned(buildp)) or
not(is_char(htype.def)) then
CGMessage(type_e_typeconflict_in_set)
else
for l:=1 to length(pstring(tstringconstnode(p2).value_str)^) do
do_set(ord(pstring(tstringconstnode(p2).value_str)^[l]));
if htype.def=nil then
htype:=cchartype;
p2.free;
end;
else
CGMessage(type_e_ordinal_expr_expected);
end;
{ insert the set creation tree }
if assigned(p4) then
buildp:=caddnode.create(addn,buildp,p4);
{ load next and dispose current node }
p2:=hp;
hp:=tarrayconstructornode(tarrayconstructornode(p2).right);
tarrayconstructornode(p2).right:=nil;
p2.free;
end;
if (htype.def=nil) then
htype:=u8inttype;
end
else
begin
{ empty set [], only remove node }
p.free;
end;
{ set the initial set type }
constp.resulttype.setdef(tsetdef.create(htype,constsethi));
{ determine the resulttype for the tree }
resulttypepass(buildp);
{ set the new tree }
p:=buildp;
end;
{*****************************************************************************
TTYPECONVNODE
*****************************************************************************}
constructor ttypeconvnode.create(node : tnode;const t:ttype);
begin
inherited create(typeconvn,node);
convtype:=tc_none;
totype:=t;
if t.def=nil then
internalerror(200103281);
fileinfo:=node.fileinfo;
end;
constructor ttypeconvnode.create_explicit(node : tnode;const t:ttype);
begin
self.create(node,t);
include(flags,nf_explicit);
end;
constructor ttypeconvnode.create_internal(node : tnode;const t:ttype);
begin
self.create(node,t);
{ handle like explicit conversions }
include(flags,nf_explicit);
include(flags,nf_internal);
end;
constructor ttypeconvnode.create_proc_to_procvar(node : tnode);
begin
self.create(node,voidtype);
convtype:=tc_proc_2_procvar;
end;
constructor ttypeconvnode.ppuload(t:tnodetype;ppufile:tcompilerppufile);
begin
inherited ppuload(t,ppufile);
ppufile.gettype(totype);
convtype:=tconverttype(ppufile.getbyte);
end;
procedure ttypeconvnode.ppuwrite(ppufile:tcompilerppufile);
begin
inherited ppuwrite(ppufile);
ppufile.puttype(totype);
ppufile.putbyte(byte(convtype));
end;
procedure ttypeconvnode.buildderefimpl;
begin
inherited buildderefimpl;
totype.buildderef;
end;
procedure ttypeconvnode.derefimpl;
begin
inherited derefimpl;
totype.resolve;
end;
function ttypeconvnode._getcopy : tnode;
var
n : ttypeconvnode;
begin
n:=ttypeconvnode(inherited _getcopy);
n.convtype:=convtype;
n.totype:=totype;
_getcopy:=n;
end;
procedure ttypeconvnode.printnodeinfo(var t : text);
const
convtyp2str : array[tconverttype] of pchar = (
'tc_none',
'tc_equal',
'tc_not_possible',
'tc_string_2_string',
'tc_char_2_string',
'tc_char_2_chararray',
'tc_pchar_2_string',
'tc_cchar_2_pchar',
'tc_cstring_2_pchar',
'tc_cstring_2_int',
'tc_ansistring_2_pchar',
'tc_string_2_chararray',
'tc_chararray_2_string',
'tc_array_2_pointer',
'tc_pointer_2_array',
'tc_int_2_int',
'tc_int_2_bool',
'tc_bool_2_bool',
'tc_bool_2_int',
'tc_real_2_real',
'tc_int_2_real',
'tc_real_2_currency',
'tc_proc_2_procvar',
'tc_arrayconstructor_2_set',
'tc_load_smallset',
'tc_cord_2_pointer',
'tc_intf_2_string',
'tc_intf_2_guid',
'tc_class_2_intf',
'tc_char_2_char',
'tc_normal_2_smallset',
'tc_dynarray_2_openarray',
'tc_pwchar_2_string',
'tc_variant_2_dynarray',
'tc_dynarray_2_variant',
'tc_variant_2_enum',
'tc_enum_2_variant',
'tc_interface_2_variant',
'tc_variant_2_interface',
'tc_array_2_dynarray'
);
begin
inherited printnodeinfo(t);
write(t,', convtype = ',strpas(convtyp2str[convtype]));
end;
function ttypeconvnode.resulttype_cord_to_pointer : tnode;
var
t : tnode;
begin
result:=nil;
if left.nodetype=ordconstn then
begin
{ check if we have a valid pointer constant (JM) }
if (sizeof(pointer) > sizeof(TConstPtrUInt)) then
if (sizeof(TConstPtrUInt) = 4) then
begin
if (tordconstnode(left).value < low(longint)) or
(tordconstnode(left).value > high(cardinal)) then
CGMessage(parser_e_range_check_error);
end
else if (sizeof(TConstPtrUInt) = 8) then
begin
if (tordconstnode(left).value < low(int64)) or
(tordconstnode(left).value > high(qword)) then
CGMessage(parser_e_range_check_error);
end
else
internalerror(2001020801);
t:=cpointerconstnode.create(TConstPtrUInt(tordconstnode(left).value),resulttype);
result:=t;
end
else
internalerror(200104023);
end;
function ttypeconvnode.resulttype_chararray_to_string : tnode;
var
chartype : string[8];
begin
if is_widechar(tarraydef(left.resulttype.def).elementtype.def) then
chartype:='widechar'
else
chartype:='char';
result := ccallnode.createinternres(
'fpc_'+chartype+'array_to_'+tstringdef(resulttype.def).stringtypname,
ccallparanode.create(left,nil),resulttype);
left := nil;
end;
function ttypeconvnode.resulttype_string_to_chararray : tnode;
var
arrsize : aint;
chartype : string[8];
begin
result := nil;
with tarraydef(resulttype.def) do
begin
if highrange<lowrange then
internalerror(200501051);
arrsize := highrange-lowrange+1;
end;
if (left.nodetype = stringconstn) and
(tstringdef(left.resulttype.def).string_typ=st_conststring) then
begin
{ if the array of char is large enough we can use the string
constant directly. This is handled in ncgcnv }
if (arrsize>=tstringconstnode(left).len) and
is_char(tarraydef(resulttype.def).elementtype.def) then
exit;
{ Convert to wide/short/ansistring and call default helper }
if is_widechar(tarraydef(resulttype.def).elementtype.def) then
inserttypeconv(left,cwidestringtype)
else
begin
if tstringconstnode(left).len>255 then
inserttypeconv(left,cansistringtype)
else
inserttypeconv(left,cshortstringtype);
end;
end;
if is_widechar(tarraydef(resulttype.def).elementtype.def) then
chartype:='widechar'
else
chartype:='char';
result := ccallnode.createinternres(
'fpc_'+tstringdef(left.resulttype.def).stringtypname+
'_to_'+chartype+'array',ccallparanode.create(left,ccallparanode.create(
cordconstnode.create(arrsize,s32inttype,true),nil)),resulttype);
left := nil;
end;
function ttypeconvnode.resulttype_string_to_string : tnode;
var
procname: string[31];
stringpara : tcallparanode;
begin
result:=nil;
if left.nodetype=stringconstn then
begin
tstringconstnode(left).changestringtype(resulttype);
result:=left;
left:=nil;
end
else
begin
{ get the correct procedure name }
procname := 'fpc_'+tstringdef(left.resulttype.def).stringtypname+
'_to_'+tstringdef(resulttype.def).stringtypname;
{ create parameter (and remove left node from typeconvnode }
{ since it's reused as parameter) }
stringpara := ccallparanode.create(left,nil);
left := nil;
{ when converting to shortstrings, we have to pass high(destination) too }
if (tstringdef(resulttype.def).string_typ = st_shortstring) then
stringpara.right := ccallparanode.create(cinlinenode.create(
in_high_x,false,self.getcopy),nil);
{ and create the callnode }
result := ccallnode.createinternres(procname,stringpara,resulttype);
end;
end;
function ttypeconvnode.resulttype_char_to_string : tnode;
var
procname: string[31];
para : tcallparanode;
hp : tstringconstnode;
ws : pcompilerwidestring;
begin
result:=nil;
if left.nodetype=ordconstn then
begin
if tstringdef(resulttype.def).string_typ=st_widestring then
begin
initwidestring(ws);
if torddef(left.resulttype.def).typ=uwidechar then
concatwidestringchar(ws,tcompilerwidechar(tordconstnode(left).value))
else
concatwidestringchar(ws,tcompilerwidechar(chr(tordconstnode(left).value)));
hp:=cstringconstnode.createwstr(ws);
donewidestring(ws);
end
else
hp:=cstringconstnode.createstr(chr(tordconstnode(left).value),tstringdef(resulttype.def).string_typ);
result:=hp;
end
else
{ shortstrings are handled 'inline' }
if tstringdef(resulttype.def).string_typ <> st_shortstring then
begin
{ create the parameter }
para := ccallparanode.create(left,nil);
left := nil;
{ and the procname }
procname := 'fpc_char_to_' +tstringdef(resulttype.def).stringtypname;
{ and finally the call }
result := ccallnode.createinternres(procname,para,resulttype);
end
else
begin
{ create word(byte(char) shl 8 or 1) for litte endian machines }
{ and word(byte(char) or 256) for big endian machines }
left := ctypeconvnode.create_internal(left,u8inttype);
if (target_info.endian = endian_little) then
left := caddnode.create(orn,
cshlshrnode.create(shln,left,cordconstnode.create(8,s32inttype,false)),
cordconstnode.create(1,s32inttype,false))
else
left := caddnode.create(orn,left,
cordconstnode.create(1 shl 8,s32inttype,false));
left := ctypeconvnode.create_internal(left,u16inttype);
resulttypepass(left);
end;
end;
function ttypeconvnode.resulttype_char_to_chararray : tnode;
begin
if resulttype.def.size <> 1 then
begin
{ convert first to string, then to chararray }
inserttypeconv(left,cshortstringtype);
inserttypeconv(left,resulttype);
result:=left;
left := nil;
exit;
end;
result := nil;
end;
function ttypeconvnode.resulttype_char_to_char : tnode;
var
hp : tordconstnode;
begin
result:=nil;
if left.nodetype=ordconstn then
begin
if (torddef(resulttype.def).typ=uchar) and
(torddef(left.resulttype.def).typ=uwidechar) then
begin
hp:=cordconstnode.create(
ord(unicode2asciichar(tcompilerwidechar(tordconstnode(left).value))),
cchartype,true);
result:=hp;
end
else if (torddef(resulttype.def).typ=uwidechar) and
(torddef(left.resulttype.def).typ=uchar) then
begin
hp:=cordconstnode.create(
asciichar2unicode(chr(tordconstnode(left).value)),
cwidechartype,true);
result:=hp;
end
else
internalerror(200105131);
exit;
end;
end;
function ttypeconvnode.resulttype_int_to_int : tnode;
var
v : TConstExprInt;
begin
result:=nil;
if left.nodetype=ordconstn then
begin
v:=tordconstnode(left).value;
if is_currency(resulttype.def) then
v:=v*10000;
if (resulttype.def.deftype=pointerdef) then
result:=cpointerconstnode.create(TConstPtrUInt(v),resulttype)
else
begin
if is_currency(left.resulttype.def) then
v:=v div 10000;
result:=cordconstnode.create(v,resulttype,false);
end;
end
else if left.nodetype=pointerconstn then
begin
v:=tpointerconstnode(left).value;
if (resulttype.def.deftype=pointerdef) then
result:=cpointerconstnode.create(v,resulttype)
else
begin
if is_currency(resulttype.def) then
v:=v*10000;
result:=cordconstnode.create(v,resulttype,false);
end;
end
else
begin
{ multiply by 10000 for currency. We need to use getcopy to pass
the argument because the current node is always disposed. Only
inserting the multiply in the left node is not possible because
it'll get in an infinite loop to convert int->currency }
if is_currency(resulttype.def) then
begin
result:=caddnode.create(muln,getcopy,cordconstnode.create(10000,resulttype,false));
include(result.flags,nf_is_currency);
end
else if is_currency(left.resulttype.def) then
begin
result:=cmoddivnode.create(divn,getcopy,cordconstnode.create(10000,resulttype,false));
include(result.flags,nf_is_currency);
end;
end;
end;
function ttypeconvnode.resulttype_int_to_real : tnode;
var
rv : bestreal;
begin
result:=nil;
if left.nodetype=ordconstn then
begin
rv:=tordconstnode(left).value;
if is_currency(resulttype.def) then
rv:=rv*10000.0
else if is_currency(left.resulttype.def) then
rv:=rv/10000.0;
result:=crealconstnode.create(rv,resulttype);
end
else
begin
{ multiply by 10000 for currency. We need to use getcopy to pass
the argument because the current node is always disposed. Only
inserting the multiply in the left node is not possible because
it'll get in an infinite loop to convert int->currency }
if is_currency(resulttype.def) then
begin
result:=caddnode.create(muln,getcopy,crealconstnode.create(10000.0,resulttype));
include(result.flags,nf_is_currency);
end
else if is_currency(left.resulttype.def) then
begin
result:=caddnode.create(slashn,getcopy,crealconstnode.create(10000.0,resulttype));
include(result.flags,nf_is_currency);
end;
end;
end;
function ttypeconvnode.resulttype_real_to_currency : tnode;
begin
if not is_currency(resulttype.def) then
internalerror(200304221);
result:=nil;
left:=caddnode.create(muln,left,crealconstnode.create(10000.0,left.resulttype));
include(left.flags,nf_is_currency);
resulttypepass(left);
{ Convert constants directly, else call Round() }
if left.nodetype=realconstn then
result:=cordconstnode.create(round(trealconstnode(left).value_real),resulttype,false)
else
result:=ccallnode.createinternres('fpc_round_real',
ccallparanode.create(left,nil),resulttype);
left:=nil;
end;
function ttypeconvnode.resulttype_real_to_real : tnode;
begin
result:=nil;
if is_currency(left.resulttype.def) and not(is_currency(resulttype.def)) then
begin
left:=caddnode.create(slashn,left,crealconstnode.create(10000.0,left.resulttype));
include(left.flags,nf_is_currency);
resulttypepass(left);
end
else
if is_currency(resulttype.def) and not(is_currency(left.resulttype.def)) then
begin
left:=caddnode.create(muln,left,crealconstnode.create(10000.0,left.resulttype));
include(left.flags,nf_is_currency);
resulttypepass(left);
end;
if left.nodetype=realconstn then
result:=crealconstnode.create(trealconstnode(left).value_real,resulttype);
end;
function ttypeconvnode.resulttype_cchar_to_pchar : tnode;
begin
result:=nil;
if is_pwidechar(resulttype.def) then
inserttypeconv(left,cwidestringtype)
else
inserttypeconv(left,cshortstringtype);
{ evaluate again, reset resulttype so the convert_typ
will be calculated again and cstring_to_pchar will
be used for futher conversion }
convtype:=tc_none;
result:=det_resulttype;
end;
function ttypeconvnode.resulttype_cstring_to_pchar : tnode;
begin
result:=nil;
if is_pwidechar(resulttype.def) then
inserttypeconv(left,cwidestringtype)
else
if is_pchar(resulttype.def) and
is_widestring(left.resulttype.def) then
inserttypeconv(left,cansistringtype);
end;
function ttypeconvnode.resulttype_cstring_to_int : tnode;
var
fcc : cardinal;
pb : pbyte;
begin
result:=nil;
if left.nodetype<>stringconstn then
internalerror(200510012);
if tstringconstnode(left).len=4 then
begin
pb:=pbyte(tstringconstnode(left).value_str);
fcc:=(pb[0] shl 24) or (pb[1] shl 16) or (pb[2] shl 8) or pb[3];
result:=cordconstnode.create(fcc,u32inttype,false);
end
else
CGMessage2(type_e_illegal_type_conversion,left.resulttype.def.gettypename,resulttype.def.gettypename);
end;
function ttypeconvnode.resulttype_arrayconstructor_to_set : tnode;
var
hp : tnode;
begin
result:=nil;
if left.nodetype<>arrayconstructorn then
internalerror(5546);
{ remove typeconv node }
hp:=left;
left:=nil;
{ create a set constructor tree }
arrayconstructor_to_set(hp);
result:=hp;
end;
function ttypeconvnode.resulttype_pchar_to_string : tnode;
begin
result := ccallnode.createinternres(
'fpc_pchar_to_'+tstringdef(resulttype.def).stringtypname,
ccallparanode.create(left,nil),resulttype);
left := nil;
end;
function ttypeconvnode.resulttype_interface_to_guid : tnode;
begin
if assigned(tobjectdef(left.resulttype.def).iidguid) then
result:=cguidconstnode.create(tobjectdef(left.resulttype.def).iidguid^);
end;
function ttypeconvnode.resulttype_dynarray_to_openarray : tnode;
begin
{ a dynamic array is a pointer to an array, so to convert it to }
{ an open array, we have to dereference it (JM) }
result := ctypeconvnode.create_internal(left,voidpointertype);
resulttypepass(result);
{ left is reused }
left := nil;
result := cderefnode.create(result);
include(result.flags,nf_no_checkpointer);
result.resulttype := resulttype;
end;
function ttypeconvnode.resulttype_pwchar_to_string : tnode;
begin
result := ccallnode.createinternres(
'fpc_pwidechar_to_'+tstringdef(resulttype.def).stringtypname,
ccallparanode.create(left,nil),resulttype);
left := nil;
end;
function ttypeconvnode.resulttype_variant_to_dynarray : tnode;
begin
result := ccallnode.createinternres(
'fpc_variant_to_dynarray',
ccallparanode.create(caddrnode.create_internal(crttinode.create(tstoreddef(resulttype.def),initrtti)),
ccallparanode.create(left,nil)
),resulttype);
resulttypepass(result);
left:=nil;
end;
function ttypeconvnode.resulttype_dynarray_to_variant : tnode;
begin
result := ccallnode.createinternres(
'fpc_dynarray_to_variant',
ccallparanode.create(caddrnode.create_internal(crttinode.create(tstoreddef(left.resulttype.def),initrtti)),
ccallparanode.create(ctypeconvnode.create_explicit(left,voidpointertype),nil)
),resulttype);
resulttypepass(result);
left:=nil;
end;
function ttypeconvnode.resulttype_variant_to_interface : tnode;
begin
result := ccallnode.createinternres(
'fpc_variant_to_interface',
ccallparanode.create(left,nil)
,resulttype);
resulttypepass(result);
left:=nil;
end;
function ttypeconvnode.resulttype_interface_to_variant : tnode;
begin
result := ccallnode.createinternres(
'fpc_interface_to_variant',
ccallparanode.create(left,nil)
,resulttype);
resulttypepass(result);
left:=nil;
end;
function ttypeconvnode.resulttype_variant_to_enum : tnode;
begin
result := ctypeconvnode.create_internal(left,sinttype);
result := ctypeconvnode.create_internal(result,resulttype);
resulttypepass(result);
{ left is reused }
left := nil;
end;
function ttypeconvnode.resulttype_enum_to_variant : tnode;
begin
result := ctypeconvnode.create_internal(left,sinttype);
result := ctypeconvnode.create_internal(result,cvarianttype);
resulttypepass(result);
{ left is reused }
left := nil;
end;
function ttypeconvnode.resulttype_array_2_dynarray : tnode;
var
newstatement : tstatementnode;
temp : ttempcreatenode;
temp2 : ttempcreatenode;
begin
{ create statements with call to getmem+initialize }
result:=internalstatements(newstatement);
{ create temp for result }
temp:=ctempcreatenode.create(resulttype,resulttype.def.size,tt_persistent,true);
addstatement(newstatement,temp);
{ get temp for array of lengths }
temp2:=ctempcreatenode.create(sinttype,sinttype.def.size,tt_persistent,false);
addstatement(newstatement,temp2);
{ one dimensional }
addstatement(newstatement,cassignmentnode.create(
ctemprefnode.create_offset(temp2,0),
cordconstnode.create
(tarraydef(left.resulttype.def).highrange+1,s32inttype,true)));
{ create call to fpc_dynarr_setlength }
addstatement(newstatement,ccallnode.createintern('fpc_dynarray_setlength',
ccallparanode.create(caddrnode.create_internal
(ctemprefnode.create(temp2)),
ccallparanode.create(cordconstnode.create
(1,s32inttype,true),
ccallparanode.create(caddrnode.create_internal
(crttinode.create(tstoreddef(resulttype.def),initrtti)),
ccallparanode.create(
ctypeconvnode.create_internal(
ctemprefnode.create(temp),voidpointertype),
nil))))
));
addstatement(newstatement,ctempdeletenode.create(temp2));
{ copy ... }
addstatement(newstatement,cassignmentnode.create(
ctypeconvnode.create_internal(cderefnode.create(ctypeconvnode.create_internal(ctemprefnode.create(temp),voidpointertype)),left.resulttype),
left
));
{ left is reused }
left:=nil;
{ the last statement should return the value as
location and type, this is done be referencing the
temp and converting it first from a persistent temp to
normal temp }
addstatement(newstatement,ctempdeletenode.create_normal_temp(temp));
addstatement(newstatement,ctemprefnode.create(temp));
end;
procedure copyparasym(p:TNamedIndexItem;arg:pointer);
var
newparast : tsymtable absolute arg;
vs : tparavarsym;
begin
if tsym(p).typ<>paravarsym then
exit;
with tparavarsym(p) do
begin
vs:=tparavarsym.create(realname,paranr,varspez,vartype,varoptions);
vs.defaultconstsym:=defaultconstsym;
newparast.insert(vs);
end;
end;
function ttypeconvnode.resulttype_proc_to_procvar : tnode;
var
pd : tabstractprocdef;
begin
result:=nil;
pd:=tabstractprocdef(left.resulttype.def);
{ create procvardef }
resulttype.setdef(tprocvardef.create(pd.parast.symtablelevel));
tprocvardef(resulttype.def).proctypeoption:=pd.proctypeoption;
tprocvardef(resulttype.def).proccalloption:=pd.proccalloption;
tprocvardef(resulttype.def).procoptions:=pd.procoptions;
tprocvardef(resulttype.def).rettype:=pd.rettype;
{ method ? then set the methodpointer flag }
if (pd.owner.symtabletype=objectsymtable) then
include(tprocvardef(resulttype.def).procoptions,po_methodpointer);
{ was it a local procedure? }
if (pd.owner.symtabletype=localsymtable) then
include(tprocvardef(resulttype.def).procoptions,po_local);
{ only need the address of the method? this is needed
for @tobject.create. In this case there will be a loadn without
a methodpointer. }
if (left.nodetype=loadn) and
not assigned(tloadnode(left).left) then
include(tprocvardef(resulttype.def).procoptions,po_addressonly);
{ Add parameters use only references, we don't need to keep the
parast. We use the parast from the original function to calculate
our parameter data and reset it afterwards }
pd.parast.foreach_static(@copyparasym,tprocvardef(resulttype.def).parast);
tprocvardef(resulttype.def).calcparas;
end;
function ttypeconvnode.resulttype_call_helper(c : tconverttype) : tnode;
const
resulttypeconvert : array[tconverttype] of pointer = (
{none} nil,
{equal} nil,
{not_possible} nil,
{ string_2_string } @ttypeconvnode.resulttype_string_to_string,
{ char_2_string } @ttypeconvnode.resulttype_char_to_string,
{ char_2_chararray } @ttypeconvnode.resulttype_char_to_chararray,
{ pchar_2_string } @ttypeconvnode.resulttype_pchar_to_string,
{ cchar_2_pchar } @ttypeconvnode.resulttype_cchar_to_pchar,
{ cstring_2_pchar } @ttypeconvnode.resulttype_cstring_to_pchar,
{ cstring_2_int } @ttypeconvnode.resulttype_cstring_to_int,
{ ansistring_2_pchar } nil,
{ string_2_chararray } @ttypeconvnode.resulttype_string_to_chararray,
{ chararray_2_string } @ttypeconvnode.resulttype_chararray_to_string,
{ array_2_pointer } nil,
{ pointer_2_array } nil,
{ int_2_int } @ttypeconvnode.resulttype_int_to_int,
{ int_2_bool } nil,
{ bool_2_bool } nil,
{ bool_2_int } nil,
{ real_2_real } @ttypeconvnode.resulttype_real_to_real,
{ int_2_real } @ttypeconvnode.resulttype_int_to_real,
{ real_2_currency } @ttypeconvnode.resulttype_real_to_currency,
{ proc_2_procvar } @ttypeconvnode.resulttype_proc_to_procvar,
{ arrayconstructor_2_set } @ttypeconvnode.resulttype_arrayconstructor_to_set,
{ load_smallset } nil,
{ cord_2_pointer } @ttypeconvnode.resulttype_cord_to_pointer,
{ intf_2_string } nil,
{ intf_2_guid } @ttypeconvnode.resulttype_interface_to_guid,
{ class_2_intf } nil,
{ char_2_char } @ttypeconvnode.resulttype_char_to_char,
{ normal_2_smallset} nil,
{ dynarray_2_openarray} @ttypeconvnode.resulttype_dynarray_to_openarray,
{ pwchar_2_string} @ttypeconvnode.resulttype_pwchar_to_string,
{ variant_2_dynarray} @ttypeconvnode.resulttype_variant_to_dynarray,
{ dynarray_2_variant} @ttypeconvnode.resulttype_dynarray_to_variant,
{ variant_2_enum} @ttypeconvnode.resulttype_variant_to_enum,
{ enum_2_variant} @ttypeconvnode.resulttype_enum_to_variant,
{ variant_2_interface} @ttypeconvnode.resulttype_interface_to_variant,
{ interface_2_variant} @ttypeconvnode.resulttype_variant_to_interface,
{ array_2_dynarray} @ttypeconvnode.resulttype_array_2_dynarray
);
type
tprocedureofobject = function : tnode of object;
var
r : packed record
proc : pointer;
obj : pointer;
end;
begin
result:=nil;
{ this is a little bit dirty but it works }
{ and should be quite portable too }
r.proc:=resulttypeconvert[c];
r.obj:=self;
if assigned(r.proc) then
result:=tprocedureofobject(r)();
end;
function ttypeconvnode.det_resulttype:tnode;
var
htype : ttype;
hp : tnode;
currprocdef : tabstractprocdef;
aprocdef : tprocdef;
eq : tequaltype;
cdoptions : tcompare_defs_options;
begin
result:=nil;
resulttype:=totype;
resulttypepass(left);
if codegenerror then
exit;
{ When absolute force tc_equal }
if (nf_absolute in flags) then
begin
convtype:=tc_equal;
if not(tstoreddef(resulttype.def).is_intregable) and
not(tstoreddef(resulttype.def).is_fpuregable) then
make_not_regable(left);
exit;
end;
{ tp procvar support. Skip typecasts to procvar, record or set. Those
convert on the procvar value. This is used to access the
fields of a methodpointer }
if not(nf_load_procvar in flags) and
not(resulttype.def.deftype in [procvardef,recorddef,setdef]) then
maybe_call_procvar(left,true);
{ convert array constructors to sets, because there is no conversion
possible for array constructors }
if (resulttype.def.deftype<>arraydef) and
is_array_constructor(left.resulttype.def) then
begin
arrayconstructor_to_set(left);
resulttypepass(left);
end;
if convtype=tc_none then
begin
cdoptions:=[cdo_check_operator,cdo_allow_variant];
if nf_explicit in flags then
include(cdoptions,cdo_explicit);
if nf_internal in flags then
include(cdoptions,cdo_internal);
eq:=compare_defs_ext(left.resulttype.def,resulttype.def,left.nodetype,convtype,aprocdef,cdoptions);
case eq of
te_exact,
te_equal :
begin
{ because is_equal only checks the basetype for sets we need to
check here if we are loading a smallset into a normalset }
if (resulttype.def.deftype=setdef) and
(left.resulttype.def.deftype=setdef) and
((tsetdef(resulttype.def).settype = smallset) xor
(tsetdef(left.resulttype.def).settype = smallset)) then
begin
{ constant sets can be converted by changing the type only }
if (left.nodetype=setconstn) then
begin
left.resulttype:=resulttype;
result:=left;
left:=nil;
exit;
end;
if (tsetdef(resulttype.def).settype <> smallset) then
convtype:=tc_load_smallset
else
convtype := tc_normal_2_smallset;
exit;
end
else
begin
{ Only leave when there is no conversion to do.
We can still need to call a conversion routine,
like the routine to convert a stringconstnode }
if convtype in [tc_equal,tc_not_possible] then
begin
left.resulttype:=resulttype;
result:=left;
left:=nil;
exit;
end;
end;
end;
te_convert_l1,
te_convert_l2,
te_convert_l3 :
begin
{ nothing to do }
end;
te_convert_operator :
begin
include(current_procinfo.flags,pi_do_call);
inc(aprocdef.procsym.refs);
hp:=ccallnode.create(ccallparanode.create(left,nil),Tprocsym(aprocdef.procsym),nil,nil,[]);
{ tell explicitly which def we must use !! (PM) }
tcallnode(hp).procdefinition:=aprocdef;
left:=nil;
result:=hp;
exit;
end;
te_incompatible :
begin
{ Procedures have a resulttype.def of voiddef and functions of their
own resulttype.def. They will therefore always be incompatible with
a procvar. Because isconvertable cannot check for procedures we
use an extra check for them.}
if (left.nodetype=calln) and
(tcallnode(left).para_count=0) and
(resulttype.def.deftype=procvardef) and
(
(m_tp_procvar in aktmodeswitches) or
(m_mac_procvar in aktmodeswitches)
) then
begin
if assigned(tcallnode(left).right) then
begin
{ this is already a procvar, if it is really equal
is checked below }
convtype:=tc_equal;
hp:=tcallnode(left).right.getcopy;
currprocdef:=tabstractprocdef(hp.resulttype.def);
end
else
begin
convtype:=tc_proc_2_procvar;
currprocdef:=Tprocsym(Tcallnode(left).symtableprocentry).search_procdef_byprocvardef(Tprocvardef(resulttype.def));
hp:=cloadnode.create_procvar(tprocsym(tcallnode(left).symtableprocentry),
tprocdef(currprocdef),tcallnode(left).symtableproc);
if (tcallnode(left).symtableprocentry.owner.symtabletype=objectsymtable) then
begin
if assigned(tcallnode(left).methodpointer) then
tloadnode(hp).set_mp(tcallnode(left).get_load_methodpointer)
else
tloadnode(hp).set_mp(load_self_node);
end;
resulttypepass(hp);
end;
left.free;
left:=hp;
{ Now check if the procedure we are going to assign to
the procvar, is compatible with the procvar's type }
if not(nf_explicit in flags) and
(proc_to_procvar_equal(currprocdef,tprocvardef(resulttype.def))=te_incompatible) then
IncompatibleTypes(left.resulttype.def,resulttype.def);
exit;
end;
{ Handle explicit type conversions }
if nf_explicit in flags then
begin
{ do common tc_equal cast }
convtype:=tc_equal;
{ ordinal constants can be resized to 1,2,4,8 bytes }
if (left.nodetype=ordconstn) then
begin
{ Insert typeconv for ordinal to the correct size first on left, after
that the other conversion can be done }
htype.reset;
case longint(resulttype.def.size) of
1 :
htype:=s8inttype;
2 :
htype:=s16inttype;
4 :
htype:=s32inttype;
8 :
htype:=s64inttype;
end;
{ we need explicit, because it can also be an enum }
if assigned(htype.def) then
inserttypeconv_internal(left,htype)
else
CGMessage2(type_e_illegal_type_conversion,left.resulttype.def.gettypename,resulttype.def.gettypename);
end;
{ check if the result could be in a register }
if (not(tstoreddef(resulttype.def).is_intregable) and
not(tstoreddef(resulttype.def).is_fpuregable)) or
((left.resulttype.def.deftype = floatdef) and
(resulttype.def.deftype <> floatdef)) then
make_not_regable(left);
{ class/interface to class/interface, with checkobject support }
if is_class_or_interface(resulttype.def) and
is_class_or_interface(left.resulttype.def) then
begin
{ check if the types are related }
if not(nf_internal in flags) and
(not(tobjectdef(left.resulttype.def).is_related(tobjectdef(resulttype.def)))) and
(not(tobjectdef(resulttype.def).is_related(tobjectdef(left.resulttype.def)))) then
begin
{ Give an error when typecasting class to interface, this is compatible
with delphi }
if is_interface(resulttype.def) and
not is_interface(left.resulttype.def) then
CGMessage2(type_e_classes_not_related,
FullTypeName(left.resulttype.def,resulttype.def),
FullTypeName(resulttype.def,left.resulttype.def))
else
CGMessage2(type_w_classes_not_related,
FullTypeName(left.resulttype.def,resulttype.def),
FullTypeName(resulttype.def,left.resulttype.def))
end;
{ Add runtime check? }
if (cs_check_object in aktlocalswitches) then
begin
{ we can translate the typeconvnode to 'as' when
typecasting to a class or interface }
hp:=casnode.create(left,cloadvmtaddrnode.create(ctypenode.create(resulttype)));
left:=nil;
result:=hp;
exit;
end;
end
else
begin
{ only if the same size or formal def }
if not(
(left.resulttype.def.deftype=formaldef) or
(
not(is_open_array(left.resulttype.def)) and
(left.resulttype.def.size=resulttype.def.size)
) or
(
is_void(left.resulttype.def) and
(left.nodetype=derefn)
)
) then
CGMessage2(type_e_illegal_type_conversion,left.resulttype.def.gettypename,resulttype.def.gettypename);
end;
end
else
IncompatibleTypes(left.resulttype.def,resulttype.def);
end;
else
internalerror(200211231);
end;
end;
{ Give hint or warning for unportable code, exceptions are
- typecasts from constants
- void }
if not(nf_internal in flags) and
(left.nodetype<>ordconstn) and
not(is_void(left.resulttype.def)) and
(((left.resulttype.def.deftype=orddef) and
(resulttype.def.deftype in [pointerdef,procvardef,classrefdef])) or
((resulttype.def.deftype=orddef) and
(left.resulttype.def.deftype in [pointerdef,procvardef,classrefdef]))) then
begin
{ Give a warning when sizes don't match, because then info will be lost }
if left.resulttype.def.size=resulttype.def.size then
CGMessage(type_h_pointer_to_longint_conv_not_portable)
else
CGMessage(type_w_pointer_to_longint_conv_not_portable);
end;
{ Constant folding and other node transitions to
remove the typeconv node }
case left.nodetype of
niln :
begin
{ nil to ordinal node }
if (resulttype.def.deftype=orddef) then
begin
hp:=cordconstnode.create(0,resulttype,true);
result:=hp;
exit;
end
else
{ fold nil to any pointer type }
if (resulttype.def.deftype=pointerdef) then
begin
hp:=cnilnode.create;
hp.resulttype:=resulttype;
result:=hp;
exit;
end
else
{ remove typeconv after niln, but not when the result is a
methodpointer. The typeconv of the methodpointer will then
take care of updateing size of niln to OS_64 }
if not((resulttype.def.deftype=procvardef) and
(po_methodpointer in tprocvardef(resulttype.def).procoptions)) then
begin
left.resulttype:=resulttype;
result:=left;
left:=nil;
exit;
end;
end;
ordconstn :
begin
{ ordinal contants can be directly converted }
{ but not char to char because it is a widechar to char or via versa }
{ which needs extra code to do the code page transistion }
{ constant ordinal to pointer }
if (resulttype.def.deftype=pointerdef) and
(convtype<>tc_cchar_2_pchar) then
begin
hp:=cpointerconstnode.create(TConstPtrUInt(tordconstnode(left).value),resulttype);
result:=hp;
exit;
end
else if is_ordinal(resulttype.def) and
not(convtype=tc_char_2_char) then
begin
{ replace the resulttype and recheck the range }
left.resulttype:=resulttype;
testrange(left.resulttype.def,tordconstnode(left).value,(nf_explicit in flags));
result:=left;
left:=nil;
exit;
end;
end;
pointerconstn :
begin
{ pointerconstn to any pointer is folded too }
if (resulttype.def.deftype=pointerdef) then
begin
left.resulttype:=resulttype;
result:=left;
left:=nil;
exit;
end
{ constant pointer to ordinal }
else if is_ordinal(resulttype.def) then
begin
hp:=cordconstnode.create(TConstExprInt(tpointerconstnode(left).value),
resulttype,not(nf_explicit in flags));
result:=hp;
exit;
end;
end;
end;
{ now call the resulttype helper to do constant folding }
result:=resulttype_call_helper(convtype);
end;
procedure Ttypeconvnode.mark_write;
begin
left.mark_write;
end;
function ttypeconvnode.first_cord_to_pointer : tnode;
begin
result:=nil;
internalerror(200104043);
end;
function ttypeconvnode.first_int_to_int : tnode;
begin
first_int_to_int:=nil;
expectloc:=left.expectloc;
if not is_void(left.resulttype.def) then
begin
if (left.expectloc<>LOC_REGISTER) and
(resulttype.def.size>left.resulttype.def.size) then
expectloc:=LOC_REGISTER
else
if (left.expectloc=LOC_CREGISTER) and
(resulttype.def.size<left.resulttype.def.size) then
expectloc:=LOC_REGISTER;
end;
{$ifndef cpu64bit}
if is_64bit(resulttype.def) then
registersint:=max(registersint,2)
else
{$endif cpu64bit}
registersint:=max(registersint,1);
end;
function ttypeconvnode.first_cstring_to_pchar : tnode;
begin
result:=nil;
registersint:=1;
expectloc:=LOC_REGISTER;
end;
function ttypeconvnode.first_cstring_to_int : tnode;
begin
result:=nil;
internalerror(200510014);
end;
function ttypeconvnode.first_string_to_chararray : tnode;
begin
first_string_to_chararray:=nil;
expectloc:=left.expectloc;
end;
function ttypeconvnode.first_char_to_string : tnode;
begin
first_char_to_string:=nil;
expectloc:=LOC_REFERENCE;
end;
function ttypeconvnode.first_nothing : tnode;
begin
first_nothing:=nil;
end;
function ttypeconvnode.first_array_to_pointer : tnode;
begin
first_array_to_pointer:=nil;
if registersint<1 then
registersint:=1;
expectloc:=LOC_REGISTER;
end;
function ttypeconvnode.first_int_to_real: tnode;
var
fname: string[32];
typname : string[12];
begin
{ Get the type name }
{ Normally the typename should be one of the following:
single, double - carl
}
typname := lower(pbestrealtype^.def.gettypename);
{ converting a 64bit integer to a float requires a helper }
if is_64bit(left.resulttype.def) then
begin
if is_signed(left.resulttype.def) then
fname := 'fpc_int64_to_'+typname
else
{$warning generic conversion from int to float does not support unsigned integers}
fname := 'fpc_int64_to_'+typname;
result := ccallnode.createintern(fname,ccallparanode.create(
left,nil));
left:=nil;
firstpass(result);
exit;
end
else
{ other integers are supposed to be 32 bit }
begin
{$warning generic conversion from int to float does not support unsigned integers}
if is_signed(left.resulttype.def) then
fname := 'fpc_longint_to_'+typname
else
fname := 'fpc_longint_to_'+typname;
result := ccallnode.createintern(fname,ccallparanode.create(
left,nil));
left:=nil;
firstpass(result);
exit;
end;
end;
function ttypeconvnode.first_real_to_real : tnode;
begin
{$ifdef cpufpemu}
if cs_fp_emulation in aktmoduleswitches then
begin
if target_info.system in system_wince then
begin
case tfloatdef(left.resulttype.def).typ of
s32real:
case tfloatdef(resulttype.def).typ of
s64real:
result:=ccallnode.createintern('STOD',ccallparanode.create(left,nil));
else
internalerror(2005082704);
end;
s64real:
case tfloatdef(resulttype.def).typ of
s32real:
result:=ccallnode.createintern('DTOS',ccallparanode.create(left,nil));
else
internalerror(2005082703);
end;
else
internalerror(2005082702);
end;
left:=nil;
firstpass(result);
exit;
end
else
begin
{!! FIXME }
internalerror(2005082701);
end;
end
else
{$endif cpufpemu}
begin
first_real_to_real:=nil;
{ comp isn't a floating type }
if registersfpu<1 then
registersfpu:=1;
expectloc:=LOC_FPUREGISTER;
end;
end;
function ttypeconvnode.first_pointer_to_array : tnode;
begin
first_pointer_to_array:=nil;
if registersint<1 then
registersint:=1;
expectloc:=LOC_REFERENCE;
end;
function ttypeconvnode.first_cchar_to_pchar : tnode;
begin
first_cchar_to_pchar:=nil;
internalerror(200104021);
end;
function ttypeconvnode.first_bool_to_int : tnode;
begin
first_bool_to_int:=nil;
{ byte(boolean) or word(wordbool) or longint(longbool) must
be accepted for var parameters }
if (nf_explicit in flags) and
(left.resulttype.def.size=resulttype.def.size) and
(left.expectloc in [LOC_REFERENCE,LOC_CREFERENCE,LOC_CREGISTER]) then
exit;
{ when converting to 64bit, first convert to a 32bit int and then }
{ convert to a 64bit int (only necessary for 32bit processors) (JM) }
if resulttype.def.size > sizeof(aint) then
begin
result := ctypeconvnode.create_internal(left,u32inttype);
result := ctypeconvnode.create(result,resulttype);
left := nil;
firstpass(result);
exit;
end;
expectloc:=LOC_REGISTER;
if registersint<1 then
registersint:=1;
end;
function ttypeconvnode.first_int_to_bool : tnode;
begin
first_int_to_bool:=nil;
{ byte(boolean) or word(wordbool) or longint(longbool) must
be accepted for var parameters }
if (nf_explicit in flags) and
(left.resulttype.def.size=resulttype.def.size) and
(left.expectloc in [LOC_REFERENCE,LOC_CREFERENCE,LOC_CREGISTER]) then
exit;
expectloc:=LOC_REGISTER;
{ need if bool to bool !!
not very nice !!
insertypeconv(left,s32inttype);
left.explizit:=true;
firstpass(left); }
if registersint<1 then
registersint:=1;
end;
function ttypeconvnode.first_bool_to_bool : tnode;
begin
first_bool_to_bool:=nil;
expectloc:=LOC_REGISTER;
if registersint<1 then
registersint:=1;
end;
function ttypeconvnode.first_char_to_char : tnode;
begin
first_char_to_char:=first_int_to_int;
end;
function ttypeconvnode.first_proc_to_procvar : tnode;
begin
first_proc_to_procvar:=nil;
if tabstractprocdef(resulttype.def).is_addressonly then
begin
registersint:=left.registersint;
if registersint<1 then
registersint:=1;
expectloc:=LOC_REGISTER;
end
else
begin
if not(left.expectloc in [LOC_CREFERENCE,LOC_REFERENCE]) then
CGMessage(parser_e_illegal_expression);
registersint:=left.registersint;
expectloc:=left.expectloc
end
end;
function ttypeconvnode.first_load_smallset : tnode;
var
srsym: ttypesym;
p: tcallparanode;
begin
if not searchsystype('FPC_SMALL_SET',srsym) then
internalerror(200108313);
p := ccallparanode.create(left,nil);
{ reused }
left := nil;
{ convert parameter explicitely to fpc_small_set }
p.left := ctypeconvnode.create_internal(p.left,srsym.restype);
{ create call, adjust resulttype }
result :=
ccallnode.createinternres('fpc_set_load_small',p,resulttype);
firstpass(result);
end;
function ttypeconvnode.first_ansistring_to_pchar : tnode;
begin
first_ansistring_to_pchar:=nil;
expectloc:=LOC_REGISTER;
if registersint<1 then
registersint:=1;
end;
function ttypeconvnode.first_arrayconstructor_to_set : tnode;
begin
first_arrayconstructor_to_set:=nil;
internalerror(200104022);
end;
function ttypeconvnode.first_class_to_intf : tnode;
begin
first_class_to_intf:=nil;
expectloc:=LOC_REGISTER;
if registersint<1 then
registersint:=1;
end;
function ttypeconvnode._first_int_to_int : tnode;
begin
result:=first_int_to_int;
end;
function ttypeconvnode._first_cstring_to_pchar : tnode;
begin
result:=first_cstring_to_pchar;
end;
function ttypeconvnode._first_cstring_to_int : tnode;
begin
result:=first_cstring_to_int;
end;
function ttypeconvnode._first_string_to_chararray : tnode;
begin
result:=first_string_to_chararray;
end;
function ttypeconvnode._first_char_to_string : tnode;
begin
result:=first_char_to_string;
end;
function ttypeconvnode._first_nothing : tnode;
begin
result:=first_nothing;
end;
function ttypeconvnode._first_array_to_pointer : tnode;
begin
result:=first_array_to_pointer;
end;
function ttypeconvnode._first_int_to_real : tnode;
begin
result:=first_int_to_real;
end;
function ttypeconvnode._first_real_to_real : tnode;
begin
result:=first_real_to_real;
end;
function ttypeconvnode._first_pointer_to_array : tnode;
begin
result:=first_pointer_to_array;
end;
function ttypeconvnode._first_cchar_to_pchar : tnode;
begin
result:=first_cchar_to_pchar;
end;
function ttypeconvnode._first_bool_to_int : tnode;
begin
result:=first_bool_to_int;
end;
function ttypeconvnode._first_int_to_bool : tnode;
begin
result:=first_int_to_bool;
end;
function ttypeconvnode._first_bool_to_bool : tnode;
begin
result:=first_bool_to_bool;
end;
function ttypeconvnode._first_proc_to_procvar : tnode;
begin
result:=first_proc_to_procvar;
end;
function ttypeconvnode._first_load_smallset : tnode;
begin
result:=first_load_smallset;
end;
function ttypeconvnode._first_cord_to_pointer : tnode;
begin
result:=first_cord_to_pointer;
end;
function ttypeconvnode._first_ansistring_to_pchar : tnode;
begin
result:=first_ansistring_to_pchar;
end;
function ttypeconvnode._first_arrayconstructor_to_set : tnode;
begin
result:=first_arrayconstructor_to_set;
end;
function ttypeconvnode._first_class_to_intf : tnode;
begin
result:=first_class_to_intf;
end;
function ttypeconvnode._first_char_to_char : tnode;
begin
result:=first_char_to_char;
end;
function ttypeconvnode.first_call_helper(c : tconverttype) : tnode;
const
firstconvert : array[tconverttype] of pointer = (
nil, { none }
@ttypeconvnode._first_nothing, {equal}
@ttypeconvnode._first_nothing, {not_possible}
nil, { removed in resulttype_string_to_string }
@ttypeconvnode._first_char_to_string,
@ttypeconvnode._first_nothing, { char_2_chararray, needs nothing extra }
nil, { removed in resulttype_chararray_to_string }
@ttypeconvnode._first_cchar_to_pchar,
@ttypeconvnode._first_cstring_to_pchar,
@ttypeconvnode._first_cstring_to_int,
@ttypeconvnode._first_ansistring_to_pchar,
@ttypeconvnode._first_string_to_chararray,
nil, { removed in resulttype_chararray_to_string }
@ttypeconvnode._first_array_to_pointer,
@ttypeconvnode._first_pointer_to_array,
@ttypeconvnode._first_int_to_int,
@ttypeconvnode._first_int_to_bool,
@ttypeconvnode._first_bool_to_bool,
@ttypeconvnode._first_bool_to_int,
@ttypeconvnode._first_real_to_real,
@ttypeconvnode._first_int_to_real,
nil, { removed in resulttype_real_to_currency }
@ttypeconvnode._first_proc_to_procvar,
@ttypeconvnode._first_arrayconstructor_to_set,
@ttypeconvnode._first_load_smallset,
@ttypeconvnode._first_cord_to_pointer,
@ttypeconvnode._first_nothing,
@ttypeconvnode._first_nothing,
@ttypeconvnode._first_class_to_intf,
@ttypeconvnode._first_char_to_char,
@ttypeconvnode._first_nothing,
@ttypeconvnode._first_nothing,
nil,
nil,
nil,
nil,
nil,
nil,
nil,
nil
);
type
tprocedureofobject = function : tnode of object;
var
r : packed record
proc : pointer;
obj : pointer;
end;
begin
{ this is a little bit dirty but it works }
{ and should be quite portable too }
r.proc:=firstconvert[c];
r.obj:=self;
if not assigned(r.proc) then
internalerror(200312081);
first_call_helper:=tprocedureofobject(r){$ifdef FPC}(){$endif FPC}
end;
function ttypeconvnode.pass_1 : tnode;
begin
result:=nil;
firstpass(left);
if codegenerror then
exit;
{ load the value_str from the left part }
registersint:=left.registersint;
registersfpu:=left.registersfpu;
{$ifdef SUPPORT_MMX}
registersmmx:=left.registersmmx;
{$endif}
expectloc:=left.expectloc;
result:=first_call_helper(convtype);
end;
function ttypeconvnode.assign_allowed:boolean;
begin
result:=(convtype=tc_equal) or
{ typecasting from void is always allowed }
is_void(left.resulttype.def) or
(left.resulttype.def.deftype=formaldef) or
{ int 2 int with same size reuses same location, or for
tp7 mode also allow size < orignal size }
(
(convtype=tc_int_2_int) and
(
(resulttype.def.size=left.resulttype.def.size) or
((m_tp7 in aktmodeswitches) and
(resulttype.def.size<left.resulttype.def.size))
)
) or
{ int 2 bool/bool 2 int, explicit typecast, see also nx86cnv }
((convtype in [tc_int_2_bool,tc_bool_2_int]) and
(nf_explicit in flags) and
(resulttype.def.size=left.resulttype.def.size));
{ When using only a part of the value it can't be in a register since
that will load the value in a new register first }
if (resulttype.def.size<left.resulttype.def.size) then
make_not_regable(left);
end;
function ttypeconvnode.docompare(p: tnode) : boolean;
begin
docompare :=
inherited docompare(p) and
(convtype = ttypeconvnode(p).convtype);
end;
procedure ttypeconvnode._second_int_to_int;
begin
second_int_to_int;
end;
procedure ttypeconvnode._second_string_to_string;
begin
second_string_to_string;
end;
procedure ttypeconvnode._second_cstring_to_pchar;
begin
second_cstring_to_pchar;
end;
procedure ttypeconvnode._second_cstring_to_int;
begin
second_cstring_to_int;
end;
procedure ttypeconvnode._second_string_to_chararray;
begin
second_string_to_chararray;
end;
procedure ttypeconvnode._second_array_to_pointer;
begin
second_array_to_pointer;
end;
procedure ttypeconvnode._second_pointer_to_array;
begin
second_pointer_to_array;
end;
procedure ttypeconvnode._second_chararray_to_string;
begin
second_chararray_to_string;
end;
procedure ttypeconvnode._second_char_to_string;
begin
second_char_to_string;
end;
procedure ttypeconvnode._second_int_to_real;
begin
second_int_to_real;
end;
procedure ttypeconvnode._second_real_to_real;
begin
second_real_to_real;
end;
procedure ttypeconvnode._second_cord_to_pointer;
begin
second_cord_to_pointer;
end;
procedure ttypeconvnode._second_proc_to_procvar;
begin
second_proc_to_procvar;
end;
procedure ttypeconvnode._second_bool_to_int;
begin
second_bool_to_int;
end;
procedure ttypeconvnode._second_int_to_bool;
begin
second_int_to_bool;
end;
procedure ttypeconvnode._second_bool_to_bool;
begin
second_bool_to_bool;
end;
procedure ttypeconvnode._second_load_smallset;
begin
second_load_smallset;
end;
procedure ttypeconvnode._second_ansistring_to_pchar;
begin
second_ansistring_to_pchar;
end;
procedure ttypeconvnode._second_class_to_intf;
begin
second_class_to_intf;
end;
procedure ttypeconvnode._second_char_to_char;
begin
second_char_to_char;
end;
procedure ttypeconvnode._second_nothing;
begin
second_nothing;
end;
procedure ttypeconvnode.second_call_helper(c : tconverttype);
const
secondconvert : array[tconverttype] of pointer = (
@ttypeconvnode._second_nothing, {none}
@ttypeconvnode._second_nothing, {equal}
@ttypeconvnode._second_nothing, {not_possible}
@ttypeconvnode._second_nothing, {second_string_to_string, handled in resulttype pass }
@ttypeconvnode._second_char_to_string,
@ttypeconvnode._second_nothing, {char_to_charray}
@ttypeconvnode._second_nothing, { pchar_to_string, handled in resulttype pass }
@ttypeconvnode._second_nothing, {cchar_to_pchar}
@ttypeconvnode._second_cstring_to_pchar,
@ttypeconvnode._second_cstring_to_int,
@ttypeconvnode._second_ansistring_to_pchar,
@ttypeconvnode._second_string_to_chararray,
@ttypeconvnode._second_nothing, { chararray_to_string, handled in resulttype pass }
@ttypeconvnode._second_array_to_pointer,
@ttypeconvnode._second_pointer_to_array,
@ttypeconvnode._second_int_to_int,
@ttypeconvnode._second_int_to_bool,
@ttypeconvnode._second_bool_to_bool,
@ttypeconvnode._second_bool_to_int,
@ttypeconvnode._second_real_to_real,
@ttypeconvnode._second_int_to_real,
@ttypeconvnode._second_nothing, { real_to_currency, handled in resulttype pass }
@ttypeconvnode._second_proc_to_procvar,
@ttypeconvnode._second_nothing, { arrayconstructor_to_set }
@ttypeconvnode._second_nothing, { second_load_smallset, handled in first pass }
@ttypeconvnode._second_cord_to_pointer,
@ttypeconvnode._second_nothing, { interface 2 string }
@ttypeconvnode._second_nothing, { interface 2 guid }
@ttypeconvnode._second_class_to_intf,
@ttypeconvnode._second_char_to_char,
@ttypeconvnode._second_nothing, { normal_2_smallset }
@ttypeconvnode._second_nothing, { dynarray_2_openarray }
@ttypeconvnode._second_nothing, { pwchar_2_string }
@ttypeconvnode._second_nothing, { variant_2_dynarray }
@ttypeconvnode._second_nothing, { dynarray_2_variant}
@ttypeconvnode._second_nothing, { variant_2_enum }
@ttypeconvnode._second_nothing, { enum_2_variant }
@ttypeconvnode._second_nothing, { variant_2_interface }
@ttypeconvnode._second_nothing, { interface_2_variant }
@ttypeconvnode._second_nothing { array_2_dynarray }
);
type
tprocedureofobject = procedure of object;
var
r : packed record
proc : pointer;
obj : pointer;
end;
begin
{ this is a little bit dirty but it works }
{ and should be quite portable too }
r.proc:=secondconvert[c];
r.obj:=self;
tprocedureofobject(r)();
end;
{*****************************************************************************
TISNODE
*****************************************************************************}
constructor tisnode.create(l,r : tnode);
begin
inherited create(isn,l,r);
end;
function tisnode.det_resulttype:tnode;
var
paras: tcallparanode;
begin
result:=nil;
resulttypepass(left);
resulttypepass(right);
set_varstate(left,vs_used,[vsf_must_be_valid]);
set_varstate(right,vs_used,[vsf_must_be_valid]);
if codegenerror then
exit;
if (right.resulttype.def.deftype=classrefdef) then
begin
{ left must be a class }
if is_class(left.resulttype.def) then
begin
{ the operands must be related }
if (not(tobjectdef(left.resulttype.def).is_related(
tobjectdef(tclassrefdef(right.resulttype.def).pointertype.def)))) and
(not(tobjectdef(tclassrefdef(right.resulttype.def).pointertype.def).is_related(
tobjectdef(left.resulttype.def)))) then
CGMessage2(type_e_classes_not_related,left.resulttype.def.typename,
tclassrefdef(right.resulttype.def).pointertype.def.typename);
end
else
CGMessage1(type_e_class_type_expected,left.resulttype.def.typename);
{ call fpc_do_is helper }
paras := ccallparanode.create(
left,
ccallparanode.create(
right,nil));
result := ccallnode.createintern('fpc_do_is',paras);
left := nil;
right := nil;
end
else if is_interface(right.resulttype.def) then
begin
{ left is a class }
if is_class(left.resulttype.def) then
begin
{ the operands must be related }
if not(assigned(tobjectdef(left.resulttype.def).implementedinterfaces) and
(tobjectdef(left.resulttype.def).implementedinterfaces.searchintf(right.resulttype.def)<>-1)) then
CGMessage2(type_e_classes_not_related,
FullTypeName(left.resulttype.def,right.resulttype.def),
FullTypeName(right.resulttype.def,left.resulttype.def))
end
{ left is an interface }
else if is_interface(left.resulttype.def) then
begin
{ the operands must be related }
if (not(tobjectdef(left.resulttype.def).is_related(tobjectdef(right.resulttype.def)))) and
(not(tobjectdef(right.resulttype.def).is_related(tobjectdef(left.resulttype.def)))) then
CGMessage2(type_e_classes_not_related,
FullTypeName(left.resulttype.def,right.resulttype.def),
FullTypeName(right.resulttype.def,left.resulttype.def));
end
else
CGMessage1(type_e_class_type_expected,left.resulttype.def.typename);
{ call fpc_do_is helper }
paras := ccallparanode.create(
left,
ccallparanode.create(
right,nil));
result := ccallnode.createintern('fpc_do_is',paras);
left := nil;
right := nil;
end
else
CGMessage1(type_e_class_or_interface_type_expected,right.resulttype.def.typename);
resulttype:=booltype;
end;
function tisnode.pass_1 : tnode;
begin
internalerror(200204254);
result:=nil;
end;
{ dummy pass_2, it will never be called, but we need one since }
{ you can't instantiate an abstract class }
procedure tisnode.pass_2;
begin
end;
{*****************************************************************************
TASNODE
*****************************************************************************}
constructor tasnode.create(l,r : tnode);
begin
inherited create(asn,l,r);
call := nil;
end;
destructor tasnode.destroy;
begin
call.free;
inherited destroy;
end;
function tasnode.det_resulttype:tnode;
var
hp : tnode;
begin
result:=nil;
resulttypepass(right);
resulttypepass(left);
set_varstate(right,vs_used,[vsf_must_be_valid]);
set_varstate(left,vs_used,[vsf_must_be_valid]);
if codegenerror then
exit;
if (right.resulttype.def.deftype=classrefdef) then
begin
{ left must be a class }
if is_class(left.resulttype.def) then
begin
{ the operands must be related }
if (not(tobjectdef(left.resulttype.def).is_related(
tobjectdef(tclassrefdef(right.resulttype.def).pointertype.def)))) and
(not(tobjectdef(tclassrefdef(right.resulttype.def).pointertype.def).is_related(
tobjectdef(left.resulttype.def)))) then
CGMessage2(type_e_classes_not_related,
FullTypeName(left.resulttype.def,tclassrefdef(right.resulttype.def).pointertype.def),
FullTypeName(tclassrefdef(right.resulttype.def).pointertype.def,left.resulttype.def));
end
else
CGMessage1(type_e_class_type_expected,left.resulttype.def.typename);
resulttype:=tclassrefdef(right.resulttype.def).pointertype;
end
else if is_interface(right.resulttype.def) then
begin
{ left is a class }
if not(is_class(left.resulttype.def) or
is_interface(left.resulttype.def)) then
CGMessage1(type_e_class_type_expected,left.resulttype.def.typename);
resulttype:=right.resulttype;
{ load the GUID of the interface }
if (right.nodetype=typen) then
begin
if assigned(tobjectdef(right.resulttype.def).iidguid) then
begin
hp:=cguidconstnode.create(tobjectdef(right.resulttype.def).iidguid^);
right.free;
right:=hp;
end
else
internalerror(200206282);
resulttypepass(right);
end;
end
else
CGMessage1(type_e_class_or_interface_type_expected,right.resulttype.def.typename);
end;
function tasnode._getcopy: tnode;
begin
result := inherited _getcopy;
if assigned(call) then
tasnode(result).call := call.getcopy
else
tasnode(result).call := nil;
end;
function tasnode.pass_1 : tnode;
var
procname: string;
begin
result:=nil;
if not assigned(call) then
begin
if is_class(left.resulttype.def) and
(right.resulttype.def.deftype=classrefdef) then
call := ccallnode.createinternres('fpc_do_as',
ccallparanode.create(left,ccallparanode.create(right,nil)),
resulttype)
else
begin
if is_class(left.resulttype.def) then
procname := 'fpc_class_as_intf'
else
procname := 'fpc_intf_as';
call := ccallnode.createinternres(procname,
ccallparanode.create(right,ccallparanode.create(left,nil)),
resulttype);
end;
left := nil;
right := nil;
firstpass(call);
if codegenerror then
exit;
expectloc:=call.expectloc;
registersint:=call.registersint;
registersfpu:=call.registersfpu;
{$ifdef SUPPORT_MMX}
registersmmx:=call.registersmmx;
{$endif SUPPORT_MMX}
end;
end;
begin
ctypeconvnode:=ttypeconvnode;
casnode:=tasnode;
cisnode:=tisnode;
end.