fpc/compiler/aarch64/aasmcpu.pas

1736 lines
57 KiB
ObjectPascal
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
Copyright (c) 2003-2012 by Florian Klaempfl and others
Contains the assembler object for Aarch64
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit aasmcpu;
{$i fpcdefs.inc}
interface
uses
cclasses,globtype,globals,verbose,
aasmbase,aasmtai,aasmdata,aasmsym,
ogbase,
symtype,
cpubase,cpuinfo,cgbase,cgutils;
const
{ "mov reg,reg" source operand number }
O_MOV_SOURCE = 1;
{ "mov reg,reg" source operand number }
O_MOV_DEST = 0;
{ Operand types }
OT_NONE = $00000000;
OT_BITS8 = $00000001; { size, and other attributes, of the operand }
OT_BITS16 = $00000002;
OT_BITS32 = $00000004;
OT_BITS64 = $00000008; { FPU only }
OT_BITS80 = $00000010;
OT_FAR = $00000020; { this means 16:16 or 16:32, like in CALL/JMP }
OT_NEAR = $00000040;
OT_SHORT = $00000080;
OT_BITSTINY = $00000100; { fpu constant }
OT_BITSSHIFTER =
$00000200;
OT_SIZE_MASK = $000003FF; { all the size attributes }
OT_NON_SIZE = longint(not OT_SIZE_MASK);
OT_SIGNED = $00000100; { the operand need to be signed -128-127 }
OT_TO = $00000200; { operand is followed by a colon }
{ reverse effect in FADD, FSUB &c }
OT_COLON = $00000400;
OT_SHIFTEROP = $00000800;
OT_REGISTER = $00001000;
OT_IMMEDIATE = $00002000;
OT_REGLIST = $00008000;
OT_IMM8 = $00002001;
OT_IMM24 = $00002002;
OT_IMM32 = $00002004;
OT_IMM64 = $00002008;
OT_IMM80 = $00002010;
OT_IMMTINY = $00002100;
OT_IMMSHIFTER= $00002200;
OT_IMMEDIATE24 = OT_IMM24;
OT_SHIFTIMM = OT_SHIFTEROP or OT_IMMSHIFTER;
OT_SHIFTIMMEDIATE = OT_SHIFTIMM;
OT_IMMEDIATESHIFTER = OT_IMMSHIFTER;
OT_IMMEDIATEFPU = OT_IMMTINY;
OT_REGMEM = $00200000; { for r/m, ie EA, operands }
OT_REGNORM = $00201000; { 'normal' reg, qualifies as EA }
OT_REG8 = $00201001;
OT_REG16 = $00201002;
OT_REG32 = $00201004;
OT_REG64 = $00201008;
OT_VREG = $00201010; { vector register }
OT_REGF = $00201020; { coproc register }
OT_MEMORY = $00204000; { register number in 'basereg' }
OT_MEM8 = $00204001;
OT_MEM16 = $00204002;
OT_MEM32 = $00204004;
OT_MEM64 = $00204008;
OT_MEM80 = $00204010;
{ word/byte load/store }
OT_AM2 = $00010000;
{ misc ld/st operations }
OT_AM3 = $00020000;
{ multiple ld/st operations }
OT_AM4 = $00040000;
{ co proc. ld/st operations }
OT_AM5 = $00080000;
OT_AMMASK = $000f0000;
{ IT instruction }
OT_CONDITION = $00100000;
OT_MEMORYAM2 = OT_MEMORY or OT_AM2;
OT_MEMORYAM3 = OT_MEMORY or OT_AM3;
OT_MEMORYAM4 = OT_MEMORY or OT_AM4;
OT_MEMORYAM5 = OT_MEMORY or OT_AM5;
OT_FPUREG = $01000000; { floating point stack registers }
OT_REG_SMASK = $00070000; { special register operands: these may be treated differently }
{ a mask for the following }
OT_MEM_OFFS = $00604000; { special type of EA }
{ simple [address] offset }
OT_ONENESS = $00800000; { special type of immediate operand }
{ so UNITY == IMMEDIATE | ONENESS }
OT_UNITY = $00802000; { for shift/rotate instructions }
instabentries = {$i a64nop.inc}
maxinfolen = 5;
IF_NONE = $00000000;
IF_ARMMASK = $000F0000;
IF_ARM7 = $00070000;
IF_FPMASK = $00F00000;
IF_FPA = $00100000;
{ if the instruction can change in a second pass }
IF_PASS2 = longint($80000000);
type
TInsTabCache=array[TasmOp] of longint;
PInsTabCache=^TInsTabCache;
tinsentry = record
opcode : tasmop;
ops : byte;
optypes : array[0..3] of longint;
code : array[0..maxinfolen] of char;
flags : longint;
end;
pinsentry=^tinsentry;
var
InsTabCache : PInsTabCache;
type
taicpu = class(tai_cpu_abstract_sym)
oppostfix : TOpPostfix;
procedure loadshifterop(opidx:longint;const so:tshifterop);
procedure loadconditioncode(opidx: longint; const c: tasmcond);
procedure loadrealconst(opidx: longint; const _value: bestreal);
procedure loadregset(opidx: longint; _basereg: tregister; _nregs: byte; _regsetindex: byte = 255);
procedure loadindexedreg(opidx: longint; _indexedreg: tregister; _regindex: byte);
constructor op_none(op : tasmop);
constructor op_reg(op : tasmop;_op1 : tregister);
constructor op_ref(op : tasmop;const _op1 : treference);
constructor op_const(op : tasmop;_op1 : longint);
constructor op_reg_reg(op : tasmop;_op1,_op2 : tregister);
constructor op_reg_ref(op : tasmop;_op1 : tregister;const _op2 : treference);
constructor op_reg_cond(op: tasmop; _op1: tregister; _op2: tasmcond);
constructor op_reg_const(op:tasmop; _op1: tregister; _op2: aint);
constructor op_reg_const_shifterop(op : tasmop;_op1: tregister; _op2: aint;_op3 : tshifterop);
constructor op_reg_realconst(op: tasmop; _op1: tregister; _op2: bestreal);
constructor op_indexedreg_reg(op : tasmop;_op1: tregister; _op1index: byte; _op2 : tregister);
constructor op_reg_indexedreg(op : tasmop;_op1: tregister; _op2 : tregister; _op2index: byte);
constructor op_reg_reg_reg(op : tasmop;_op1,_op2,_op3 : tregister);
constructor op_reg_reg_reg_reg(op : tasmop;_op1,_op2,_op3,_op4 : tregister);
constructor op_reg_reg_const(op : tasmop;_op1,_op2 : tregister; _op3: aint);
constructor op_reg_reg_const_const(op : tasmop;_op1,_op2 : tregister; _op3, _op4: aint);
constructor op_reg_reg_const_shifterop(op : tasmop;_op1,_op2 : tregister; _op3: aint; const _op4 : tshifterop);
constructor op_reg_reg_sym_ofs(op : tasmop;_op1,_op2 : tregister; _op3: tasmsymbol;_op3ofs: longint);
constructor op_reg_reg_ref(op : tasmop;_op1,_op2 : tregister; const _op3: treference);
constructor op_reg_reg_shifterop(op : tasmop;_op1,_op2 : tregister;_op3 : tshifterop);
constructor op_reg_reg_reg_shifterop(op : tasmop;_op1,_op2,_op3 : tregister; const _op4 : tshifterop);
constructor op_reg_reg_reg_cond(op : tasmop;_op1,_op2,_op3 : tregister; const _op4: tasmcond);
constructor op_reg_const_ref(op: tasmop; _op1: tregister; _op2: aint; _op3: treference);
constructor op_const_ref(op:tasmop; _op1: aint; _op2: treference);
{ this is for Jmp instructions }
constructor op_cond_sym(op : tasmop;cond:TAsmCond;_op1 : tasmsymbol);
{ ldN(r)/stN }
constructor op_regset_reg_ref(op: tasmop; basereg: tregister; nregs: byte; const ref: treference);
constructor op_sym(op : tasmop;_op1 : tasmsymbol);
constructor op_sym_ofs(op : tasmop;_op1 : tasmsymbol;_op1ofs:longint);
constructor op_reg_sym_ofs(op : tasmop;_op1 : tregister;_op2:tasmsymbol;_op2ofs : longint);
constructor op_sym_ofs_ref(op : tasmop;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
function is_same_reg_move(regtype: Tregistertype):boolean; override;
function spilling_get_operation_type(opnr: longint): topertype;override;
function spilling_get_operation_type_ref(opnr: longint; reg: tregister): topertype;override;
{ assembler }
public
{ the next will reset all instructions that can change in pass 2 }
procedure ResetPass1;override;
procedure ResetPass2;override;
function CheckIfValid:boolean;
function GetString:string;
function Pass1(objdata:TObjData):longint;override;
procedure Pass2(objdata:TObjData);override;
protected
procedure ppuloadoper(ppufile:tcompilerppufile;var o:toper);override;
procedure ppuwriteoper(ppufile:tcompilerppufile;const o:toper);override;
procedure ppubuildderefimploper(var o:toper);override;
procedure ppuderefoper(var o:toper);override;
end;
tai_align = class(tai_align_abstract)
{ nothing to add }
end;
type
tsimplereftype =
{ valid reference }
(sr_simple,
{ invalid reference, should not be generated by the code generator (but
can be encountered via inline assembly, where it must be rejected) }
sr_internal_illegal,
{ invalid reference, may be generated by the code generator and then
must be simplified (also rejected in inline assembly) }
sr_complex);
function simple_ref_type(op: tasmop; size:tcgsize; oppostfix: toppostfix; const ref: treference): tsimplereftype;
function can_be_shifter_operand(opc: tasmop; opnr: longint): boolean;
function valid_shifter_operand(opc: tasmop; useszr, usessp, is64bit: boolean; sm: tshiftmode; shiftimm: longint): boolean;
function spilling_create_load(const ref: treference; r: tregister): taicpu;
function spilling_create_store(r: tregister; const ref: treference): taicpu;
function setoppostfix(i : taicpu;pf : toppostfix) : taicpu;
function setcondition(i : taicpu;c : tasmcond) : taicpu;
{ inserts pc relative symbols at places where they are reachable
and transforms special instructions to valid instruction encodings }
procedure finalizearmcode(list,listtoinsert : TAsmList);
procedure InitAsm;
procedure DoneAsm;
implementation
uses
cutils,rgobj,itcpugas,aoptcpu;
procedure taicpu.loadshifterop(opidx:longint;const so:tshifterop);
begin
allocate_oper(opidx+1);
with oper[opidx]^ do
begin
if typ<>top_shifterop then
begin
clearop(opidx);
new(shifterop);
end;
shifterop^:=so;
typ:=top_shifterop;
end;
end;
procedure taicpu.loadconditioncode(opidx: longint; const c: tasmcond);
begin
allocate_oper(opidx+1);
with oper[opidx]^ do
begin
if typ<>top_conditioncode then
begin
clearop(opidx);
end;
cc:=c;
typ:=top_conditioncode;
end;
end;
procedure taicpu.loadrealconst(opidx:longint;const _value:bestreal);
begin
allocate_oper(opidx+1);
with oper[opidx]^ do
begin
if typ<>top_realconst then
clearop(opidx);
val_real:=_value;
typ:=top_realconst;
end;
end;
procedure taicpu.loadregset(opidx: longint; _basereg: tregister; _nregs: byte; _regsetindex: byte = 255);
begin
allocate_oper(opidx+1);
with oper[opidx]^ do
begin
if typ<>top_regset then
clearop(opidx);
basereg:=_basereg;
nregs:=_nregs;
regsetindex:=_regsetindex;
typ:=top_regset;
end;
end;
procedure taicpu.loadindexedreg(opidx: longint; _indexedreg: tregister; _regindex: byte);
begin
allocate_oper(opidx+1);
with oper[opidx]^ do
begin
if typ<>top_indexedreg then
clearop(opidx);
indexedreg:=_indexedreg;
regindex:=_regindex;
typ:=top_indexedreg;
end;
end;
{*****************************************************************************
taicpu Constructors
*****************************************************************************}
constructor taicpu.op_none(op : tasmop);
begin
inherited create(op);
end;
{ for pld }
constructor taicpu.op_ref(op : tasmop;const _op1 : treference);
begin
inherited create(op);
ops:=1;
loadref(0,_op1);
end;
constructor taicpu.op_reg(op : tasmop;_op1 : tregister);
begin
inherited create(op);
ops:=1;
loadreg(0,_op1);
end;
constructor taicpu.op_const(op : tasmop;_op1 : longint);
begin
inherited create(op);
ops:=1;
loadconst(0,aint(_op1));
end;
constructor taicpu.op_reg_reg(op : tasmop;_op1,_op2 : tregister);
begin
inherited create(op);
ops:=2;
loadreg(0,_op1);
loadreg(1,_op2);
end;
constructor taicpu.op_reg_const(op:tasmop; _op1: tregister; _op2: aint);
begin
inherited create(op);
ops:=2;
loadreg(0,_op1);
loadconst(1,aint(_op2));
end;
constructor taicpu.op_reg_const_shifterop(op: tasmop; _op1: tregister; _op2: aint; _op3: tshifterop);
begin
inherited create(op);
ops:=3;
loadreg(0,_op1);
loadconst(1,_op2);
loadshifterop(2,_op3);
end;
constructor taicpu.op_reg_ref(op : tasmop;_op1 : tregister;const _op2 : treference);
begin
inherited create(op);
ops:=2;
loadreg(0,_op1);
loadref(1,_op2);
end;
constructor taicpu.op_reg_cond(op: tasmop; _op1: tregister; _op2: tasmcond);
begin
inherited create(op);
ops:=2;
loadreg(0,_op1);
loadconditioncode(1,_op2);
end;
constructor taicpu.op_reg_reg_reg(op : tasmop;_op1,_op2,_op3 : tregister);
begin
inherited create(op);
ops:=3;
loadreg(0,_op1);
loadreg(1,_op2);
loadreg(2,_op3);
end;
constructor taicpu.op_reg_reg_reg_reg(op : tasmop;_op1,_op2,_op3,_op4 : tregister);
begin
inherited create(op);
ops:=4;
loadreg(0,_op1);
loadreg(1,_op2);
loadreg(2,_op3);
loadreg(3,_op4);
end;
constructor taicpu.op_reg_realconst(op : tasmop; _op1 : tregister; _op2 : bestreal);
begin
inherited create(op);
ops:=2;
loadreg(0,_op1);
loadrealconst(1,_op2);
end;
constructor taicpu.op_indexedreg_reg(op: tasmop; _op1: tregister; _op1index: byte; _op2: tregister);
begin
inherited create(op);
ops:=2;
loadindexedreg(0,_op1,_op1index);
loadreg(1,_op2);
end;
constructor taicpu.op_reg_indexedreg(op: tasmop; _op1: tregister; _op2: tregister; _op2index: byte);
begin
inherited create(op);
ops:=2;
loadreg(0,_op1);
loadindexedreg(1,_op2,_op2index);
end;
constructor taicpu.op_reg_reg_const(op : tasmop;_op1,_op2 : tregister; _op3: aint);
begin
inherited create(op);
ops:=3;
loadreg(0,_op1);
loadreg(1,_op2);
loadconst(2,aint(_op3));
end;
constructor taicpu.op_reg_reg_const_const(op: tasmop; _op1, _op2: tregister; _op3, _op4: aint);
begin
inherited create(op);
ops:=4;
loadreg(0,_op1);
loadreg(1,_op2);
loadconst(2,aint(_op3));
loadconst(3,aint(_op4));
end;
constructor taicpu.op_reg_reg_const_shifterop(op: tasmop; _op1, _op2: tregister; _op3: aint; const _op4: tshifterop);
begin
inherited create(op);
ops:=4;
loadreg(0,_op1);
loadreg(1,_op2);
loadconst(2,aint(_op3));
loadshifterop(3,_op4);
end;
constructor taicpu.op_reg_reg_sym_ofs(op : tasmop;_op1,_op2 : tregister; _op3: tasmsymbol;_op3ofs: longint);
begin
inherited create(op);
ops:=3;
loadreg(0,_op1);
loadreg(1,_op2);
loadsymbol(0,_op3,_op3ofs);
end;
constructor taicpu.op_reg_reg_ref(op : tasmop;_op1,_op2 : tregister; const _op3: treference);
begin
inherited create(op);
ops:=3;
loadreg(0,_op1);
loadreg(1,_op2);
loadref(2,_op3);
end;
constructor taicpu.op_reg_reg_shifterop(op : tasmop;_op1,_op2 : tregister;_op3 : tshifterop);
begin
inherited create(op);
ops:=3;
loadreg(0,_op1);
loadreg(1,_op2);
loadshifterop(2,_op3);
end;
constructor taicpu.op_reg_reg_reg_shifterop(op : tasmop;_op1,_op2,_op3 : tregister; const _op4 : tshifterop);
begin
inherited create(op);
ops:=4;
loadreg(0,_op1);
loadreg(1,_op2);
loadreg(2,_op3);
loadshifterop(3,_op4);
end;
constructor taicpu.op_reg_reg_reg_cond(op: tasmop; _op1, _op2, _op3: tregister; const _op4: tasmcond);
begin
inherited create(op);
ops:=4;
loadreg(0,_op1);
loadreg(1,_op2);
loadreg(2,_op3);
loadconditioncode(3,_op4);
end;
constructor taicpu.op_const_ref(op : tasmop; _op1 : aint; _op2 : treference);
begin
inherited create(op);
ops:=2;
loadconst(0,_op1);
loadref(1,_op2);
end;
constructor taicpu.op_cond_sym(op : tasmop;cond:TAsmCond;_op1 : tasmsymbol);
begin
inherited create(op);
condition:=cond;
ops:=1;
loadsymbol(0,_op1,0);
end;
constructor taicpu.op_regset_reg_ref(op: tasmop; basereg: tregister; nregs: byte; const ref: treference);
begin
inherited create(op);
ops:=2;
loadregset(0,basereg,nregs);
loadref(1, ref);
end;
constructor taicpu.op_sym(op : tasmop;_op1 : tasmsymbol);
begin
inherited create(op);
ops:=1;
loadsymbol(0,_op1,0);
end;
constructor taicpu.op_sym_ofs(op : tasmop;_op1 : tasmsymbol;_op1ofs:longint);
begin
inherited create(op);
ops:=1;
loadsymbol(0,_op1,_op1ofs);
end;
constructor taicpu.op_reg_sym_ofs(op : tasmop;_op1 : tregister;_op2:tasmsymbol;_op2ofs : longint);
begin
inherited create(op);
ops:=2;
loadreg(0,_op1);
loadsymbol(1,_op2,_op2ofs);
end;
constructor taicpu.op_sym_ofs_ref(op : tasmop;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
begin
inherited create(op);
ops:=2;
loadsymbol(0,_op1,_op1ofs);
loadref(1,_op2);
end;
constructor taicpu.op_reg_const_ref(op : tasmop;_op1 : tregister;_op2 : aint;_op3 : treference);
begin
inherited create(op);
ops:=3;
loadreg(0,_op1);
loadconst(1,_op2);
loadref(2,_op3);
end;
function taicpu.is_same_reg_move(regtype: Tregistertype):boolean;
begin
{ allow the register allocator to remove unnecessary moves }
result:=(
((opcode=A_MOV) and (regtype = R_INTREGISTER)) or
((opcode=A_FMOV) and (regtype = R_MMREGISTER))
) and
(oppostfix in [PF_None]) and
(condition=C_None) and
(ops=2) and
(oper[0]^.typ=top_reg) and
(oper[1]^.typ=top_reg) and
(oper[0]^.reg=oper[1]^.reg);
end;
function spilling_create_op(op: tasmop; const ref: treference; r: tregister): taicpu;
const
{ invalid sizes for aarch64 are 0 }
subreg2bytesize: array[TSubRegister] of byte =
(0,0,0,0,4,8,0,0,0,4,8,0,0,0,0,0,0,0,0,0,0,0,0,8,16,0,16,16,16,16,16,16,16,16,16,16);
var
scalefactor: byte;
begin
scalefactor:=subreg2bytesize[getsubreg(r)];
if scalefactor=0 then
internalerror(2014120301);
if (ref.offset>4095*scalefactor) or
((ref.offset>255) and
((ref.offset mod scalefactor)<>0)) or
(ref.offset<-256) then
internalerror(2014120302);
case getregtype(r) of
R_INTREGISTER,
R_MMREGISTER:
result:=taicpu.op_reg_ref(op,r,ref);
else
internalerror(2004010407);
end;
end;
function is_valid_load_symbol(op: tasmop; oppostfix: toppostfix; const ref: treference): tsimplereftype;
begin
result:=sr_complex;
if not assigned(ref.symboldata) and
not(ref.refaddr in [addr_pic,addr_gotpageoffset,addr_gotpage,addr_pageoffset,addr_page]) then
exit;
{ can't use pre-/post-indexed mode here (makes no sense either) }
if ref.addressmode<>AM_OFFSET then
exit;
{ "ldr literal" must be a 32/64 bit LDR and have a symbol }
if (ref.refaddr=addr_pic) and
(not (op in [A_LDR,A_B,A_BL,A_ADR]) or
not(oppostfix in [PF_NONE,PF_W,PF_SW]) or
(not assigned(ref.symbol) and
not assigned(ref.symboldata))) then
exit;
{ if this is a (got) page offset load, we must have a base register and a
symbol (except if we have an ADD with a non-got page offset load) }
if (ref.refaddr in [addr_gotpageoffset,addr_pageoffset]) and
(
(
(
(op<>A_ADD) or
(ref.refaddr=addr_gotpageoffset)
) and
(
not assigned(ref.symbol) or
(ref.base=NR_NO)
)
) or
(
(
(op=A_ADD) and
(ref.refaddr=addr_pageoffset)
) and
not assigned(ref.symbol) and
(ref.base=NR_NO)
) or
(ref.index<>NR_NO) or
(ref.offset<>0)) then
begin
result:=sr_internal_illegal;
exit;
end;
{ cannot have base or index register (we generate these kind of
references internally, they should never end up here with an
extra base or offset) }
if (ref.refaddr in [addr_gotpage,addr_page]) and
((ref.base<>NR_NO) or
(ref.index<>NR_NO)) then
begin
result:=sr_internal_illegal;
exit;
end;
result:=sr_simple;
end;
function simple_ref_type(op: tasmop; size:tcgsize; oppostfix: toppostfix; const ref: treference): tsimplereftype;
var
accesssize: longint;
begin
result:=sr_internal_illegal;
{ post-indexed is only allowed for vector and immediate loads/stores }
if (ref.addressmode=AM_POSTINDEXED) and
not((op = A_LD1) or (op = A_LD2) or (op = A_LD3) or (op = A_LD4) or
(op = A_LD1R) or (op = A_LD2R) or (op = A_LD3R) or (op = A_LD4R) or
(op = A_ST1) or (op = A_ST2) or (op = A_ST3) or (op = A_ST4)) and
(not(op in [A_LDR,A_STR,A_LDP,A_STP]) or
(ref.base=NR_NO) or
(ref.index<>NR_NO)) then
exit;
{ can only have a shift mode if we have an index }
if (ref.index=NR_NO) and
(ref.shiftmode<>SM_None) then
exit;
{ the index can never be the stack pointer }
if ref.index=NR_SP then
exit;
{ no instruction supports an index without a base }
if (ref.base=NR_NO) and
(ref.index<>NR_NO) then
begin
result:=sr_complex;
exit;
end;
{ LDR literal or GOT entry: 32 or 64 bit, label }
if assigned(ref.symboldata) or
assigned(ref.symbol) then
begin
{ we generate these kind of references internally; at least for now,
they should never end up here with an extra base or offset or so }
result:=is_valid_load_symbol(op,oppostfix,ref);
exit;
end;
{ any other reference cannot be gotpage/gotpageoffset/pic }
if ref.refaddr in [addr_gotpage,addr_gotpageoffset,addr_page,addr_pageoffset,addr_pic] then
exit;
{ base & index:
* index cannot be the stack pointer
* offset must be 0
* can scale with the size of the access
* can zero/sign extend 32 bit index register, and/or multiple by
access size
* no pre/post-indexing except for ldN(r)/stN
}
if (ref.base<>NR_NO) and
(ref.index<>NR_NO) then
begin
case op of
{ this holds for both integer and fpu/vector loads }
A_LDR,A_STR:
begin
if ref.addressmode in [AM_PREINDEXED,AM_POSTINDEXED] then
exit;
if (ref.offset=0) and
(((ref.shiftmode=SM_None) and
(ref.shiftimm=0)) or
((ref.shiftmode in [SM_LSL,SM_UXTW,SM_SXTW]) and
(ref.shiftimm=tcgsizep2size[size]))) then
result:=sr_simple
else
result:=sr_complex;
end;
A_LD1,A_LD2,A_LD3,A_LD4,
A_LD1R,A_LD2R,A_LD3R,A_LD4R,
A_ST1,A_ST2,A_ST3,A_ST4:
begin
if ref.addressmode in [AM_PREINDEXED] then
exit;
if (ref.offset=0) and
(ref.addressmode=AM_POSTINDEXED) then
result:=sr_simple
else
result:=sr_complex;
end;
{ these don't support base+index }
A_LDUR,A_STUR,
A_LDP,A_STP:
begin
if ref.addressmode in [AM_PREINDEXED,AM_POSTINDEXED] then
exit;
result:=sr_complex;
end
else
{ nothing: result is already sr_internal_illegal };
end;
exit;
end;
{ base + immediate offset. Variants:
* LDR*/STR*:
- pre- or post-indexed with signed 9 bit immediate
- regular with unsiged scaled immediate (multiple of access
size), in the range 0 to (12 bit * access_size)-1
* LDP/STP
- pre- or post-indexed with signed 9 bit immediate
- regular with signed 9 bit immediate
* LDUR*/STUR*:
- regular with signed 9 bit immediate
* ldN(r)/stN
- 0 or with postindex
}
if ref.base<>NR_NO then
begin
accesssize:=1 shl tcgsizep2size[size];
case op of
A_LDR,A_STR:
begin
if (ref.addressmode=AM_OFFSET) and
(ref.offset>=0) and
(ref.offset<(((1 shl 12)-1)*accesssize)) and
((ref.offset mod accesssize)=0) then
result:=sr_simple
else if (ref.offset>=-256) and
(ref.offset<=255) then
begin
{ non pre-/post-indexed regular loads/stores can only be
performed using LDUR/STUR }
if ref.addressmode in [AM_PREINDEXED,AM_POSTINDEXED] then
result:=sr_simple
else
result:=sr_complex
end
else
result:=sr_complex;
end;
A_LDP,A_LDNP,
A_STP,A_STNP:
begin
{ only supported for 32/64 bit }
if not(oppostfix in [PF_W,PF_SW,PF_None]) then
exit;
{ offset must be a multple of the access size }
if (ref.offset mod accesssize)<>0 then
exit;
{ offset must fit in a signed 7 bit offset }
if (ref.offset>=-(1 shl (6+tcgsizep2size[size]))) and
(ref.offset<=(1 shl (6+tcgsizep2size[size]))-1) then
result:=sr_simple
else
result:=sr_complex;
end;
A_LDUR,A_STUR:
begin
if ref.addressmode in [AM_PREINDEXED,AM_POSTINDEXED] then
exit;
if (ref.offset>=-256) and
(ref.offset<=255) then
result:=sr_simple
else
result:=sr_complex;
end;
A_LD1,A_LD2,A_LD3,A_LD4,
A_LD1R,A_LD2R,A_LD3R,A_LD4R,
A_ST1,A_ST2,A_ST3,A_ST4:
begin
if ref.addressmode in [AM_PREINDEXED] then
exit;
if (ref.offset=0) or
((ref.addressmode=AM_POSTINDEXED) and
{ to check the validity of the offset, we'd have to analyse the regset argument }
(ref.offset>0)) then
result:=sr_simple
else
result:=sr_complex;
end;
A_LDADD,
A_LDADDA,
A_LDADDAL,
A_LDADDL,
A_SWP,
A_SWPA,
A_SWPAL,
A_SWPL,
A_CAS,
A_CASA,
A_CASAL,
A_CASL,
A_STADD,
A_LDAR,
A_LDAXR,
A_LDXR,
A_LDXP,
A_STLR,
A_STLXR,
A_STLXP,
A_STXP,
A_STXR:
begin
if (ref.addressmode=AM_OFFSET) and
(ref.offset=0) then
result:=sr_simple;
end
else
{ nothing: result is already sr_internal_illegal };
end;
exit;
end;
{ absolute addresses are not supported, have to load them first into
a register }
result:=sr_complex;
end;
function can_be_shifter_operand(opc: tasmop; opnr: longint): boolean;
begin
case opc of
A_ADD,
A_AND,
A_EON,
A_EOR,
A_ORN,
A_ORR,
A_SUB:
result:=opnr=3;
A_BIC,
A_CMN,
A_CMP,
A_MOVK,
A_MOVZ,
A_MOVN,
A_MVN,
A_NEG,
A_TST:
result:=opnr=2;
else
result:=false;
end;
end;
function valid_shifter_operand(opc: tasmop; useszr, usessp, is64bit: boolean; sm: tshiftmode; shiftimm: longint): boolean;
begin
case opc of
A_ADD,
A_SUB,
A_NEG,
A_AND,
A_TST,
A_CMN,
A_CMP:
begin
result:=false;
if not useszr then
result:=
(sm in shiftedregmodes) and
((shiftimm in [0..31]) or
(is64bit and
(shiftimm in [32..63])));
if not usessp then
result:=
result or
((sm in extendedregmodes) and
(shiftimm in [0..4]));
end;
A_BIC,
A_EON,
A_EOR,
A_MVN,
A_ORN,
A_ORR:
result:=
(sm in shiftedregmodes) and
(shiftimm in [0..31*(ord(is64bit)+1)+ord(is64bit)]);
A_MOVK,
A_MOVZ,
A_MOVN:
result:=
(sm=SM_LSL) and
((shiftimm in [0,16]) or
(is64bit and
(shiftimm in [32,48])));
else
result:=false;
end;
end;
function spilling_create_load(const ref: treference; r: tregister): taicpu;
var
op: tasmop;
begin
if (ref.index<>NR_NO) or
(ref.offset<-256) or
(ref.offset>255) then
op:=A_LDR
else
op:=A_LDUR;
result:=spilling_create_op(op,ref,r);
end;
function spilling_create_store(r: tregister; const ref: treference): taicpu;
var
op: tasmop;
begin
if (ref.index<>NR_NO) or
(ref.offset<-256) or
(ref.offset>255) then
op:=A_STR
else
op:=A_STUR;
result:=spilling_create_op(op,ref,r);
end;
function taicpu.spilling_get_operation_type(opnr: longint): topertype;
begin
case opcode of
A_B,A_BL,A_BR,A_BLR,
A_CMN,A_CMP,
A_CCMN,A_CCMP,
A_TST,
A_FCMP,A_FCMPE,
A_CBZ,A_CBNZ,
A_PRFM,A_PRFUM,
A_RET:
result:=operand_read;
A_STR,A_STUR:
if opnr=0 then
result:=operand_read
else
{ check for pre/post indexed in spilling_get_operation_type_ref }
result:=operand_read;
A_STP:
begin
if opnr in [0,1] then
result:=operand_read
else
{ check for pre/post indexed in spilling_get_operation_type_ref }
result:=operand_read;
end;
A_LDP,
A_LDXP:
begin
if opnr in [0,1] then
result:=operand_write
else
{ check for pre/post indexed in spilling_get_operation_type_ref }
result:=operand_read;
end;
A_MOVK,
A_BFI:
begin
if opnr=0 then
result:=operand_readwrite
else
result:=operand_read;
end;
{$ifdef EXTDEBUG}
{ play save to avoid hard to find bugs, better fail at compile time }
A_ADD,
A_ADRP,
A_AND,
A_ASR,
A_BFXIL,
A_CLZ,
A_CSEL,
A_CSET,
A_CSETM,
A_FABS,
A_EON,
A_EOR,
A_FADD,
A_FCVT,
A_FDIV,
A_FMADD,
A_FMOV,
A_FMSUB,
A_FMUL,
A_FNEG,
A_FNMADD,
A_FNMSUB,
A_FRINTX,
A_FRINTZ,
A_FSQRT,
A_FSUB,
A_ORR,
A_LSL,
A_LSLV,
A_LSR,
A_LSRV,
A_MOV,
A_MOVN,
A_MOVZ,
A_MSUB,
A_MUL,
A_MVN,
A_NEG,
A_LDR,
A_LDUR,
A_RBIT,
A_ROR,
A_RORV,
A_SBFX,
A_SCVTF,
A_FCVTZS,
A_SDIV,
A_SMULL,
A_SMULH,
A_STLXP,
A_STLXR,
A_STXP,
A_STXR,
A_SUB,
A_SXTB,
A_SXTH,
A_SXTW,
A_UBFIZ,
A_UBFX,
A_UCVTF,
A_UDIV,
A_UMULL,
A_UMULH,
A_UXTB,
A_UXTH:
if opnr=0 then
result:=operand_write
else
result:=operand_read;
else
Internalerror(2019090802);
{$else EXTDEBUG}
else
if opnr=0 then
result:=operand_write
else
result:=operand_read;
{$endif EXTDEBUG}
end;
end;
function taicpu.spilling_get_operation_type_ref(opnr: longint; reg: tregister): topertype;
begin
result:=operand_read;
if (oper[opnr]^.ref^.base = reg) and
(oper[opnr]^.ref^.addressmode in [AM_PREINDEXED,AM_POSTINDEXED]) then
result:=operand_readwrite;
end;
procedure BuildInsTabCache;
// var
// i : longint;
begin
(* new(instabcache);
FillChar(instabcache^,sizeof(tinstabcache),$ff);
i:=0;
while (i<InsTabEntries) do
begin
if InsTabCache^[InsTab[i].Opcode]=-1 then
InsTabCache^[InsTab[i].Opcode]:=i;
inc(i);
end; *)
end;
procedure InitAsm;
begin
if not assigned(instabcache) then
BuildInsTabCache;
end;
procedure DoneAsm;
begin
if assigned(instabcache) then
begin
dispose(instabcache);
instabcache:=nil;
end;
end;
function setoppostfix(i : taicpu;pf : toppostfix) : taicpu;
begin
i.oppostfix:=pf;
result:=i;
end;
function setcondition(i : taicpu;c : tasmcond) : taicpu;
begin
i.condition:=c;
result:=i;
end;
Function SimpleGetNextInstruction(Current: tai; Var Next: tai): Boolean;
Begin
Current:=tai(Current.Next);
While Assigned(Current) And (Current.typ In SkipInstr) Do
Current:=tai(Current.Next);
Next:=Current;
If Assigned(Next) And Not(Next.typ In SkipInstr) Then
Result:=True
Else
Begin
Next:=Nil;
Result:=False;
End;
End;
(*
function armconstequal(hp1,hp2: tai): boolean;
begin
result:=false;
if hp1.typ<>hp2.typ then
exit;
case hp1.typ of
tai_const:
result:=
(tai_const(hp2).sym=tai_const(hp).sym) and
(tai_const(hp2).value=tai_const(hp).value) and
(tai(hp2.previous).typ=ait_label);
tai_const:
result:=
(tai_const(hp2).sym=tai_const(hp).sym) and
(tai_const(hp2).value=tai_const(hp).value) and
(tai(hp2.previous).typ=ait_label);
end;
end;
*)
procedure insertpcrelativedata(list,listtoinsert : TAsmList);
(*
var
curinspos,
penalty,
lastinspos,
{ increased for every data element > 4 bytes inserted }
currentsize,
extradataoffset,
limit: longint;
curop : longint;
curtai : tai;
curdatatai,hp,hp2 : tai;
curdata : TAsmList;
l : tasmlabel;
doinsert,
removeref : boolean;
*)
begin
(*
curdata:=TAsmList.create;
lastinspos:=-1;
curinspos:=0;
extradataoffset:=0;
limit:=1016;
curtai:=tai(list.first);
doinsert:=false;
while assigned(curtai) do
begin
{ instruction? }
case curtai.typ of
ait_instruction:
begin
{ walk through all operand of the instruction }
for curop:=0 to taicpu(curtai).ops-1 do
begin
{ reference? }
if (taicpu(curtai).oper[curop]^.typ=top_ref) then
begin
{ pc relative symbol? }
curdatatai:=tai(taicpu(curtai).oper[curop]^.ref^.symboldata);
if assigned(curdatatai) and
{ move only if we're at the first reference of a label }
not(tai_label(curdatatai).moved) then
begin
tai_label(curdatatai).moved:=true;
{ check if symbol already used. }
{ if yes, reuse the symbol }
hp:=tai(curdatatai.next);
removeref:=false;
if assigned(hp) then
begin
case hp.typ of
ait_const:
begin
if (tai_const(hp).consttype=aitconst_64bit) then
inc(extradataoffset);
end;
ait_realconst:
begin
inc(extradataoffset,((tai_realconst(hp).savesize-4+3) div 4));
end;
end;
if (hp.typ=ait_const) then
begin
hp2:=tai(curdata.first);
while assigned(hp2) do
begin
{ if armconstequal(hp2,hp) then }
if (hp2.typ=ait_const) and (tai_const(hp2).sym=tai_const(hp).sym)
and (tai_const(hp2).value=tai_const(hp).value) and (tai(hp2.previous).typ=ait_label)
then
begin
with taicpu(curtai).oper[curop]^.ref^ do
begin
symboldata:=hp2.previous;
symbol:=tai_label(hp2.previous).labsym;
end;
removeref:=true;
break;
end;
hp2:=tai(hp2.next);
end;
end;
end;
{ move or remove symbol reference }
repeat
hp:=tai(curdatatai.next);
listtoinsert.remove(curdatatai);
if removeref then
curdatatai.free
else
curdata.concat(curdatatai);
curdatatai:=hp;
until (curdatatai=nil) or (curdatatai.typ=ait_label);
if lastinspos=-1 then
lastinspos:=curinspos;
end;
end;
end;
inc(curinspos);
end;
ait_align:
begin
{ code is always 4 byte aligned, so we don't have to take care of .align 2 which would
requires also incrementing curinspos by 1 }
inc(curinspos,(tai_align(curtai).aligntype div 4));
end;
ait_const:
begin
inc(curinspos);
if (tai_const(curtai).consttype=aitconst_64bit) then
inc(curinspos);
end;
ait_realconst:
begin
inc(curinspos,(tai_realconst(hp).savesize+3) div 4);
end;
end;
{ special case for case jump tables }
if SimpleGetNextInstruction(curtai,hp) and
(tai(hp).typ=ait_instruction) and
(taicpu(hp).opcode=A_LDR) and
(taicpu(hp).oper[0]^.typ=top_reg) and
(taicpu(hp).oper[0]^.reg=NR_PC) then
begin
penalty:=1;
hp:=tai(hp.next);
{ skip register allocations and comments inserted by the optimizer }
while assigned(hp) and (hp.typ in [ait_comment,ait_regalloc]) do
hp:=tai(hp.next);
while assigned(hp) and (hp.typ=ait_const) do
begin
inc(penalty);
hp:=tai(hp.next);
end;
end
else
penalty:=0;
{ FLD/FST VFP instructions have a limit of +/- 1024, not 4096 }
if SimpleGetNextInstruction(curtai,hp) and
(tai(hp).typ=ait_instruction) and
((taicpu(hp).opcode=A_FLDS) or
(taicpu(hp).opcode=A_FLDD)) then
limit:=254;
{ don't miss an insert }
doinsert:=doinsert or
(not(curdata.empty) and
(curinspos-lastinspos+penalty+extradataoffset>limit));
{ split only at real instructions else the test below fails }
if doinsert and (curtai.typ=ait_instruction) and
(
{ don't split loads of pc to lr and the following move }
not(
(taicpu(curtai).opcode=A_MOV) and
(taicpu(curtai).oper[0]^.typ=top_reg) and
(taicpu(curtai).oper[0]^.reg=NR_R14) and
(taicpu(curtai).oper[1]^.typ=top_reg) and
(taicpu(curtai).oper[1]^.reg=NR_PC)
)
) then
begin
lastinspos:=-1;
extradataoffset:=0;
limit:=1016;
doinsert:=false;
hp:=tai(curtai.next);
current_asmdata.getjumplabel(l);
curdata.insert(taicpu.op_sym(A_B,l));
curdata.concat(tai_label.create(l));
list.insertlistafter(curtai,curdata);
curtai:=hp;
end
else
curtai:=tai(curtai.next);
end;
list.concatlist(curdata);
curdata.free;
*)
end;
procedure finalizearmcode(list, listtoinsert: TAsmList);
begin
insertpcrelativedata(list, listtoinsert);
end;
(*
Floating point instruction format information, taken from the linux kernel
ARM Floating Point Instruction Classes
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|c o n d|1 1 0 P|U|u|W|L| Rn |v| Fd |0|0|0|1| o f f s e t | CPDT
|c o n d|1 1 0 P|U|w|W|L| Rn |x| Fd |0|0|1|0| o f f s e t | CPDT (copro 2)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|c o n d|1 1 1 0|a|b|c|d|e| Fn |j| Fd |0|0|0|1|f|g|h|0|i| Fm | CPDO
|c o n d|1 1 1 0|a|b|c|L|e| Fn | Rd |0|0|0|1|f|g|h|1|i| Fm | CPRT
|c o n d|1 1 1 0|a|b|c|1|e| Fn |1|1|1|1|0|0|0|1|f|g|h|1|i| Fm | comparisons
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
CPDT data transfer instructions
LDF, STF, LFM (copro 2), SFM (copro 2)
CPDO dyadic arithmetic instructions
ADF, MUF, SUF, RSF, DVF, RDF,
POW, RPW, RMF, FML, FDV, FRD, POL
CPDO monadic arithmetic instructions
MVF, MNF, ABS, RND, SQT, LOG, LGN, EXP,
SIN, COS, TAN, ASN, ACS, ATN, URD, NRM
CPRT joint arithmetic/data transfer instructions
FIX (arithmetic followed by load/store)
FLT (load/store followed by arithmetic)
CMF, CNF CMFE, CNFE (comparisons)
WFS, RFS (write/read floating point status register)
WFC, RFC (write/read floating point control register)
cond condition codes
P pre/post index bit: 0 = postindex, 1 = preindex
U up/down bit: 0 = stack grows down, 1 = stack grows up
W write back bit: 1 = update base register (Rn)
L load/store bit: 0 = store, 1 = load
Rn base register
Rd destination/source register
Fd floating point destination register
Fn floating point source register
Fm floating point source register or floating point constant
uv transfer length (TABLE 1)
wx register count (TABLE 2)
abcd arithmetic opcode (TABLES 3 & 4)
ef destination size (rounding precision) (TABLE 5)
gh rounding mode (TABLE 6)
j dyadic/monadic bit: 0 = dyadic, 1 = monadic
i constant bit: 1 = constant (TABLE 6)
*/
/*
TABLE 1
+-------------------------+---+---+---------+---------+
| Precision | u | v | FPSR.EP | length |
+-------------------------+---+---+---------+---------+
| Single | 0 | 0 | x | 1 words |
| Double | 1 | 1 | x | 2 words |
| Extended | 1 | 1 | x | 3 words |
| Packed decimal | 1 | 1 | 0 | 3 words |
| Expanded packed decimal | 1 | 1 | 1 | 4 words |
+-------------------------+---+---+---------+---------+
Note: x = don't care
*/
/*
TABLE 2
+---+---+---------------------------------+
| w | x | Number of registers to transfer |
+---+---+---------------------------------+
| 0 | 1 | 1 |
| 1 | 0 | 2 |
| 1 | 1 | 3 |
| 0 | 0 | 4 |
+---+---+---------------------------------+
*/
/*
TABLE 3: Dyadic Floating Point Opcodes
+---+---+---+---+----------+-----------------------+-----------------------+
| a | b | c | d | Mnemonic | Description | Operation |
+---+---+---+---+----------+-----------------------+-----------------------+
| 0 | 0 | 0 | 0 | ADF | Add | Fd := Fn + Fm |
| 0 | 0 | 0 | 1 | MUF | Multiply | Fd := Fn * Fm |
| 0 | 0 | 1 | 0 | SUF | Subtract | Fd := Fn - Fm |
| 0 | 0 | 1 | 1 | RSF | Reverse subtract | Fd := Fm - Fn |
| 0 | 1 | 0 | 0 | DVF | Divide | Fd := Fn / Fm |
| 0 | 1 | 0 | 1 | RDF | Reverse divide | Fd := Fm / Fn |
| 0 | 1 | 1 | 0 | POW | Power | Fd := Fn ^ Fm |
| 0 | 1 | 1 | 1 | RPW | Reverse power | Fd := Fm ^ Fn |
| 1 | 0 | 0 | 0 | RMF | Remainder | Fd := IEEE rem(Fn/Fm) |
| 1 | 0 | 0 | 1 | FML | Fast Multiply | Fd := Fn * Fm |
| 1 | 0 | 1 | 0 | FDV | Fast Divide | Fd := Fn / Fm |
| 1 | 0 | 1 | 1 | FRD | Fast reverse divide | Fd := Fm / Fn |
| 1 | 1 | 0 | 0 | POL | Polar angle (ArcTan2) | Fd := arctan2(Fn,Fm) |
| 1 | 1 | 0 | 1 | | undefined instruction | trap |
| 1 | 1 | 1 | 0 | | undefined instruction | trap |
| 1 | 1 | 1 | 1 | | undefined instruction | trap |
+---+---+---+---+----------+-----------------------+-----------------------+
Note: POW, RPW, POL are deprecated, and are available for backwards
compatibility only.
*/
/*
TABLE 4: Monadic Floating Point Opcodes
+---+---+---+---+----------+-----------------------+-----------------------+
| a | b | c | d | Mnemonic | Description | Operation |
+---+---+---+---+----------+-----------------------+-----------------------+
| 0 | 0 | 0 | 0 | MVF | Move | Fd := Fm |
| 0 | 0 | 0 | 1 | MNF | Move negated | Fd := - Fm |
| 0 | 0 | 1 | 0 | ABS | Absolute value | Fd := abs(Fm) |
| 0 | 0 | 1 | 1 | RND | Round to integer | Fd := int(Fm) |
| 0 | 1 | 0 | 0 | SQT | Square root | Fd := sqrt(Fm) |
| 0 | 1 | 0 | 1 | LOG | Log base 10 | Fd := log10(Fm) |
| 0 | 1 | 1 | 0 | LGN | Log base e | Fd := ln(Fm) |
| 0 | 1 | 1 | 1 | EXP | Exponent | Fd := e ^ Fm |
| 1 | 0 | 0 | 0 | SIN | Sine | Fd := sin(Fm) |
| 1 | 0 | 0 | 1 | COS | Cosine | Fd := cos(Fm) |
| 1 | 0 | 1 | 0 | TAN | Tangent | Fd := tan(Fm) |
| 1 | 0 | 1 | 1 | ASN | Arc Sine | Fd := arcsin(Fm) |
| 1 | 1 | 0 | 0 | ACS | Arc Cosine | Fd := arccos(Fm) |
| 1 | 1 | 0 | 1 | ATN | Arc Tangent | Fd := arctan(Fm) |
| 1 | 1 | 1 | 0 | URD | Unnormalized round | Fd := int(Fm) |
| 1 | 1 | 1 | 1 | NRM | Normalize | Fd := norm(Fm) |
+---+---+---+---+----------+-----------------------+-----------------------+
Note: LOG, LGN, EXP, SIN, COS, TAN, ASN, ACS, ATN are deprecated, and are
available for backwards compatibility only.
*/
/*
TABLE 5
+-------------------------+---+---+
| Rounding Precision | e | f |
+-------------------------+---+---+
| IEEE Single precision | 0 | 0 |
| IEEE Double precision | 0 | 1 |
| IEEE Extended precision | 1 | 0 |
| undefined (trap) | 1 | 1 |
+-------------------------+---+---+
*/
/*
TABLE 5
+---------------------------------+---+---+
| Rounding Mode | g | h |
+---------------------------------+---+---+
| Round to nearest (default) | 0 | 0 |
| Round toward plus infinity | 0 | 1 |
| Round toward negative infinity | 1 | 0 |
| Round toward zero | 1 | 1 |
+---------------------------------+---+---+
*)
function taicpu.GetString:string;
var
i : longint;
s : string;
addsize : boolean;
begin
s:='['+gas_op2str[opcode];
for i:=0 to ops-1 do
begin
with oper[i]^ do
begin
if i=0 then
s:=s+' '
else
s:=s+',';
{ type }
addsize:=false;
if (ot and OT_VREG)=OT_VREG then
s:=s+'vreg'
else
if (ot and OT_FPUREG)=OT_FPUREG then
s:=s+'fpureg'
else
if (ot and OT_REGISTER)=OT_REGISTER then
begin
s:=s+'reg';
addsize:=true;
end
else
if (ot and OT_REGLIST)=OT_REGLIST then
begin
s:=s+'reglist';
addsize:=false;
end
else
if (ot and OT_IMMEDIATE)=OT_IMMEDIATE then
begin
s:=s+'imm';
addsize:=true;
end
else
if (ot and OT_MEMORY)=OT_MEMORY then
begin
s:=s+'mem';
addsize:=true;
if (ot and OT_AM2)<>0 then
s:=s+' am2 ';
end
else
s:=s+'???';
{ size }
if addsize then
begin
if (ot and OT_BITS8)<>0 then
s:=s+'8'
else
if (ot and OT_BITS16)<>0 then
s:=s+'24'
else
if (ot and OT_BITS32)<>0 then
s:=s+'32'
else
if (ot and OT_BITSSHIFTER)<>0 then
s:=s+'shifter'
else
s:=s+'??';
{ signed }
if (ot and OT_SIGNED)<>0 then
s:=s+'s';
end;
end;
end;
GetString:=s+']';
end;
procedure taicpu.ResetPass1;
begin
{ we need to reset everything here, because the choosen insentry
can be invalid for a new situation where the previously optimized
insentry is not correct }
end;
procedure taicpu.ResetPass2;
begin
{ we are here in a second pass, check if the instruction can be optimized }
end;
function taicpu.CheckIfValid:boolean;
begin
Result:=False; { unimplemented }
end;
function taicpu.Pass1(objdata:TObjData):longint;
begin
Pass1:=0;
end;
procedure taicpu.Pass2(objdata:TObjData);
begin
{ error in pass1 ? }
current_filepos:=fileinfo;
{ Generate the instruction }
{ GenCode(objdata); }
end;
procedure taicpu.ppuloadoper(ppufile:tcompilerppufile;var o:toper);
begin
end;
procedure taicpu.ppuwriteoper(ppufile:tcompilerppufile;const o:toper);
begin
end;
procedure taicpu.ppubuildderefimploper(var o:toper);
begin
end;
procedure taicpu.ppuderefoper(var o:toper);
begin
end;
begin
cai_align:=tai_align;
end.