fpc/compiler/arm/aasmcpu.pas
Jeppe Johansen 284a4d9dd7 Encoding of preindexed LDRH/STRH opcodes was missing.
git-svn-id: branches/laksen/armiw@29254 -
2014-12-11 11:20:25 +00:00

3662 lines
131 KiB
ObjectPascal
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
Copyright (c) 2003 by Florian Klaempfl
Contains the assembler object for the ARM
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit aasmcpu;
{$i fpcdefs.inc}
interface
uses
globtype,globals,verbose,
aasmbase,aasmtai,aasmdata,aasmsym,
ogbase,
symtype,
cpubase,cpuinfo,cgbase,cgutils;
const
{ "mov reg,reg" source operand number }
O_MOV_SOURCE = 1;
{ "mov reg,reg" source operand number }
O_MOV_DEST = 0;
{ Operand types }
OT_NONE = $00000000;
OT_BITS8 = $00000001; { size, and other attributes, of the operand }
OT_BITS16 = $00000002;
OT_BITS32 = $00000004;
OT_BITS64 = $00000008; { FPU only }
OT_BITS80 = $00000010;
OT_FAR = $00000020; { this means 16:16 or 16:32, like in CALL/JMP }
OT_NEAR = $00000040;
OT_SHORT = $00000080;
OT_BITSTINY = $00000100; { fpu constant }
OT_BITSSHIFTER =
$00000200;
OT_SIZE_MASK = $000003FF; { all the size attributes }
OT_NON_SIZE = longint(not OT_SIZE_MASK);
OT_SIGNED = $00000100; { the operand need to be signed -128-127 }
OT_TO = $00000200; { operand is followed by a colon }
{ reverse effect in FADD, FSUB &c }
OT_COLON = $00000400;
OT_SHIFTEROP = $00000800;
OT_REGISTER = $00001000;
OT_IMMEDIATE = $00002000;
OT_REGLIST = $00008000;
OT_IMM8 = $00002001;
OT_IMM24 = $00002002;
OT_IMM32 = $00002004;
OT_IMM64 = $00002008;
OT_IMM80 = $00002010;
OT_IMMTINY = $00002100;
OT_IMMSHIFTER= $00002200;
OT_IMMEDIATE24 = OT_IMM24;
OT_SHIFTIMM = OT_SHIFTEROP or OT_IMMSHIFTER;
OT_SHIFTIMMEDIATE = OT_SHIFTIMM;
OT_IMMEDIATESHIFTER = OT_IMMSHIFTER;
OT_IMMEDIATEFPU = OT_IMMTINY;
OT_REGMEM = $00200000; { for r/m, ie EA, operands }
OT_REGNORM = $00201000; { 'normal' reg, qualifies as EA }
OT_REG8 = $00201001;
OT_REG16 = $00201002;
OT_REG32 = $00201004;
OT_REG64 = $00201008;
OT_VREG = $00201010; { vector register }
OT_REGF = $00201020; { coproc register }
OT_MEMORY = $00204000; { register number in 'basereg' }
OT_MEM8 = $00204001;
OT_MEM16 = $00204002;
OT_MEM32 = $00204004;
OT_MEM64 = $00204008;
OT_MEM80 = $00204010;
{ word/byte load/store }
OT_AM2 = $00010000;
{ misc ld/st operations }
OT_AM3 = $00020000;
{ multiple ld/st operations }
OT_AM4 = $00040000;
{ co proc. ld/st operations }
OT_AM5 = $00080000;
{ exclusive ld/st operations }
OT_AM6 = $00100000;
OT_AMMASK = $001f0000;
{ IT instruction }
OT_CONDITION = $00200000;
OT_MEMORYAM2 = OT_MEMORY or OT_AM2;
OT_MEMORYAM3 = OT_MEMORY or OT_AM3;
OT_MEMORYAM4 = OT_MEMORY or OT_AM4;
OT_MEMORYAM5 = OT_MEMORY or OT_AM5;
OT_MEMORYAM6 = OT_MEMORY or OT_AM6;
OT_FPUREG = $01000000; { floating point stack registers }
OT_REG_SMASK = $00070000; { special register operands: these may be treated differently }
{ a mask for the following }
OT_MEM_OFFS = $00604000; { special type of EA }
{ simple [address] offset }
OT_ONENESS = $00800000; { special type of immediate operand }
{ so UNITY == IMMEDIATE | ONENESS }
OT_UNITY = $00802000; { for shift/rotate instructions }
instabentries = {$i armnop.inc}
maxinfolen = 5;
IF_NONE = $00000000;
IF_ARMMASK = $000F0000;
IF_ARM32 = $00010000;
IF_THUMB = $00020000;
IF_THUMB32 = $00040000;
IF_ARMvMASK = $0FF00000;
IF_ARMv4 = $00100000;
IF_ARMv4T = $00200000;
IF_ARMv5 = $00300000;
IF_ARMv5T = $00400000;
IF_ARMv5TE = $00500000;
IF_ARMv5TEJ = $00600000;
IF_ARMv6 = $00700000;
IF_ARMv6K = $00800000;
IF_ARMv6T2 = $00900000;
IF_ARMv6Z = $00A00000;
IF_ARMv6M = $00B00000;
IF_ARMv7 = $00C00000;
IF_ARMv7A = $00D00000;
IF_ARMv7R = $00E00000;
IF_ARMv7M = $00F00000;
IF_ARMv7EM = $01000000;
IF_FPMASK = $F0000000;
IF_FPA = $10000000;
IF_VFPv2 = $20000000;
IF_VFPv3 = $40000000;
{ if the instruction can change in a second pass }
IF_PASS2 = longint($80000000);
type
TInsTabCache=array[TasmOp] of longint;
PInsTabCache=^TInsTabCache;
tinsentry = record
opcode : tasmop;
ops : byte;
optypes : array[0..5] of longint;
code : array[0..maxinfolen] of char;
flags : longint;
end;
pinsentry=^tinsentry;
const
InsTab : array[0..instabentries-1] of TInsEntry={$i armtab.inc}
var
InsTabCache : PInsTabCache;
type
taicpu = class(tai_cpu_abstract_sym)
oppostfix : TOpPostfix;
wideformat : boolean;
roundingmode : troundingmode;
procedure loadshifterop(opidx:longint;const so:tshifterop);
procedure loadregset(opidx:longint; regsetregtype: tregistertype; regsetsubregtype: tsubregister; const s:tcpuregisterset; ausermode: boolean=false);
procedure loadconditioncode(opidx:longint;const cond:tasmcond);
procedure loadmodeflags(opidx:longint;const flags:tcpumodeflags);
procedure loadspecialreg(opidx:longint;const areg:tregister; const aflags:tspecialregflags);
constructor op_none(op : tasmop);
constructor op_reg(op : tasmop;_op1 : tregister);
constructor op_ref(op : tasmop;const _op1 : treference);
constructor op_const(op : tasmop;_op1 : longint);
constructor op_reg_reg(op : tasmop;_op1,_op2 : tregister);
constructor op_reg_ref(op : tasmop;_op1 : tregister;const _op2 : treference);
constructor op_reg_const(op:tasmop; _op1: tregister; _op2: aint);
constructor op_regset(op:tasmop; regtype: tregistertype; subreg: tsubregister; _op1: tcpuregisterset);
constructor op_ref_regset(op:tasmop; _op1: treference; regtype: tregistertype; subreg: tsubregister; _op2: tcpuregisterset);
constructor op_reg_reg_reg(op : tasmop;_op1,_op2,_op3 : tregister);
constructor op_reg_reg_const(op : tasmop;_op1,_op2 : tregister; _op3: aint);
constructor op_reg_const_const(op : tasmop;_op1 : tregister; _op2,_op3: aint);
constructor op_reg_reg_sym_ofs(op : tasmop;_op1,_op2 : tregister; _op3: tasmsymbol;_op3ofs: longint);
constructor op_reg_reg_ref(op : tasmop;_op1,_op2 : tregister; const _op3: treference);
constructor op_reg_reg_shifterop(op : tasmop;_op1,_op2 : tregister;_op3 : tshifterop);
constructor op_reg_reg_reg_shifterop(op : tasmop;_op1,_op2,_op3 : tregister;_op4 : tshifterop);
{ SFM/LFM }
constructor op_reg_const_ref(op : tasmop;_op1 : tregister;_op2 : aint;_op3 : treference);
{ ITxxx }
constructor op_cond(op: tasmop; cond: tasmcond);
{ CPSxx }
constructor op_modeflags(op: tasmop; flags: tcpumodeflags);
constructor op_modeflags_const(op: tasmop; flags: tcpumodeflags; a: aint);
{ MSR }
constructor op_specialreg_reg(op: tasmop; specialreg: tregister; specialregflags: tspecialregflags; _op2: tregister);
{ *M*LL }
constructor op_reg_reg_reg_reg(op : tasmop;_op1,_op2,_op3,_op4 : tregister);
{ this is for Jmp instructions }
constructor op_cond_sym(op : tasmop;cond:TAsmCond;_op1 : tasmsymbol);
constructor op_sym(op : tasmop;_op1 : tasmsymbol);
constructor op_sym_ofs(op : tasmop;_op1 : tasmsymbol;_op1ofs:longint);
constructor op_reg_sym_ofs(op : tasmop;_op1 : tregister;_op2:tasmsymbol;_op2ofs : longint);
constructor op_sym_ofs_ref(op : tasmop;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
function is_same_reg_move(regtype: Tregistertype):boolean; override;
function spilling_get_operation_type(opnr: longint): topertype;override;
function spilling_get_operation_type_ref(opnr: longint; reg: tregister): topertype;override;
{ assembler }
public
{ the next will reset all instructions that can change in pass 2 }
procedure ResetPass1;override;
procedure ResetPass2;override;
function CheckIfValid:boolean;
function GetString:string;
function Pass1(objdata:TObjData):longint;override;
procedure Pass2(objdata:TObjData);override;
protected
procedure ppuloadoper(ppufile:tcompilerppufile;var o:toper);override;
procedure ppuwriteoper(ppufile:tcompilerppufile;const o:toper);override;
procedure ppubuildderefimploper(var o:toper);override;
procedure ppuderefoper(var o:toper);override;
private
{ next fields are filled in pass1, so pass2 is faster }
inssize : shortint;
insoffset : longint;
LastInsOffset : longint; { need to be public to be reset }
insentry : PInsEntry;
function InsEnd:longint;
procedure create_ot(objdata:TObjData);
function Matches(p:PInsEntry):longint;
function calcsize(p:PInsEntry):shortint;
procedure gencode(objdata:TObjData);
function NeedAddrPrefix(opidx:byte):boolean;
procedure Swapoperands;
function FindInsentry(objdata:TObjData):boolean;
end;
tai_align = class(tai_align_abstract)
{ nothing to add }
end;
tai_thumb_func = class(tai)
constructor create;
end;
function spilling_create_load(const ref:treference;r:tregister):Taicpu;
function spilling_create_store(r:tregister; const ref:treference):Taicpu;
function setoppostfix(i : taicpu;pf : toppostfix) : taicpu;
function setroundingmode(i : taicpu;rm : troundingmode) : taicpu;
function setcondition(i : taicpu;c : tasmcond) : taicpu;
{ inserts pc relative symbols at places where they are reachable
and transforms special instructions to valid instruction encodings }
procedure finalizearmcode(list,listtoinsert : TAsmList);
{ inserts .pdata section and dummy function prolog needed for arm-wince exception handling }
procedure InsertPData;
procedure InitAsm;
procedure DoneAsm;
implementation
uses
itcpugas,aoptcpu;
procedure taicpu.loadshifterop(opidx:longint;const so:tshifterop);
begin
allocate_oper(opidx+1);
with oper[opidx]^ do
begin
if typ<>top_shifterop then
begin
clearop(opidx);
new(shifterop);
end;
shifterop^:=so;
typ:=top_shifterop;
if assigned(add_reg_instruction_hook) then
add_reg_instruction_hook(self,shifterop^.rs);
end;
end;
procedure taicpu.loadregset(opidx:longint; regsetregtype: tregistertype; regsetsubregtype: tsubregister; const s:tcpuregisterset; ausermode: boolean);
var
i : byte;
begin
allocate_oper(opidx+1);
with oper[opidx]^ do
begin
if typ<>top_regset then
begin
clearop(opidx);
new(regset);
end;
regset^:=s;
regtyp:=regsetregtype;
subreg:=regsetsubregtype;
usermode:=ausermode;
typ:=top_regset;
case regsetregtype of
R_INTREGISTER:
for i:=RS_R0 to RS_R15 do
begin
if assigned(add_reg_instruction_hook) and (i in regset^) then
add_reg_instruction_hook(self,newreg(R_INTREGISTER,i,regsetsubregtype));
end;
R_MMREGISTER:
{ both RS_S0 and RS_D0 range from 0 to 31 }
for i:=RS_D0 to RS_D31 do
begin
if assigned(add_reg_instruction_hook) and (i in regset^) then
add_reg_instruction_hook(self,newreg(R_MMREGISTER,i,regsetsubregtype));
end;
end;
end;
end;
procedure taicpu.loadconditioncode(opidx:longint;const cond:tasmcond);
begin
allocate_oper(opidx+1);
with oper[opidx]^ do
begin
if typ<>top_conditioncode then
clearop(opidx);
cc:=cond;
typ:=top_conditioncode;
end;
end;
procedure taicpu.loadmodeflags(opidx: longint; const flags: tcpumodeflags);
begin
allocate_oper(opidx+1);
with oper[opidx]^ do
begin
if typ<>top_modeflags then
clearop(opidx);
modeflags:=flags;
typ:=top_modeflags;
end;
end;
procedure taicpu.loadspecialreg(opidx: longint; const areg: tregister; const aflags: tspecialregflags);
begin
allocate_oper(opidx+1);
with oper[opidx]^ do
begin
if typ<>top_specialreg then
clearop(opidx);
specialreg:=areg;
specialflags:=aflags;
typ:=top_specialreg;
end;
end;
{*****************************************************************************
taicpu Constructors
*****************************************************************************}
constructor taicpu.op_none(op : tasmop);
begin
inherited create(op);
end;
{ for pld }
constructor taicpu.op_ref(op : tasmop;const _op1 : treference);
begin
inherited create(op);
ops:=1;
loadref(0,_op1);
end;
constructor taicpu.op_reg(op : tasmop;_op1 : tregister);
begin
inherited create(op);
ops:=1;
loadreg(0,_op1);
end;
constructor taicpu.op_const(op : tasmop;_op1 : longint);
begin
inherited create(op);
ops:=1;
loadconst(0,aint(_op1));
end;
constructor taicpu.op_reg_reg(op : tasmop;_op1,_op2 : tregister);
begin
inherited create(op);
ops:=2;
loadreg(0,_op1);
loadreg(1,_op2);
end;
constructor taicpu.op_reg_const(op:tasmop; _op1: tregister; _op2: aint);
begin
inherited create(op);
ops:=2;
loadreg(0,_op1);
loadconst(1,aint(_op2));
end;
constructor taicpu.op_regset(op: tasmop; regtype: tregistertype; subreg: tsubregister; _op1: tcpuregisterset);
begin
inherited create(op);
ops:=1;
loadregset(0,regtype,subreg,_op1);
end;
constructor taicpu.op_ref_regset(op:tasmop; _op1: treference; regtype: tregistertype; subreg: tsubregister; _op2: tcpuregisterset);
begin
inherited create(op);
ops:=2;
loadref(0,_op1);
loadregset(1,regtype,subreg,_op2);
end;
constructor taicpu.op_reg_ref(op : tasmop;_op1 : tregister;const _op2 : treference);
begin
inherited create(op);
ops:=2;
loadreg(0,_op1);
loadref(1,_op2);
end;
constructor taicpu.op_reg_reg_reg(op : tasmop;_op1,_op2,_op3 : tregister);
begin
inherited create(op);
ops:=3;
loadreg(0,_op1);
loadreg(1,_op2);
loadreg(2,_op3);
end;
constructor taicpu.op_reg_reg_reg_reg(op : tasmop;_op1,_op2,_op3,_op4 : tregister);
begin
inherited create(op);
ops:=4;
loadreg(0,_op1);
loadreg(1,_op2);
loadreg(2,_op3);
loadreg(3,_op4);
end;
constructor taicpu.op_reg_reg_const(op : tasmop;_op1,_op2 : tregister; _op3: aint);
begin
inherited create(op);
ops:=3;
loadreg(0,_op1);
loadreg(1,_op2);
loadconst(2,aint(_op3));
end;
constructor taicpu.op_reg_const_const(op : tasmop;_op1 : tregister; _op2,_op3: aint);
begin
inherited create(op);
ops:=3;
loadreg(0,_op1);
loadconst(1,aint(_op2));
loadconst(2,aint(_op3));
end;
constructor taicpu.op_reg_const_ref(op : tasmop;_op1 : tregister;_op2 : aint;_op3 : treference);
begin
inherited create(op);
ops:=3;
loadreg(0,_op1);
loadconst(1,_op2);
loadref(2,_op3);
end;
constructor taicpu.op_cond(op: tasmop; cond: tasmcond);
begin
inherited create(op);
ops:=1;
loadconditioncode(0, cond);
end;
constructor taicpu.op_modeflags(op: tasmop; flags: tcpumodeflags);
begin
inherited create(op);
ops := 1;
loadmodeflags(0,flags);
end;
constructor taicpu.op_modeflags_const(op: tasmop; flags: tcpumodeflags; a: aint);
begin
inherited create(op);
ops := 2;
loadmodeflags(0,flags);
loadconst(1,a);
end;
constructor taicpu.op_specialreg_reg(op: tasmop; specialreg: tregister; specialregflags: tspecialregflags; _op2: tregister);
begin
inherited create(op);
ops:=2;
loadspecialreg(0,specialreg,specialregflags);
loadreg(1,_op2);
end;
constructor taicpu.op_reg_reg_sym_ofs(op : tasmop;_op1,_op2 : tregister; _op3: tasmsymbol;_op3ofs: longint);
begin
inherited create(op);
ops:=3;
loadreg(0,_op1);
loadreg(1,_op2);
loadsymbol(0,_op3,_op3ofs);
end;
constructor taicpu.op_reg_reg_ref(op : tasmop;_op1,_op2 : tregister; const _op3: treference);
begin
inherited create(op);
ops:=3;
loadreg(0,_op1);
loadreg(1,_op2);
loadref(2,_op3);
end;
constructor taicpu.op_reg_reg_shifterop(op : tasmop;_op1,_op2 : tregister;_op3 : tshifterop);
begin
inherited create(op);
ops:=3;
loadreg(0,_op1);
loadreg(1,_op2);
loadshifterop(2,_op3);
end;
constructor taicpu.op_reg_reg_reg_shifterop(op : tasmop;_op1,_op2,_op3 : tregister;_op4 : tshifterop);
begin
inherited create(op);
ops:=4;
loadreg(0,_op1);
loadreg(1,_op2);
loadreg(2,_op3);
loadshifterop(3,_op4);
end;
constructor taicpu.op_cond_sym(op : tasmop;cond:TAsmCond;_op1 : tasmsymbol);
begin
inherited create(op);
condition:=cond;
ops:=1;
loadsymbol(0,_op1,0);
end;
constructor taicpu.op_sym(op : tasmop;_op1 : tasmsymbol);
begin
inherited create(op);
ops:=1;
loadsymbol(0,_op1,0);
end;
constructor taicpu.op_sym_ofs(op : tasmop;_op1 : tasmsymbol;_op1ofs:longint);
begin
inherited create(op);
ops:=1;
loadsymbol(0,_op1,_op1ofs);
end;
constructor taicpu.op_reg_sym_ofs(op : tasmop;_op1 : tregister;_op2:tasmsymbol;_op2ofs : longint);
begin
inherited create(op);
ops:=2;
loadreg(0,_op1);
loadsymbol(1,_op2,_op2ofs);
end;
constructor taicpu.op_sym_ofs_ref(op : tasmop;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
begin
inherited create(op);
ops:=2;
loadsymbol(0,_op1,_op1ofs);
loadref(1,_op2);
end;
function taicpu.is_same_reg_move(regtype: Tregistertype):boolean;
begin
{ allow the register allocator to remove unnecessary moves }
result:=(
((opcode=A_MOV) and (regtype = R_INTREGISTER)) or
((opcode=A_MVF) and (regtype = R_FPUREGISTER)) or
((opcode in [A_FCPYS, A_FCPYD]) and (regtype = R_MMREGISTER)) or
((opcode in [A_VMOV]) and (regtype = R_MMREGISTER) and (oppostfix in [PF_F32,PF_F64]))
) and
((oppostfix in [PF_None,PF_D]) or (opcode = A_VMOV)) and
(condition=C_None) and
(ops=2) and
(oper[0]^.typ=top_reg) and
(oper[1]^.typ=top_reg) and
(oper[0]^.reg=oper[1]^.reg);
end;
function spilling_create_load(const ref:treference;r:tregister):Taicpu;
begin
case getregtype(r) of
R_INTREGISTER :
result:=taicpu.op_reg_ref(A_LDR,r,ref);
R_FPUREGISTER :
{ use lfm because we don't know the current internal format
and avoid exceptions
}
result:=taicpu.op_reg_const_ref(A_LFM,r,1,ref);
R_MMREGISTER :
result:=taicpu.op_reg_ref(A_VLDR,r,ref);
else
internalerror(200401041);
end;
end;
function spilling_create_store(r:tregister; const ref:treference):Taicpu;
begin
case getregtype(r) of
R_INTREGISTER :
result:=taicpu.op_reg_ref(A_STR,r,ref);
R_FPUREGISTER :
{ use sfm because we don't know the current internal format
and avoid exceptions
}
result:=taicpu.op_reg_const_ref(A_SFM,r,1,ref);
R_MMREGISTER :
result:=taicpu.op_reg_ref(A_VSTR,r,ref);
else
internalerror(200401041);
end;
end;
function taicpu.spilling_get_operation_type(opnr: longint): topertype;
begin
case opcode of
A_ADC,A_ADD,A_AND,A_BIC,
A_EOR,A_CLZ,A_RBIT,
A_LDR,A_LDRB,A_LDRBT,A_LDRH,A_LDRSB,
A_LDRSH,A_LDRT,
A_MOV,A_MVN,A_MLA,A_MUL,
A_ORR,A_RSB,A_RSC,A_SBC,A_SUB,
A_SWP,A_SWPB,
A_LDF,A_FLT,A_FIX,
A_ADF,A_DVF,A_FDV,A_FML,
A_RFS,A_RFC,A_RDF,
A_RMF,A_RPW,A_RSF,A_SUF,A_ABS,A_ACS,A_ASN,A_ATN,A_COS,
A_EXP,A_LOG,A_LGN,A_MVF,A_MNF,A_FRD,A_MUF,A_POL,A_RND,A_SIN,A_SQT,A_TAN,
A_LFM,
A_FLDS,A_FLDD,
A_FMRX,A_FMXR,A_FMSTAT,
A_FMSR,A_FMRS,A_FMDRR,
A_FCPYS,A_FCPYD,A_FCVTSD,A_FCVTDS,
A_FABSS,A_FABSD,A_FSQRTS,A_FSQRTD,A_FMULS,A_FMULD,
A_FADDS,A_FADDD,A_FSUBS,A_FSUBD,A_FDIVS,A_FDIVD,
A_FMACS,A_FMACD,A_FMSCS,A_FMSCD,A_FNMACS,A_FNMACD,
A_FNMSCS,A_FNMSCD,A_FNMULS,A_FNMULD,
A_FMDHR,A_FMRDH,A_FMDLR,A_FMRDL,
A_FNEGS,A_FNEGD,
A_FSITOS,A_FSITOD,A_FTOSIS,A_FTOSID,
A_FTOUIS,A_FTOUID,A_FUITOS,A_FUITOD,
A_SXTB16,A_UXTB16,
A_UXTB,A_UXTH,A_SXTB,A_SXTH,
A_NEG,
A_VABS,A_VADD,A_VCVT,A_VDIV,A_VLDR,A_VMOV,A_VMUL,A_VNEG,A_VSQRT,A_VSUB:
if opnr=0 then
result:=operand_write
else
result:=operand_read;
A_BKPT,A_B,A_BL,A_BLX,A_BX,
A_CMN,A_CMP,A_TEQ,A_TST,
A_CMF,A_CMFE,A_WFS,A_CNF,
A_FCMPS,A_FCMPD,A_FCMPES,A_FCMPED,A_FCMPEZS,A_FCMPEZD,
A_FCMPZS,A_FCMPZD,
A_VCMP,A_VCMPE:
result:=operand_read;
A_SMLAL,A_UMLAL:
if opnr in [0,1] then
result:=operand_readwrite
else
result:=operand_read;
A_SMULL,A_UMULL,
A_FMRRD:
if opnr in [0,1] then
result:=operand_write
else
result:=operand_read;
A_STR,A_STRB,A_STRBT,
A_STRH,A_STRT,A_STF,A_SFM,
A_FSTS,A_FSTD,
A_VSTR:
{ important is what happens with the involved registers }
if opnr=0 then
result := operand_read
else
{ check for pre/post indexed }
result := operand_read;
//Thumb2
A_LSL, A_LSR, A_ROR, A_ASR, A_SDIV, A_UDIV, A_MOVW, A_MOVT, A_MLS, A_BFI:
if opnr in [0] then
result:=operand_write
else
result:=operand_read;
A_BFC:
if opnr in [0] then
result:=operand_readwrite
else
result:=operand_read;
A_LDREX:
if opnr in [0] then
result:=operand_write
else
result:=operand_read;
A_STREX:
result:=operand_write;
else
internalerror(200403151);
end;
end;
function taicpu.spilling_get_operation_type_ref(opnr: longint; reg: tregister): topertype;
begin
result := operand_read;
if (oper[opnr]^.ref^.base = reg) and
(oper[opnr]^.ref^.addressmode in [AM_PREINDEXED,AM_POSTINDEXED]) then
result := operand_readwrite;
end;
var
IF_ArmInsVersion: longword;
procedure BuildInsTabCache;
var
i : longint;
begin
if GenerateThumb2Code then
IF_ArmInsVersion:=IF_THUMB32
else if GenerateThumbCode then
IF_ArmInsVersion:=IF_THUMB
else
IF_ArmInsVersion:=IF_ARM32;
new(instabcache);
FillChar(instabcache^,sizeof(tinstabcache),$ff);
i:=0;
while (i<InsTabEntries) do
begin
if InsTabCache^[InsTab[i].Opcode]=-1 then
InsTabCache^[InsTab[i].Opcode]:=i;
inc(i);
end;
end;
procedure InitAsm;
begin
if not assigned(instabcache) then
BuildInsTabCache;
end;
procedure DoneAsm;
begin
if assigned(instabcache) then
begin
dispose(instabcache);
instabcache:=nil;
end;
end;
function setoppostfix(i : taicpu;pf : toppostfix) : taicpu;
begin
i.oppostfix:=pf;
result:=i;
end;
function setroundingmode(i : taicpu;rm : troundingmode) : taicpu;
begin
i.roundingmode:=rm;
result:=i;
end;
function setcondition(i : taicpu;c : tasmcond) : taicpu;
begin
i.condition:=c;
result:=i;
end;
Function SimpleGetNextInstruction(Current: tai; Var Next: tai): Boolean;
Begin
Current:=tai(Current.Next);
While Assigned(Current) And (Current.typ In SkipInstr) Do
Current:=tai(Current.Next);
Next:=Current;
If Assigned(Next) And Not(Next.typ In SkipInstr) Then
Result:=True
Else
Begin
Next:=Nil;
Result:=False;
End;
End;
(*
function armconstequal(hp1,hp2: tai): boolean;
begin
result:=false;
if hp1.typ<>hp2.typ then
exit;
case hp1.typ of
tai_const:
result:=
(tai_const(hp2).sym=tai_const(hp).sym) and
(tai_const(hp2).value=tai_const(hp).value) and
(tai(hp2.previous).typ=ait_label);
tai_const:
result:=
(tai_const(hp2).sym=tai_const(hp).sym) and
(tai_const(hp2).value=tai_const(hp).value) and
(tai(hp2.previous).typ=ait_label);
end;
end;
*)
procedure insertpcrelativedata(list,listtoinsert : TAsmList);
var
limit: longint;
{ FLD/FST VFP instructions have a limit of +/- 1024, not 4096, this
function checks the next count instructions if the limit must be
decreased }
procedure CheckLimit(hp : tai;count : integer);
var
i : Integer;
begin
for i:=1 to count do
if SimpleGetNextInstruction(hp,hp) and
(tai(hp).typ=ait_instruction) and
((taicpu(hp).opcode=A_FLDS) or
(taicpu(hp).opcode=A_FLDD) or
(taicpu(hp).opcode=A_VLDR)) then
limit:=254;
end;
var
curinspos,
penalty,
lastinspos,
{ increased for every data element > 4 bytes inserted }
currentsize,
extradataoffset,
curop : longint;
curtai : tai;
ai_label : tai_label;
curdatatai,hp,hp2 : tai;
curdata : TAsmList;
l : tasmlabel;
doinsert,
removeref : boolean;
multiplier : byte;
begin
curdata:=TAsmList.create;
lastinspos:=-1;
curinspos:=0;
extradataoffset:=0;
if GenerateThumbCode then
begin
multiplier:=2;
limit:=504;
end
else
begin
limit:=1016;
multiplier:=1;
end;
curtai:=tai(list.first);
doinsert:=false;
while assigned(curtai) do
begin
{ instruction? }
case curtai.typ of
ait_instruction:
begin
{ walk through all operand of the instruction }
for curop:=0 to taicpu(curtai).ops-1 do
begin
{ reference? }
if (taicpu(curtai).oper[curop]^.typ=top_ref) then
begin
{ pc relative symbol? }
curdatatai:=tai(taicpu(curtai).oper[curop]^.ref^.symboldata);
if assigned(curdatatai) then
begin
{ create a new copy of a data entry on arm thumb if the entry has been inserted already
before because arm thumb does not allow pc relative negative offsets }
if (GenerateThumbCode) and
tai_label(curdatatai).inserted then
begin
current_asmdata.getjumplabel(l);
hp:=tai_label.create(l);
listtoinsert.Concat(hp);
hp2:=tai(curdatatai.Next.GetCopy);
hp2.Next:=nil;
hp2.Previous:=nil;
listtoinsert.Concat(hp2);
taicpu(curtai).oper[curop]^.ref^.symboldata:=hp;
taicpu(curtai).oper[curop]^.ref^.symbol:=l;
curdatatai:=hp;
end;
{ move only if we're at the first reference of a label }
if not(tai_label(curdatatai).moved) then
begin
tai_label(curdatatai).moved:=true;
{ check if symbol already used. }
{ if yes, reuse the symbol }
hp:=tai(curdatatai.next);
removeref:=false;
if assigned(hp) then
begin
case hp.typ of
ait_const:
begin
if (tai_const(hp).consttype=aitconst_64bit) then
inc(extradataoffset,multiplier);
end;
ait_comp_64bit,
ait_real_64bit:
begin
inc(extradataoffset,multiplier);
end;
ait_real_80bit:
begin
inc(extradataoffset,2*multiplier);
end;
end;
{ check if the same constant has been already inserted into the currently handled list,
if yes, reuse it }
if (hp.typ=ait_const) then
begin
hp2:=tai(curdata.first);
while assigned(hp2) do
begin
if (hp2.typ=ait_const) and (tai_const(hp2).sym=tai_const(hp).sym)
and (tai_const(hp2).value=tai_const(hp).value) and (tai(hp2.previous).typ=ait_label)
then
begin
with taicpu(curtai).oper[curop]^.ref^ do
begin
symboldata:=hp2.previous;
symbol:=tai_label(hp2.previous).labsym;
end;
removeref:=true;
break;
end;
hp2:=tai(hp2.next);
end;
end;
end;
{ move or remove symbol reference }
repeat
hp:=tai(curdatatai.next);
listtoinsert.remove(curdatatai);
if removeref then
curdatatai.free
else
curdata.concat(curdatatai);
curdatatai:=hp;
until (curdatatai=nil) or (curdatatai.typ=ait_label);
if lastinspos=-1 then
lastinspos:=curinspos;
end;
end;
end;
end;
inc(curinspos,multiplier);
end;
ait_align:
begin
{ code is always 4 byte aligned, so we don't have to take care of .align 2 which would
requires also incrementing curinspos by 1 }
inc(curinspos,(tai_align(curtai).aligntype div 4)*multiplier);
end;
ait_const:
begin
inc(curinspos,multiplier);
if (tai_const(curtai).consttype=aitconst_64bit) then
inc(curinspos,multiplier);
end;
ait_real_32bit:
begin
inc(curinspos,multiplier);
end;
ait_comp_64bit,
ait_real_64bit:
begin
inc(curinspos,2*multiplier);
end;
ait_real_80bit:
begin
inc(curinspos,3*multiplier);
end;
end;
{ special case for case jump tables }
penalty:=0;
if SimpleGetNextInstruction(curtai,hp) and
(tai(hp).typ=ait_instruction) then
begin
case taicpu(hp).opcode of
A_MOV,
A_LDR,
A_ADD:
{ approximation if we hit a case jump table }
if ((taicpu(hp).opcode in [A_ADD,A_LDR]) and not(GenerateThumbCode or GenerateThumb2Code) and
(taicpu(hp).oper[0]^.typ=top_reg) and
(taicpu(hp).oper[0]^.reg=NR_PC)) or
((taicpu(hp).opcode=A_MOV) and (GenerateThumbCode) and
(taicpu(hp).oper[0]^.typ=top_reg) and
(taicpu(hp).oper[0]^.reg=NR_PC))
then
begin
penalty:=multiplier;
hp:=tai(hp.next);
{ skip register allocations and comments inserted by the optimizer as well as a label
as jump tables for thumb might have }
while assigned(hp) and (hp.typ in [ait_comment,ait_regalloc,ait_label]) do
hp:=tai(hp.next);
while assigned(hp) and (hp.typ=ait_const) do
begin
inc(penalty,multiplier);
hp:=tai(hp.next);
end;
end;
A_IT:
begin
if GenerateThumb2Code then
penalty:=multiplier;
{ check if the next instruction fits as well
or if we splitted after the it so split before }
CheckLimit(hp,1);
end;
A_ITE,
A_ITT:
begin
if GenerateThumb2Code then
penalty:=2*multiplier;
{ check if the next two instructions fit as well
or if we splitted them so split before }
CheckLimit(hp,2);
end;
A_ITEE,
A_ITTE,
A_ITET,
A_ITTT:
begin
if GenerateThumb2Code then
penalty:=3*multiplier;
{ check if the next three instructions fit as well
or if we splitted them so split before }
CheckLimit(hp,3);
end;
A_ITEEE,
A_ITTEE,
A_ITETE,
A_ITTTE,
A_ITEET,
A_ITTET,
A_ITETT,
A_ITTTT:
begin
if GenerateThumb2Code then
penalty:=4*multiplier;
{ check if the next three instructions fit as well
or if we splitted them so split before }
CheckLimit(hp,4);
end;
end;
end;
CheckLimit(curtai,1);
{ don't miss an insert }
doinsert:=doinsert or
(not(curdata.empty) and
(curinspos-lastinspos+penalty+extradataoffset>limit));
{ split only at real instructions else the test below fails }
if doinsert and (curtai.typ=ait_instruction) and
(
{ don't split loads of pc to lr and the following move }
not(
(taicpu(curtai).opcode=A_MOV) and
(taicpu(curtai).oper[0]^.typ=top_reg) and
(taicpu(curtai).oper[0]^.reg=NR_R14) and
(taicpu(curtai).oper[1]^.typ=top_reg) and
(taicpu(curtai).oper[1]^.reg=NR_PC)
)
) and
(
{ do not insert data after a B instruction due to their limited range }
not((GenerateThumbCode) and
(taicpu(curtai).opcode=A_B)
)
) then
begin
lastinspos:=-1;
extradataoffset:=0;
if GenerateThumbCode then
limit:=502
else
limit:=1016;
{ on arm thumb, insert the data always after all labels etc. following an instruction so it
is prevent that a bxx yyy; bl xxx; yyyy: sequence gets separated ( we never insert on arm thumb after
bxx) and the distance of bxx gets too long }
if GenerateThumbCode then
while assigned(tai(curtai.Next)) and (tai(curtai.Next).typ in SkipInstr+[ait_label]) do
curtai:=tai(curtai.next);
doinsert:=false;
current_asmdata.getjumplabel(l);
{ align jump in thumb .text section to 4 bytes }
if not(curdata.empty) and (GenerateThumbCode) then
curdata.Insert(tai_align.Create(4));
curdata.insert(taicpu.op_sym(A_B,l));
curdata.concat(tai_label.create(l));
{ mark all labels as inserted, arm thumb
needs this, so data referencing an already inserted label can be
duplicated because arm thumb does not allow negative pc relative offset }
hp2:=tai(curdata.first);
while assigned(hp2) do
begin
if hp2.typ=ait_label then
tai_label(hp2).inserted:=true;
hp2:=tai(hp2.next);
end;
{ continue with the last inserted label because we use later
on SimpleGetNextInstruction, so if we used curtai.next (which
is then equal curdata.last.previous) we could over see one
instruction }
hp:=tai(curdata.Last);
list.insertlistafter(curtai,curdata);
curtai:=hp;
end
else
curtai:=tai(curtai.next);
end;
{ align jump in thumb .text section to 4 bytes }
if not(curdata.empty) and (GenerateThumbCode or GenerateThumb2Code) then
curdata.Insert(tai_align.Create(4));
list.concatlist(curdata);
curdata.free;
end;
procedure ensurethumb2encodings(list: TAsmList);
var
curtai: tai;
op2reg: TRegister;
begin
{ Do Thumb-2 16bit -> 32bit transformations }
curtai:=tai(list.first);
while assigned(curtai) do
begin
case curtai.typ of
ait_instruction:
begin
case taicpu(curtai).opcode of
A_ADD:
begin
{ Set wide flag for ADD Rd,Rn,Rm where registers are over R7(high register set) }
if taicpu(curtai).ops = 3 then
begin
if taicpu(curtai).oper[2]^.typ in [top_reg,top_shifterop] then
begin
if taicpu(curtai).oper[2]^.typ = top_reg then
op2reg := taicpu(curtai).oper[2]^.reg
else if taicpu(curtai).oper[2]^.shifterop^.rs <> NR_NO then
op2reg := taicpu(curtai).oper[2]^.shifterop^.rs
else
op2reg := NR_NO;
if op2reg <> NR_NO then
begin
if (taicpu(curtai).oper[0]^.reg >= NR_R8) or
(taicpu(curtai).oper[1]^.reg >= NR_R8) or
(op2reg >= NR_R8) then
begin
taicpu(curtai).wideformat:=true;
{ Handle special cases where register rules are violated by optimizer/user }
{ if d == 13 || (d == 15 && S == Äò0Äô) || n == 15 || m IN [13,15] then UNPREDICTABLE; }
{ Transform ADD.W Rx, Ry, R13 into ADD.W Rx, R13, Ry }
if (op2reg = NR_R13) and (taicpu(curtai).oper[2]^.typ = top_reg) then
begin
taicpu(curtai).oper[2]^.reg := taicpu(curtai).oper[1]^.reg;
taicpu(curtai).oper[1]^.reg := op2reg;
end;
end;
end;
end;
end;
end;
end;
end;
end;
curtai:=tai(curtai.Next);
end;
end;
function getMergedInstruction(FirstOp,LastOp:TAsmOp;InvertLast:boolean) : TAsmOp;
const
opTable: array[A_IT..A_ITTTT] of string =
('T','TE','TT','TEE','TTE','TET','TTT',
'TEEE','TTEE','TETE','TTTE',
'TEET','TTET','TETT','TTTT');
invertedOpTable: array[A_IT..A_ITTTT] of string =
('E','ET','EE','ETT','EET','ETE','EEE',
'ETTT','EETT','ETET','EEET',
'ETTE','EETE','ETEE','EEEE');
var
resStr : string;
i : TAsmOp;
begin
if InvertLast then
resStr := opTable[FirstOp]+invertedOpTable[LastOp]
else
resStr := opTable[FirstOp]+opTable[LastOp];
if length(resStr) > 4 then
internalerror(2012100805);
for i := low(opTable) to high(opTable) do
if opTable[i] = resStr then
exit(i);
internalerror(2012100806);
end;
procedure foldITInstructions(list: TAsmList);
var
curtai,hp1 : tai;
levels,i : LongInt;
begin
curtai:=tai(list.First);
while assigned(curtai) do
begin
case curtai.typ of
ait_instruction:
if IsIT(taicpu(curtai).opcode) then
begin
levels := GetITLevels(taicpu(curtai).opcode);
if levels < 4 then
begin
i:=levels;
hp1:=tai(curtai.Next);
while assigned(hp1) and
(i > 0) do
begin
if hp1.typ=ait_instruction then
begin
dec(i);
if (i = 0) and
mustbelast(hp1) then
begin
hp1:=nil;
break;
end;
end;
hp1:=tai(hp1.Next);
end;
if assigned(hp1) then
begin
// We are pointing at the first instruction after the IT block
while assigned(hp1) and
(hp1.typ<>ait_instruction) do
hp1:=tai(hp1.Next);
if assigned(hp1) and
(hp1.typ=ait_instruction) and
IsIT(taicpu(hp1).opcode) then
begin
if (levels+GetITLevels(taicpu(hp1).opcode) <= 4) and
((taicpu(curtai).oper[0]^.cc=taicpu(hp1).oper[0]^.cc) or
(taicpu(curtai).oper[0]^.cc=inverse_cond(taicpu(hp1).oper[0]^.cc))) then
begin
taicpu(curtai).opcode:=getMergedInstruction(taicpu(curtai).opcode,
taicpu(hp1).opcode,
taicpu(curtai).oper[0]^.cc=inverse_cond(taicpu(hp1).oper[0]^.cc));
list.Remove(hp1);
hp1.Free;
end;
end;
end;
end;
end;
end;
curtai:=tai(curtai.Next);
end;
end;
procedure fix_invalid_imms(list: TAsmList);
var
curtai: tai;
sh: byte;
begin
curtai:=tai(list.First);
while assigned(curtai) do
begin
case curtai.typ of
ait_instruction:
begin
if (taicpu(curtai).opcode in [A_AND,A_BIC]) and
(taicpu(curtai).ops=3) and
(taicpu(curtai).oper[2]^.typ=top_const) and
(not is_shifter_const(taicpu(curtai).oper[2]^.val,sh)) and
is_shifter_const((not taicpu(curtai).oper[2]^.val) and $FFFFFFFF,sh) then
begin
case taicpu(curtai).opcode of
A_AND: taicpu(curtai).opcode:=A_BIC;
A_BIC: taicpu(curtai).opcode:=A_AND;
end;
taicpu(curtai).oper[2]^.val:=(not taicpu(curtai).oper[2]^.val) and $FFFFFFFF;
end
else if (taicpu(curtai).opcode in [A_SUB,A_ADD]) and
(taicpu(curtai).ops=3) and
(taicpu(curtai).oper[2]^.typ=top_const) and
(not is_shifter_const(taicpu(curtai).oper[2]^.val,sh)) and
is_shifter_const(-taicpu(curtai).oper[2]^.val,sh) then
begin
case taicpu(curtai).opcode of
A_ADD: taicpu(curtai).opcode:=A_SUB;
A_SUB: taicpu(curtai).opcode:=A_ADD;
end;
taicpu(curtai).oper[2]^.val:=-taicpu(curtai).oper[2]^.val;
end;
end;
end;
curtai:=tai(curtai.Next);
end;
end;
procedure finalizearmcode(list, listtoinsert: TAsmList);
begin
{ Do Thumb-2 16bit -> 32bit transformations }
if GenerateThumb2Code then
begin
ensurethumb2encodings(list);
foldITInstructions(list);
end;
fix_invalid_imms(list);
insertpcrelativedata(list, listtoinsert);
end;
procedure InsertPData;
var
prolog: TAsmList;
begin
prolog:=TAsmList.create;
new_section(prolog,sec_code,'FPC_EH_PROLOG',sizeof(pint),secorder_begin);
prolog.concat(Tai_const.Createname('_ARM_ExceptionHandler', 0));
prolog.concat(Tai_const.Create_32bit(0));
prolog.concat(Tai_symbol.Createname_global('FPC_EH_CODE_START',AT_DATA,0));
{ dummy function }
prolog.concat(taicpu.op_reg_reg(A_MOV,NR_R15,NR_R14));
current_asmdata.asmlists[al_start].insertList(prolog);
prolog.Free;
new_section(current_asmdata.asmlists[al_end],sec_pdata,'',sizeof(pint));
current_asmdata.asmlists[al_end].concat(Tai_const.Createname('FPC_EH_CODE_START', 0));
current_asmdata.asmlists[al_end].concat(Tai_const.Create_32bit(longint($ffffff01)));
end;
(*
Floating point instruction format information, taken from the linux kernel
ARM Floating Point Instruction Classes
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|c o n d|1 1 0 P|U|u|W|L| Rn |v| Fd |0|0|0|1| o f f s e t | CPDT
|c o n d|1 1 0 P|U|w|W|L| Rn |x| Fd |0|0|1|0| o f f s e t | CPDT (copro 2)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|c o n d|1 1 1 0|a|b|c|d|e| Fn |j| Fd |0|0|0|1|f|g|h|0|i| Fm | CPDO
|c o n d|1 1 1 0|a|b|c|L|e| Fn | Rd |0|0|0|1|f|g|h|1|i| Fm | CPRT
|c o n d|1 1 1 0|a|b|c|1|e| Fn |1|1|1|1|0|0|0|1|f|g|h|1|i| Fm | comparisons
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
CPDT data transfer instructions
LDF, STF, LFM (copro 2), SFM (copro 2)
CPDO dyadic arithmetic instructions
ADF, MUF, SUF, RSF, DVF, RDF,
POW, RPW, RMF, FML, FDV, FRD, POL
CPDO monadic arithmetic instructions
MVF, MNF, ABS, RND, SQT, LOG, LGN, EXP,
SIN, COS, TAN, ASN, ACS, ATN, URD, NRM
CPRT joint arithmetic/data transfer instructions
FIX (arithmetic followed by load/store)
FLT (load/store followed by arithmetic)
CMF, CNF CMFE, CNFE (comparisons)
WFS, RFS (write/read floating point status register)
WFC, RFC (write/read floating point control register)
cond condition codes
P pre/post index bit: 0 = postindex, 1 = preindex
U up/down bit: 0 = stack grows down, 1 = stack grows up
W write back bit: 1 = update base register (Rn)
L load/store bit: 0 = store, 1 = load
Rn base register
Rd destination/source register
Fd floating point destination register
Fn floating point source register
Fm floating point source register or floating point constant
uv transfer length (TABLE 1)
wx register count (TABLE 2)
abcd arithmetic opcode (TABLES 3 & 4)
ef destination size (rounding precision) (TABLE 5)
gh rounding mode (TABLE 6)
j dyadic/monadic bit: 0 = dyadic, 1 = monadic
i constant bit: 1 = constant (TABLE 6)
*/
/*
TABLE 1
+-------------------------+---+---+---------+---------+
| Precision | u | v | FPSR.EP | length |
+-------------------------+---+---+---------+---------+
| Single | 0 | 0 | x | 1 words |
| Double | 1 | 1 | x | 2 words |
| Extended | 1 | 1 | x | 3 words |
| Packed decimal | 1 | 1 | 0 | 3 words |
| Expanded packed decimal | 1 | 1 | 1 | 4 words |
+-------------------------+---+---+---------+---------+
Note: x = don't care
*/
/*
TABLE 2
+---+---+---------------------------------+
| w | x | Number of registers to transfer |
+---+---+---------------------------------+
| 0 | 1 | 1 |
| 1 | 0 | 2 |
| 1 | 1 | 3 |
| 0 | 0 | 4 |
+---+---+---------------------------------+
*/
/*
TABLE 3: Dyadic Floating Point Opcodes
+---+---+---+---+----------+-----------------------+-----------------------+
| a | b | c | d | Mnemonic | Description | Operation |
+---+---+---+---+----------+-----------------------+-----------------------+
| 0 | 0 | 0 | 0 | ADF | Add | Fd := Fn + Fm |
| 0 | 0 | 0 | 1 | MUF | Multiply | Fd := Fn * Fm |
| 0 | 0 | 1 | 0 | SUF | Subtract | Fd := Fn - Fm |
| 0 | 0 | 1 | 1 | RSF | Reverse subtract | Fd := Fm - Fn |
| 0 | 1 | 0 | 0 | DVF | Divide | Fd := Fn / Fm |
| 0 | 1 | 0 | 1 | RDF | Reverse divide | Fd := Fm / Fn |
| 0 | 1 | 1 | 0 | POW | Power | Fd := Fn ^ Fm |
| 0 | 1 | 1 | 1 | RPW | Reverse power | Fd := Fm ^ Fn |
| 1 | 0 | 0 | 0 | RMF | Remainder | Fd := IEEE rem(Fn/Fm) |
| 1 | 0 | 0 | 1 | FML | Fast Multiply | Fd := Fn * Fm |
| 1 | 0 | 1 | 0 | FDV | Fast Divide | Fd := Fn / Fm |
| 1 | 0 | 1 | 1 | FRD | Fast reverse divide | Fd := Fm / Fn |
| 1 | 1 | 0 | 0 | POL | Polar angle (ArcTan2) | Fd := arctan2(Fn,Fm) |
| 1 | 1 | 0 | 1 | | undefined instruction | trap |
| 1 | 1 | 1 | 0 | | undefined instruction | trap |
| 1 | 1 | 1 | 1 | | undefined instruction | trap |
+---+---+---+---+----------+-----------------------+-----------------------+
Note: POW, RPW, POL are deprecated, and are available for backwards
compatibility only.
*/
/*
TABLE 4: Monadic Floating Point Opcodes
+---+---+---+---+----------+-----------------------+-----------------------+
| a | b | c | d | Mnemonic | Description | Operation |
+---+---+---+---+----------+-----------------------+-----------------------+
| 0 | 0 | 0 | 0 | MVF | Move | Fd := Fm |
| 0 | 0 | 0 | 1 | MNF | Move negated | Fd := - Fm |
| 0 | 0 | 1 | 0 | ABS | Absolute value | Fd := abs(Fm) |
| 0 | 0 | 1 | 1 | RND | Round to integer | Fd := int(Fm) |
| 0 | 1 | 0 | 0 | SQT | Square root | Fd := sqrt(Fm) |
| 0 | 1 | 0 | 1 | LOG | Log base 10 | Fd := log10(Fm) |
| 0 | 1 | 1 | 0 | LGN | Log base e | Fd := ln(Fm) |
| 0 | 1 | 1 | 1 | EXP | Exponent | Fd := e ^ Fm |
| 1 | 0 | 0 | 0 | SIN | Sine | Fd := sin(Fm) |
| 1 | 0 | 0 | 1 | COS | Cosine | Fd := cos(Fm) |
| 1 | 0 | 1 | 0 | TAN | Tangent | Fd := tan(Fm) |
| 1 | 0 | 1 | 1 | ASN | Arc Sine | Fd := arcsin(Fm) |
| 1 | 1 | 0 | 0 | ACS | Arc Cosine | Fd := arccos(Fm) |
| 1 | 1 | 0 | 1 | ATN | Arc Tangent | Fd := arctan(Fm) |
| 1 | 1 | 1 | 0 | URD | Unnormalized round | Fd := int(Fm) |
| 1 | 1 | 1 | 1 | NRM | Normalize | Fd := norm(Fm) |
+---+---+---+---+----------+-----------------------+-----------------------+
Note: LOG, LGN, EXP, SIN, COS, TAN, ASN, ACS, ATN are deprecated, and are
available for backwards compatibility only.
*/
/*
TABLE 5
+-------------------------+---+---+
| Rounding Precision | e | f |
+-------------------------+---+---+
| IEEE Single precision | 0 | 0 |
| IEEE Double precision | 0 | 1 |
| IEEE Extended precision | 1 | 0 |
| undefined (trap) | 1 | 1 |
+-------------------------+---+---+
*/
/*
TABLE 5
+---------------------------------+---+---+
| Rounding Mode | g | h |
+---------------------------------+---+---+
| Round to nearest (default) | 0 | 0 |
| Round toward plus infinity | 0 | 1 |
| Round toward negative infinity | 1 | 0 |
| Round toward zero | 1 | 1 |
+---------------------------------+---+---+
*)
function taicpu.GetString:string;
var
i : longint;
s : string;
addsize : boolean;
begin
s:='['+gas_op2str[opcode];
for i:=0 to ops-1 do
begin
with oper[i]^ do
begin
if i=0 then
s:=s+' '
else
s:=s+',';
{ type }
addsize:=false;
if (ot and OT_VREG)=OT_VREG then
s:=s+'vreg'
else
if (ot and OT_FPUREG)=OT_FPUREG then
s:=s+'fpureg'
else
if (ot and OT_REGF)=OT_REGF then
s:=s+'creg'
else
if (ot and OT_REGISTER)=OT_REGISTER then
begin
s:=s+'reg';
addsize:=true;
end
else
if (ot and OT_REGLIST)=OT_REGLIST then
begin
s:=s+'reglist';
addsize:=false;
end
else
if (ot and OT_IMMEDIATE)=OT_IMMEDIATE then
begin
s:=s+'imm';
addsize:=true;
end
else
if (ot and OT_MEMORY)=OT_MEMORY then
begin
s:=s+'mem';
addsize:=true;
if (ot and OT_AM2)<>0 then
s:=s+' am2 '
else if (ot and OT_AM6)<>0 then
s:=s+' am2 ';
end
else
if (ot and OT_SHIFTEROP)=OT_SHIFTEROP then
begin
s:=s+'shifterop';
addsize:=false;
end
else
s:=s+'???';
{ size }
if addsize then
begin
if (ot and OT_BITS8)<>0 then
s:=s+'8'
else
if (ot and OT_BITS16)<>0 then
s:=s+'24'
else
if (ot and OT_BITS32)<>0 then
s:=s+'32'
else
if (ot and OT_BITSSHIFTER)<>0 then
s:=s+'shifter'
else
s:=s+'??';
{ signed }
if (ot and OT_SIGNED)<>0 then
s:=s+'s';
end;
end;
end;
GetString:=s+']';
end;
procedure taicpu.ResetPass1;
begin
{ we need to reset everything here, because the choosen insentry
can be invalid for a new situation where the previously optimized
insentry is not correct }
InsEntry:=nil;
InsSize:=0;
LastInsOffset:=-1;
end;
procedure taicpu.ResetPass2;
begin
{ we are here in a second pass, check if the instruction can be optimized }
if assigned(InsEntry) and
((InsEntry^.flags and IF_PASS2)<>0) then
begin
InsEntry:=nil;
InsSize:=0;
end;
LastInsOffset:=-1;
end;
function taicpu.CheckIfValid:boolean;
begin
Result:=False; { unimplemented }
end;
function taicpu.Pass1(objdata:TObjData):longint;
var
ldr2op : array[PF_B..PF_T] of tasmop = (
A_LDRB,A_LDRSB,A_LDRBT,A_LDRH,A_LDRSH,A_LDRT);
str2op : array[PF_B..PF_T] of tasmop = (
A_STRB,A_None,A_STRBT,A_STRH,A_None,A_STRT);
begin
Pass1:=0;
{ Save the old offset and set the new offset }
InsOffset:=ObjData.CurrObjSec.Size;
{ Error? }
if (Insentry=nil) and (InsSize=-1) then
exit;
{ set the file postion }
current_filepos:=fileinfo;
{ tranlate LDR+postfix to complete opcode }
if (opcode=A_LDR) and (oppostfix=PF_D) then
begin
opcode:=A_LDRD;
oppostfix:=PF_None;
end
else if (opcode=A_LDR) and (oppostfix<>PF_None) then
begin
if (oppostfix in [low(ldr2op)..high(ldr2op)]) then
opcode:=ldr2op[oppostfix]
else
internalerror(2005091001);
if opcode=A_None then
internalerror(2005091004);
{ postfix has been added to opcode }
oppostfix:=PF_None;
end
else if (opcode=A_STR) and (oppostfix=PF_D) then
begin
opcode:=A_STRD;
oppostfix:=PF_None;
end
else if (opcode=A_STR) and (oppostfix<>PF_None) then
begin
if (oppostfix in [low(str2op)..high(str2op)]) then
opcode:=str2op[oppostfix]
else
internalerror(2005091002);
if opcode=A_None then
internalerror(2005091003);
{ postfix has been added to opcode }
oppostfix:=PF_None;
end;
{ Get InsEntry }
if FindInsEntry(objdata) then
begin
InsSize:=4;
LastInsOffset:=InsOffset;
Pass1:=InsSize;
exit;
end;
LastInsOffset:=-1;
end;
procedure taicpu.Pass2(objdata:TObjData);
begin
{ error in pass1 ? }
if insentry=nil then
exit;
current_filepos:=fileinfo;
{ Generate the instruction }
GenCode(objdata);
end;
procedure taicpu.ppuloadoper(ppufile:tcompilerppufile;var o:toper);
begin
end;
procedure taicpu.ppuwriteoper(ppufile:tcompilerppufile;const o:toper);
begin
end;
procedure taicpu.ppubuildderefimploper(var o:toper);
begin
end;
procedure taicpu.ppuderefoper(var o:toper);
begin
end;
function taicpu.InsEnd:longint;
begin
Result:=0; { unimplemented }
end;
procedure taicpu.create_ot(objdata:TObjData);
var
i,l,relsize : longint;
dummy : byte;
currsym : TObjSymbol;
begin
if ops=0 then
exit;
{ update oper[].ot field }
for i:=0 to ops-1 do
with oper[i]^ do
begin
case typ of
top_regset:
begin
ot:=OT_REGLIST;
end;
top_reg :
begin
case getregtype(reg) of
R_INTREGISTER:
ot:=OT_REG32 or OT_SHIFTEROP;
R_FPUREGISTER:
ot:=OT_FPUREG;
R_MMREGISTER:
ot:=OT_VREG;
R_SPECIALREGISTER:
ot:=OT_REGF;
else
internalerror(2005090901);
end;
end;
top_ref :
begin
if ref^.refaddr=addr_no then
begin
{ create ot field }
{ we should get the size here dependend on the
instruction }
if (ot and OT_SIZE_MASK)=0 then
ot:=OT_MEMORY or OT_BITS32
else
ot:=OT_MEMORY or (ot and OT_SIZE_MASK);
if (ref^.base=NR_NO) and (ref^.index=NR_NO) then
ot:=ot or OT_MEM_OFFS;
{ if we need to fix a reference, we do it here }
{ pc relative addressing }
if (ref^.base=NR_NO) and
(ref^.index=NR_NO) and
(ref^.shiftmode=SM_None)
{ at least we should check if the destination symbol
is in a text section }
{ and
(ref^.symbol^.owner="text") } then
ref^.base:=NR_PC;
{ determine possible address modes }
if (ref^.base<>NR_NO) and
(opcode in [A_LDREX,A_LDREXB,A_LDREXH,A_LDREXD,
A_STREX,A_STREXB,A_STREXH,A_STREXD]) and
(
(ref^.addressmode=AM_OFFSET) and
(ref^.index=NR_NO) and
(ref^.shiftmode=SM_None) and
(ref^.offset=0)
) then
ot:=ot or OT_AM6
else if (ref^.base<>NR_NO) and
(
(
(ref^.index=NR_NO) and
(ref^.shiftmode=SM_None) and
(ref^.offset>=-4097) and
(ref^.offset<=4097)
) or
(
(ref^.shiftmode=SM_None) and
(ref^.offset=0)
) or
(
(ref^.index<>NR_NO) and
(ref^.shiftmode<>SM_None) and
(ref^.shiftimm<=32) and
(ref^.offset=0)
)
) then
ot:=ot or OT_AM2;
if (ref^.index<>NR_NO) and
(oppostfix in [PF_None,PF_IA,PF_IB,PF_DA,PF_DB,PF_FD,PF_FA,PF_ED,PF_EA]) and
(
(ref^.base=NR_NO) and
(ref^.shiftmode=SM_None) and
(ref^.offset=0)
) then
ot:=ot or OT_AM4;
end
else
begin
l:=ref^.offset;
currsym:=ObjData.symbolref(ref^.symbol);
if assigned(currsym) then
inc(l,currsym.address);
relsize:=(InsOffset+2)-l;
if (relsize<-33554428) or (relsize>33554428) then
ot:=OT_IMM32
else
ot:=OT_IMM24;
end;
end;
top_local :
begin
{ we should get the size here dependend on the
instruction }
if (ot and OT_SIZE_MASK)=0 then
ot:=OT_MEMORY or OT_BITS32
else
ot:=OT_MEMORY or (ot and OT_SIZE_MASK);
end;
top_const :
begin
ot:=OT_IMMEDIATE;
if is_shifter_const(val,dummy) then
ot:=OT_IMMSHIFTER
else
ot:=OT_IMM32
end;
top_none :
begin
{ generated when there was an error in the
assembler reader. It never happends when generating
assembler }
end;
top_shifterop:
begin
ot:=OT_SHIFTEROP;
end;
top_conditioncode:
begin
ot:=OT_CONDITION;
end;
else
begin writeln(typ);
internalerror(200402261); end;
end;
end;
end;
function taicpu.Matches(p:PInsEntry):longint;
{ * IF_SM stands for Size Match: any operand whose size is not
* explicitly specified by the template is `really' intended to be
* the same size as the first size-specified operand.
* Non-specification is tolerated in the input instruction, but
* _wrong_ specification is not.
*
* IF_SM2 invokes Size Match on only the first _two_ operands, for
* three-operand instructions such as SHLD: it implies that the
* first two operands must match in size, but that the third is
* required to be _unspecified_.
*
* IF_SB invokes Size Byte: operands with unspecified size in the
* template are really bytes, and so no non-byte specification in
* the input instruction will be tolerated. IF_SW similarly invokes
* Size Word, and IF_SD invokes Size Doubleword.
*
* (The default state if neither IF_SM nor IF_SM2 is specified is
* that any operand with unspecified size in the template is
* required to have unspecified size in the instruction too...)
}
var
i{,j,asize,oprs} : longint;
{siz : array[0..3] of longint;}
begin
Matches:=100;
{ Check the opcode and operands }
if (p^.opcode<>opcode) or (p^.ops<>ops) then
begin
Matches:=0;
exit;
end;
{ Check that no spurious colons or TOs are present }
for i:=0 to p^.ops-1 do
if (oper[i]^.ot and (not p^.optypes[i]) and (OT_COLON or OT_TO))<>0 then
begin
Matches:=0;
exit;
end;
{ Check that the operand flags all match up }
for i:=0 to p^.ops-1 do
begin
if ((p^.optypes[i] and (not oper[i]^.ot)) or
((p^.optypes[i] and OT_SIZE_MASK) and
((p^.optypes[i] xor oper[i]^.ot) and OT_SIZE_MASK)))<>0 then
begin
if ((p^.optypes[i] and (not oper[i]^.ot) and OT_NON_SIZE) or
(oper[i]^.ot and OT_SIZE_MASK))<>0 then
begin
Matches:=0;
exit;
end
else
Matches:=1;
end;
end;
{ check postfixes:
the existance of a certain postfix requires a
particular code }
{ update condition flags
or floating point single }
if (oppostfix=PF_S) and
not(p^.code[0] in [#$04..#$0B,#$14..#$16,#$29,#$30]) then
begin
Matches:=0;
exit;
end;
{ floating point size }
if (oppostfix in [PF_D,PF_E,PF_P,PF_EP]) and
not(p^.code[0] in []) then
begin
Matches:=0;
exit;
end;
{ multiple load/store address modes }
if (oppostfix in [PF_IA,PF_IB,PF_DA,PF_DB,PF_FD,PF_FA,PF_ED,PF_EA]) and
not(p^.code[0] in [
// ldr,str,ldrb,strb
#$17,
// stm,ldm
#$26,
// vldm/vstm
#$44
]) then
begin
Matches:=0;
exit;
end;
{ we shouldn't see any opsize prefixes here }
if (oppostfix in [PF_B,PF_SB,PF_BT,PF_H,PF_SH,PF_T]) then
begin
Matches:=0;
exit;
end;
if (roundingmode<>RM_None) and not(p^.code[0] in []) then
begin
Matches:=0;
exit;
end;
{ Check operand sizes }
{ as default an untyped size can get all the sizes, this is different
from nasm, but else we need to do a lot checking which opcodes want
size or not with the automatic size generation }
(*
asize:=longint($ffffffff);
if (p^.flags and IF_SB)<>0 then
asize:=OT_BITS8
else if (p^.flags and IF_SW)<>0 then
asize:=OT_BITS16
else if (p^.flags and IF_SD)<>0 then
asize:=OT_BITS32;
if (p^.flags and IF_ARMASK)<>0 then
begin
siz[0]:=0;
siz[1]:=0;
siz[2]:=0;
if (p^.flags and IF_AR0)<>0 then
siz[0]:=asize
else if (p^.flags and IF_AR1)<>0 then
siz[1]:=asize
else if (p^.flags and IF_AR2)<>0 then
siz[2]:=asize;
end
else
begin
{ we can leave because the size for all operands is forced to be
the same
but not if IF_SB IF_SW or IF_SD is set PM }
if asize=-1 then
exit;
siz[0]:=asize;
siz[1]:=asize;
siz[2]:=asize;
end;
if (p^.flags and (IF_SM or IF_SM2))<>0 then
begin
if (p^.flags and IF_SM2)<>0 then
oprs:=2
else
oprs:=p^.ops;
for i:=0 to oprs-1 do
if ((p^.optypes[i] and OT_SIZE_MASK) <> 0) then
begin
for j:=0 to oprs-1 do
siz[j]:=p^.optypes[i] and OT_SIZE_MASK;
break;
end;
end
else
oprs:=2;
{ Check operand sizes }
for i:=0 to p^.ops-1 do
begin
if ((p^.optypes[i] and OT_SIZE_MASK)=0) and
((oper[i]^.ot and OT_SIZE_MASK and (not siz[i]))<>0) and
{ Immediates can always include smaller size }
((oper[i]^.ot and OT_IMMEDIATE)=0) and
(((p^.optypes[i] and OT_SIZE_MASK) or siz[i])<(oper[i]^.ot and OT_SIZE_MASK)) then
Matches:=2;
end;
*)
end;
function taicpu.calcsize(p:PInsEntry):shortint;
begin
result:=4;
end;
function taicpu.NeedAddrPrefix(opidx:byte):boolean;
begin
Result:=False; { unimplemented }
end;
procedure taicpu.Swapoperands;
begin
end;
function taicpu.FindInsentry(objdata:TObjData):boolean;
var
i : longint;
begin
result:=false;
{ Things which may only be done once, not when a second pass is done to
optimize }
if (Insentry=nil) or ((InsEntry^.flags and IF_PASS2)<>0) then
begin
{ create the .ot fields }
create_ot(objdata);
{ set the file postion }
current_filepos:=fileinfo;
end
else
begin
{ we've already an insentry so it's valid }
result:=true;
exit;
end;
{ Lookup opcode in the table }
InsSize:=-1;
i:=instabcache^[opcode];
if i=-1 then
begin
Message1(asmw_e_opcode_not_in_table,gas_op2str[opcode]);
exit;
end;
insentry:=@instab[i];
while (insentry^.opcode=opcode) do
begin
if matches(insentry)=100 then
begin
result:=true;
exit;
end;
inc(i);
insentry:=@instab[i];
end;
if (ops=3) and (opcode=a_sub) then writeln(oppostfix,',',oper[2]^.val);
Message1(asmw_e_invalid_opcode_and_operands,GetString);
{ No instruction found, set insentry to nil and inssize to -1 }
insentry:=nil;
inssize:=-1;
end;
procedure taicpu.gencode(objdata:TObjData);
const
CondVal : array[TAsmCond] of byte=(
$E, $0, $1, $2, $3, $4, $5, $6, $7, $8, $9, $A,
$B, $C, $D, $E, 0);
var
bytes, rd, rm, rn, d, m, n : dword;
bytelen : longint;
dp_operation : boolean;
i_field : byte;
currsym : TObjSymbol;
offset : longint;
refoper : poper;
msb : longint;
r: byte;
procedure setshifterop(op : byte);
var
r : byte;
imm : dword;
begin
case oper[op]^.typ of
top_const:
begin
i_field:=1;
if oper[op]^.val and $ff=oper[op]^.val then
bytes:=bytes or dword(oper[op]^.val)
else
begin
{ calc rotate and adjust imm }
r:=0;
imm:=dword(oper[op]^.val);
repeat
imm:=RolDWord(imm, 2);
inc(r)
until (imm and $ff)=imm;
bytes:=bytes or (r shl 8) or imm;
end;
end;
top_reg:
begin
i_field:=0;
bytes:=bytes or getsupreg(oper[op]^.reg);
{ does a real shifter op follow? }
if (op+1<opercnt) and (oper[op+1]^.typ=top_shifterop) then
with oper[op+1]^.shifterop^ do
begin
bytes:=bytes or (shiftimm shl 7);
if shiftmode<>SM_RRX then
bytes:=bytes or (ord(shiftmode) - ord(SM_LSL)) shl 5
else
bytes:=bytes or (3 shl 5);
if getregtype(rs) <> R_INVALIDREGISTER then
begin
bytes:=bytes or (1 shl 4);
bytes:=bytes or (getsupreg(rs) shl 8);
end
end;
end;
else
internalerror(2005091103);
end;
end;
function MakeRegList(reglist: tcpuregisterset): word;
var
i, w: word;
begin
result:=0;
w:=1;
for i:=RS_R0 to RS_R15 do
begin
if i in reglist then
result:=result or w;
w:=w shl 1
end;
end;
function getcoproc(reg: tregister): byte;
begin
if reg=NR_p15 then
result:=15
else
begin
Message1(asmw_e_invalid_opcode_and_operands,'Invalid coprocessor port');
result:=0;
end;
end;
function getcoprocreg(reg: tregister): byte;
begin
result:=getsupreg(reg)-getsupreg(NR_CR0);
end;
function getmmreg(reg: tregister): byte;
begin
case reg of
NR_D0: result:=0;
NR_D1: result:=1;
NR_D2: result:=2;
NR_D3: result:=3;
NR_D4: result:=4;
NR_D5: result:=5;
NR_D6: result:=6;
NR_D7: result:=7;
NR_D8: result:=8;
NR_D9: result:=9;
NR_D10: result:=10;
NR_D11: result:=11;
NR_D12: result:=12;
NR_D13: result:=13;
NR_D14: result:=14;
NR_D15: result:=15;
NR_D16: result:=16;
NR_D17: result:=17;
NR_D18: result:=18;
NR_D19: result:=19;
NR_D20: result:=20;
NR_D21: result:=21;
NR_D22: result:=22;
NR_D23: result:=23;
NR_D24: result:=24;
NR_D25: result:=25;
NR_D26: result:=26;
NR_D27: result:=27;
NR_D28: result:=28;
NR_D29: result:=29;
NR_D30: result:=30;
NR_D31: result:=31;
NR_S0: result:=0;
NR_S1: result:=1;
NR_S2: result:=2;
NR_S3: result:=3;
NR_S4: result:=4;
NR_S5: result:=5;
NR_S6: result:=6;
NR_S7: result:=7;
NR_S8: result:=8;
NR_S9: result:=9;
NR_S10: result:=10;
NR_S11: result:=11;
NR_S12: result:=12;
NR_S13: result:=13;
NR_S14: result:=14;
NR_S15: result:=15;
NR_S16: result:=16;
NR_S17: result:=17;
NR_S18: result:=18;
NR_S19: result:=19;
NR_S20: result:=20;
NR_S21: result:=21;
NR_S22: result:=22;
NR_S23: result:=23;
NR_S24: result:=24;
NR_S25: result:=25;
NR_S26: result:=26;
NR_S27: result:=27;
NR_S28: result:=28;
NR_S29: result:=29;
NR_S30: result:=30;
NR_S31: result:=31;
else
result:=0;
end;
end;
begin
bytes:=$0;
bytelen:=4;
i_field:=0;
{ evaluate and set condition code }
bytes:=bytes or (CondVal[condition] shl 28);
{ condition code allowed? }
{ setup rest of the instruction }
case insentry^.code[0] of
#$01: // B/BL
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 24);
{ set offset }
if oper[0]^.typ=top_const then
bytes:=bytes or ((oper[0]^.val shr 2) and $ffffff)
else
begin
currsym:=objdata.symbolref(oper[0]^.ref^.symbol);
if (currsym.bind<>AB_LOCAL) and (currsym.objsection<>objdata.CurrObjSec) then
begin
objdata.writereloc(oper[0]^.ref^.offset,0,currsym,RELOC_RELATIVE_24);
bytes:=bytes or $fffffe; // TODO: Not sure this is right, but it matches the output of gas
end
else
bytes:=bytes or (((currsym.offset-insoffset-8) shr 2) and $ffffff);
end;
end;
#$02:
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 24);
{ set code }
bytes:=bytes or (oper[0]^.val and $FFFFFF);
end;
#$03:
begin // BLX/BX
bytes:=bytes or (ord(insentry^.code[1]) shl 24);
bytes:=bytes or (ord(insentry^.code[2]) shl 16);
bytes:=bytes or (ord(insentry^.code[3]) shl 8);
bytes:=bytes or ord(insentry^.code[4]);
bytes:=bytes or getsupreg(oper[0]^.reg);
end;
#$04..#$07: // SUB
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 24);
bytes:=bytes or (ord(insentry^.code[2]) shl 16);
{ set destination }
bytes:=bytes or (getsupreg(oper[0]^.reg) shl 12);
{ set Rn }
bytes:=bytes or (getsupreg(oper[1]^.reg) shl 16);
{ create shifter op }
setshifterop(2);
{ set I field }
bytes:=bytes or (i_field shl 25);
{ set S if necessary }
if oppostfix=PF_S then
bytes:=bytes or (1 shl 20);
end;
#$08,#$0A,#$0B: // MOV
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 24);
bytes:=bytes or (ord(insentry^.code[2]) shl 16);
{ set destination }
bytes:=bytes or (getsupreg(oper[0]^.reg) shl 12);
{ create shifter op }
setshifterop(1);
{ set I field }
bytes:=bytes or (i_field shl 25);
{ set S if necessary }
if oppostfix=PF_S then
bytes:=bytes or (1 shl 20);
end;
#$0C,#$0E,#$0F: // CMP
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 24);
bytes:=bytes or (ord(insentry^.code[2]) shl 16);
{ set destination }
bytes:=bytes or (getsupreg(oper[0]^.reg) shl 16);
{ create shifter op }
setshifterop(1);
{ set I field }
bytes:=bytes or (i_field shl 25);
{ always set S bit }
bytes:=bytes or (1 shl 20);
end;
#$14: // MUL/MLA r1,r2,r3
begin
{ set instruction code }
bytes:=bytes or ord(insentry^.code[1]) shl 24;
bytes:=bytes or ord(insentry^.code[2]) shl 16;
bytes:=bytes or ord(insentry^.code[3]);
{ set regs }
bytes:=bytes or getsupreg(oper[0]^.reg) shl 16;
bytes:=bytes or getsupreg(oper[1]^.reg);
bytes:=bytes or getsupreg(oper[2]^.reg) shl 8;
end;
#$15: // MUL/MLA r1,r2,r3,r4
begin
{ set instruction code }
bytes:=bytes or ord(insentry^.code[1]) shl 24;
bytes:=bytes or ord(insentry^.code[2]) shl 16;
bytes:=bytes or ord(insentry^.code[3]) shl 4;
{ set regs }
bytes:=bytes or getsupreg(oper[0]^.reg) shl 16;
bytes:=bytes or getsupreg(oper[1]^.reg);
bytes:=bytes or getsupreg(oper[2]^.reg) shl 8;
if ops>3 then
bytes:=bytes or getsupreg(oper[3]^.reg) shl 12
else
bytes:=bytes or ($F shl 12);
if oppostfix in [PF_R,PF_X] then
bytes:=bytes or (1 shl 5);
end;
#$16: // MULL r1,r2,r3,r4
begin
{ set instruction code }
bytes:=bytes or ord(insentry^.code[1]) shl 24;
bytes:=bytes or ord(insentry^.code[2]) shl 16;
bytes:=bytes or ord(insentry^.code[3]) shl 4;
{ set regs }
bytes:=bytes or getsupreg(oper[0]^.reg) shl 12;
bytes:=bytes or getsupreg(oper[1]^.reg) shl 16;
bytes:=bytes or getsupreg(oper[2]^.reg);
if ops=4 then
begin
if oper[3]^.typ=top_shifterop then
begin
if opcode in [A_PKHBT,A_PKHTB] then
begin
if ((opcode=A_PKHTB) and
(oper[3]^.shifterop^.shiftmode <> SM_ASR)) or
((opcode=A_PKHBT) and
(oper[3]^.shifterop^.shiftmode <> SM_LSL)) or
(oper[3]^.shifterop^.rs<>NR_NO) then
Message1(asmw_e_invalid_opcode_and_operands,GetString);
bytes:=bytes or ((oper[3]^.shifterop^.shiftimm and $1F) shl 7);
end
else
begin
if (oper[3]^.shifterop^.shiftmode<>sm_ror) or
(oper[3]^.shifterop^.rs<>NR_NO) or
(not (oper[3]^.shifterop^.shiftimm in [0,8,16,24])) then
Message1(asmw_e_invalid_opcode_and_operands,GetString);
bytes:=bytes or (((oper[3]^.shifterop^.shiftimm shr 3) and $3) shl 10);
end;
end
else
bytes:=bytes or getsupreg(oper[3]^.reg) shl 8;
end;
if PF_S=oppostfix then
bytes:=bytes or (1 shl 20);
if PF_X=oppostfix then
bytes:=bytes or (1 shl 5);
end;
#$17: // LDR/STR
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 24);
bytes:=bytes or (ord(insentry^.code[2]) shl 16);
{ set Rn and Rd }
bytes:=bytes or getsupreg(oper[0]^.reg) shl 12;
bytes:=bytes or getsupreg(oper[1]^.ref^.base) shl 16;
if getregtype(oper[1]^.ref^.index)=R_INVALIDREGISTER then
begin
{ set offset }
offset:=0;
currsym:=objdata.symbolref(oper[1]^.ref^.symbol);
if assigned(currsym) then
offset:=currsym.offset-insoffset-8;
offset:=offset+oper[1]^.ref^.offset;
if offset>=0 then
begin
{ set U flag }
bytes:=bytes or (1 shl 23);
bytes:=bytes or offset
end
else
begin
offset:=-offset;
bytes:=bytes or offset
end;
end
else
begin
{ set U flag }
if oper[1]^.ref^.signindex>=0 then
bytes:=bytes or (1 shl 23);
{ set I flag }
bytes:=bytes or (1 shl 25);
bytes:=bytes or getsupreg(oper[1]^.ref^.index);
{ set shift }
with oper[1]^.ref^ do
if shiftmode<>SM_None then
begin
bytes:=bytes or (shiftimm shl 7);
if shiftmode<>SM_RRX then
bytes:=bytes or (ord(shiftmode) - ord(SM_LSL)) shl 5
else
bytes:=bytes or (3 shl 5);
end
end;
{ set W bit }
if oper[1]^.ref^.addressmode=AM_PREINDEXED then
bytes:=bytes or (1 shl 21);
{ set P bit if necessary }
if oper[1]^.ref^.addressmode<>AM_POSTINDEXED then
bytes:=bytes or (1 shl 24);
end;
#$18: // LDREX/STREX
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 24);
bytes:=bytes or (ord(insentry^.code[2]) shl 16);
bytes:=bytes or (ord(insentry^.code[3]) shl 8);
bytes:=bytes or ord(insentry^.code[4]);
{ set Rn and Rd }
bytes:=bytes or getsupreg(oper[0]^.reg) shl 12;
if (ops=3) then
begin
if opcode<>A_LDREXD then
bytes:=bytes or getsupreg(oper[1]^.reg);
bytes:=bytes or (getsupreg(oper[2]^.ref^.base) shl 16);
end
else if (ops=4) then // STREXD
begin
if opcode<>A_LDREXD then
bytes:=bytes or getsupreg(oper[1]^.reg);
bytes:=bytes or (getsupreg(oper[3]^.ref^.base) shl 16);
end
else
bytes:=bytes or (getsupreg(oper[1]^.ref^.base) shl 16);
end;
#$19: // LDRD/STRD
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 24);
bytes:=bytes or (ord(insentry^.code[2]) shl 16);
bytes:=bytes or (ord(insentry^.code[3]) shl 8);
bytes:=bytes or ord(insentry^.code[4]);
{ set Rn and Rd }
bytes:=bytes or getsupreg(oper[0]^.reg) shl 12;
refoper:=oper[1];
if ops=3 then
refoper:=oper[2];
bytes:=bytes or getsupreg(refoper^.ref^.base) shl 16;
if getregtype(refoper^.ref^.index)=R_INVALIDREGISTER then
begin
bytes:=bytes or (1 shl 22);
{ set offset }
offset:=0;
currsym:=objdata.symbolref(refoper^.ref^.symbol);
if assigned(currsym) then
offset:=currsym.offset-insoffset-8;
offset:=offset+refoper^.ref^.offset;
if offset>=0 then
begin
{ set U flag }
bytes:=bytes or (1 shl 23);
bytes:=bytes or (offset and $F);
bytes:=bytes or ((offset and $F0) shl 4);
end
else
begin
offset:=-offset;
bytes:=bytes or (offset and $F);
bytes:=bytes or ((offset and $F0) shl 4);
end;
end
else
begin
{ set U flag }
if refoper^.ref^.signindex>=0 then
bytes:=bytes or (1 shl 23);
bytes:=bytes or getsupreg(refoper^.ref^.index);
end;
{ set W bit }
if refoper^.ref^.addressmode=AM_PREINDEXED then
bytes:=bytes or (1 shl 21);
{ set P bit if necessary }
if refoper^.ref^.addressmode<>AM_POSTINDEXED then
bytes:=bytes or (1 shl 24);
end;
#$1A: // QADD/QSUB
begin
{ set instruction code }
bytes:=bytes or ord(insentry^.code[1]) shl 24;
bytes:=bytes or ord(insentry^.code[2]) shl 16;
bytes:=bytes or ord(insentry^.code[3]) shl 4;
{ set regs }
bytes:=bytes or getsupreg(oper[0]^.reg) shl 12;
bytes:=bytes or getsupreg(oper[1]^.reg) shl 0;
bytes:=bytes or getsupreg(oper[2]^.reg) shl 16;
end;
#$1B:
begin
{ set instruction code }
bytes:=bytes or ord(insentry^.code[1]) shl 24;
bytes:=bytes or ord(insentry^.code[2]) shl 16;
bytes:=bytes or ord(insentry^.code[3]) shl 4;
{ set regs }
bytes:=bytes or getsupreg(oper[0]^.reg) shl 12;
bytes:=bytes or getsupreg(oper[1]^.reg);
if ops=3 then
begin
if (oper[2]^.shifterop^.shiftmode<>sm_ror) or
(oper[2]^.shifterop^.rs<>NR_NO) or
(not (oper[2]^.shifterop^.shiftimm in [0,8,16,24])) then
Message1(asmw_e_invalid_opcode_and_operands,GetString);
bytes:=bytes or (((oper[2]^.shifterop^.shiftimm shr 3) and $3) shl 10);
end;
end;
#$1C: // MCR/MRC
begin
{ set instruction code }
bytes:=bytes or ord(insentry^.code[1]) shl 24;
bytes:=bytes or ord(insentry^.code[2]) shl 16;
bytes:=bytes or ord(insentry^.code[3]) shl 4;
{ set regs and operands }
bytes:=bytes or getcoproc(oper[0]^.reg) shl 8;
bytes:=bytes or ((oper[1]^.val and $7) shl 21);
bytes:=bytes or getsupreg(oper[2]^.reg) shl 12;
bytes:=bytes or getcoprocreg(oper[3]^.reg) shl 16;
bytes:=bytes or getcoprocreg(oper[4]^.reg);
if ops > 5 then
bytes:=bytes or ((oper[5]^.val and $7) shl 5);
end;
#$1D: // MCRR/MRRC
begin
{ set instruction code }
bytes:=bytes or ord(insentry^.code[1]) shl 24;
bytes:=bytes or ord(insentry^.code[2]) shl 16;
bytes:=bytes or ord(insentry^.code[3]) shl 4;
{ set regs and operands }
bytes:=bytes or getcoproc(oper[0]^.reg) shl 8;
bytes:=bytes or ((oper[1]^.val and $7) shl 4);
bytes:=bytes or getsupreg(oper[2]^.reg) shl 12;
bytes:=bytes or getsupreg(oper[3]^.reg) shl 16;
bytes:=bytes or getcoprocreg(oper[4]^.reg);
end;
#$22: // LDRH/STRH
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 16);
bytes:=bytes or ord(insentry^.code[2]);
{ src/dest register (Rd) }
bytes:=bytes or getsupreg(oper[0]^.reg) shl 12;
{ base register (Rn) }
bytes:=bytes or getsupreg(oper[1]^.ref^.base) shl 16;
if getregtype(oper[1]^.ref^.index)=R_INVALIDREGISTER then
begin
bytes:=bytes or (1 shl 22); // with immediate offset
if oper[1]^.ref^.offset < 0 then
begin
bytes:=bytes or ((-oper[1]^.ref^.offset) and $f0 shl 4);
bytes:=bytes or ((-oper[1]^.ref^.offset) and $f);
end
else
begin
{ set U bit }
bytes:=bytes or (1 shl 23);
bytes:=bytes or (oper[1]^.ref^.offset and $f0 shl 4);
bytes:=bytes or (oper[1]^.ref^.offset and $f);
end;
end
else
begin
{ set U flag }
bytes:=bytes or (1 shl 23);
bytes:=bytes or getsupreg(oper[1]^.ref^.index);
end;
{ set W bit }
if oper[1]^.ref^.addressmode=AM_PREINDEXED then
bytes:=bytes or (1 shl 21);
{ set P bit if necessary }
if oper[1]^.ref^.addressmode<>AM_POSTINDEXED then
bytes:=bytes or (1 shl 24);
end;
#$25: // PLD/PLI
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 24);
bytes:=bytes or (ord(insentry^.code[2]) shl 16);
bytes:=bytes or (ord(insentry^.code[3]) shl 8);
bytes:=bytes or ord(insentry^.code[4]);
{ set Rn and Rd }
bytes:=bytes or getsupreg(oper[0]^.ref^.base) shl 16;
if getregtype(oper[0]^.ref^.index)=R_INVALIDREGISTER then
begin
{ set offset }
offset:=0;
currsym:=objdata.symbolref(oper[0]^.ref^.symbol);
if assigned(currsym) then
offset:=currsym.offset-insoffset-8;
offset:=offset+oper[0]^.ref^.offset;
if offset>=0 then
begin
{ set U flag }
bytes:=bytes or (1 shl 23);
bytes:=bytes or offset
end
else
begin
offset:=-offset;
bytes:=bytes or offset
end;
end
else
begin
bytes:=bytes or (1 shl 25);
{ set U flag }
if oper[0]^.ref^.signindex>=0 then
bytes:=bytes or (1 shl 23);
bytes:=bytes or getsupreg(oper[0]^.ref^.index);
{ set shift }
with oper[0]^.ref^ do
if shiftmode<>SM_None then
begin
bytes:=bytes or (shiftimm shl 7);
if shiftmode<>SM_RRX then
bytes:=bytes or (ord(shiftmode) - ord(SM_LSL)) shl 5
else
bytes:=bytes or (3 shl 5);
end
end;
end;
#$26: // LDM/STM
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 20);
if ops>1 then
begin
if oper[0]^.typ=top_ref then
begin
{ set W bit }
if oper[0]^.ref^.addressmode=AM_PREINDEXED then
bytes:=bytes or (1 shl 21);
{ set Rn }
bytes:=bytes or (getsupreg(oper[0]^.ref^.index) shl 16);
end
else { typ=top_reg }
begin
{ set Rn }
bytes:=bytes or (getsupreg(oper[0]^.reg) shl 16);
end;
{ reglist }
bytes:=bytes or MakeRegList(oper[1]^.regset^);
end
else
begin
{ push/pop }
{ Set W and Rn to SP }
if opcode=A_PUSH then
bytes:=bytes or (1 shl 21);
bytes:=bytes or ($D shl 16);
{ reglist }
bytes:=bytes or MakeRegList(oper[0]^.regset^);
end;
{ set P bit }
if (opcode=A_LDM) and (oppostfix in [PF_ED,PF_EA,PF_IB,PF_DB])
or (opcode=A_STM) and (oppostfix in [PF_FA,PF_FD,PF_IB,PF_DB])
or (opcode=A_PUSH) then
bytes:=bytes or (1 shl 24);
{ set U bit }
if (opcode=A_LDM) and (oppostfix in [PF_None,PF_ED,PF_FD,PF_IB,PF_IA])
or (opcode=A_STM) and (oppostfix in [PF_None,PF_FA,PF_EA,PF_IB,PF_IA])
or (opcode=A_POP) then
bytes:=bytes or (1 shl 23);
end;
#$27: // SWP/SWPB
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 20);
bytes:=bytes or (ord(insentry^.code[2]) shl 4);
{ set regs }
bytes:=bytes or (getsupreg(oper[0]^.reg) shl 12);
bytes:=bytes or getsupreg(oper[1]^.reg);
if ops=3 then
bytes:=bytes or (getsupreg(oper[2]^.ref^.base) shl 16);
end;
#$28: // BX/BLX
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 24);
{ set offset }
if oper[0]^.typ=top_const then
bytes:=bytes or ((oper[0]^.val shr 2) and $ffffff)
else
begin
currsym:=objdata.symbolref(oper[0]^.ref^.symbol);
if (currsym.bind<>AB_LOCAL) and (currsym.objsection<>objdata.CurrObjSec) then
begin
bytes:=bytes or $fffffe; // TODO: Not sure this is right, but it matches the output of gas
objdata.writereloc(oper[0]^.ref^.offset,0,currsym,RELOC_RELATIVE_24_THUMB);
end
else
begin
offset:=(((currsym.offset-insoffset-8) shr 2) and $ffffff);
bytes:=bytes or ((offset shr 2) and $ffffff);
bytes:=bytes or ((offset shr 1) and $1) shl 24;
end;
end;
end;
#$29: // SUB
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 24);
bytes:=bytes or (ord(insentry^.code[2]) shl 16);
{ set regs }
bytes:=bytes or (getsupreg(oper[0]^.reg) shl 12);
{ set S if necessary }
if oppostfix=PF_S then
bytes:=bytes or (1 shl 20);
end;
#$2A:
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 24);
bytes:=bytes or (ord(insentry^.code[2]) shl 16);
bytes:=bytes or (ord(insentry^.code[3]) shl 8);
bytes:=bytes or ord(insentry^.code[4]);
{ set opers }
bytes:=bytes or (getsupreg(oper[0]^.reg) shl 12);
bytes:=bytes or ((oper[1]^.val and $1F) shl 16);
bytes:=bytes or getsupreg(oper[2]^.reg);
if (ops>3) and
(oper[3]^.typ=top_shifterop) and
(oper[3]^.shifterop^.rs=NR_NO) then
begin
bytes:=bytes or ((oper[3]^.shifterop^.shiftimm and $1F) shl 7);
if oper[3]^.shifterop^.shiftmode=SM_ASR then
bytes:=bytes or (1 shl 6)
else if oper[3]^.shifterop^.shiftmode<>SM_LSL then
Message1(asmw_e_invalid_opcode_and_operands,GetString);
end;
end;
#$2B: // SETEND
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 24);
bytes:=bytes or (ord(insentry^.code[2]) shl 16);
bytes:=bytes or (ord(insentry^.code[3]) shl 8);
bytes:=bytes or ord(insentry^.code[4]);
{ set endian specifier }
bytes:=bytes or ((oper[0]^.val and 1) shl 9);
end;
#$2C: // MOVW
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 24);
bytes:=bytes or (ord(insentry^.code[2]) shl 16);
{ set destination }
bytes:=bytes or (getsupreg(oper[0]^.reg) shl 12);
{ set imm }
bytes:=bytes or (oper[1]^.val and $FFF);
bytes:=bytes or ((oper[1]^.val and $F000) shl 4);
end;
#$2D: // BFX
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 24);
bytes:=bytes or (ord(insentry^.code[2]) shl 16);
bytes:=bytes or (ord(insentry^.code[3]) shl 8);
bytes:=bytes or ord(insentry^.code[4]);
if ops=3 then
begin
msb:=(oper[1]^.val+oper[2]^.val-1);
{ set destination }
bytes:=bytes or (getsupreg(oper[0]^.reg) shl 12);
{ set immediates }
bytes:=bytes or ((oper[1]^.val and $1F) shl 7);
bytes:=bytes or ((msb and $1F) shl 16);
end
else
begin
if opcode in [A_BFC,A_BFI] then
msb:=(oper[2]^.val+oper[3]^.val-1)
else
msb:=oper[3]^.val-1;
{ set destination }
bytes:=bytes or (getsupreg(oper[0]^.reg) shl 12);
bytes:=bytes or getsupreg(oper[1]^.reg);
{ set immediates }
bytes:=bytes or ((oper[2]^.val and $1F) shl 7);
bytes:=bytes or ((msb and $1F) shl 16);
end;
end;
#$2E: // Cache stuff
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 24);
bytes:=bytes or (ord(insentry^.code[2]) shl 16);
bytes:=bytes or (ord(insentry^.code[3]) shl 8);
bytes:=bytes or ord(insentry^.code[4]);
{ set code }
bytes:=bytes or (oper[0]^.val and $F);
end;
#$2F: // Nop
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 24);
bytes:=bytes or (ord(insentry^.code[2]) shl 16);
bytes:=bytes or (ord(insentry^.code[3]) shl 8);
bytes:=bytes or ord(insentry^.code[4]);
end;
#$30: // Shifts
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 24);
bytes:=bytes or (ord(insentry^.code[2]) shl 16);
bytes:=bytes or (ord(insentry^.code[3]) shl 8);
bytes:=bytes or ord(insentry^.code[4]);
{ set destination }
bytes:=bytes or (getsupreg(oper[0]^.reg) shl 12);
bytes:=bytes or getsupreg(oper[1]^.reg);
if ops>2 then
begin
{ set shift }
if oper[2]^.typ=top_reg then
bytes:=bytes or (getsupreg(oper[2]^.reg) shl 8)
else
bytes:=bytes or ((oper[2]^.val and $1F) shl 7);
end;
{ set S if necessary }
if oppostfix=PF_S then
bytes:=bytes or (1 shl 20);
end;
#$31: // BKPT
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 24);
bytes:=bytes or (ord(insentry^.code[2]) shl 16);
bytes:=bytes or (ord(insentry^.code[3]) shl 0);
{ set imm }
bytes:=bytes or (oper[0]^.val and $FFF0) shl 4;
bytes:=bytes or (oper[0]^.val and $F);
end;
#$32: // CLZ/REV
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 24);
bytes:=bytes or (ord(insentry^.code[2]) shl 16);
bytes:=bytes or (ord(insentry^.code[3]) shl 8);
bytes:=bytes or ord(insentry^.code[4]);
{ set regs }
bytes:=bytes or (getsupreg(oper[0]^.reg) shl 12);
bytes:=bytes or getsupreg(oper[1]^.reg);
end;
#$33:
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 24);
bytes:=bytes or (ord(insentry^.code[2]) shl 16);
{ set regs }
bytes:=bytes or (getsupreg(oper[0]^.reg) shl 12);
if oper[1]^.typ=top_ref then
begin
{ set offset }
offset:=0;
currsym:=objdata.symbolref(oper[1]^.ref^.symbol);
if assigned(currsym) then
offset:=currsym.offset-insoffset-8;
offset:=offset+oper[1]^.ref^.offset;
if offset>=0 then
begin
{ set U flag }
bytes:=bytes or (1 shl 23);
bytes:=bytes or offset
end
else
begin
bytes:=bytes or (1 shl 22);
offset:=-offset;
bytes:=bytes or offset
end;
end
else
begin
if is_shifter_const(oper[1]^.val,r) then
begin
setshifterop(1);
bytes:=bytes or (1 shl 23);
end
else
begin
bytes:=bytes or (1 shl 22);
oper[1]^.val:=-oper[1]^.val;
setshifterop(1);
end;
end;
end;
#$40: // VMOV
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 24);
bytes:=bytes or (ord(insentry^.code[2]) shl 16);
bytes:=bytes or (ord(insentry^.code[3]) shl 8);
bytes:=bytes or ord(insentry^.code[4]);
{ set regs }
Rd:=0;
Rn:=0;
Rm:=0;
case oppostfix of
PF_None:
begin
if ops=4 then
begin
if (getregtype(oper[0]^.reg)=R_MMREGISTER) and
(getregtype(oper[2]^.reg)=R_INTREGISTER) then
begin
Rd:=getmmreg(oper[0]^.reg);
Rm:=getsupreg(oper[2]^.reg);
Rn:=getsupreg(oper[3]^.reg);
end
else if (getregtype(oper[0]^.reg)=R_INTREGISTER) and
(getregtype(oper[2]^.reg)=R_MMREGISTER) then
begin
Rm:=getsupreg(oper[0]^.reg);
Rn:=getsupreg(oper[1]^.reg);
Rd:=getmmreg(oper[2]^.reg);
end
else
message(asmw_e_invalid_opcode_and_operands);
bytes:=bytes or (((Rd and $1E) shr 1) shl 0);
bytes:=bytes or ((Rd and $1) shl 5);
bytes:=bytes or (Rm shl 12);
bytes:=bytes or (Rn shl 16);
end
else if ops=3 then
begin
if (getregtype(oper[0]^.reg)=R_MMREGISTER) and
(getregtype(oper[1]^.reg)=R_INTREGISTER) then
begin
Rd:=getmmreg(oper[0]^.reg);
Rm:=getsupreg(oper[1]^.reg);
Rn:=getsupreg(oper[2]^.reg);
end
else if (getregtype(oper[0]^.reg)=R_INTREGISTER) and
(getregtype(oper[2]^.reg)=R_MMREGISTER) then
begin
Rm:=getsupreg(oper[0]^.reg);
Rn:=getsupreg(oper[1]^.reg);
Rd:=getmmreg(oper[2]^.reg);
end
else
message(asmw_e_invalid_opcode_and_operands);
bytes:=bytes or ((Rd and $F) shl 0);
bytes:=bytes or ((Rd and $10) shl 1);
bytes:=bytes or (Rm shl 12);
bytes:=bytes or (Rn shl 16);
end
else if ops=2 then
begin
if (getregtype(oper[0]^.reg)=R_MMREGISTER) and
(getregtype(oper[1]^.reg)=R_INTREGISTER) then
begin
Rd:=getmmreg(oper[0]^.reg);
Rm:=getsupreg(oper[1]^.reg);
end
else if (getregtype(oper[0]^.reg)=R_INTREGISTER) and
(getregtype(oper[1]^.reg)=R_MMREGISTER) then
begin
Rm:=getsupreg(oper[0]^.reg);
Rd:=getmmreg(oper[1]^.reg);
end
else
message(asmw_e_invalid_opcode_and_operands);
bytes:=bytes or (((Rd and $1E) shr 1) shl 16);
bytes:=bytes or ((Rd and $1) shl 7);
bytes:=bytes or (Rm shl 12);
end;
end;
PF_F32:
begin
if (getregtype(oper[0]^.reg)<>R_MMREGISTER) or
(getregtype(oper[1]^.reg)<>R_MMREGISTER) then
Message(asmw_e_invalid_opcode_and_operands);
Rd:=getmmreg(oper[0]^.reg);
Rm:=getmmreg(oper[1]^.reg);
bytes:=bytes or (((Rd and $1E) shr 1) shl 12);
bytes:=bytes or ((Rd and $1) shl 22);
bytes:=bytes or (((Rm and $1E) shr 1) shl 0);
bytes:=bytes or ((Rm and $1) shl 5);
end;
PF_F64:
begin
if (getregtype(oper[0]^.reg)<>R_MMREGISTER) or
(getregtype(oper[1]^.reg)<>R_MMREGISTER) then
Message(asmw_e_invalid_opcode_and_operands);
Rd:=getmmreg(oper[0]^.reg);
Rm:=getmmreg(oper[1]^.reg);
bytes:=bytes or ((Rd and $F) shl 12);
bytes:=bytes or (((Rd and $10) shr 4) shl 22);
bytes:=bytes or (Rm and $F);
bytes:=bytes or ((Rm and $10) shl 1);
end;
end;
end;
#$41: // VMRS/VMSR
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 24);
bytes:=bytes or (ord(insentry^.code[2]) shl 16);
bytes:=bytes or (ord(insentry^.code[3]) shl 8);
bytes:=bytes or ord(insentry^.code[4]);
{ set regs }
if opcode=A_VMRS then
begin
case oper[1]^.reg of
NR_FPSID: Rn:=$0;
NR_FPSCR: Rn:=$1;
NR_MVFR1: Rn:=$6;
NR_MVFR0: Rn:=$7;
NR_FPEXC: Rn:=$8;
else
Rn:=0;
message(asmw_e_invalid_opcode_and_operands);
end;
bytes:=bytes or (Rn shl 16);
if oper[0]^.reg=NR_APSR_nzcv then
bytes:=bytes or ($F shl 12)
else
bytes:=bytes or (getsupreg(oper[0]^.reg) shl 12);
end
else
begin
case oper[0]^.reg of
NR_FPSID: Rn:=$0;
NR_FPSCR: Rn:=$1;
NR_FPEXC: Rn:=$8;
else
Rn:=0;
message(asmw_e_invalid_opcode_and_operands);
end;
bytes:=bytes or (Rn shl 16);
bytes:=bytes or (getsupreg(oper[1]^.reg) shl 12);
end;
end;
#$42: // VMUL
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 24);
bytes:=bytes or (ord(insentry^.code[2]) shl 16);
bytes:=bytes or (ord(insentry^.code[3]) shl 8);
bytes:=bytes or ord(insentry^.code[4]);
{ set regs }
if ops=3 then
begin
Rd:=getmmreg(oper[0]^.reg);
Rn:=getmmreg(oper[1]^.reg);
Rm:=getmmreg(oper[2]^.reg);
end
else if oper[1]^.typ=top_const then
begin
Rd:=getmmreg(oper[0]^.reg);
Rn:=0;
Rm:=0;
end
else
begin
Rd:=getmmreg(oper[0]^.reg);
Rn:=0;
Rm:=getmmreg(oper[1]^.reg);
end;
if oppostfix=PF_F32 then
begin
D:=rd and $1; Rd:=Rd shr 1;
N:=rn and $1; Rn:=Rn shr 1;
M:=rm and $1; Rm:=Rm shr 1;
end
else
begin
D:=(rd shr 4) and $1; Rd:=Rd and $F;
N:=(rn shr 4) and $1; Rn:=Rn and $F;
M:=(rm shr 4) and $1; Rm:=Rm and $F;
bytes:=bytes or (1 shl 8);
end;
bytes:=bytes or (Rd shl 12);
bytes:=bytes or (Rn shl 16);
bytes:=bytes or (Rm shl 0);
bytes:=bytes or (D shl 22);
bytes:=bytes or (N shl 7);
bytes:=bytes or (M shl 5);
end;
#$43: // VCVT
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 24);
bytes:=bytes or (ord(insentry^.code[2]) shl 16);
bytes:=bytes or (ord(insentry^.code[3]) shl 8);
bytes:=bytes or ord(insentry^.code[4]);
{ set regs }
Rd:=getmmreg(oper[0]^.reg);
Rm:=getmmreg(oper[1]^.reg);
if (ops=2) and
(oppostfix in [PF_F32F64,PF_F64F32]) then
begin
if oppostfix=PF_F32F64 then
begin
bytes:=bytes or (1 shl 8);
D:=rd and $1; Rd:=Rd shr 1;
M:=(rm shr 4) and $1; Rm:=Rm and $F;
end
else
begin
D:=(rd shr 4) and $1; Rd:=Rd and $F;
M:=rm and $1; Rm:=Rm shr 1;
end;
bytes:=bytes and $FFF0FFFF;
bytes:=bytes or ($7 shl 16);
bytes:=bytes or (Rd shl 12);
bytes:=bytes or (Rm shl 0);
bytes:=bytes or (D shl 22);
bytes:=bytes or (M shl 5);
end
else if ops=2 then
begin
case oppostfix of
PF_S32F64,
PF_U32F64,
PF_F64S32,
PF_F64U32:
bytes:=bytes or (1 shl 8);
end;
if oppostfix in [PF_S32F32,PF_S32F64,PF_U32F32,PF_U32F64] then
begin
case oppostfix of
PF_S32F64,
PF_S32F32:
bytes:=bytes or (1 shl 16);
end;
bytes:=bytes or (1 shl 18);
D:=rd and $1; Rd:=Rd shr 1;
if oppostfix in [PF_S32F64,PF_U32F64] then
begin
M:=(rm shr 4) and $1; Rm:=Rm and $F;
end
else
begin
M:=rm and $1; Rm:=Rm shr 1;
end;
end
else
begin
case oppostfix of
PF_F64S32,
PF_F32S32:
bytes:=bytes or (1 shl 7);
else
bytes:=bytes and $FFFFFF7F;
end;
M:=rm and $1; Rm:=Rm shr 1;
if oppostfix in [PF_F64S32,PF_F64U32] then
begin
D:=(rd shr 4) and $1; Rd:=Rd and $F;
end
else
begin
D:=rd and $1; Rd:=Rd shr 1;
end
end;
bytes:=bytes or (Rd shl 12);
bytes:=bytes or (Rm shl 0);
bytes:=bytes or (D shl 22);
bytes:=bytes or (M shl 5);
end
else
begin
if rd<>rm then
message(asmw_e_invalid_opcode_and_operands);
case oppostfix of
PF_S32F32,PF_U32F32,
PF_F32S32,PF_F32U32,
PF_S32F64,PF_U32F64,
PF_F64S32,PF_F64U32:
begin
if not (oper[2]^.val in [1..32]) then
message1(asmw_e_invalid_opcode_and_operands, 'fbits not within 1-32');
bytes:=bytes or (1 shl 7);
rn:=32;
end;
PF_S16F64,PF_U16F64,
PF_F64S16,PF_F64U16,
PF_S16F32,PF_U16F32,
PF_F32S16,PF_F32U16:
begin
if not (oper[2]^.val in [0..16]) then
message1(asmw_e_invalid_opcode_and_operands, 'fbits not within 0-16');
rn:=16;
end;
else
Rn:=0;
message(asmw_e_invalid_opcode_and_operands);
end;
case oppostfix of
PF_S16F64,PF_U16F64,
PF_S32F64,PF_U32F64,
PF_F64S16,PF_F64U16,
PF_F64S32,PF_F64U32:
begin
bytes:=bytes or (1 shl 8);
D:=(rd shr 4) and $1; Rd:=Rd and $F;
end;
else
begin
D:=rd and $1; Rd:=Rd shr 1;
end;
end;
case oppostfix of
PF_U16F64,PF_U16F32,
PF_U32F32,PF_U32F64,
PF_F64U16,PF_F32U16,
PF_F32U32,PF_F64U32:
bytes:=bytes or (1 shl 16);
end;
if oppostfix in [PF_S32F32,PF_S32F64,PF_U32F32,PF_U32F64,PF_S16F32,PF_S16F64,PF_U16F32,PF_U16F64] then
bytes:=bytes or (1 shl 18);
bytes:=bytes or (Rd shl 12);
bytes:=bytes or (D shl 22);
rn:=rn-oper[2]^.val;
bytes:=bytes or ((rn and $1) shl 5);
bytes:=bytes or ((rn and $1E) shr 1);
end;
end;
#$44: // VLDM/VSTM/VPUSH/VPOP
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 24);
bytes:=bytes or (ord(insentry^.code[2]) shl 16);
bytes:=bytes or (ord(insentry^.code[3]) shl 8);
{ set regs }
if ops=2 then
begin
if oper[0]^.typ=top_ref then
begin
Rn:=getsupreg(oper[0]^.ref^.base);
if oper[0]^.ref^.addressmode<>AM_OFFSET then
begin
{ set W }
bytes:=bytes or (1 shl 21);
end
else if oppostfix = PF_DB then
message1(asmw_e_invalid_opcode_and_operands, 'Invalid postfix without writeback');
end
else
begin
Rn:=getsupreg(oper[0]^.reg);
if oppostfix = PF_DB then
message1(asmw_e_invalid_opcode_and_operands, 'Invalid postfix without writeback');
end;
bytes:=bytes or (Rn shl 16);
{ Set PU bits }
case oppostfix of
PF_None,
PF_IA:
bytes:=bytes or (1 shl 23);
PF_DB:
bytes:=bytes or (2 shl 23);
end;
dp_operation:=(oper[1]^.subreg=R_SUBFD);
if oper[1]^.regset^=[] then
message1(asmw_e_invalid_opcode_and_operands, 'Regset cannot be empty');
rd:=0;
for r:=0 to 31 do
if r in oper[1]^.regset^ then
begin
rd:=r;
break;
end;
rn:=32-rd;
for r:=rd+1 to 31 do
if not(r in oper[1]^.regset^) then
begin
rn:=r-rd;
break;
end;
if dp_operation then
begin
bytes:=bytes or (1 shl 8);
bytes:=bytes or (rn*2);
bytes:=bytes or ((rd and $F) shl 12);
bytes:=bytes or (((rd and $10) shr 4) shl 22);
end
else
begin
bytes:=bytes or rn;
bytes:=bytes or ((rd and $1) shl 22);
bytes:=bytes or (((rd and $1E) shr 1) shl 12);
end;
end
else { VPUSH/VPOP }
begin
dp_operation:=(oper[0]^.subreg=R_SUBFD);
if oper[0]^.regset^=[] then
message1(asmw_e_invalid_opcode_and_operands, 'Regset cannot be empty');
rd:=0;
for r:=0 to 31 do
if r in oper[0]^.regset^ then
begin
rd:=r;
break;
end;
rn:=32-rd;
for r:=rd+1 to 31 do
if not(r in oper[0]^.regset^) then
begin
rn:=r-rd;
break;
end;
if dp_operation then
begin
bytes:=bytes or (1 shl 8);
bytes:=bytes or (rn*2);
bytes:=bytes or ((rd and $F) shl 12);
bytes:=bytes or (((rd and $10) shr 4) shl 22);
end
else
begin
bytes:=bytes or rn;
bytes:=bytes or ((rd and $1) shl 22);
bytes:=bytes or (((rd and $1E) shr 1) shl 12);
end;
end;
end;
#$45: // VLDR/VSTR
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 24);
bytes:=bytes or (ord(insentry^.code[2]) shl 16);
bytes:=bytes or (ord(insentry^.code[3]) shl 8);
{ set regs }
rd:=getmmreg(oper[0]^.reg);
if getsubreg(oper[0]^.reg)=R_SUBFD then
begin
bytes:=bytes or (1 shl 8);
bytes:=bytes or ((rd and $F) shl 12);
bytes:=bytes or (((rd and $10) shr 4) shl 22);
end
else
begin
bytes:=bytes or (((rd and $1E) shr 1) shl 12);
bytes:=bytes or ((rd and $1) shl 22);
end;
{ set ref }
bytes:=bytes or getsupreg(oper[1]^.ref^.base) shl 16;
if getregtype(oper[1]^.ref^.index)=R_INVALIDREGISTER then
begin
{ set offset }
offset:=0;
currsym:=objdata.symbolref(oper[1]^.ref^.symbol);
if assigned(currsym) then
offset:=currsym.offset-insoffset-8;
offset:=offset+oper[1]^.ref^.offset;
offset:=offset div 4;
if offset>=0 then
begin
{ set U flag }
bytes:=bytes or (1 shl 23);
bytes:=bytes or offset
end
else
begin
offset:=-offset;
bytes:=bytes or offset
end;
end
else
message(asmw_e_invalid_opcode_and_operands);
end;
#$fe: // No written data
begin
exit;
end;
#$ff:
internalerror(2005091101);
else
begin
writeln(ord(insentry^.code[0]), ' - ', opcode);
internalerror(2005091102);
end;
end;
{ we're finished, write code }
objdata.writebytes(bytes,bytelen);
end;
constructor tai_thumb_func.create;
begin
inherited create;
typ:=ait_thumb_func;
end;
begin
cai_align:=tai_align;
end.