mirror of
https://gitlab.com/freepascal.org/fpc/source.git
synced 2025-06-07 01:58:44 +02:00

o they are implemented as a new metadata register class, whereby the subregister indicates the metadata type (currently always a string) and the superregister is an index in the metadata array (which contains the strings). LLVM metadata can only be passed as parameters to intrinsics in bitcode, so moves of metadata into other registers triggers internal errors and when moving them into parameters, we replace the parameter's register with the metadata register (and look up the corresponding string when writing out the bitcode) git-svn-id: trunk@43816 -
5542 lines
196 KiB
ObjectPascal
5542 lines
196 KiB
ObjectPascal
{
|
||
Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
|
||
|
||
Contains the abstract assembler implementation for the i386
|
||
|
||
* Portions of this code was inspired by the NASM sources
|
||
The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
|
||
Julian Hall. All rights reserved.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||
|
||
****************************************************************************
|
||
}
|
||
unit aasmcpu;
|
||
|
||
{$i fpcdefs.inc}
|
||
|
||
interface
|
||
|
||
uses
|
||
globtype,verbose,
|
||
cpubase,
|
||
cgbase,cgutils,
|
||
aasmbase,aasmtai,aasmsym,
|
||
ogbase;
|
||
|
||
const
|
||
{ "mov reg,reg" source operand number }
|
||
O_MOV_SOURCE = 0;
|
||
{ "mov reg,reg" destination operand number }
|
||
O_MOV_DEST = 1;
|
||
|
||
{ Operand types }
|
||
OT_NONE = $00000000;
|
||
|
||
{ Bits 0..7: sizes }
|
||
OT_BITS8 = $00000001;
|
||
OT_BITS16 = $00000002;
|
||
OT_BITS32 = $00000004;
|
||
OT_BITS64 = $00000008; { x86_64 and FPU }
|
||
//OT_BITS128 = $10000000; { 16 byte SSE }
|
||
//OT_BITS256 = $20000000; { 32 byte AVX }
|
||
//OT_BITS512 = $40000000; { 64 byte AVX512 }
|
||
OT_BITS128 = $20000000; { 16 byte SSE }
|
||
OT_BITS256 = $40000000; { 32 byte AVX }
|
||
OT_BITS512 = $80000000; { 64 byte AVX512 }
|
||
|
||
OT_VECTORMASK = $1000000000; { OPTIONAL VECTORMASK AVX512}
|
||
OT_VECTORZERO = $2000000000; { OPTIONAL ZERO-FLAG AVX512}
|
||
OT_VECTORBCST = $4000000000; { BROADCAST-MEM-FLAG AVX512}
|
||
OT_VECTORSAE = $8000000000; { OPTIONAL SAE-FLAG AVX512}
|
||
OT_VECTORER = $10000000000; { OPTIONAL ER-FLAG-FLAG AVX512}
|
||
|
||
OT_VECTOR_EXT = OT_VECTORMASK or OT_VECTORZERO or OT_VECTORBCST or OT_VECTORSAE or OT_VECTORER;
|
||
|
||
OT_BITSB32 = OT_BITS32 or OT_VECTORBCST;
|
||
OT_BITSB64 = OT_BITS64 or OT_VECTORBCST;
|
||
|
||
OT_BITS80 = $00000010; { FPU only }
|
||
OT_FAR = $00000020; { this means 16:16 or 16:32, like in CALL/JMP }
|
||
OT_NEAR = $00000040;
|
||
OT_SHORT = $00000080;
|
||
|
||
{ TODO: FAR/NEAR/SHORT are sizes too, they should be included into size mask,
|
||
but this requires adjusting the opcode table }
|
||
//OT_SIZE_MASK = $3000001F; { all the size attributes }
|
||
OT_SIZE_MASK = $E000001F; { all the size attributes }
|
||
OT_NON_SIZE = longint(not(longint(OT_SIZE_MASK)));
|
||
|
||
{ Bits 8..11: modifiers }
|
||
OT_SIGNED = $00000100; { the operand need to be signed -128-127 }
|
||
OT_TO = $00000200; { reverse effect in FADD, FSUB &c }
|
||
OT_COLON = $00000400; { operand is followed by a colon }
|
||
OT_MODIFIER_MASK = $00000F00;
|
||
|
||
{ Bits 12..15: type of operand }
|
||
OT_REGISTER = $00001000;
|
||
OT_IMMEDIATE = $00002000;
|
||
OT_MEMORY = $0000C000; { always includes 'OT_REGMEM' bit as well }
|
||
OT_REGMEM = $00008000; { for r/m, ie EA, operands }
|
||
OT_TYPE_MASK = OT_REGISTER or OT_IMMEDIATE or OT_MEMORY or OT_REGMEM;
|
||
|
||
OT_REGNORM = OT_REGISTER or OT_REGMEM; { 'normal' reg, qualifies as EA }
|
||
|
||
{ Bits 20..22, 24..26: register classes
|
||
otf_* consts are not used alone, only to build other constants. }
|
||
otf_reg_cdt = $00100000;
|
||
otf_reg_gpr = $00200000;
|
||
otf_reg_sreg = $00400000;
|
||
otf_reg_k = $00800000;
|
||
otf_reg_fpu = $01000000;
|
||
otf_reg_mmx = $02000000;
|
||
otf_reg_xmm = $04000000;
|
||
otf_reg_ymm = $08000000;
|
||
otf_reg_zmm = $10000000;
|
||
|
||
|
||
otf_reg_extra_mask = $0F000000;
|
||
{ Bits 16..19: subclasses, meaning depends on classes field }
|
||
otf_sub0 = $00010000;
|
||
otf_sub1 = $00020000;
|
||
otf_sub2 = $00040000;
|
||
otf_sub3 = $00080000;
|
||
OT_REG_SMASK = otf_sub0 or otf_sub1 or otf_sub2 or otf_sub3;
|
||
|
||
//OT_REG_EXTRA_MASK = $0F000000;
|
||
OT_REG_EXTRA_MASK = $1F000000;
|
||
|
||
OT_REG_TYPMASK = otf_reg_cdt or otf_reg_gpr or otf_reg_sreg or otf_reg_k or otf_reg_extra_mask;
|
||
{ register class 0: CRx, DRx and TRx }
|
||
{$ifdef x86_64}
|
||
OT_REG_CDT = OT_REGISTER or otf_reg_cdt or OT_BITS64;
|
||
{$else x86_64}
|
||
OT_REG_CDT = OT_REGISTER or otf_reg_cdt or OT_BITS32;
|
||
{$endif x86_64}
|
||
OT_REG_CREG = OT_REG_CDT or otf_sub0; { CRn }
|
||
OT_REG_DREG = OT_REG_CDT or otf_sub1; { DRn }
|
||
OT_REG_TREG = OT_REG_CDT or otf_sub2; { TRn }
|
||
OT_REG_CR4 = OT_REG_CDT or otf_sub3; { CR4 (Pentium only) }
|
||
|
||
{ register class 1: general-purpose registers }
|
||
OT_REG_GPR = OT_REGNORM or otf_reg_gpr;
|
||
OT_RM_GPR = OT_REGMEM or otf_reg_gpr;
|
||
OT_REG8 = OT_REG_GPR or OT_BITS8; { 8-bit GPR }
|
||
OT_REG16 = OT_REG_GPR or OT_BITS16;
|
||
OT_REG32 = OT_REG_GPR or OT_BITS32;
|
||
OT_REG64 = OT_REG_GPR or OT_BITS64;
|
||
|
||
{ GPR subclass 0: accumulator: AL, AX, EAX or RAX }
|
||
OT_REG_ACCUM = OT_REG_GPR or otf_sub0;
|
||
OT_REG_AL = OT_REG_ACCUM or OT_BITS8;
|
||
OT_REG_AX = OT_REG_ACCUM or OT_BITS16;
|
||
OT_REG_EAX = OT_REG_ACCUM or OT_BITS32;
|
||
{$ifdef x86_64}
|
||
OT_REG_RAX = OT_REG_ACCUM or OT_BITS64;
|
||
{$endif x86_64}
|
||
{ GPR subclass 1: counter: CL, CX, ECX or RCX }
|
||
OT_REG_COUNT = OT_REG_GPR or otf_sub1;
|
||
OT_REG_CL = OT_REG_COUNT or OT_BITS8;
|
||
OT_REG_CX = OT_REG_COUNT or OT_BITS16;
|
||
OT_REG_ECX = OT_REG_COUNT or OT_BITS32;
|
||
{$ifdef x86_64}
|
||
OT_REG_RCX = OT_REG_COUNT or OT_BITS64;
|
||
{$endif x86_64}
|
||
{ GPR subclass 2: data register: DL, DX, EDX or RDX }
|
||
OT_REG_DX = OT_REG_GPR or otf_sub2 or OT_BITS16;
|
||
OT_REG_EDX = OT_REG_GPR or otf_sub2 or OT_BITS32;
|
||
|
||
{ register class 2: Segment registers }
|
||
OT_REG_SREG = OT_REGISTER or otf_reg_sreg or OT_BITS16;
|
||
OT_REG_CS = OT_REG_SREG or otf_sub0; { CS }
|
||
OT_REG_DESS = OT_REG_SREG or otf_sub1; { DS, ES, SS (non-CS 86 registers) }
|
||
OT_REG_FSGS = OT_REG_SREG or otf_sub2; { FS, GS (386 extended registers) }
|
||
|
||
{ register class 3: FPU registers }
|
||
OT_FPUREG = OT_REGISTER or otf_reg_fpu;
|
||
OT_FPU0 = OT_FPUREG or otf_sub0; { FPU stack register zero }
|
||
|
||
{ register class 4: MMX (both reg and r/m) }
|
||
OT_MMXREG = OT_REGNORM or otf_reg_mmx;
|
||
OT_MMXRM = OT_REGMEM or otf_reg_mmx;
|
||
|
||
{ register class 5: XMM (both reg and r/m) }
|
||
OT_XMMREG = OT_REGNORM or otf_reg_xmm;
|
||
OT_XMMRM = OT_REGMEM or otf_reg_xmm;
|
||
OT_XMEM32 = OT_REGNORM or otf_reg_xmm or otf_reg_gpr or OT_BITS32;
|
||
OT_XMEM32_M = OT_XMEM32 or OT_VECTORMASK;
|
||
OT_XMEM64 = OT_REGNORM or otf_reg_xmm or otf_reg_gpr or OT_BITS64;
|
||
OT_XMEM64_M = OT_XMEM64 or OT_VECTORMASK;
|
||
|
||
OT_XMMREG_M = OT_XMMREG or OT_VECTORMASK;
|
||
OT_XMMREG_MZ = OT_XMMREG or OT_VECTORMASK or OT_VECTORZERO;
|
||
OT_XMMRM_MZ = OT_XMMRM or OT_VECTORMASK or OT_VECTORZERO;
|
||
OT_XMMREG_SAE = OT_XMMREG or OT_VECTORSAE;
|
||
OT_XMMRM_SAE = OT_XMMRM or OT_VECTORSAE;
|
||
OT_XMMREG_ER = OT_XMMREG or OT_VECTORER;
|
||
OT_XMMRM_ER = OT_XMMRM or OT_VECTORER;
|
||
|
||
|
||
|
||
{ register class 5: YMM (both reg and r/m) }
|
||
OT_YMMREG = OT_REGNORM or otf_reg_ymm;
|
||
OT_YMMRM = OT_REGMEM or otf_reg_ymm;
|
||
OT_YMEM32 = OT_REGNORM or otf_reg_ymm or otf_reg_gpr or OT_BITS32;
|
||
OT_YMEM32_M = OT_YMEM32 or OT_VECTORMASK;
|
||
OT_YMEM64 = OT_REGNORM or otf_reg_ymm or otf_reg_gpr or OT_BITS64;
|
||
OT_YMEM64_M = OT_YMEM64 or OT_VECTORMASK;
|
||
|
||
OT_YMMREG_M = OT_YMMREG or OT_VECTORMASK;
|
||
OT_YMMREG_MZ = OT_YMMREG or OT_VECTORMASK or OT_VECTORZERO;
|
||
OT_YMMRM_MZ = OT_YMMRM or OT_VECTORMASK or OT_VECTORZERO;
|
||
OT_YMMREG_SAE = OT_YMMREG or OT_VECTORSAE;
|
||
OT_YMMRM_SAE = OT_YMMRM or OT_VECTORSAE;
|
||
OT_YMMREG_ER = OT_YMMREG or OT_VECTORER;
|
||
OT_YMMRM_ER = OT_YMMRM or OT_VECTORER;
|
||
|
||
|
||
{ register class 5: ZMM (both reg and r/m) }
|
||
OT_ZMMREG = OT_REGNORM or otf_reg_zmm;
|
||
OT_ZMMRM = OT_REGMEM or otf_reg_zmm;
|
||
OT_ZMEM32 = OT_REGNORM or otf_reg_zmm or otf_reg_gpr or OT_BITS32;
|
||
OT_ZMEM32_M = OT_ZMEM32 or OT_VECTORMASK;
|
||
OT_ZMEM64 = OT_REGNORM or otf_reg_zmm or otf_reg_gpr or OT_BITS64;
|
||
OT_ZMEM64_M = OT_ZMEM64 or OT_VECTORMASK;
|
||
|
||
|
||
OT_ZMMREG_M = OT_ZMMREG or OT_VECTORMASK;
|
||
OT_ZMMREG_MZ = OT_ZMMREG or OT_VECTORMASK or OT_VECTORZERO;
|
||
OT_ZMMRM_MZ = OT_ZMMRM or OT_VECTORMASK or OT_VECTORZERO;
|
||
OT_ZMMREG_SAE = OT_ZMMREG or OT_VECTORSAE;
|
||
OT_ZMMRM_SAE = OT_ZMMRM or OT_VECTORSAE;
|
||
OT_ZMMREG_ER = OT_ZMMREG or OT_VECTORER;
|
||
OT_ZMMRM_ER = OT_ZMMRM or OT_VECTORER;
|
||
|
||
|
||
OT_KREG = OT_REGNORM or otf_reg_k;
|
||
OT_KREG_M = OT_KREG or OT_VECTORMASK;
|
||
|
||
{ Vector-Memory operands }
|
||
OT_VMEM_ANY = OT_XMEM32 or OT_XMEM64 or OT_YMEM32 or OT_YMEM64 or OT_ZMEM32 or OT_ZMEM64;
|
||
|
||
{ Memory operands }
|
||
OT_MEM8 = OT_MEMORY or OT_BITS8;
|
||
OT_MEM16 = OT_MEMORY or OT_BITS16;
|
||
OT_MEM16_M = OT_MEM16 or OT_VECTORMASK;
|
||
OT_MEM32 = OT_MEMORY or OT_BITS32;
|
||
OT_MEM32_M = OT_MEMORY or OT_BITS32 or OT_VECTORMASK;
|
||
OT_BMEM32 = OT_MEMORY or OT_BITS32 or OT_VECTORBCST;
|
||
OT_BMEM32_SAE= OT_MEMORY or OT_BITS32 or OT_VECTORBCST or OT_VECTORSAE;
|
||
OT_MEM64 = OT_MEMORY or OT_BITS64;
|
||
OT_MEM64_M = OT_MEMORY or OT_BITS64 or OT_VECTORMASK;
|
||
OT_BMEM64 = OT_MEMORY or OT_BITS64 or OT_VECTORBCST;
|
||
OT_BMEM64_SAE= OT_MEMORY or OT_BITS64 or OT_VECTORBCST or OT_VECTORSAE;
|
||
OT_MEM128 = OT_MEMORY or OT_BITS128;
|
||
OT_MEM128_M = OT_MEMORY or OT_BITS128 or OT_VECTORMASK;
|
||
OT_MEM256 = OT_MEMORY or OT_BITS256;
|
||
OT_MEM256_M = OT_MEMORY or OT_BITS256 or OT_VECTORMASK;
|
||
OT_MEM512 = OT_MEMORY or OT_BITS512;
|
||
OT_MEM512_M = OT_MEMORY or OT_BITS512 or OT_VECTORMASK;
|
||
OT_MEM80 = OT_MEMORY or OT_BITS80;
|
||
|
||
|
||
|
||
|
||
OT_MEM_OFFS = OT_MEMORY or otf_sub0; { special type of EA }
|
||
{ simple [address] offset }
|
||
|
||
{ Matches any type of r/m operand }
|
||
OT_MEMORY_ANY = OT_MEMORY or OT_RM_GPR or OT_XMMRM or OT_MMXRM or OT_YMMRM or OT_ZMMRM or OT_REG_EXTRA_MASK;
|
||
|
||
{ Immediate operands }
|
||
OT_IMM8 = OT_IMMEDIATE or OT_BITS8;
|
||
OT_IMM16 = OT_IMMEDIATE or OT_BITS16;
|
||
OT_IMM32 = OT_IMMEDIATE or OT_BITS32;
|
||
OT_IMM64 = OT_IMMEDIATE or OT_BITS64;
|
||
|
||
OT_ONENESS = otf_sub0; { special type of immediate operand }
|
||
OT_UNITY = OT_IMMEDIATE or OT_ONENESS; { for shift/rotate instructions }
|
||
|
||
OTVE_VECTOR_SAE = 1 shl 8;
|
||
OTVE_VECTOR_ER = 1 shl 9;
|
||
OTVE_VECTOR_ZERO = 1 shl 10;
|
||
OTVE_VECTOR_WRITEMASK = 1 shl 11;
|
||
OTVE_VECTOR_BCST = 1 shl 12;
|
||
OTVE_VECTOR_BCST2 = 0;
|
||
OTVE_VECTOR_BCST4 = 1 shl 4;
|
||
OTVE_VECTOR_BCST8 = 1 shl 5;
|
||
OTVE_VECTOR_BCST16 = 3 shl 4;
|
||
OTVE_VECTOR_RNSAE = OTVE_VECTOR_ER or 0;
|
||
OTVE_VECTOR_RDSAE = OTVE_VECTOR_ER or 1 shl 6;
|
||
OTVE_VECTOR_RUSAE = OTVE_VECTOR_ER or 1 shl 7;
|
||
OTVE_VECTOR_RZSAE = OTVE_VECTOR_ER or 3 shl 6;
|
||
|
||
|
||
OTVE_VECTOR_BCST_MASK = OTVE_VECTOR_BCST2 or OTVE_VECTOR_BCST4 or OTVE_VECTOR_BCST8 or OTVE_VECTOR_BCST16;
|
||
OTVE_VECTOR_ER_MASK = OTVE_VECTOR_RNSAE or OTVE_VECTOR_RDSAE or OTVE_VECTOR_RUSAE or OTVE_VECTOR_RZSAE;
|
||
|
||
OTVE_VECTOR_MASK = OTVE_VECTOR_SAE or OTVE_VECTOR_ER or OTVE_VECTOR_ZERO or OTVE_VECTOR_WRITEMASK or OTVE_VECTOR_BCST;
|
||
|
||
{ Size of the instruction table converted by nasmconv.pas }
|
||
{$if defined(x86_64)}
|
||
instabentries = {$i x8664nop.inc}
|
||
{$elseif defined(i386)}
|
||
instabentries = {$i i386nop.inc}
|
||
{$elseif defined(i8086)}
|
||
instabentries = {$i i8086nop.inc}
|
||
{$endif}
|
||
maxinfolen = 10;
|
||
|
||
type
|
||
{ What an instruction can change. Needed for optimizer and spilling code.
|
||
|
||
Note: The order of this enumeration is should not be changed! }
|
||
TInsChange = (Ch_None,
|
||
{Read from a register}
|
||
Ch_REAX, Ch_RECX, Ch_REDX, Ch_REBX, Ch_RESP, Ch_REBP, Ch_RESI, Ch_REDI,
|
||
{write from a register}
|
||
Ch_WEAX, Ch_WECX, Ch_WEDX, Ch_WEBX, Ch_WESP, Ch_WEBP, Ch_WESI, Ch_WEDI,
|
||
{read and write from/to a register}
|
||
Ch_RWEAX, Ch_RWECX, Ch_RWEDX, Ch_RWEBX, Ch_RWESP, Ch_RWEBP, Ch_RWESI, Ch_RWEDI,
|
||
{modify the contents of a register with the purpose of using
|
||
this changed content afterwards (add/sub/..., but e.g. not rep
|
||
or movsd)}
|
||
Ch_MEAX, Ch_MECX, Ch_MEDX, Ch_MEBX, Ch_MESP, Ch_MEBP, Ch_MESI, Ch_MEDI,
|
||
{read individual flag bits from the flags register}
|
||
Ch_RCarryFlag,Ch_RParityFlag,Ch_RAuxiliaryFlag,Ch_RZeroFlag,Ch_RSignFlag,Ch_ROverflowFlag,
|
||
{write individual flag bits to the flags register}
|
||
Ch_WCarryFlag,Ch_WParityFlag,Ch_WAuxiliaryFlag,Ch_WZeroFlag,Ch_WSignFlag,Ch_WOverflowFlag,
|
||
{set individual flag bits to 0 in the flags register}
|
||
Ch_W0CarryFlag,Ch_W0ParityFlag,Ch_W0AuxiliaryFlag,Ch_W0ZeroFlag,Ch_W0SignFlag,Ch_W0OverflowFlag,
|
||
{set individual flag bits to 1 in the flags register}
|
||
Ch_W1CarryFlag,Ch_W1ParityFlag,Ch_W1AuxiliaryFlag,Ch_W1ZeroFlag,Ch_W1SignFlag,Ch_W1OverflowFlag,
|
||
{write an undefined value to individual flag bits in the flags register}
|
||
Ch_WUCarryFlag,Ch_WUParityFlag,Ch_WUAuxiliaryFlag,Ch_WUZeroFlag,Ch_WUSignFlag,Ch_WUOverflowFlag,
|
||
{read and write flag bits}
|
||
Ch_RWCarryFlag,Ch_RWParityFlag,Ch_RWAuxiliaryFlag,Ch_RWZeroFlag,Ch_RWSignFlag,Ch_RWOverflowFlag,
|
||
{more specialized flag bits (not considered part of NR_DEFAULTFLAGS by the compiler)}
|
||
Ch_RDirFlag,Ch_W0DirFlag,Ch_W1DirFlag,Ch_W0IntFlag,Ch_W1IntFlag,
|
||
{instruction reads flag bits, according to its condition (used by Jcc/SETcc/CMOVcc)}
|
||
Ch_RFLAGScc,
|
||
{read/write/read+write the entire flags/eflags/rflags register}
|
||
Ch_RFlags, Ch_WFlags, Ch_RWFlags,
|
||
Ch_FPU,
|
||
Ch_Rop1, Ch_Wop1, Ch_RWop1, Ch_Mop1,
|
||
Ch_Rop2, Ch_Wop2, Ch_RWop2, Ch_Mop2,
|
||
Ch_Rop3, Ch_WOp3, Ch_RWOp3, Ch_Mop3,
|
||
Ch_Rop4, Ch_WOp4, Ch_RWOp4, Ch_Mop4,
|
||
{ instruction doesn't read it's input register, in case both parameters
|
||
are the same register (e.g. xor eax,eax; sub eax,eax; sbb eax,eax (reads flags only), etc.) }
|
||
Ch_NoReadIfEqualRegs,
|
||
Ch_RMemEDI,Ch_WMemEDI,
|
||
Ch_All,
|
||
{ x86_64 registers }
|
||
Ch_RRAX, Ch_RRCX, Ch_RRDX, Ch_RRBX, Ch_RRSP, Ch_RRBP, Ch_RRSI, Ch_RRDI,
|
||
Ch_WRAX, Ch_WRCX, Ch_WRDX, Ch_WRBX, Ch_WRSP, Ch_WRBP, Ch_WRSI, Ch_WRDI,
|
||
Ch_RWRAX, Ch_RWRCX, Ch_RWRDX, Ch_RWRBX, Ch_RWRSP, Ch_RWRBP, Ch_RWRSI, Ch_RWRDI,
|
||
Ch_MRAX, Ch_MRCX, Ch_MRDX, Ch_MRBX, Ch_MRSP, Ch_MRBP, Ch_MRSI, Ch_MRDI
|
||
);
|
||
|
||
TInsProp = packed record
|
||
Ch : set of TInsChange;
|
||
end;
|
||
|
||
TMemRefSizeInfo = (msiUnknown, msiUnsupported, msiNoSize, msiNoMemRef,
|
||
msiMultiple, msiMultipleMinSize8, msiMultipleMinSize16, msiMultipleMinSize32,
|
||
msiMultipleMinSize64, msiMultipleMinSize128, msiMultipleminSize256, msiMultipleMinSize512,
|
||
msiMemRegSize, msiMemRegx16y32, msiMemRegx16y32z64, msiMemRegx32y64, msiMemRegx32y64z128, msiMemRegx64y128, msiMemRegx64y128z256,
|
||
msiMemRegx64y256, msiMemRegx64y256z512,
|
||
msiMem8, msiMem16, msiMem32, msiBMem32, msiMem64, msiBMem64, msiMem128, msiMem256, msiMem512,
|
||
msiXMem32, msiXMem64, msiYMem32, msiYMem64, msiZMem32, msiZMem64,
|
||
msiVMemMultiple, msiVMemRegSize,
|
||
msiMemRegConst128,msiMemRegConst256,msiMemRegConst512);
|
||
|
||
TMemRefSizeInfoBCST = (msbUnknown, msbBCST32, msbBCST64, msbMultiple);
|
||
TMemRefSizeInfoBCSTType = (btUnknown, bt1to2, bt1to4, bt1to8, bt1to16);
|
||
|
||
TEVEXTupleState = (etsUnknown, etsIsTuple, etsNotTuple);
|
||
TConstSizeInfo = (csiUnknown, csiMultiple, csiNoSize, csiMem8, csiMem16, csiMem32, csiMem64);
|
||
|
||
TInsTabMemRefSizeInfoRec = record
|
||
MemRefSize : TMemRefSizeInfo;
|
||
MemRefSizeBCST : TMemRefSizeInfoBCST;
|
||
BCSTXMMMultiplicator : byte;
|
||
ExistsSSEAVX : boolean;
|
||
ConstSize : TConstSizeInfo;
|
||
BCSTTypes : Set of TMemRefSizeInfoBCSTType;
|
||
end;
|
||
|
||
|
||
|
||
const
|
||
MemRefMultiples: set of TMemRefSizeInfo = [msiMultiple, msiMultipleMinSize8,
|
||
msiMultipleMinSize16, msiMultipleMinSize32,
|
||
msiMultipleMinSize64, msiMultipleMinSize128,
|
||
msiMultipleMinSize256, msiMultipleMinSize512,
|
||
msiVMemMultiple];
|
||
|
||
MemRefSizeInfoVMems: Set of TMemRefSizeInfo = [msiXMem32, msiXMem64, msiYMem32, msiYMem64,
|
||
msiZMem32, msiZMem64,
|
||
msiVMemMultiple, msiVMemRegSize];
|
||
|
||
|
||
|
||
InsProp : array[tasmop] of TInsProp =
|
||
{$if defined(x86_64)}
|
||
{$i x8664pro.inc}
|
||
{$elseif defined(i386)}
|
||
{$i i386prop.inc}
|
||
{$elseif defined(i8086)}
|
||
{$i i8086prop.inc}
|
||
{$endif}
|
||
|
||
type
|
||
TOperandOrder = (op_intel,op_att);
|
||
|
||
{Instruction flags }
|
||
tinsflag = (
|
||
{ please keep these in order and in sync with IF_SMASK }
|
||
IF_SM, { size match first two operands }
|
||
IF_SM2,
|
||
IF_SB, { unsized operands can't be non-byte }
|
||
IF_SW, { unsized operands can't be non-word }
|
||
IF_SD, { unsized operands can't be nondword }
|
||
|
||
{ unsized argument spec }
|
||
{ please keep these in order and in sync with IF_ARMASK }
|
||
IF_AR0, { SB, SW, SD applies to argument 0 }
|
||
IF_AR1, { SB, SW, SD applies to argument 1 }
|
||
IF_AR2, { SB, SW, SD applies to argument 2 }
|
||
|
||
IF_PRIV, { it's a privileged instruction }
|
||
IF_SMM, { it's only valid in SMM }
|
||
IF_PROT, { it's protected mode only }
|
||
IF_NOX86_64, { removed instruction in x86_64 }
|
||
IF_UNDOC, { it's an undocumented instruction }
|
||
IF_FPU, { it's an FPU instruction }
|
||
IF_MMX, { it's an MMX instruction }
|
||
{ it's a 3DNow! instruction }
|
||
IF_3DNOW,
|
||
{ it's a SSE (KNI, MMX2) instruction }
|
||
IF_SSE,
|
||
{ SSE2 instructions }
|
||
IF_SSE2,
|
||
{ SSE3 instructions }
|
||
IF_SSE3,
|
||
{ SSE64 instructions }
|
||
IF_SSE64,
|
||
{ SVM instructions }
|
||
IF_SVM,
|
||
{ SSE4 instructions }
|
||
IF_SSE4,
|
||
IF_SSSE3,
|
||
IF_SSE41,
|
||
IF_SSE42,
|
||
IF_MOVBE,
|
||
IF_CLMUL,
|
||
IF_AVX,
|
||
IF_AVX2,
|
||
IF_AVX512,
|
||
IF_BMI1,
|
||
IF_BMI2,
|
||
{ Intel ADX (Multi-Precision Add-Carry Instruction Extensions) }
|
||
IF_ADX,
|
||
IF_16BITONLY,
|
||
IF_FMA,
|
||
IF_FMA4,
|
||
IF_TSX,
|
||
IF_RAND,
|
||
IF_XSAVE,
|
||
IF_PREFETCHWT1,
|
||
|
||
{ mask for processor level }
|
||
{ please keep these in order and in sync with IF_PLEVEL }
|
||
IF_8086, { 8086 instruction }
|
||
IF_186, { 186+ instruction }
|
||
IF_286, { 286+ instruction }
|
||
IF_386, { 386+ instruction }
|
||
IF_486, { 486+ instruction }
|
||
IF_PENT, { Pentium instruction }
|
||
IF_P6, { P6 instruction }
|
||
IF_KATMAI, { Katmai instructions }
|
||
IF_WILLAMETTE, { Willamette instructions }
|
||
IF_PRESCOTT, { Prescott instructions }
|
||
IF_X86_64,
|
||
IF_SANDYBRIDGE, { Sandybridge-specific instruction }
|
||
IF_NEC, { NEC V20/V30 instruction }
|
||
|
||
{ the following are not strictly part of the processor level, because
|
||
they are never used standalone, but always in combination with a
|
||
separate processor level flag. Therefore, they use bits outside of
|
||
IF_PLEVEL, otherwise they would mess up the processor level they're
|
||
used in combination with.
|
||
The following combinations are currently used:
|
||
[IF_AMD, IF_P6],
|
||
[IF_CYRIX, IF_486],
|
||
[IF_CYRIX, IF_PENT],
|
||
[IF_CYRIX, IF_P6] }
|
||
IF_CYRIX, { Cyrix, Centaur or VIA-specific instruction }
|
||
IF_AMD, { AMD-specific instruction }
|
||
|
||
{ added flags }
|
||
IF_PRE, { it's a prefix instruction }
|
||
IF_PASS2, { if the instruction can change in a second pass }
|
||
IF_IMM4, { immediate operand is a nibble (must be in range [0..15]) }
|
||
IF_IMM3, { immediate operand is a triad (must be in range [0..7]) }
|
||
|
||
{ avx512 flags }
|
||
IF_BCST2,
|
||
IF_BCST4,
|
||
IF_BCST8,
|
||
IF_BCST16,
|
||
IF_T2, { disp8 - tuple - 2 }
|
||
IF_T4, { disp8 - tuple - 4 }
|
||
IF_T8, { disp8 - tuple - 8 }
|
||
IF_T1S, { disp8 - tuple - 1 scalar }
|
||
IF_T1F32,
|
||
IF_T1F64,
|
||
IF_TMDDUP,
|
||
IF_TFV, { disp8 - tuple - full vector }
|
||
IF_TFVM, { disp8 - tuple - full vector memory }
|
||
IF_TQVM,
|
||
IF_TMEM128,
|
||
IF_THV,
|
||
IF_THVM,
|
||
IF_TOVM
|
||
|
||
);
|
||
tinsflags=set of tinsflag;
|
||
|
||
const
|
||
IF_SMASK=[IF_SM,IF_SM2,IF_SB,IF_SW,IF_SD];
|
||
IF_ARMASK=[IF_AR0,IF_AR1,IF_AR2]; { mask for unsized argument spec }
|
||
IF_PLEVEL=[IF_8086..IF_NEC]; { mask for processor level }
|
||
|
||
IF_TUPLEMASK=[IF_T2..IF_TOVM]; { mask for AVX512 disp8-tuples }
|
||
|
||
|
||
type
|
||
tinsentry=packed record
|
||
opcode : tasmop;
|
||
ops : byte;
|
||
optypes : array[0..max_operands-1] of int64;
|
||
code : array[0..maxinfolen] of char;
|
||
flags : tinsflags;
|
||
end;
|
||
pinsentry=^tinsentry;
|
||
|
||
{ alignment for operator }
|
||
tai_align = class(tai_align_abstract)
|
||
function calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;override;
|
||
end;
|
||
|
||
{ taicpu }
|
||
|
||
taicpu = class(tai_cpu_abstract_sym)
|
||
opsize : topsize;
|
||
constructor op_none(op : tasmop);
|
||
constructor op_none(op : tasmop;_size : topsize);
|
||
|
||
constructor op_reg(op : tasmop;_size : topsize;_op1 : tregister);
|
||
constructor op_const(op : tasmop;_size : topsize;_op1 : aint);
|
||
constructor op_ref(op : tasmop;_size : topsize;const _op1 : treference);
|
||
|
||
constructor op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
|
||
constructor op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
|
||
constructor op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
|
||
|
||
constructor op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
|
||
constructor op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
|
||
constructor op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
|
||
|
||
constructor op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
|
||
|
||
constructor op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
|
||
constructor op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
|
||
constructor op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
|
||
constructor op_ref_reg_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2,_op3 : tregister);
|
||
constructor op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
|
||
constructor op_reg_reg_ref(op : tasmop;_size : topsize;_op1,_op2 : tregister;const _op3 : treference);
|
||
constructor op_const_reg_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2, _op3, _op4 : tregister);
|
||
|
||
{ this is for Jmp instructions }
|
||
constructor op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
|
||
|
||
constructor op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
|
||
constructor op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
|
||
constructor op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
|
||
constructor op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
|
||
|
||
procedure changeopsize(siz:topsize);
|
||
|
||
function GetString:string;
|
||
|
||
{ This is a workaround for the GAS non commutative fpu instruction braindamage.
|
||
Early versions of the UnixWare assembler had a bug where some fpu instructions
|
||
were reversed and GAS still keeps this "feature" for compatibility.
|
||
for details: http://sourceware.org/binutils/docs/as/i386_002dBugs.html#i386_002dBugs
|
||
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=372528
|
||
http://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax#Caveats
|
||
|
||
Since FPC is "GAS centric" due to its history it generates instructions with the same operand order so
|
||
when generating output for other assemblers, the opcodes must be fixed before writing them.
|
||
This function returns the fixed opcodes. Changing the opcodes permanently is no good idea
|
||
because in case of smartlinking assembler is generated twice so at the second run wrong
|
||
assembler is generated.
|
||
}
|
||
function FixNonCommutativeOpcodes: tasmop;
|
||
private
|
||
FOperandOrder : TOperandOrder;
|
||
procedure init(_size : topsize); { this need to be called by all constructor }
|
||
public
|
||
{ the next will reset all instructions that can change in pass 2 }
|
||
procedure ResetPass1;override;
|
||
procedure ResetPass2;override;
|
||
function CheckIfValid:boolean;
|
||
function Pass1(objdata:TObjData):longint;override;
|
||
procedure Pass2(objdata:TObjData);override;
|
||
procedure SetOperandOrder(order:TOperandOrder);
|
||
function is_same_reg_move(regtype: Tregistertype):boolean;override;
|
||
{ register spilling code }
|
||
function spilling_get_operation_type(opnr: longint): topertype;override;
|
||
{$ifdef i8086}
|
||
procedure loadsegsymbol(opidx:longint;s:tasmsymbol);
|
||
{$endif i8086}
|
||
property OperandOrder : TOperandOrder read FOperandOrder;
|
||
private
|
||
{ next fields are filled in pass1, so pass2 is faster }
|
||
insentry : PInsEntry;
|
||
insoffset : longint;
|
||
LastInsOffset : longint; { need to be public to be reset }
|
||
inssize : shortint;
|
||
EVEXTupleState: TEVEXTupleState; { AVX512 disp8*N }
|
||
{$ifdef x86_64}
|
||
rex : byte;
|
||
{$endif x86_64}
|
||
function InsEnd:longint;
|
||
procedure create_ot(objdata:TObjData);
|
||
function Matches(p:PInsEntry):boolean;
|
||
function calcsize(p:PInsEntry):shortint;
|
||
procedure gencode(objdata:TObjData);
|
||
function NeedAddrPrefix(opidx:byte):boolean;
|
||
function NeedAddrPrefix:boolean;
|
||
procedure write0x66prefix(objdata:TObjData);
|
||
procedure write0x67prefix(objdata:TObjData);
|
||
procedure Swapoperands;
|
||
function FindInsentry(objdata:TObjData):boolean;
|
||
function CheckUseEVEX: boolean;
|
||
procedure CheckEVEXTuple(const aInput:toper; aInsEntry: pInsentry; aIsVector128, aIsVector256, aIsVector512, aIsEVEXW1: boolean);
|
||
end;
|
||
|
||
function is_64_bit_ref(const ref:treference):boolean;
|
||
function is_32_bit_ref(const ref:treference):boolean;
|
||
function is_16_bit_ref(const ref:treference):boolean;
|
||
function get_ref_address_size(const ref:treference):byte;
|
||
function get_default_segment_of_ref(const ref:treference):tregister;
|
||
procedure optimize_ref(var ref:treference; inlineasm: boolean);
|
||
|
||
function spilling_create_load(const ref:treference;r:tregister):Taicpu;
|
||
function spilling_create_store(r:tregister; const ref:treference):Taicpu;
|
||
|
||
function MemRefInfo(aAsmop: TAsmOp): TInsTabMemRefSizeInfoRec;
|
||
function MightHaveExtension(AsmOp : TAsmOp) : Boolean;
|
||
|
||
procedure InitAsm;
|
||
procedure DoneAsm;
|
||
|
||
|
||
{*****************************************************************************
|
||
External Symbol Chain
|
||
used for agx86nsm and agx86int
|
||
*****************************************************************************}
|
||
|
||
type
|
||
PExternChain = ^TExternChain;
|
||
|
||
TExternChain = Record
|
||
psym : pshortstring;
|
||
is_defined : boolean;
|
||
next : PExternChain;
|
||
end;
|
||
|
||
const
|
||
FEC : PExternChain = nil;
|
||
|
||
procedure AddSymbol(symname : string; defined : boolean);
|
||
procedure FreeExternChainList;
|
||
|
||
implementation
|
||
|
||
uses
|
||
cutils,
|
||
globals,
|
||
systems,
|
||
itcpugas,
|
||
cpuinfo;
|
||
|
||
procedure AddSymbol(symname : string; defined : boolean);
|
||
var
|
||
EC : PExternChain;
|
||
begin
|
||
EC:=FEC;
|
||
while assigned(EC) do
|
||
begin
|
||
if EC^.psym^=symname then
|
||
begin
|
||
if defined then
|
||
EC^.is_defined:=true;
|
||
exit;
|
||
end;
|
||
EC:=EC^.next;
|
||
end;
|
||
New(EC);
|
||
EC^.next:=FEC;
|
||
FEC:=EC;
|
||
FEC^.psym:=stringdup(symname);
|
||
FEC^.is_defined := defined;
|
||
end;
|
||
|
||
procedure FreeExternChainList;
|
||
var
|
||
EC : PExternChain;
|
||
begin
|
||
EC:=FEC;
|
||
while assigned(EC) do
|
||
begin
|
||
FEC:=EC^.next;
|
||
stringdispose(EC^.psym);
|
||
Dispose(EC);
|
||
EC:=FEC;
|
||
end;
|
||
end;
|
||
|
||
{*****************************************************************************
|
||
Instruction table
|
||
*****************************************************************************}
|
||
|
||
type
|
||
TInsTabCache=array[TasmOp] of longint;
|
||
PInsTabCache=^TInsTabCache;
|
||
|
||
TInsTabMemRefSizeInfoCache=array[TasmOp] of TInsTabMemRefSizeInfoRec;
|
||
PInsTabMemRefSizeInfoCache=^TInsTabMemRefSizeInfoCache;
|
||
|
||
const
|
||
{$if defined(x86_64)}
|
||
InsTab:array[0..instabentries-1] of TInsEntry={$i x8664tab.inc}
|
||
{$elseif defined(i386)}
|
||
InsTab:array[0..instabentries-1] of TInsEntry={$i i386tab.inc}
|
||
{$elseif defined(i8086)}
|
||
InsTab:array[0..instabentries-1] of TInsEntry={$i i8086tab.inc}
|
||
{$endif}
|
||
var
|
||
InsTabCache : PInsTabCache;
|
||
InsTabMemRefSizeInfoCache: PInsTabMemRefSizeInfoCache;
|
||
const
|
||
{$if defined(x86_64)}
|
||
{ Intel style operands ! }
|
||
opsize_2_type:array[0..2,topsize] of int64=(
|
||
(OT_NONE,
|
||
OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,OT_BITS64,OT_BITS64,OT_BITS64,
|
||
OT_BITS16,OT_BITS32,OT_BITS64,
|
||
OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
|
||
OT_BITS64,
|
||
OT_NEAR,OT_FAR,OT_SHORT,
|
||
OT_NONE,
|
||
OT_BITS128,
|
||
OT_BITS256,
|
||
OT_BITS512
|
||
),
|
||
(OT_NONE,
|
||
OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,OT_BITS8,OT_BITS16,OT_BITS32,
|
||
OT_BITS16,OT_BITS32,OT_BITS64,
|
||
OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
|
||
OT_BITS64,
|
||
OT_NEAR,OT_FAR,OT_SHORT,
|
||
OT_NONE,
|
||
OT_BITS128,
|
||
OT_BITS256,
|
||
OT_BITS512
|
||
),
|
||
(OT_NONE,
|
||
OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,
|
||
OT_BITS16,OT_BITS32,OT_BITS64,
|
||
OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
|
||
OT_BITS64,
|
||
OT_NEAR,OT_FAR,OT_SHORT,
|
||
OT_NONE,
|
||
OT_BITS128,
|
||
OT_BITS256,
|
||
OT_BITS512
|
||
)
|
||
);
|
||
|
||
reg_ot_table : array[tregisterindex] of longint = (
|
||
{$i r8664ot.inc}
|
||
);
|
||
{$elseif defined(i386)}
|
||
{ Intel style operands ! }
|
||
opsize_2_type:array[0..2,topsize] of int64=(
|
||
(OT_NONE,
|
||
OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
|
||
OT_BITS16,OT_BITS32,OT_BITS64,
|
||
OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
|
||
OT_BITS64,
|
||
OT_NEAR,OT_FAR,OT_SHORT,
|
||
OT_NONE,
|
||
OT_BITS128,
|
||
OT_BITS256,
|
||
OT_BITS512
|
||
),
|
||
(OT_NONE,
|
||
OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
|
||
OT_BITS16,OT_BITS32,OT_BITS64,
|
||
OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
|
||
OT_BITS64,
|
||
OT_NEAR,OT_FAR,OT_SHORT,
|
||
OT_NONE,
|
||
OT_BITS128,
|
||
OT_BITS256,
|
||
OT_BITS512
|
||
),
|
||
(OT_NONE,
|
||
OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
|
||
OT_BITS16,OT_BITS32,OT_BITS64,
|
||
OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
|
||
OT_BITS64,
|
||
OT_NEAR,OT_FAR,OT_SHORT,
|
||
OT_NONE,
|
||
OT_BITS128,
|
||
OT_BITS256,
|
||
OT_BITS512
|
||
)
|
||
);
|
||
|
||
reg_ot_table : array[tregisterindex] of longint = (
|
||
{$i r386ot.inc}
|
||
);
|
||
{$elseif defined(i8086)}
|
||
{ Intel style operands ! }
|
||
opsize_2_type:array[0..2,topsize] of int64=(
|
||
(OT_NONE,
|
||
OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
|
||
OT_BITS16,OT_BITS32,OT_BITS64,
|
||
OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
|
||
OT_BITS64,
|
||
OT_NEAR,OT_FAR,OT_SHORT,
|
||
OT_NONE,
|
||
OT_BITS128,
|
||
OT_BITS256,
|
||
OT_BITS512
|
||
),
|
||
(OT_NONE,
|
||
OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
|
||
OT_BITS16,OT_BITS32,OT_BITS64,
|
||
OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
|
||
OT_BITS64,
|
||
OT_NEAR,OT_FAR,OT_SHORT,
|
||
OT_NONE,
|
||
OT_BITS128,
|
||
OT_BITS256,
|
||
OT_BITS512
|
||
),
|
||
(OT_NONE,
|
||
OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
|
||
OT_BITS16,OT_BITS32,OT_BITS64,
|
||
OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
|
||
OT_BITS64,
|
||
OT_NEAR,OT_FAR,OT_SHORT,
|
||
OT_NONE,
|
||
OT_BITS128,
|
||
OT_BITS256,
|
||
OT_BITS512
|
||
)
|
||
);
|
||
|
||
reg_ot_table : array[tregisterindex] of longint = (
|
||
{$i r8086ot.inc}
|
||
);
|
||
{$endif}
|
||
|
||
function MemRefInfo(aAsmop: TAsmOp): TInsTabMemRefSizeInfoRec;
|
||
begin
|
||
result := InsTabMemRefSizeInfoCache^[aAsmop];
|
||
end;
|
||
|
||
|
||
function MightHaveExtension(AsmOp : TAsmOp): Boolean;
|
||
var
|
||
i,j: LongInt;
|
||
insentry: pinsentry;
|
||
begin
|
||
Result:=true;
|
||
i:=InsTabCache^[AsmOp];
|
||
if i>=0 then
|
||
begin
|
||
insentry:=@instab[i];
|
||
while insentry^.opcode=AsmOp do
|
||
begin
|
||
for j:=0 to insentry^.ops-1 do
|
||
begin
|
||
if (insentry^.optypes[j] and OT_VECTOR_EXT)<>0 then
|
||
exit;
|
||
end;
|
||
inc(i);
|
||
insentry:=@instab[i];
|
||
end;
|
||
end;
|
||
Result:=false;
|
||
end;
|
||
|
||
{ Operation type for spilling code }
|
||
type
|
||
toperation_type_table=array[tasmop,0..Max_Operands] of topertype;
|
||
var
|
||
operation_type_table : ^toperation_type_table;
|
||
|
||
|
||
{****************************************************************************
|
||
TAI_ALIGN
|
||
****************************************************************************}
|
||
|
||
function tai_align.calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;
|
||
const
|
||
{ Updated according to
|
||
Software Optimization Guide for AMD Family 15h Processors, Verison 3.08, January 2014
|
||
and
|
||
Intel 64 and IA-32 Architectures Software Developer’s Manual
|
||
Volume 2B: Instruction Set Reference, N-Z, January 2015
|
||
}
|
||
alignarray_cmovcpus:array[0..10] of string[11]=(
|
||
#$66#$66#$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
|
||
#$66#$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
|
||
#$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
|
||
#$0F#$1F#$84#$00#$00#$00#$00#$00,
|
||
#$0F#$1F#$80#$00#$00#$00#$00,
|
||
#$66#$0F#$1F#$44#$00#$00,
|
||
#$0F#$1F#$44#$00#$00,
|
||
#$0F#$1F#$40#$00,
|
||
#$0F#$1F#$00,
|
||
#$66#$90,
|
||
#$90);
|
||
{$ifdef i8086}
|
||
alignarray:array[0..5] of string[8]=(
|
||
#$90#$90#$90#$90#$90#$90#$90,
|
||
#$90#$90#$90#$90#$90#$90,
|
||
#$90#$90#$90#$90,
|
||
#$90#$90#$90,
|
||
#$90#$90,
|
||
#$90);
|
||
{$else i8086}
|
||
alignarray:array[0..5] of string[8]=(
|
||
#$8D#$B4#$26#$00#$00#$00#$00,
|
||
#$8D#$B6#$00#$00#$00#$00,
|
||
#$8D#$74#$26#$00,
|
||
#$8D#$76#$00,
|
||
#$89#$F6,
|
||
#$90);
|
||
{$endif i8086}
|
||
var
|
||
bufptr : pchar;
|
||
j : longint;
|
||
localsize: byte;
|
||
begin
|
||
inherited calculatefillbuf(buf,executable);
|
||
if not(use_op) and executable then
|
||
begin
|
||
bufptr:=pchar(@buf);
|
||
{ fillsize may still be used afterwards, so don't modify }
|
||
{ e.g. writebytes(hp.calculatefillbuf(buf)^,hp.fillsize) }
|
||
localsize:=fillsize;
|
||
while (localsize>0) do
|
||
begin
|
||
{$ifndef i8086}
|
||
if CPUX86_HAS_CMOV in cpu_capabilities[current_settings.cputype] then
|
||
begin
|
||
for j:=low(alignarray_cmovcpus) to high(alignarray_cmovcpus) do
|
||
if (localsize>=length(alignarray_cmovcpus[j])) then
|
||
break;
|
||
move(alignarray_cmovcpus[j][1],bufptr^,length(alignarray_cmovcpus[j]));
|
||
inc(bufptr,length(alignarray_cmovcpus[j]));
|
||
dec(localsize,length(alignarray_cmovcpus[j]));
|
||
end
|
||
else
|
||
{$endif not i8086}
|
||
begin
|
||
for j:=low(alignarray) to high(alignarray) do
|
||
if (localsize>=length(alignarray[j])) then
|
||
break;
|
||
move(alignarray[j][1],bufptr^,length(alignarray[j]));
|
||
inc(bufptr,length(alignarray[j]));
|
||
dec(localsize,length(alignarray[j]));
|
||
end
|
||
end;
|
||
end;
|
||
calculatefillbuf:=pchar(@buf);
|
||
end;
|
||
|
||
|
||
{*****************************************************************************
|
||
Taicpu Constructors
|
||
*****************************************************************************}
|
||
|
||
procedure taicpu.changeopsize(siz:topsize);
|
||
begin
|
||
opsize:=siz;
|
||
end;
|
||
|
||
|
||
procedure taicpu.init(_size : topsize);
|
||
begin
|
||
{ default order is att }
|
||
FOperandOrder:=op_att;
|
||
segprefix:=NR_NO;
|
||
opsize:=_size;
|
||
insentry:=nil;
|
||
LastInsOffset:=-1;
|
||
InsOffset:=0;
|
||
InsSize:=0;
|
||
EVEXTupleState := etsUnknown;
|
||
end;
|
||
|
||
|
||
constructor taicpu.op_none(op : tasmop);
|
||
begin
|
||
inherited create(op);
|
||
init(S_NO);
|
||
end;
|
||
|
||
|
||
constructor taicpu.op_none(op : tasmop;_size : topsize);
|
||
begin
|
||
inherited create(op);
|
||
init(_size);
|
||
end;
|
||
|
||
|
||
constructor taicpu.op_reg(op : tasmop;_size : topsize;_op1 : tregister);
|
||
begin
|
||
inherited create(op);
|
||
init(_size);
|
||
ops:=1;
|
||
loadreg(0,_op1);
|
||
end;
|
||
|
||
|
||
constructor taicpu.op_const(op : tasmop;_size : topsize;_op1 : aint);
|
||
begin
|
||
inherited create(op);
|
||
init(_size);
|
||
ops:=1;
|
||
loadconst(0,_op1);
|
||
end;
|
||
|
||
|
||
constructor taicpu.op_ref(op : tasmop;_size : topsize;const _op1 : treference);
|
||
begin
|
||
inherited create(op);
|
||
init(_size);
|
||
ops:=1;
|
||
loadref(0,_op1);
|
||
end;
|
||
|
||
|
||
constructor taicpu.op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
|
||
begin
|
||
inherited create(op);
|
||
init(_size);
|
||
ops:=2;
|
||
loadreg(0,_op1);
|
||
loadreg(1,_op2);
|
||
end;
|
||
|
||
|
||
constructor taicpu.op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
|
||
begin
|
||
inherited create(op);
|
||
init(_size);
|
||
ops:=2;
|
||
loadreg(0,_op1);
|
||
loadconst(1,_op2);
|
||
end;
|
||
|
||
|
||
constructor taicpu.op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
|
||
begin
|
||
inherited create(op);
|
||
init(_size);
|
||
ops:=2;
|
||
loadreg(0,_op1);
|
||
loadref(1,_op2);
|
||
end;
|
||
|
||
|
||
constructor taicpu.op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
|
||
begin
|
||
inherited create(op);
|
||
init(_size);
|
||
ops:=2;
|
||
loadconst(0,_op1);
|
||
loadreg(1,_op2);
|
||
end;
|
||
|
||
|
||
constructor taicpu.op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
|
||
begin
|
||
inherited create(op);
|
||
init(_size);
|
||
ops:=2;
|
||
loadconst(0,_op1);
|
||
loadconst(1,_op2);
|
||
end;
|
||
|
||
|
||
constructor taicpu.op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
|
||
begin
|
||
inherited create(op);
|
||
init(_size);
|
||
ops:=2;
|
||
loadconst(0,_op1);
|
||
loadref(1,_op2);
|
||
end;
|
||
|
||
|
||
constructor taicpu.op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
|
||
begin
|
||
inherited create(op);
|
||
init(_size);
|
||
ops:=2;
|
||
loadref(0,_op1);
|
||
loadreg(1,_op2);
|
||
end;
|
||
|
||
|
||
constructor taicpu.op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
|
||
begin
|
||
inherited create(op);
|
||
init(_size);
|
||
ops:=3;
|
||
loadreg(0,_op1);
|
||
loadreg(1,_op2);
|
||
loadreg(2,_op3);
|
||
end;
|
||
|
||
|
||
constructor taicpu.op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
|
||
begin
|
||
inherited create(op);
|
||
init(_size);
|
||
ops:=3;
|
||
loadconst(0,_op1);
|
||
loadreg(1,_op2);
|
||
loadreg(2,_op3);
|
||
end;
|
||
|
||
|
||
constructor taicpu.op_ref_reg_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2,_op3 : tregister);
|
||
begin
|
||
inherited create(op);
|
||
init(_size);
|
||
ops:=3;
|
||
loadref(0,_op1);
|
||
loadreg(1,_op2);
|
||
loadreg(2,_op3);
|
||
end;
|
||
|
||
|
||
constructor taicpu.op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
|
||
begin
|
||
inherited create(op);
|
||
init(_size);
|
||
ops:=3;
|
||
loadconst(0,_op1);
|
||
loadref(1,_op2);
|
||
loadreg(2,_op3);
|
||
end;
|
||
|
||
|
||
constructor taicpu.op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
|
||
begin
|
||
inherited create(op);
|
||
init(_size);
|
||
ops:=3;
|
||
loadconst(0,_op1);
|
||
loadreg(1,_op2);
|
||
loadref(2,_op3);
|
||
end;
|
||
|
||
|
||
constructor taicpu.op_reg_reg_ref(op : tasmop;_size : topsize;_op1,_op2 : tregister;const _op3 : treference);
|
||
begin
|
||
inherited create(op);
|
||
init(_size);
|
||
ops:=3;
|
||
loadreg(0,_op1);
|
||
loadreg(1,_op2);
|
||
loadref(2,_op3);
|
||
end;
|
||
|
||
constructor taicpu.op_const_reg_reg_reg(op : tasmop; _size : topsize; _op1 : aint; _op2, _op3, _op4 : tregister);
|
||
begin
|
||
inherited create(op);
|
||
init(_size);
|
||
ops:=4;
|
||
loadconst(0,_op1);
|
||
loadreg(1,_op2);
|
||
loadreg(2,_op3);
|
||
loadreg(3,_op4);
|
||
end;
|
||
|
||
|
||
constructor taicpu.op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
|
||
begin
|
||
inherited create(op);
|
||
init(_size);
|
||
condition:=cond;
|
||
ops:=1;
|
||
loadsymbol(0,_op1,0);
|
||
end;
|
||
|
||
|
||
constructor taicpu.op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
|
||
begin
|
||
inherited create(op);
|
||
init(_size);
|
||
ops:=1;
|
||
loadsymbol(0,_op1,0);
|
||
end;
|
||
|
||
|
||
constructor taicpu.op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
|
||
begin
|
||
inherited create(op);
|
||
init(_size);
|
||
ops:=1;
|
||
loadsymbol(0,_op1,_op1ofs);
|
||
end;
|
||
|
||
|
||
constructor taicpu.op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
|
||
begin
|
||
inherited create(op);
|
||
init(_size);
|
||
ops:=2;
|
||
loadsymbol(0,_op1,_op1ofs);
|
||
loadreg(1,_op2);
|
||
end;
|
||
|
||
|
||
constructor taicpu.op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
|
||
begin
|
||
inherited create(op);
|
||
init(_size);
|
||
ops:=2;
|
||
loadsymbol(0,_op1,_op1ofs);
|
||
loadref(1,_op2);
|
||
end;
|
||
|
||
|
||
function taicpu.GetString:string;
|
||
var
|
||
i : longint;
|
||
s : string;
|
||
regnr: string;
|
||
addsize : boolean;
|
||
begin
|
||
s:='['+std_op2str[opcode];
|
||
for i:=0 to ops-1 do
|
||
begin
|
||
with oper[i]^ do
|
||
begin
|
||
if i=0 then
|
||
s:=s+' '
|
||
else
|
||
s:=s+',';
|
||
{ type }
|
||
addsize:=false;
|
||
|
||
regnr := '';
|
||
if getregtype(reg) = R_MMREGISTER then
|
||
str(getsupreg(reg),regnr);
|
||
|
||
if (ot and OT_XMMREG)=OT_XMMREG then
|
||
s:=s+'xmmreg' + regnr
|
||
else
|
||
if (ot and OT_YMMREG)=OT_YMMREG then
|
||
s:=s+'ymmreg' + regnr
|
||
else
|
||
if (ot and OT_ZMMREG)=OT_ZMMREG then
|
||
s:=s+'zmmreg' + regnr
|
||
|
||
else
|
||
if (ot and OT_REG_EXTRA_MASK)=OT_MMXREG then
|
||
s:=s+'mmxreg'
|
||
else
|
||
if (ot and OT_REG_EXTRA_MASK)=OT_FPUREG then
|
||
s:=s+'fpureg'
|
||
else
|
||
if (ot and OT_REGISTER)=OT_REGISTER then
|
||
begin
|
||
s:=s+'reg';
|
||
addsize:=true;
|
||
end
|
||
else
|
||
if (ot and OT_IMMEDIATE)=OT_IMMEDIATE then
|
||
begin
|
||
s:=s+'imm';
|
||
addsize:=true;
|
||
end
|
||
else
|
||
if (ot and OT_MEMORY)=OT_MEMORY then
|
||
begin
|
||
s:=s+'mem';
|
||
addsize:=true;
|
||
end
|
||
else
|
||
s:=s+'???';
|
||
{ size }
|
||
if addsize then
|
||
begin
|
||
if (ot and OT_BITS8)<>0 then
|
||
s:=s+'8'
|
||
else
|
||
if (ot and OT_BITS16)<>0 then
|
||
s:=s+'16'
|
||
else
|
||
if (ot and OT_BITS32)<>0 then
|
||
s:=s+'32'
|
||
else
|
||
if (ot and OT_BITS64)<>0 then
|
||
s:=s+'64'
|
||
else
|
||
if (ot and OT_BITS128)<>0 then
|
||
s:=s+'128'
|
||
else
|
||
if (ot and OT_BITS256)<>0 then
|
||
s:=s+'256'
|
||
else
|
||
if (ot and OT_BITS512)<>0 then
|
||
s:=s+'512'
|
||
else
|
||
s:=s+'??';
|
||
{ signed }
|
||
if (ot and OT_SIGNED)<>0 then
|
||
s:=s+'s';
|
||
end;
|
||
|
||
if vopext <> 0 then
|
||
begin
|
||
str(vopext and $07, regnr);
|
||
if vopext and OTVE_VECTOR_WRITEMASK = OTVE_VECTOR_WRITEMASK then
|
||
s := s + ' {k' + regnr + '}';
|
||
|
||
if vopext and OTVE_VECTOR_ZERO = OTVE_VECTOR_ZERO then
|
||
s := s + ' {z}';
|
||
|
||
if vopext and OTVE_VECTOR_SAE = OTVE_VECTOR_SAE then
|
||
s := s + ' {sae}';
|
||
|
||
|
||
if vopext and OTVE_VECTOR_BCST = OTVE_VECTOR_BCST then
|
||
case vopext and OTVE_VECTOR_BCST_MASK of
|
||
OTVE_VECTOR_BCST2: s := s + ' {1to2}';
|
||
OTVE_VECTOR_BCST4: s := s + ' {1to4}';
|
||
OTVE_VECTOR_BCST8: s := s + ' {1to8}';
|
||
OTVE_VECTOR_BCST16: s := s + ' {1to16}';
|
||
end;
|
||
|
||
if vopext and OTVE_VECTOR_ER = OTVE_VECTOR_ER then
|
||
case vopext and OTVE_VECTOR_ER_MASK of
|
||
OTVE_VECTOR_RNSAE: s := s + ' {rn-sae}';
|
||
OTVE_VECTOR_RDSAE: s := s + ' {rd-sae}';
|
||
OTVE_VECTOR_RUSAE: s := s + ' {ru-sae}';
|
||
OTVE_VECTOR_RZSAE: s := s + ' {rz-sae}';
|
||
end;
|
||
|
||
end;
|
||
end;
|
||
end;
|
||
GetString:=s+']';
|
||
end;
|
||
|
||
|
||
procedure taicpu.Swapoperands;
|
||
var
|
||
p : POper;
|
||
begin
|
||
{ Fix the operands which are in AT&T style and we need them in Intel style }
|
||
case ops of
|
||
0,1:
|
||
;
|
||
2 : begin
|
||
{ 0,1 -> 1,0 }
|
||
p:=oper[0];
|
||
oper[0]:=oper[1];
|
||
oper[1]:=p;
|
||
end;
|
||
3 : begin
|
||
{ 0,1,2 -> 2,1,0 }
|
||
p:=oper[0];
|
||
oper[0]:=oper[2];
|
||
oper[2]:=p;
|
||
end;
|
||
4 : begin
|
||
{ 0,1,2,3 -> 3,2,1,0 }
|
||
p:=oper[0];
|
||
oper[0]:=oper[3];
|
||
oper[3]:=p;
|
||
p:=oper[1];
|
||
oper[1]:=oper[2];
|
||
oper[2]:=p;
|
||
end;
|
||
else
|
||
internalerror(201108141);
|
||
end;
|
||
end;
|
||
|
||
|
||
procedure taicpu.SetOperandOrder(order:TOperandOrder);
|
||
begin
|
||
if FOperandOrder<>order then
|
||
begin
|
||
Swapoperands;
|
||
FOperandOrder:=order;
|
||
end;
|
||
end;
|
||
|
||
|
||
function taicpu.FixNonCommutativeOpcodes: tasmop;
|
||
begin
|
||
result:=opcode;
|
||
|
||
{ we need ATT order }
|
||
SetOperandOrder(op_att);
|
||
|
||
if (
|
||
(ops=2) and
|
||
(oper[0]^.typ=top_reg) and
|
||
(oper[1]^.typ=top_reg) and
|
||
{ if the first is ST and the second is also a register
|
||
it is necessarily ST1 .. ST7 }
|
||
((oper[0]^.reg=NR_ST) or
|
||
(oper[0]^.reg=NR_ST0))
|
||
) or
|
||
{ ((ops=1) and
|
||
(oper[0]^.typ=top_reg) and
|
||
(oper[0]^.reg in [R_ST1..R_ST7])) or}
|
||
(ops=0) then
|
||
begin
|
||
if opcode=A_FSUBR then
|
||
result:=A_FSUB
|
||
else if opcode=A_FSUB then
|
||
result:=A_FSUBR
|
||
else if opcode=A_FDIVR then
|
||
result:=A_FDIV
|
||
else if opcode=A_FDIV then
|
||
result:=A_FDIVR
|
||
else if opcode=A_FSUBRP then
|
||
result:=A_FSUBP
|
||
else if opcode=A_FSUBP then
|
||
result:=A_FSUBRP
|
||
else if opcode=A_FDIVRP then
|
||
result:=A_FDIVP
|
||
else if opcode=A_FDIVP then
|
||
result:=A_FDIVRP;
|
||
end;
|
||
if (
|
||
(ops=1) and
|
||
(oper[0]^.typ=top_reg) and
|
||
(getregtype(oper[0]^.reg)=R_FPUREGISTER) and
|
||
(oper[0]^.reg<>NR_ST)
|
||
) then
|
||
begin
|
||
if opcode=A_FSUBRP then
|
||
result:=A_FSUBP
|
||
else if opcode=A_FSUBP then
|
||
result:=A_FSUBRP
|
||
else if opcode=A_FDIVRP then
|
||
result:=A_FDIVP
|
||
else if opcode=A_FDIVP then
|
||
result:=A_FDIVRP;
|
||
end;
|
||
end;
|
||
|
||
|
||
{*****************************************************************************
|
||
Assembler
|
||
*****************************************************************************}
|
||
|
||
type
|
||
ea = packed record
|
||
sib_present : boolean;
|
||
bytes : byte;
|
||
size : byte;
|
||
modrm : byte;
|
||
sib : byte;
|
||
{$ifdef x86_64}
|
||
rex : byte;
|
||
{$endif x86_64}
|
||
end;
|
||
|
||
procedure taicpu.create_ot(objdata:TObjData);
|
||
{
|
||
this function will also fix some other fields which only needs to be once
|
||
}
|
||
var
|
||
i,l,relsize : longint;
|
||
currsym : TObjSymbol;
|
||
begin
|
||
if ops=0 then
|
||
exit;
|
||
{ update oper[].ot field }
|
||
for i:=0 to ops-1 do
|
||
with oper[i]^ do
|
||
begin
|
||
case typ of
|
||
top_reg :
|
||
begin
|
||
ot:=reg_ot_table[findreg_by_number(reg)];
|
||
end;
|
||
top_ref :
|
||
begin
|
||
if (ref^.refaddr in [addr_no{$ifdef x86_64},addr_tpoff{$endif x86_64}{$ifdef i386},addr_ntpoff{$endif i386}])
|
||
{$ifdef i386}
|
||
or (
|
||
(ref^.refaddr in [addr_pic,addr_tlsgd]) and
|
||
((ref^.base<>NR_NO) or (ref^.index<>NR_NO))
|
||
)
|
||
{$endif i386}
|
||
{$ifdef x86_64}
|
||
or (
|
||
(ref^.refaddr in [addr_pic,addr_pic_no_got,addr_tlsgd]) and
|
||
(ref^.base<>NR_NO)
|
||
)
|
||
{$endif x86_64}
|
||
then
|
||
begin
|
||
|
||
{ create ot field }
|
||
if (reg_ot_table[findreg_by_number(ref^.base)] and OT_REG_GPR = OT_REG_GPR) and
|
||
((reg_ot_table[findreg_by_number(ref^.index)] = OT_XMMREG) or
|
||
(reg_ot_table[findreg_by_number(ref^.index)] = OT_YMMREG) or
|
||
(reg_ot_table[findreg_by_number(ref^.index)] = OT_ZMMREG)
|
||
) then
|
||
// AVX2 - vector-memory-referenz (e.g. vgatherdpd xmm0, [rax xmm1], xmm2)
|
||
ot := (reg_ot_table[findreg_by_number(ref^.base)] and OT_REG_GPR) or
|
||
(reg_ot_table[findreg_by_number(ref^.index)])
|
||
else if (ref^.base = NR_NO) and
|
||
((reg_ot_table[findreg_by_number(ref^.index)] = OT_XMMREG) or
|
||
(reg_ot_table[findreg_by_number(ref^.index)] = OT_YMMREG) or
|
||
(reg_ot_table[findreg_by_number(ref^.index)] = OT_ZMMREG)
|
||
) then
|
||
// AVX2 - vector-memory-referenz without base-register (e.g. vgatherdpd xmm0, [xmm1], xmm2)
|
||
ot := (OT_REG_GPR) or
|
||
(reg_ot_table[findreg_by_number(ref^.index)])
|
||
|
||
else if (ot and OT_SIZE_MASK)=0 then
|
||
ot:=OT_MEMORY_ANY or opsize_2_type[i,opsize]
|
||
else
|
||
ot:=OT_MEMORY_ANY or (ot and OT_SIZE_MASK);
|
||
if (ref^.base=NR_NO) and (ref^.index=NR_NO) then
|
||
ot:=ot or OT_MEM_OFFS;
|
||
{ fix scalefactor }
|
||
if (ref^.index=NR_NO) then
|
||
ref^.scalefactor:=0
|
||
else
|
||
if (ref^.scalefactor=0) then
|
||
ref^.scalefactor:=1;
|
||
end
|
||
else
|
||
begin
|
||
{ Jumps use a relative offset which can be 8bit,
|
||
for other opcodes we always need to generate the full
|
||
32bit address }
|
||
if assigned(objdata) and
|
||
is_jmp then
|
||
begin
|
||
currsym:=objdata.symbolref(ref^.symbol);
|
||
l:=ref^.offset;
|
||
{$push}
|
||
{$r-,q-} { disable also overflow as address returns a qword for x86_64 }
|
||
if assigned(currsym) then
|
||
inc(l,currsym.address);
|
||
{$pop}
|
||
{ when it is a forward jump we need to compensate the
|
||
offset of the instruction since the previous time,
|
||
because the symbol address is then still using the
|
||
'old-style' addressing.
|
||
For backwards jumps this is not required because the
|
||
address of the symbol is already adjusted to the
|
||
new offset }
|
||
if (l>InsOffset) and (LastInsOffset<>-1) then
|
||
inc(l,InsOffset-LastInsOffset);
|
||
{ instruction size will then always become 2 (PFV) }
|
||
relsize:=(InsOffset+2)-l;
|
||
if (relsize>=-128) and (relsize<=127) and
|
||
(
|
||
not assigned(currsym) or
|
||
(currsym.objsection=objdata.currobjsec)
|
||
) then
|
||
ot:=OT_IMM8 or OT_SHORT
|
||
else
|
||
{$ifdef i8086}
|
||
ot:=OT_IMM16 or OT_NEAR;
|
||
{$else i8086}
|
||
ot:=OT_IMM32 or OT_NEAR;
|
||
{$endif i8086}
|
||
end
|
||
else
|
||
{$ifdef i8086}
|
||
if opsize=S_FAR then
|
||
ot:=OT_IMM16 or OT_FAR
|
||
else
|
||
ot:=OT_IMM16 or OT_NEAR;
|
||
{$else i8086}
|
||
ot:=OT_IMM32 or OT_NEAR;
|
||
{$endif i8086}
|
||
end;
|
||
end;
|
||
top_local :
|
||
begin
|
||
if (ot and OT_SIZE_MASK)=0 then
|
||
ot:=OT_MEMORY or opsize_2_type[i,opsize]
|
||
else
|
||
ot:=OT_MEMORY or (ot and OT_SIZE_MASK);
|
||
end;
|
||
top_const :
|
||
begin
|
||
// if opcode is a SSE or AVX-instruction then we need a
|
||
// special handling (opsize can different from const-size)
|
||
// (e.g. "pextrw reg/m16, xmmreg, imm8" =>> opsize (16 bit), const-size (8 bit)
|
||
if (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) and
|
||
(not(InsTabMemRefSizeInfoCache^[opcode].ConstSize in [csiMultiple, csiUnknown])) then
|
||
begin
|
||
case InsTabMemRefSizeInfoCache^[opcode].ConstSize of
|
||
csiNoSize: ot := ot and OT_NON_SIZE or OT_IMMEDIATE;
|
||
csiMem8: ot := ot and OT_NON_SIZE or OT_IMMEDIATE or OT_BITS8;
|
||
csiMem16: ot := ot and OT_NON_SIZE or OT_IMMEDIATE or OT_BITS16;
|
||
csiMem32: ot := ot and OT_NON_SIZE or OT_IMMEDIATE or OT_BITS32;
|
||
csiMem64: ot := ot and OT_NON_SIZE or OT_IMMEDIATE or OT_BITS64;
|
||
else
|
||
;
|
||
end;
|
||
end
|
||
else
|
||
begin
|
||
{ allow 2nd, 3rd or 4th operand being a constant and expect no size for shuf* etc. }
|
||
{ further, allow AAD and AAM with imm. operand }
|
||
if (opsize=S_NO) and not((i in [1,2,3])
|
||
{$ifndef x86_64}
|
||
or ((i=0) and (opcode in [A_AAD,A_AAM]))
|
||
{$endif x86_64}
|
||
) then
|
||
message(asmr_e_invalid_opcode_and_operand);
|
||
if
|
||
{$ifdef i8086}
|
||
(longint(val)>=-128) and (val<=127) then
|
||
{$else i8086}
|
||
(opsize<>S_W) and
|
||
(aint(val)>=-128) and (val<=127) then
|
||
{$endif not i8086}
|
||
ot:=OT_IMM8 or OT_SIGNED
|
||
else
|
||
ot:=OT_IMMEDIATE or opsize_2_type[i,opsize];
|
||
if (val=1) and (i=1) then
|
||
ot := ot or OT_ONENESS;
|
||
end;
|
||
end;
|
||
top_none :
|
||
begin
|
||
{ generated when there was an error in the
|
||
assembler reader. It never happends when generating
|
||
assembler }
|
||
end;
|
||
else
|
||
internalerror(200402266);
|
||
end;
|
||
end;
|
||
end;
|
||
|
||
|
||
function taicpu.InsEnd:longint;
|
||
begin
|
||
InsEnd:=InsOffset+InsSize;
|
||
end;
|
||
|
||
|
||
function taicpu.Matches(p:PInsEntry):boolean;
|
||
{ * IF_SM stands for Size Match: any operand whose size is not
|
||
* explicitly specified by the template is `really' intended to be
|
||
* the same size as the first size-specified operand.
|
||
* Non-specification is tolerated in the input instruction, but
|
||
* _wrong_ specification is not.
|
||
*
|
||
* IF_SM2 invokes Size Match on only the first _two_ operands, for
|
||
* three-operand instructions such as SHLD: it implies that the
|
||
* first two operands must match in size, but that the third is
|
||
* required to be _unspecified_.
|
||
*
|
||
* IF_SB invokes Size Byte: operands with unspecified size in the
|
||
* template are really bytes, and so no non-byte specification in
|
||
* the input instruction will be tolerated. IF_SW similarly invokes
|
||
* Size Word, and IF_SD invokes Size Doubleword.
|
||
*
|
||
* (The default state if neither IF_SM nor IF_SM2 is specified is
|
||
* that any operand with unspecified size in the template is
|
||
* required to have unspecified size in the instruction too...)
|
||
}
|
||
var
|
||
insot,
|
||
currot: int64;
|
||
i,j,asize,oprs : longint;
|
||
insflags:tinsflags;
|
||
vopext: int64;
|
||
siz : array[0..max_operands-1] of longint;
|
||
begin
|
||
result:=false;
|
||
|
||
{ Check the opcode and operands }
|
||
if (p^.opcode<>opcode) or (p^.ops<>ops) then
|
||
exit;
|
||
|
||
{$ifdef i8086}
|
||
{ On i8086, we need to skip the i386+ version of Jcc near, if the target
|
||
cpu is earlier than 386. There's another entry, later in the table for
|
||
i8086, which simulates it with i8086 instructions:
|
||
JNcc short +3
|
||
JMP near target }
|
||
if (p^.opcode=A_Jcc) and (current_settings.cputype<cpu_386) and
|
||
(IF_386 in p^.flags) then
|
||
exit;
|
||
{$endif i8086}
|
||
|
||
for i:=0 to p^.ops-1 do
|
||
begin
|
||
insot:=p^.optypes[i];
|
||
currot:=oper[i]^.ot;
|
||
|
||
{ Check the operand flags }
|
||
if (insot and (not currot) and OT_NON_SIZE)<>0 then
|
||
exit;
|
||
|
||
// IGNORE VECTOR-MEMORY-SIZE
|
||
if insot and OT_TYPE_MASK = OT_MEMORY then
|
||
insot := insot and not(int64(OT_BITS128 or OT_BITS256 or OT_BITS512));
|
||
|
||
|
||
{ Check if the passed operand size matches with one of
|
||
the supported operand sizes }
|
||
if ((insot and OT_SIZE_MASK)<>0) and
|
||
((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
|
||
exit;
|
||
{ "far" matches only with "far" }
|
||
if (insot and OT_FAR)<>(currot and OT_FAR) then
|
||
exit;
|
||
end;
|
||
|
||
{ Check operand sizes }
|
||
insflags:=p^.flags;
|
||
if (insflags*IF_SMASK)<>[] then
|
||
begin
|
||
{ as default an untyped size can get all the sizes, this is different
|
||
from nasm, but else we need to do a lot checking which opcodes want
|
||
size or not with the automatic size generation }
|
||
asize:=-1;
|
||
if IF_SB in insflags then
|
||
asize:=OT_BITS8
|
||
else if IF_SW in insflags then
|
||
asize:=OT_BITS16
|
||
else if IF_SD in insflags then
|
||
asize:=OT_BITS32;
|
||
if insflags*IF_ARMASK<>[] then
|
||
begin
|
||
siz[0]:=-1;
|
||
siz[1]:=-1;
|
||
siz[2]:=-1;
|
||
if IF_AR0 in insflags then
|
||
siz[0]:=asize
|
||
else if IF_AR1 in insflags then
|
||
siz[1]:=asize
|
||
else if IF_AR2 in insflags then
|
||
siz[2]:=asize
|
||
else
|
||
internalerror(2017092101);
|
||
end
|
||
else
|
||
begin
|
||
siz[0]:=asize;
|
||
siz[1]:=asize;
|
||
siz[2]:=asize;
|
||
end;
|
||
|
||
if insflags*[IF_SM,IF_SM2]<>[] then
|
||
begin
|
||
if IF_SM2 in insflags then
|
||
oprs:=2
|
||
else
|
||
oprs:=p^.ops;
|
||
for i:=0 to oprs-1 do
|
||
if ((p^.optypes[i] and OT_SIZE_MASK) <> 0) then
|
||
begin
|
||
for j:=0 to oprs-1 do
|
||
siz[j]:=p^.optypes[i] and OT_SIZE_MASK;
|
||
break;
|
||
end;
|
||
end
|
||
else
|
||
oprs:=2;
|
||
|
||
{ Check operand sizes }
|
||
for i:=0 to p^.ops-1 do
|
||
begin
|
||
insot:=p^.optypes[i];
|
||
currot:=oper[i]^.ot;
|
||
if ((insot and OT_SIZE_MASK)=0) and
|
||
((currot and OT_SIZE_MASK and (not siz[i]))<>0) and
|
||
{ Immediates can always include smaller size }
|
||
((currot and OT_IMMEDIATE)=0) and
|
||
(((insot and OT_SIZE_MASK) or siz[i])<(currot and OT_SIZE_MASK)) then
|
||
exit;
|
||
if (insot and OT_FAR)<>(currot and OT_FAR) then
|
||
exit;
|
||
end;
|
||
end;
|
||
|
||
if (InsTabMemRefSizeInfoCache^[opcode].MemRefSize in MemRefMultiples) and
|
||
(InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) then
|
||
begin
|
||
for i:=0 to p^.ops-1 do
|
||
begin
|
||
insot:=p^.optypes[i];
|
||
if ((insot and (OT_XMMRM or OT_REG_EXTRA_MASK)) = OT_XMMRM) OR
|
||
((insot and (OT_YMMRM or OT_REG_EXTRA_MASK)) = OT_YMMRM) OR
|
||
((insot and (OT_ZMMRM or OT_REG_EXTRA_MASK)) = OT_ZMMRM) then
|
||
begin
|
||
if (insot and OT_SIZE_MASK) = 0 then
|
||
begin
|
||
case insot and (OT_XMMRM or OT_YMMRM or OT_ZMMRM or OT_REG_EXTRA_MASK) of
|
||
OT_XMMRM: insot := insot or OT_BITS128;
|
||
OT_YMMRM: insot := insot or OT_BITS256;
|
||
OT_ZMMRM: insot := insot or OT_BITS512;
|
||
else
|
||
;
|
||
end;
|
||
end;
|
||
end;
|
||
|
||
currot:=oper[i]^.ot;
|
||
{ Check the operand flags }
|
||
if (insot and (not currot) and OT_NON_SIZE)<>0 then
|
||
exit;
|
||
{ Check if the passed operand size matches with one of
|
||
the supported operand sizes }
|
||
if ((insot and OT_SIZE_MASK)<>0) and
|
||
((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
|
||
exit;
|
||
end;
|
||
end;
|
||
|
||
if (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) then
|
||
begin
|
||
for i:=0 to p^.ops-1 do
|
||
begin
|
||
// check vectoroperand-extention e.g. {k1} {z}
|
||
|
||
vopext := 0;
|
||
if (oper[i]^.vopext and OTVE_VECTOR_WRITEMASK) = OTVE_VECTOR_WRITEMASK then
|
||
begin
|
||
vopext := vopext or OT_VECTORMASK;
|
||
|
||
if (oper[i]^.vopext and OTVE_VECTOR_ZERO) = OTVE_VECTOR_ZERO then
|
||
vopext := vopext or OT_VECTORZERO;
|
||
end;
|
||
|
||
if (oper[i]^.vopext and OTVE_VECTOR_BCST) = OTVE_VECTOR_BCST then
|
||
begin
|
||
vopext := vopext or OT_VECTORBCST;
|
||
|
||
if (InsTabMemRefSizeInfoCache^[opcode].BCSTTypes <> []) then
|
||
begin
|
||
// any opcodes needs a special handling
|
||
|
||
// default broadcast calculation is
|
||
// bmem32
|
||
// xmmreg: {1to4}
|
||
// ymmreg: {1to8}
|
||
// zmmreg: {1to16}
|
||
|
||
// bmem64
|
||
// xmmreg: {1to2}
|
||
// ymmreg: {1to4}
|
||
// zmmreg: {1to8}
|
||
|
||
// in any opcodes not exists a mmregister
|
||
// e.g. vfpclasspd k1, [RAX] {1to8}, 0
|
||
// =>> check flags
|
||
|
||
|
||
case oper[i]^.vopext and (OTVE_VECTOR_BCST2 or OTVE_VECTOR_BCST4 or OTVE_VECTOR_BCST8 or OTVE_VECTOR_BCST16) of
|
||
OTVE_VECTOR_BCST2: if not(IF_BCST2 in p^.flags) then exit;
|
||
OTVE_VECTOR_BCST4: if not(IF_BCST4 in p^.flags) then exit;
|
||
OTVE_VECTOR_BCST8: if not(IF_BCST8 in p^.flags) then exit;
|
||
OTVE_VECTOR_BCST16: if not(IF_BCST16 in p^.flags) then exit;
|
||
else exit;
|
||
end;
|
||
end;
|
||
|
||
end;
|
||
|
||
if (oper[i]^.vopext and OTVE_VECTOR_ER) = OTVE_VECTOR_ER then
|
||
vopext := vopext or OT_VECTORER;
|
||
|
||
if (oper[i]^.vopext and OTVE_VECTOR_SAE) = OTVE_VECTOR_SAE then
|
||
vopext := vopext or OT_VECTORSAE;
|
||
|
||
if p^.optypes[i] and vopext <> vopext then
|
||
exit;
|
||
end;
|
||
end;
|
||
|
||
result:=true;
|
||
end;
|
||
|
||
|
||
procedure taicpu.ResetPass1;
|
||
begin
|
||
{ we need to reset everything here, because the choosen insentry
|
||
can be invalid for a new situation where the previously optimized
|
||
insentry is not correct }
|
||
InsEntry:=nil;
|
||
InsSize:=0;
|
||
LastInsOffset:=-1;
|
||
end;
|
||
|
||
|
||
procedure taicpu.ResetPass2;
|
||
begin
|
||
{ we are here in a second pass, check if the instruction can be optimized }
|
||
if assigned(InsEntry) and
|
||
(IF_PASS2 in InsEntry^.flags) then
|
||
begin
|
||
InsEntry:=nil;
|
||
InsSize:=0;
|
||
end;
|
||
LastInsOffset:=-1;
|
||
end;
|
||
|
||
|
||
function taicpu.CheckIfValid:boolean;
|
||
begin
|
||
result:=FindInsEntry(nil);
|
||
end;
|
||
|
||
|
||
function taicpu.FindInsentry(objdata:TObjData):boolean;
|
||
var
|
||
i : longint;
|
||
begin
|
||
result:=false;
|
||
{ Things which may only be done once, not when a second pass is done to
|
||
optimize }
|
||
|
||
if (Insentry=nil) or (IF_PASS2 in InsEntry^.flags) then
|
||
begin
|
||
current_filepos:=fileinfo;
|
||
{ We need intel style operands }
|
||
SetOperandOrder(op_intel);
|
||
{ create the .ot fields }
|
||
|
||
create_ot(objdata);
|
||
{ set the file postion }
|
||
end
|
||
else
|
||
begin
|
||
{ we've already an insentry so it's valid }
|
||
result:=true;
|
||
exit;
|
||
end;
|
||
{ Lookup opcode in the table }
|
||
InsSize:=-1;
|
||
i:=instabcache^[opcode];
|
||
if i=-1 then
|
||
begin
|
||
Message1(asmw_e_opcode_not_in_table,gas_op2str[opcode]);
|
||
exit;
|
||
end;
|
||
insentry:=@instab[i];
|
||
while (insentry^.opcode=opcode) do
|
||
begin
|
||
if matches(insentry) then
|
||
begin
|
||
result:=true;
|
||
exit;
|
||
end;
|
||
inc(insentry);
|
||
end;
|
||
Message1(asmw_e_invalid_opcode_and_operands,GetString);
|
||
{ No instruction found, set insentry to nil and inssize to -1 }
|
||
insentry:=nil;
|
||
inssize:=-1;
|
||
end;
|
||
|
||
function taicpu.CheckUseEVEX: boolean;
|
||
var
|
||
i: integer;
|
||
begin
|
||
result := false;
|
||
for i := 0 to ops - 1 do
|
||
begin
|
||
if (oper[i]^.typ=top_reg) and
|
||
(getregtype(oper[i]^.reg) = R_MMREGISTER) then
|
||
if getsupreg(oper[i]^.reg)>=16 then
|
||
result := true;
|
||
|
||
if (oper[i]^.vopext and OTVE_VECTOR_MASK) <> 0 then
|
||
result := true;
|
||
end;
|
||
end;
|
||
|
||
procedure taicpu.CheckEVEXTuple(const aInput:toper; aInsEntry: pInsentry; aIsVector128, aIsVector256, aIsVector512, aIsEVEXW1: boolean);
|
||
var
|
||
i: integer;
|
||
tuplesize: integer;
|
||
memsize: integer;
|
||
begin
|
||
if EVEXTupleState = etsUnknown then
|
||
begin
|
||
EVEXTupleState := etsNotTuple;
|
||
|
||
if aInsEntry^.Flags * IF_TUPLEMASK <> [] then
|
||
begin
|
||
tuplesize := 0;
|
||
|
||
if IF_TFV in aInsEntry^.Flags then
|
||
begin
|
||
for i := 0 to aInsEntry^.ops - 1 do
|
||
if (aInsEntry^.optypes[i] and OT_BMEM32 = OT_BMEM32) then
|
||
begin
|
||
tuplesize := 4;
|
||
break;
|
||
end
|
||
else if (aInsEntry^.optypes[i] and OT_BMEM64 = OT_BMEM64) then
|
||
begin
|
||
tuplesize := 8;
|
||
break;
|
||
end
|
||
else if (aInsEntry^.optypes[i] and OT_MEMORY = OT_MEMORY) then
|
||
begin
|
||
if aIsVector512 then tuplesize := 64
|
||
else if aIsVector256 then tuplesize := 32
|
||
else tuplesize := 16;
|
||
|
||
break;
|
||
end
|
||
else if (aInsEntry^.optypes[i] and OT_REGNORM = OT_REGMEM) then
|
||
begin
|
||
if aIsVector512 then tuplesize := 64
|
||
else if aIsVector256 then tuplesize := 32
|
||
else tuplesize := 16;
|
||
|
||
break;
|
||
end;
|
||
|
||
|
||
end
|
||
else if IF_THV in aInsEntry^.Flags then
|
||
begin
|
||
for i := 0 to aInsEntry^.ops - 1 do
|
||
if (aInsEntry^.optypes[i] and OT_BMEM32 = OT_BMEM32) then
|
||
begin
|
||
tuplesize := 4;
|
||
break;
|
||
end
|
||
else if (aInsEntry^.optypes[i] and OT_REGNORM = OT_REGMEM) then
|
||
begin
|
||
if aIsVector512 then tuplesize := 32
|
||
else if aIsVector256 then tuplesize := 16
|
||
else tuplesize := 8;
|
||
|
||
break;
|
||
end
|
||
end
|
||
else if IF_TFVM in aInsEntry^.Flags then
|
||
begin
|
||
if aIsVector512 then tuplesize := 64
|
||
else if aIsVector256 then tuplesize := 32
|
||
else tuplesize := 16;
|
||
end
|
||
else
|
||
begin
|
||
memsize := 0;
|
||
|
||
for i := 0 to aInsEntry^.ops - 1 do
|
||
begin
|
||
if aInsEntry^.optypes[i] and (OT_REGNORM or OT_MEMORY) = OT_REGMEM then
|
||
begin
|
||
case aInsEntry^.optypes[i] and (OT_BITS32 or OT_BITS64) of
|
||
OT_BITS32: begin
|
||
memsize := 32;
|
||
break;
|
||
end;
|
||
OT_BITS64: begin
|
||
memsize := 64;
|
||
break;
|
||
end;
|
||
end;
|
||
end
|
||
else
|
||
case aInsEntry^.optypes[i] and (OT_MEM8 or OT_MEM16 or OT_MEM32 or OT_MEM64) of
|
||
OT_MEM8: begin
|
||
memsize := 8;
|
||
break;
|
||
end;
|
||
OT_MEM16: begin
|
||
memsize := 16;
|
||
break;
|
||
end;
|
||
OT_MEM32: begin
|
||
memsize := 32;
|
||
break;
|
||
end;
|
||
OT_MEM64: //if aIsEVEXW1 then
|
||
begin
|
||
memsize := 64;
|
||
break;
|
||
end;
|
||
end;
|
||
end;
|
||
|
||
if IF_T1S in aInsEntry^.Flags then
|
||
begin
|
||
case memsize of
|
||
8: tuplesize := 1;
|
||
16: tuplesize := 2;
|
||
else if aIsEVEXW1 then tuplesize := 8
|
||
else tuplesize := 4;
|
||
end;
|
||
end
|
||
else if IF_T1F32 in aInsEntry^.Flags then tuplesize := 4
|
||
else if IF_T1F64 in aInsEntry^.Flags then tuplesize := 8
|
||
else if IF_T2 in aInsEntry^.Flags then
|
||
begin
|
||
case aIsEVEXW1 of
|
||
false: tuplesize := 8;
|
||
else if aIsVector256 or aIsVector512 then tuplesize := 16;
|
||
end;
|
||
end
|
||
else if IF_T4 in aInsEntry^.Flags then
|
||
begin
|
||
case aIsEVEXW1 of
|
||
false: if aIsVector256 or aIsVector512 then tuplesize := 16;
|
||
else if aIsVector512 then tuplesize := 32;
|
||
end;
|
||
end
|
||
else if IF_T8 in aInsEntry^.Flags then
|
||
begin
|
||
case aIsEVEXW1 of
|
||
false: if aIsVector512 then tuplesize := 32;
|
||
else
|
||
Internalerror(2019081003);
|
||
end;
|
||
end
|
||
else if IF_THVM in aInsEntry^.Flags then
|
||
begin
|
||
tuplesize := 8; // default 128bit-vectorlength
|
||
if aIsVector256 then tuplesize := 16
|
||
else if aIsVector512 then tuplesize := 32;
|
||
end
|
||
else if IF_TQVM in aInsEntry^.Flags then
|
||
begin
|
||
tuplesize := 4; // default 128bit-vectorlength
|
||
if aIsVector256 then tuplesize := 8
|
||
else if aIsVector512 then tuplesize := 16;
|
||
end
|
||
else if IF_TOVM in aInsEntry^.Flags then
|
||
begin
|
||
tuplesize := 2; // default 128bit-vectorlength
|
||
if aIsVector256 then tuplesize := 4
|
||
else if aIsVector512 then tuplesize := 8;
|
||
end
|
||
else if IF_TMEM128 in aInsEntry^.Flags then tuplesize := 16
|
||
else if IF_TMDDUP in aInsEntry^.Flags then
|
||
begin
|
||
tuplesize := 8; // default 128bit-vectorlength
|
||
if aIsVector256 then tuplesize := 32
|
||
else if aIsVector512 then tuplesize := 64;
|
||
end;
|
||
end;;
|
||
|
||
if tuplesize > 0 then
|
||
begin
|
||
if aInput.typ = top_ref then
|
||
begin
|
||
if (aInput.ref^.offset <> 0) and
|
||
((aInput.ref^.offset mod tuplesize) = 0) and
|
||
(abs(aInput.ref^.offset) div tuplesize <= 127) then
|
||
begin
|
||
aInput.ref^.offset := aInput.ref^.offset div tuplesize;
|
||
EVEXTupleState := etsIsTuple;
|
||
end;
|
||
end;
|
||
end;
|
||
end;
|
||
end;
|
||
end;
|
||
|
||
|
||
|
||
function taicpu.Pass1(objdata:TObjData):longint;
|
||
begin
|
||
Pass1:=0;
|
||
{ Save the old offset and set the new offset }
|
||
InsOffset:=ObjData.CurrObjSec.Size;
|
||
{ Error? }
|
||
if (Insentry=nil) and (InsSize=-1) then
|
||
exit;
|
||
{ set the file postion }
|
||
current_filepos:=fileinfo;
|
||
{ Get InsEntry }
|
||
if FindInsEntry(ObjData) then
|
||
begin
|
||
|
||
{ Calculate instruction size }
|
||
InsSize:=calcsize(insentry);
|
||
if segprefix<>NR_NO then
|
||
inc(InsSize);
|
||
if NeedAddrPrefix then
|
||
inc(InsSize);
|
||
{ Fix opsize if size if forced }
|
||
if insentry^.flags*[IF_SB,IF_SW,IF_SD]<>[] then
|
||
begin
|
||
if insentry^.flags*IF_ARMASK=[] then
|
||
begin
|
||
if IF_SB in insentry^.flags then
|
||
begin
|
||
if opsize=S_NO then
|
||
opsize:=S_B;
|
||
end
|
||
else if IF_SW in insentry^.flags then
|
||
begin
|
||
if opsize=S_NO then
|
||
opsize:=S_W;
|
||
end
|
||
else if IF_SD in insentry^.flags then
|
||
begin
|
||
if opsize=S_NO then
|
||
opsize:=S_L;
|
||
end;
|
||
end;
|
||
end;
|
||
LastInsOffset:=InsOffset;
|
||
Pass1:=InsSize;
|
||
exit;
|
||
end;
|
||
LastInsOffset:=-1;
|
||
end;
|
||
|
||
const
|
||
segprefixes: array[NR_ES..NR_GS] of Byte=(
|
||
// es cs ss ds fs gs
|
||
$26, $2E, $36, $3E, $64, $65
|
||
);
|
||
|
||
procedure taicpu.Pass2(objdata:TObjData);
|
||
begin
|
||
{ error in pass1 ? }
|
||
if insentry=nil then
|
||
exit;
|
||
current_filepos:=fileinfo;
|
||
{ Segment override }
|
||
if (segprefix>=NR_ES) and (segprefix<=NR_GS) then
|
||
begin
|
||
{$ifdef i8086}
|
||
if (objdata.CPUType<>cpu_none) and (objdata.CPUType<cpu_386) and
|
||
((segprefix=NR_FS) or (segprefix=NR_GS)) then
|
||
Message(asmw_e_instruction_not_supported_by_cpu);
|
||
{$endif i8086}
|
||
objdata.writebytes(segprefixes[segprefix],1);
|
||
{ fix the offset for GenNode }
|
||
inc(InsOffset);
|
||
end
|
||
else if segprefix<>NR_NO then
|
||
InternalError(201001071);
|
||
{ Address size prefix? }
|
||
if NeedAddrPrefix then
|
||
begin
|
||
write0x67prefix(objdata);
|
||
{ fix the offset for GenNode }
|
||
inc(InsOffset);
|
||
end;
|
||
{ Generate the instruction }
|
||
GenCode(objdata);
|
||
end;
|
||
|
||
|
||
function is_64_bit_ref(const ref:treference):boolean;
|
||
begin
|
||
{$if defined(x86_64)}
|
||
result:=not is_32_bit_ref(ref);
|
||
{$elseif defined(i386) or defined(i8086)}
|
||
result:=false;
|
||
{$endif}
|
||
end;
|
||
|
||
|
||
function is_32_bit_ref(const ref:treference):boolean;
|
||
begin
|
||
{$if defined(x86_64)}
|
||
result:=(ref.refaddr=addr_no) and
|
||
(ref.base<>NR_RIP) and
|
||
(
|
||
((ref.index<>NR_NO) and (getsubreg(ref.index)=R_SUBD)) or
|
||
((ref.base<>NR_NO) and (getsubreg(ref.base)=R_SUBD))
|
||
);
|
||
{$elseif defined(i386) or defined(i8086)}
|
||
result:=not is_16_bit_ref(ref);
|
||
{$endif}
|
||
end;
|
||
|
||
|
||
function is_16_bit_ref(const ref:treference):boolean;
|
||
var
|
||
ir,br : Tregister;
|
||
isub,bsub : tsubregister;
|
||
begin
|
||
if (ref.index<>NR_NO) and (getregtype(ref.index)=R_MMREGISTER) then
|
||
exit(false);
|
||
ir:=ref.index;
|
||
br:=ref.base;
|
||
isub:=getsubreg(ir);
|
||
bsub:=getsubreg(br);
|
||
{ it's a direct address }
|
||
if (br=NR_NO) and (ir=NR_NO) then
|
||
begin
|
||
{$ifdef i8086}
|
||
result:=true;
|
||
{$else i8086}
|
||
result:=false;
|
||
{$endif}
|
||
end
|
||
else
|
||
{ it's an indirection }
|
||
begin
|
||
result := ((ir<>NR_NO) and (isub=R_SUBW)) or
|
||
((br<>NR_NO) and (bsub=R_SUBW));
|
||
end;
|
||
end;
|
||
|
||
|
||
function get_ref_address_size(const ref:treference):byte;
|
||
begin
|
||
if is_64_bit_ref(ref) then
|
||
result:=64
|
||
else if is_32_bit_ref(ref) then
|
||
result:=32
|
||
else if is_16_bit_ref(ref) then
|
||
result:=16
|
||
else
|
||
internalerror(2017101601);
|
||
end;
|
||
|
||
|
||
function get_default_segment_of_ref(const ref:treference):tregister;
|
||
begin
|
||
{ for 16-bit registers, we allow base and index to be swapped, that's
|
||
why we also we check whether ref.index=NR_BP. For 32-bit registers,
|
||
however, index=NR_EBP is encoded differently than base=NR_EBP and has
|
||
a different default segment. }
|
||
if (ref.base=NR_BP) or (ref.index=NR_BP) or
|
||
(ref.base=NR_EBP) or (ref.base=NR_ESP)
|
||
{$ifdef x86_64}
|
||
or (ref.base=NR_RBP) or (ref.base=NR_RSP)
|
||
{$endif x86_64}
|
||
then
|
||
result:=NR_SS
|
||
else
|
||
result:=NR_DS;
|
||
end;
|
||
|
||
|
||
procedure optimize_ref(var ref:treference; inlineasm: boolean);
|
||
var
|
||
ss_equals_ds: boolean;
|
||
tmpreg: TRegister;
|
||
begin
|
||
{$ifdef x86_64}
|
||
{ x86_64 in long mode ignores all segment base, limit and access rights
|
||
checks for the DS, ES and SS registers, so we can set ss_equals_ds to
|
||
true (and thus, perform stronger optimizations on the reference),
|
||
regardless of whether this is inline asm or not (so, even if the user
|
||
is doing tricks by loading different values into DS and SS, it still
|
||
doesn't matter while the processor is in long mode) }
|
||
ss_equals_ds:=True;
|
||
{$else x86_64}
|
||
{ for i8086 and i386 inline asm, we assume SS<>DS, even if we're
|
||
compiling for a memory model, where SS=DS, because the user might be
|
||
doing something tricky with the segment registers (and may have
|
||
temporarily set them differently) }
|
||
if inlineasm then
|
||
ss_equals_ds:=False
|
||
else
|
||
ss_equals_ds:=segment_regs_equal(NR_DS,NR_SS);
|
||
{$endif x86_64}
|
||
{ remove redundant segment overrides }
|
||
if (ref.segment<>NR_NO) and
|
||
((inlineasm and (ref.segment=get_default_segment_of_ref(ref))) or
|
||
((not inlineasm) and (segment_regs_equal(ref.segment,get_default_segment_of_ref(ref))))) then
|
||
ref.segment:=NR_NO;
|
||
if not is_16_bit_ref(ref) then
|
||
begin
|
||
{ Switching index to base position gives shorter assembler instructions.
|
||
Converting index*2 to base+index also gives shorter instructions. }
|
||
if (ref.base=NR_NO) and (ref.index<>NR_NO) and (ref.scalefactor<=2) and
|
||
(ss_equals_ds or (ref.segment<>NR_NO) or (ref.index<>NR_EBP))
|
||
{ do not mess with tls references, they have the (,reg,1) format on purpose
|
||
else the linker cannot resolve/replace them }
|
||
{$ifdef i386} and (ref.refaddr<>addr_tlsgd) {$endif i386} then
|
||
begin
|
||
ref.base:=ref.index;
|
||
if ref.scalefactor=2 then
|
||
ref.scalefactor:=1
|
||
else
|
||
begin
|
||
ref.index:=NR_NO;
|
||
ref.scalefactor:=0;
|
||
end;
|
||
end;
|
||
{ Switching rBP+reg to reg+rBP sometimes gives shorter instructions (if there's no offset)
|
||
On x86_64 this also works for switching r13+reg to reg+r13. }
|
||
if ((ref.base=NR_EBP) {$ifdef x86_64}or (ref.base=NR_RBP) or (ref.base=NR_R13) or (ref.base=NR_R13D){$endif}) and
|
||
(ref.index<>NR_NO) and
|
||
(ref.index<>NR_EBP) and {$ifdef x86_64}(ref.index<>NR_RBP) and (ref.index<>NR_R13) and (ref.index<>NR_R13D) and{$endif}
|
||
(ref.scalefactor<=1) and (ref.offset=0) and (ref.refaddr=addr_no) and
|
||
(ss_equals_ds or (ref.segment<>NR_NO)) then
|
||
begin
|
||
tmpreg:=ref.base;
|
||
ref.base:=ref.index;
|
||
ref.index:=tmpreg;
|
||
end;
|
||
end;
|
||
{ remove redundant segment overrides again }
|
||
if (ref.segment<>NR_NO) and
|
||
((inlineasm and (ref.segment=get_default_segment_of_ref(ref))) or
|
||
((not inlineasm) and (segment_regs_equal(ref.segment,get_default_segment_of_ref(ref))))) then
|
||
ref.segment:=NR_NO;
|
||
end;
|
||
|
||
|
||
function taicpu.NeedAddrPrefix(opidx: byte): boolean;
|
||
begin
|
||
{$if defined(x86_64)}
|
||
result:=(oper[opidx]^.typ=top_ref) and is_32_bit_ref(oper[opidx]^.ref^);
|
||
{$elseif defined(i386)}
|
||
result:=(oper[opidx]^.typ=top_ref) and is_16_bit_ref(oper[opidx]^.ref^);
|
||
{$elseif defined(i8086)}
|
||
result:=(oper[opidx]^.typ=top_ref) and is_32_bit_ref(oper[opidx]^.ref^);
|
||
{$endif}
|
||
end;
|
||
|
||
|
||
function taicpu.NeedAddrPrefix:boolean;
|
||
var
|
||
i: Integer;
|
||
begin
|
||
for i:=0 to ops-1 do
|
||
if needaddrprefix(i) then
|
||
exit(true);
|
||
result:=false;
|
||
end;
|
||
|
||
|
||
procedure badreg(r:Tregister);
|
||
begin
|
||
Message1(asmw_e_invalid_register,generic_regname(r));
|
||
end;
|
||
|
||
|
||
function regval(r:Tregister):byte;
|
||
const
|
||
intsupreg2opcode: array[0..7] of byte=
|
||
// ax cx dx bx si di bp sp -- in x86reg.dat
|
||
// ax cx dx bx sp bp si di -- needed order
|
||
(0, 1, 2, 3, 6, 7, 5, 4);
|
||
maxsupreg: array[tregistertype] of tsuperregister=
|
||
{$ifdef x86_64}
|
||
(0, 16, 9, 8, 32, 32, 8, 0, 0);
|
||
{$else x86_64}
|
||
(0, 8, 9, 8, 8, 32, 8, 0, 0);
|
||
{$endif x86_64}
|
||
var
|
||
rs: tsuperregister;
|
||
rt: tregistertype;
|
||
begin
|
||
rs:=getsupreg(r);
|
||
rt:=getregtype(r);
|
||
|
||
if (rs>=maxsupreg[rt]) then
|
||
badreg(r);
|
||
|
||
result:=rs and 7;
|
||
if (rt=R_INTREGISTER) then
|
||
begin
|
||
if (rs<8) then
|
||
result:=intsupreg2opcode[rs];
|
||
if getsubreg(r)=R_SUBH then
|
||
inc(result,4);
|
||
end;
|
||
end;
|
||
|
||
|
||
{$if defined(x86_64)}
|
||
function rexbits(r: tregister): byte;
|
||
begin
|
||
result:=0;
|
||
case getregtype(r) of
|
||
R_INTREGISTER:
|
||
if (getsupreg(r)>=RS_R8) then
|
||
{ Either B,X or R bits can be set, depending on register role in instruction.
|
||
Set all three bits here, caller will discard unnecessary ones. }
|
||
result:=result or $47
|
||
else if (getsubreg(r)=R_SUBL) and
|
||
(getsupreg(r) in [RS_RDI,RS_RSI,RS_RBP,RS_RSP]) then
|
||
result:=result or $40
|
||
else if (getsubreg(r)=R_SUBH) then
|
||
{ Not an actual REX bit, used to detect incompatible usage of
|
||
AH/BH/CH/DH }
|
||
result:=result or $80;
|
||
R_MMREGISTER:
|
||
//if getsupreg(r)>=RS_XMM8 then
|
||
// AVX512 = 32 register
|
||
// rexbit = 0 => MMRegister 0..7 or 16..23
|
||
// rexbit = 1 => MMRegister 8..15 or 24..31
|
||
if (getsupreg(r) and $08) = $08 then
|
||
result:=result or $47;
|
||
else
|
||
;
|
||
end;
|
||
end;
|
||
|
||
|
||
|
||
function process_ea_ref_64_32(const input:toper;var output:ea;rfield:longint; uselargeoffset: boolean):boolean;
|
||
var
|
||
sym : tasmsymbol;
|
||
md,s : byte;
|
||
base,index,scalefactor,
|
||
o : longint;
|
||
ir,br : Tregister;
|
||
isub,bsub : tsubregister;
|
||
begin
|
||
result:=false;
|
||
ir:=input.ref^.index;
|
||
br:=input.ref^.base;
|
||
isub:=getsubreg(ir);
|
||
bsub:=getsubreg(br);
|
||
s:=input.ref^.scalefactor;
|
||
o:=input.ref^.offset;
|
||
sym:=input.ref^.symbol;
|
||
|
||
//if ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER)) or
|
||
// ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
|
||
if ((ir<>NR_NO) and (getregtype(ir)=R_MMREGISTER) and (br<>NR_NO) and (getregtype(br)<>R_INTREGISTER)) or // vector memory (AVX2)
|
||
((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER) and (getregtype(ir)<>R_MMREGISTER)) or
|
||
((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
|
||
internalerror(200301081);
|
||
{ it's direct address }
|
||
if (br=NR_NO) and (ir=NR_NO) then
|
||
begin
|
||
output.sib_present:=true;
|
||
output.bytes:=4;
|
||
output.modrm:=4 or (rfield shl 3);
|
||
output.sib:=$25;
|
||
end
|
||
else if (br=NR_RIP) and (ir=NR_NO) then
|
||
begin
|
||
{ rip based }
|
||
output.sib_present:=false;
|
||
output.bytes:=4;
|
||
output.modrm:=5 or (rfield shl 3);
|
||
end
|
||
else
|
||
{ it's an indirection }
|
||
begin
|
||
if ((br=NR_RIP) and (ir<>NR_NO)) or
|
||
(ir=NR_RIP) then
|
||
message(asmw_e_illegal_use_of_rip);
|
||
{ 16 bit? }
|
||
|
||
if ((ir<>NR_NO) and (isub in [R_SUBMMX,R_SUBMMY,R_SUBMMZ]) and
|
||
(br<>NR_NO) and (bsub=R_SUBQ)
|
||
) then
|
||
begin
|
||
// vector memory (AVX2) =>> ignore
|
||
end
|
||
else if ((ir<>NR_NO) and (isub<>R_SUBQ) and (isub<>R_SUBD)) or
|
||
((br<>NR_NO) and (bsub<>R_SUBQ) and (bsub<>R_SUBD)) then
|
||
begin
|
||
message(asmw_e_16bit_32bit_not_supported);
|
||
end;
|
||
|
||
{ wrong, for various reasons }
|
||
if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
|
||
exit;
|
||
|
||
output.rex:=output.rex or (rexbits(br) and $F1) or (rexbits(ir) and $F2);
|
||
result:=true;
|
||
|
||
|
||
{ base }
|
||
case br of
|
||
NR_R8D,
|
||
NR_EAX,
|
||
NR_R8,
|
||
NR_RAX : base:=0;
|
||
NR_R9D,
|
||
NR_ECX,
|
||
NR_R9,
|
||
NR_RCX : base:=1;
|
||
NR_R10D,
|
||
NR_EDX,
|
||
NR_R10,
|
||
NR_RDX : base:=2;
|
||
NR_R11D,
|
||
NR_EBX,
|
||
NR_R11,
|
||
NR_RBX : base:=3;
|
||
NR_R12D,
|
||
NR_ESP,
|
||
NR_R12,
|
||
NR_RSP : base:=4;
|
||
NR_R13D,
|
||
NR_EBP,
|
||
NR_R13,
|
||
NR_NO,
|
||
NR_RBP : base:=5;
|
||
NR_R14D,
|
||
NR_ESI,
|
||
NR_R14,
|
||
NR_RSI : base:=6;
|
||
NR_R15D,
|
||
NR_EDI,
|
||
NR_R15,
|
||
NR_RDI : base:=7;
|
||
else
|
||
exit;
|
||
end;
|
||
{ index }
|
||
case ir of
|
||
NR_R8D,
|
||
NR_EAX,
|
||
NR_R8,
|
||
NR_RAX,
|
||
NR_XMM0,
|
||
NR_XMM8,
|
||
NR_XMM16,
|
||
NR_XMM24,
|
||
NR_YMM0,
|
||
NR_YMM8,
|
||
NR_YMM16,
|
||
NR_YMM24,
|
||
NR_ZMM0,
|
||
NR_ZMM8,
|
||
NR_ZMM16,
|
||
NR_ZMM24: index:=0;
|
||
NR_R9D,
|
||
NR_ECX,
|
||
NR_R9,
|
||
NR_RCX,
|
||
NR_XMM1,
|
||
NR_XMM9,
|
||
NR_XMM17,
|
||
NR_XMM25,
|
||
NR_YMM1,
|
||
NR_YMM9,
|
||
NR_YMM17,
|
||
NR_YMM25,
|
||
NR_ZMM1,
|
||
NR_ZMM9,
|
||
NR_ZMM17,
|
||
NR_ZMM25: index:=1;
|
||
NR_R10D,
|
||
NR_EDX,
|
||
NR_R10,
|
||
NR_RDX,
|
||
NR_XMM2,
|
||
NR_XMM10,
|
||
NR_XMM18,
|
||
NR_XMM26,
|
||
NR_YMM2,
|
||
NR_YMM10,
|
||
NR_YMM18,
|
||
NR_YMM26,
|
||
NR_ZMM2,
|
||
NR_ZMM10,
|
||
NR_ZMM18,
|
||
NR_ZMM26: index:=2;
|
||
NR_R11D,
|
||
NR_EBX,
|
||
NR_R11,
|
||
NR_RBX,
|
||
NR_XMM3,
|
||
NR_XMM11,
|
||
NR_XMM19,
|
||
NR_XMM27,
|
||
NR_YMM3,
|
||
NR_YMM11,
|
||
NR_YMM19,
|
||
NR_YMM27,
|
||
NR_ZMM3,
|
||
NR_ZMM11,
|
||
NR_ZMM19,
|
||
NR_ZMM27: index:=3;
|
||
NR_R12D,
|
||
NR_ESP,
|
||
NR_R12,
|
||
NR_NO,
|
||
NR_XMM4,
|
||
NR_XMM12,
|
||
NR_XMM20,
|
||
NR_XMM28,
|
||
NR_YMM4,
|
||
NR_YMM12,
|
||
NR_YMM20,
|
||
NR_YMM28,
|
||
NR_ZMM4,
|
||
NR_ZMM12,
|
||
NR_ZMM20,
|
||
NR_ZMM28: index:=4;
|
||
NR_R13D,
|
||
NR_EBP,
|
||
NR_R13,
|
||
NR_RBP,
|
||
NR_XMM5,
|
||
NR_XMM13,
|
||
NR_XMM21,
|
||
NR_XMM29,
|
||
NR_YMM5,
|
||
NR_YMM13,
|
||
NR_YMM21,
|
||
NR_YMM29,
|
||
NR_ZMM5,
|
||
NR_ZMM13,
|
||
NR_ZMM21,
|
||
NR_ZMM29: index:=5;
|
||
NR_R14D,
|
||
NR_ESI,
|
||
NR_R14,
|
||
NR_RSI,
|
||
NR_XMM6,
|
||
NR_XMM14,
|
||
NR_XMM22,
|
||
NR_XMM30,
|
||
NR_YMM6,
|
||
NR_YMM14,
|
||
NR_YMM22,
|
||
NR_YMM30,
|
||
NR_ZMM6,
|
||
NR_ZMM14,
|
||
NR_ZMM22,
|
||
NR_ZMM30: index:=6;
|
||
NR_R15D,
|
||
NR_EDI,
|
||
NR_R15,
|
||
NR_RDI,
|
||
NR_XMM7,
|
||
NR_XMM15,
|
||
NR_XMM23,
|
||
NR_XMM31,
|
||
NR_YMM7,
|
||
NR_YMM15,
|
||
NR_YMM23,
|
||
NR_YMM31,
|
||
NR_ZMM7,
|
||
NR_ZMM15,
|
||
NR_ZMM23,
|
||
NR_ZMM31: index:=7;
|
||
else
|
||
exit;
|
||
end;
|
||
case s of
|
||
0,
|
||
1 : scalefactor:=0;
|
||
2 : scalefactor:=1;
|
||
4 : scalefactor:=2;
|
||
8 : scalefactor:=3;
|
||
else
|
||
exit;
|
||
end;
|
||
{ If rbp or r13 is used we must always include an offset }
|
||
if (br=NR_NO) or
|
||
((br<>NR_RBP) and (br<>NR_R13) and (br<>NR_EBP) and (br<>NR_R13D) and (o=0) and (sym=nil)) then
|
||
md:=0
|
||
else
|
||
if ((o>=-128) and (o<=127) and (sym=nil) and (not(uselargeoffset) or (o = 0))) then
|
||
md:=1
|
||
else
|
||
md:=2;
|
||
if (br=NR_NO) or (md=2) then
|
||
output.bytes:=4
|
||
else
|
||
output.bytes:=md;
|
||
{ SIB needed ? }
|
||
if (ir=NR_NO) and (br<>NR_RSP) and (br<>NR_R12) and (br<>NR_ESP) and (br<>NR_R12D) then
|
||
begin
|
||
output.sib_present:=false;
|
||
output.modrm:=(md shl 6) or (rfield shl 3) or base;
|
||
end
|
||
else
|
||
begin
|
||
output.sib_present:=true;
|
||
output.modrm:=(md shl 6) or (rfield shl 3) or 4;
|
||
output.sib:=(scalefactor shl 6) or (index shl 3) or base;
|
||
end;
|
||
end;
|
||
output.size:=1+ord(output.sib_present)+output.bytes;
|
||
result:=true;
|
||
end;
|
||
|
||
|
||
{$elseif defined(i386) or defined(i8086)}
|
||
|
||
function process_ea_ref_32(const input:toper;out output:ea;rfield:longint; uselargeoffset: boolean):boolean;
|
||
var
|
||
sym : tasmsymbol;
|
||
md,s : byte;
|
||
base,index,scalefactor,
|
||
o : longint;
|
||
ir,br : Tregister;
|
||
isub,bsub : tsubregister;
|
||
begin
|
||
result:=false;
|
||
if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)=R_MMREGISTER) and (input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) or // vector memory (AVX2)
|
||
((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER) and (getregtype(input.ref^.index)<>R_MMREGISTER)) or
|
||
((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
|
||
internalerror(200301081);
|
||
|
||
|
||
ir:=input.ref^.index;
|
||
br:=input.ref^.base;
|
||
isub:=getsubreg(ir);
|
||
bsub:=getsubreg(br);
|
||
s:=input.ref^.scalefactor;
|
||
o:=input.ref^.offset;
|
||
sym:=input.ref^.symbol;
|
||
{ it's direct address }
|
||
if (br=NR_NO) and (ir=NR_NO) then
|
||
begin
|
||
{ it's a pure offset }
|
||
output.sib_present:=false;
|
||
output.bytes:=4;
|
||
output.modrm:=5 or (rfield shl 3);
|
||
end
|
||
else
|
||
{ it's an indirection }
|
||
begin
|
||
{ 16 bit address? }
|
||
|
||
if ((ir<>NR_NO) and (isub in [R_SUBMMX,R_SUBMMY,R_SUBMMZ]) and
|
||
(br<>NR_NO) and (bsub=R_SUBD)
|
||
) then
|
||
begin
|
||
// vector memory (AVX2) =>> ignore
|
||
end
|
||
else if ((ir<>NR_NO) and (isub<>R_SUBD)) or
|
||
((br<>NR_NO) and (bsub<>R_SUBD)) then
|
||
message(asmw_e_16bit_not_supported);
|
||
{$ifdef OPTEA}
|
||
{ make single reg base }
|
||
if (br=NR_NO) and (s=1) then
|
||
begin
|
||
br:=ir;
|
||
ir:=NR_NO;
|
||
end;
|
||
{ convert [3,5,9]*EAX to EAX+[2,4,8]*EAX }
|
||
if (br=NR_NO) and
|
||
(((s=2) and (ir<>NR_ESP)) or
|
||
(s=3) or (s=5) or (s=9)) then
|
||
begin
|
||
br:=ir;
|
||
dec(s);
|
||
end;
|
||
{ swap ESP into base if scalefactor is 1 }
|
||
if (s=1) and (ir=NR_ESP) then
|
||
begin
|
||
ir:=br;
|
||
br:=NR_ESP;
|
||
end;
|
||
{$endif OPTEA}
|
||
{ wrong, for various reasons }
|
||
if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
|
||
exit;
|
||
{ base }
|
||
case br of
|
||
NR_EAX : base:=0;
|
||
NR_ECX : base:=1;
|
||
NR_EDX : base:=2;
|
||
NR_EBX : base:=3;
|
||
NR_ESP : base:=4;
|
||
NR_NO,
|
||
NR_EBP : base:=5;
|
||
NR_ESI : base:=6;
|
||
NR_EDI : base:=7;
|
||
else
|
||
exit;
|
||
end;
|
||
{ index }
|
||
case ir of
|
||
NR_EAX,
|
||
NR_XMM0,
|
||
NR_YMM0,
|
||
NR_ZMM0: index:=0;
|
||
NR_ECX,
|
||
NR_XMM1,
|
||
NR_YMM1,
|
||
NR_ZMM1: index:=1;
|
||
NR_EDX,
|
||
NR_XMM2,
|
||
NR_YMM2,
|
||
NR_ZMM2: index:=2;
|
||
NR_EBX,
|
||
NR_XMM3,
|
||
NR_YMM3,
|
||
NR_ZMM3: index:=3;
|
||
NR_NO,
|
||
NR_XMM4,
|
||
NR_YMM4,
|
||
NR_ZMM4: index:=4;
|
||
NR_EBP,
|
||
NR_XMM5,
|
||
NR_YMM5,
|
||
NR_ZMM5: index:=5;
|
||
NR_ESI,
|
||
NR_XMM6,
|
||
NR_YMM6,
|
||
NR_ZMM6: index:=6;
|
||
NR_EDI,
|
||
NR_XMM7,
|
||
NR_YMM7,
|
||
NR_ZMM7: index:=7;
|
||
else
|
||
exit;
|
||
end;
|
||
case s of
|
||
0,
|
||
1 : scalefactor:=0;
|
||
2 : scalefactor:=1;
|
||
4 : scalefactor:=2;
|
||
8 : scalefactor:=3;
|
||
else
|
||
exit;
|
||
end;
|
||
if (br=NR_NO) or
|
||
((br<>NR_EBP) and (o=0) and (sym=nil)) then
|
||
md:=0
|
||
else
|
||
if ((o>=-128) and (o<=127) and (sym=nil) and (not(uselargeoffset) or (o = 0))) then
|
||
md:=1
|
||
else
|
||
md:=2;
|
||
if (br=NR_NO) or (md=2) then
|
||
output.bytes:=4
|
||
else
|
||
output.bytes:=md;
|
||
{ SIB needed ? }
|
||
if (ir=NR_NO) and (br<>NR_ESP) then
|
||
begin
|
||
output.sib_present:=false;
|
||
output.modrm:=(longint(md) shl 6) or (rfield shl 3) or base;
|
||
end
|
||
else
|
||
begin
|
||
output.sib_present:=true;
|
||
output.modrm:=(longint(md) shl 6) or (rfield shl 3) or 4;
|
||
output.sib:=(scalefactor shl 6) or (index shl 3) or base;
|
||
end;
|
||
end;
|
||
if output.sib_present then
|
||
output.size:=2+output.bytes
|
||
else
|
||
output.size:=1+output.bytes;
|
||
result:=true;
|
||
end;
|
||
|
||
procedure maybe_swap_index_base(var br,ir:Tregister);
|
||
var
|
||
tmpreg: Tregister;
|
||
begin
|
||
if ((br=NR_NO) or (br=NR_SI) or (br=NR_DI)) and
|
||
((ir=NR_NO) or (ir=NR_BP) or (ir=NR_BX)) then
|
||
begin
|
||
tmpreg:=br;
|
||
br:=ir;
|
||
ir:=tmpreg;
|
||
end;
|
||
end;
|
||
|
||
function process_ea_ref_16(const input:toper;out output:ea;rfield:longint; uselargeoffset: boolean):boolean;
|
||
var
|
||
sym : tasmsymbol;
|
||
md,s : byte;
|
||
base,
|
||
o : longint;
|
||
ir,br : Tregister;
|
||
isub,bsub : tsubregister;
|
||
begin
|
||
result:=false;
|
||
if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER)) or
|
||
((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
|
||
internalerror(200301081);
|
||
|
||
|
||
ir:=input.ref^.index;
|
||
br:=input.ref^.base;
|
||
isub:=getsubreg(ir);
|
||
bsub:=getsubreg(br);
|
||
s:=input.ref^.scalefactor;
|
||
o:=input.ref^.offset;
|
||
sym:=input.ref^.symbol;
|
||
{ it's a direct address }
|
||
if (br=NR_NO) and (ir=NR_NO) then
|
||
begin
|
||
{ it's a pure offset }
|
||
output.bytes:=2;
|
||
output.modrm:=6 or (rfield shl 3);
|
||
end
|
||
else
|
||
{ it's an indirection }
|
||
begin
|
||
{ 32 bit address? }
|
||
|
||
if ((ir<>NR_NO) and (isub<>R_SUBW)) or
|
||
((br<>NR_NO) and (bsub<>R_SUBW)) then
|
||
message(asmw_e_32bit_not_supported);
|
||
{ scalefactor can only be 1 in 16-bit addresses }
|
||
if (s<>1) and (ir<>NR_NO) then
|
||
exit;
|
||
maybe_swap_index_base(br,ir);
|
||
if (br=NR_BX) and (ir=NR_SI) then
|
||
base:=0
|
||
else if (br=NR_BX) and (ir=NR_DI) then
|
||
base:=1
|
||
else if (br=NR_BP) and (ir=NR_SI) then
|
||
base:=2
|
||
else if (br=NR_BP) and (ir=NR_DI) then
|
||
base:=3
|
||
else if (br=NR_NO) and (ir=NR_SI) then
|
||
base:=4
|
||
else if (br=NR_NO) and (ir=NR_DI) then
|
||
base:=5
|
||
else if (br=NR_BP) and (ir=NR_NO) then
|
||
base:=6
|
||
else if (br=NR_BX) and (ir=NR_NO) then
|
||
base:=7
|
||
else
|
||
exit;
|
||
if (base<>6) and (o=0) and (sym=nil) then
|
||
md:=0
|
||
else if ((o>=-128) and (o<=127) and (sym=nil) and (not(uselargeoffset) or (o = 0))) then
|
||
md:=1
|
||
else
|
||
md:=2;
|
||
output.bytes:=md;
|
||
output.modrm:=(longint(md) shl 6) or (rfield shl 3) or base;
|
||
end;
|
||
output.size:=1+output.bytes;
|
||
output.sib_present:=false;
|
||
result:=true;
|
||
end;
|
||
{$endif}
|
||
|
||
function process_ea(const input:toper;out output:ea;rfield:longint; uselargeoffset: boolean):boolean;
|
||
var
|
||
rv : byte;
|
||
begin
|
||
result:=false;
|
||
fillchar(output,sizeof(output),0);
|
||
{Register ?}
|
||
if (input.typ=top_reg) then
|
||
begin
|
||
rv:=regval(input.reg);
|
||
output.modrm:=$c0 or (rfield shl 3) or rv;
|
||
output.size:=1;
|
||
{$ifdef x86_64}
|
||
output.rex:=output.rex or (rexbits(input.reg) and $F1);
|
||
{$endif x86_64}
|
||
result:=true;
|
||
exit;
|
||
end;
|
||
{No register, so memory reference.}
|
||
if input.typ<>top_ref then
|
||
internalerror(200409263);
|
||
{$if defined(x86_64)}
|
||
result:=process_ea_ref_64_32(input,output,rfield, uselargeoffset);
|
||
{$elseif defined(i386) or defined(i8086)}
|
||
if is_16_bit_ref(input.ref^) then
|
||
result:=process_ea_ref_16(input,output,rfield, uselargeoffset)
|
||
else
|
||
result:=process_ea_ref_32(input,output,rfield, uselargeoffset);
|
||
{$endif}
|
||
end;
|
||
|
||
function taicpu.calcsize(p:PInsEntry):shortint;
|
||
var
|
||
codes : pchar;
|
||
c : byte;
|
||
len : shortint;
|
||
len_ea_data: shortint;
|
||
len_ea_data_evex: shortint;
|
||
mref_offset: asizeint;
|
||
ea_data : ea;
|
||
exists_evex: boolean;
|
||
exists_vex: boolean;
|
||
exists_vex_extension: boolean;
|
||
exists_prefix_66: boolean;
|
||
exists_prefix_F2: boolean;
|
||
exists_prefix_F3: boolean;
|
||
exists_l256: boolean;
|
||
exists_l512: boolean;
|
||
exists_EVEXW1: boolean;
|
||
pmref_operand: poper;
|
||
{$ifdef x86_64}
|
||
omit_rexw : boolean;
|
||
{$endif x86_64}
|
||
begin
|
||
|
||
len:=0;
|
||
len_ea_data := 0;
|
||
len_ea_data_evex:= 0;
|
||
mref_offset := 0;
|
||
pmref_operand := nil;
|
||
|
||
codes:=@p^.code[0];
|
||
exists_vex := false;
|
||
exists_vex_extension := false;
|
||
exists_prefix_66 := false;
|
||
exists_prefix_F2 := false;
|
||
exists_prefix_F3 := false;
|
||
exists_evex := false;
|
||
exists_l256 := false;
|
||
exists_l512 := false;
|
||
exists_EVEXW1 := false;
|
||
{$ifdef x86_64}
|
||
rex:=0;
|
||
omit_rexw:=false;
|
||
{$endif x86_64}
|
||
repeat
|
||
c:=ord(codes^);
|
||
inc(codes);
|
||
case c of
|
||
&0 :
|
||
break;
|
||
&1,&2,&3 :
|
||
begin
|
||
inc(codes,c);
|
||
inc(len,c);
|
||
end;
|
||
&10,&11,&12 :
|
||
begin
|
||
{$ifdef x86_64}
|
||
rex:=rex or (rexbits(oper[c-&10]^.reg) and $F1);
|
||
{$endif x86_64}
|
||
inc(codes);
|
||
inc(len);
|
||
end;
|
||
&13,&23 :
|
||
begin
|
||
inc(codes);
|
||
inc(len);
|
||
end;
|
||
&4,&5,&6,&7 :
|
||
begin
|
||
if opsize={$ifdef i8086}S_L{$else}S_W{$endif} then
|
||
inc(len,2)
|
||
else
|
||
inc(len);
|
||
end;
|
||
&14,&15,&16,
|
||
&20,&21,&22,
|
||
&24,&25,&26,&27,
|
||
&50,&51,&52 :
|
||
inc(len);
|
||
&30,&31,&32,
|
||
&37,
|
||
&60,&61,&62 :
|
||
inc(len,2);
|
||
&34,&35,&36:
|
||
begin
|
||
{$ifdef i8086}
|
||
inc(len,2);
|
||
{$else i8086}
|
||
if opsize=S_Q then
|
||
inc(len,8)
|
||
else
|
||
inc(len,4);
|
||
{$endif i8086}
|
||
end;
|
||
&44,&45,&46:
|
||
inc(len,sizeof(pint));
|
||
&54,&55,&56:
|
||
inc(len,8);
|
||
&40,&41,&42,
|
||
&70,&71,&72,
|
||
&254,&255,&256 :
|
||
inc(len,4);
|
||
&64,&65,&66:
|
||
{$ifdef i8086}
|
||
inc(len,2);
|
||
{$else i8086}
|
||
inc(len,4);
|
||
{$endif i8086}
|
||
&74,&75,&76,&77: ; // ignore vex-coded operand-idx
|
||
&320,&321,&322 :
|
||
begin
|
||
case (oper[c-&320]^.ot and OT_SIZE_MASK) of
|
||
{$if defined(i386) or defined(x86_64)}
|
||
OT_BITS16 :
|
||
{$elseif defined(i8086)}
|
||
OT_BITS32 :
|
||
{$endif}
|
||
inc(len);
|
||
{$ifdef x86_64}
|
||
OT_BITS64:
|
||
begin
|
||
rex:=rex or $48;
|
||
end;
|
||
{$endif x86_64}
|
||
end;
|
||
end;
|
||
&310 :
|
||
{$if defined(x86_64)}
|
||
{ every insentry with code 0310 must be marked with NOX86_64 }
|
||
InternalError(2011051301);
|
||
{$elseif defined(i386)}
|
||
inc(len);
|
||
{$elseif defined(i8086)}
|
||
{nothing};
|
||
{$endif}
|
||
&311 :
|
||
{$if defined(x86_64) or defined(i8086)}
|
||
inc(len)
|
||
{$endif x86_64 or i8086}
|
||
;
|
||
&324 :
|
||
{$ifndef i8086}
|
||
inc(len)
|
||
{$endif not i8086}
|
||
;
|
||
&326 :
|
||
begin
|
||
{$ifdef x86_64}
|
||
rex:=rex or $48;
|
||
{$endif x86_64}
|
||
end;
|
||
&312,
|
||
&323,
|
||
&327,
|
||
&331,&332: ;
|
||
&325:
|
||
{$ifdef i8086}
|
||
inc(len)
|
||
{$endif i8086}
|
||
;
|
||
|
||
&333:
|
||
begin
|
||
inc(len);
|
||
exists_prefix_F2 := true;
|
||
end;
|
||
&334:
|
||
begin
|
||
inc(len);
|
||
exists_prefix_F3 := true;
|
||
end;
|
||
&361:
|
||
begin
|
||
{$ifndef i8086}
|
||
inc(len);
|
||
exists_prefix_66 := true;
|
||
{$endif not i8086}
|
||
end;
|
||
&335:
|
||
{$ifdef x86_64}
|
||
omit_rexw:=true
|
||
{$endif x86_64}
|
||
;
|
||
&336,
|
||
&337: {nothing};
|
||
|
||
&100..&227 :
|
||
begin
|
||
{$ifdef x86_64}
|
||
if (c<&177) then
|
||
begin
|
||
if (oper[c and 7]^.typ=top_reg) then
|
||
begin
|
||
rex:=rex or (rexbits(oper[c and 7]^.reg) and $F4);
|
||
end;
|
||
end;
|
||
|
||
{$endif x86_64}
|
||
if (oper[(c shr 3) and 7]^.typ = top_ref) and
|
||
(oper[(c shr 3) and 7]^.ref^.offset <> 0) then
|
||
begin
|
||
if (exists_vex and exists_evex and CheckUseEVEX) or
|
||
(not(exists_vex) and exists_evex) then
|
||
begin
|
||
CheckEVEXTuple(oper[(c shr 3) and 7]^, p, not(exists_l256 or exists_l512), exists_l256, exists_l512, exists_EVEXW1);
|
||
//const aInput:toper; aInsEntry: pInsentry; aIsVector128, aIsVector256, aIsVector512, aIsEVEXW1: boolean);
|
||
end;
|
||
end;
|
||
|
||
if process_ea(oper[(c shr 3) and 7]^, ea_data, 0, EVEXTupleState = etsNotTuple) then
|
||
inc(len,ea_data.size)
|
||
else Message(asmw_e_invalid_effective_address);
|
||
|
||
{$ifdef x86_64}
|
||
rex:=rex or ea_data.rex;
|
||
{$endif x86_64}
|
||
|
||
end;
|
||
&350:
|
||
begin
|
||
exists_evex := true;
|
||
end;
|
||
&351: exists_l512 := true; // EVEX length bit 512
|
||
&352: exists_EVEXW1 := true; // EVEX W1
|
||
&362: // VEX prefix for AVX (length = 2 or 3 bytes, dependens on REX.XBW or opcode-prefix ($0F38 or $0F3A))
|
||
// =>> DEFAULT = 2 Bytes
|
||
begin
|
||
//if not(exists_vex) then
|
||
//begin
|
||
// inc(len, 2);
|
||
//end;
|
||
|
||
exists_vex := true;
|
||
end;
|
||
&363: // REX.W = 1
|
||
// =>> VEX prefix length = 3
|
||
begin
|
||
if not(exists_vex_extension) then
|
||
begin
|
||
//inc(len);
|
||
exists_vex_extension := true;
|
||
end;
|
||
end;
|
||
&364: exists_l256 := true; // VEX length bit 256
|
||
|
||
&366, // operand 2 (ymmreg) encoded immediate byte (bit 4-7)
|
||
&367: inc(len); // operand 3 (ymmreg) encoded immediate byte (bit 4-7)
|
||
&370: // VEX-Extension prefix $0F
|
||
// ignore for calculating length
|
||
;
|
||
&371, // VEX-Extension prefix $0F38
|
||
&372: // VEX-Extension prefix $0F3A
|
||
begin
|
||
if not(exists_vex_extension) then
|
||
begin
|
||
//inc(len);
|
||
exists_vex_extension := true;
|
||
end;
|
||
end;
|
||
&300,&301,&302:
|
||
begin
|
||
{$if defined(x86_64) or defined(i8086)}
|
||
if (oper[c and 3]^.ot and OT_SIZE_MASK)=OT_BITS32 then
|
||
inc(len);
|
||
{$endif x86_64 or i8086}
|
||
end;
|
||
else
|
||
InternalError(200603141);
|
||
end;
|
||
until false;
|
||
{$ifdef x86_64}
|
||
if ((rex and $80)<>0) and ((rex and $4F)<>0) then
|
||
Message(asmw_e_bad_reg_with_rex);
|
||
rex:=rex and $4F; { reset extra bits in upper nibble }
|
||
if omit_rexw then
|
||
begin
|
||
if rex=$48 then { remove rex entirely? }
|
||
rex:=0
|
||
else
|
||
rex:=rex and $F7;
|
||
end;
|
||
if not(exists_vex or exists_evex) then
|
||
begin
|
||
if rex<>0 then
|
||
Inc(len);
|
||
end;
|
||
{$endif}
|
||
if exists_evex and
|
||
exists_vex then
|
||
begin
|
||
if CheckUseEVEX then
|
||
begin
|
||
inc(len, 4);
|
||
end
|
||
else
|
||
begin
|
||
inc(len, 2);
|
||
if exists_vex_extension then inc(len);
|
||
|
||
{$ifdef x86_64}
|
||
if not(exists_vex_extension) then
|
||
if rex and $0B <> 0 then inc(len); // REX.WXB <> 0 =>> needed VEX-Extension
|
||
{$endif x86_64}
|
||
end;
|
||
|
||
if exists_prefix_66 then dec(len);
|
||
if exists_prefix_F2 then dec(len);
|
||
if exists_prefix_F3 then dec(len);
|
||
|
||
end
|
||
else if exists_evex then
|
||
begin
|
||
inc(len, 4);
|
||
|
||
if exists_prefix_66 then dec(len);
|
||
if exists_prefix_F2 then dec(len);
|
||
if exists_prefix_F3 then dec(len);
|
||
end
|
||
else
|
||
begin
|
||
if exists_vex then
|
||
begin
|
||
inc(len,2);
|
||
|
||
if exists_prefix_66 then dec(len);
|
||
if exists_prefix_F2 then dec(len);
|
||
if exists_prefix_F3 then dec(len);
|
||
|
||
if exists_vex_extension then inc(len);
|
||
{$ifdef x86_64}
|
||
if not(exists_vex_extension) then
|
||
if rex and $0B <> 0 then inc(len); // REX.WXB <> 0 =>> needed VEX-Extension
|
||
{$endif x86_64}
|
||
|
||
end;
|
||
|
||
end;
|
||
calcsize:=len;
|
||
end;
|
||
|
||
|
||
procedure taicpu.write0x66prefix(objdata:TObjData);
|
||
const
|
||
b66: Byte=$66;
|
||
begin
|
||
{$ifdef i8086}
|
||
if (objdata.CPUType<>cpu_none) and (objdata.CPUType<cpu_386) then
|
||
Message(asmw_e_instruction_not_supported_by_cpu);
|
||
{$endif i8086}
|
||
objdata.writebytes(b66,1);
|
||
end;
|
||
|
||
|
||
procedure taicpu.write0x67prefix(objdata:TObjData);
|
||
const
|
||
b67: Byte=$67;
|
||
begin
|
||
{$ifdef i8086}
|
||
if (objdata.CPUType<>cpu_none) and (objdata.CPUType<cpu_386) then
|
||
Message(asmw_e_instruction_not_supported_by_cpu);
|
||
{$endif i8086}
|
||
objdata.writebytes(b67,1);
|
||
end;
|
||
|
||
|
||
procedure taicpu.gencode(objdata: TObjData);
|
||
{
|
||
* the actual codes (C syntax, i.e. octal):
|
||
* \0 - terminates the code. (Unless it's a literal of course.)
|
||
* \1, \2, \3 - that many literal bytes follow in the code stream
|
||
* \4, \6 - the POP/PUSH (respectively) codes for CS, DS, ES, SS
|
||
* (POP is never used for CS) depending on operand 0
|
||
* \5, \7 - the second byte of POP/PUSH codes for FS, GS, depending
|
||
* on operand 0
|
||
* \10, \11, \12 - a literal byte follows in the code stream, to be added
|
||
* to the register value of operand 0, 1 or 2
|
||
* \13 - a literal byte follows in the code stream, to be added
|
||
* to the condition code value of the instruction.
|
||
* \14, \15, \16 - a signed byte immediate operand, from operand 0, 1 or 2
|
||
* \20, \21, \22 - a byte immediate operand, from operand 0, 1 or 2
|
||
* \23 - a literal byte follows in the code stream, to be added
|
||
* to the inverted condition code value of the instruction
|
||
* (inverted version of \13).
|
||
* \24, \25, \26, \27 - an unsigned byte immediate operand, from operand 0, 1, 2 or 3
|
||
* \30, \31, \32 - a word immediate operand, from operand 0, 1 or 2
|
||
* \34, \35, \36 - select between \3[012] and \4[012] depending on 16/32 bit
|
||
* assembly mode or the address-size override on the operand
|
||
* \37 - a word constant, from the _segment_ part of operand 0
|
||
* \40, \41, \42 - a long immediate operand, from operand 0, 1 or 2
|
||
* \44, \45, \46 - select between \3[012], \4[012] or \5[456] depending
|
||
on the address size of instruction
|
||
* \50, \51, \52 - a byte relative operand, from operand 0, 1 or 2
|
||
* \54, \55, \56 - a qword immediate, from operand 0, 1 or 2
|
||
* \60, \61, \62 - a word relative operand, from operand 0, 1 or 2
|
||
* \64, \65, \66 - select between \6[012] and \7[012] depending on 16/32 bit
|
||
* assembly mode or the address-size override on the operand
|
||
* \70, \71, \72 - a long relative operand, from operand 0, 1 or 2
|
||
* \74, \75, \76 - a vex-coded vector operand, from operand 0, 1 or 2
|
||
* \1ab - a ModRM, calculated on EA in operand a, with the spare
|
||
* field the register value of operand b.
|
||
* \2ab - a ModRM, calculated on EA in operand a, with the spare
|
||
* field equal to digit b.
|
||
* \254,\255,\256 - a signed 32-bit immediate to be extended to 64 bits
|
||
* \300,\301,\302 - might be an 0x67, depending on the address size of
|
||
* the memory reference in operand x.
|
||
* \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
|
||
* \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
|
||
* \312 - (disassembler only) invalid with non-default address size.
|
||
* \320,\321,\322 - might be an 0x66 or 0x48 byte, depending on the operand
|
||
* size of operand x.
|
||
* \324 - indicates fixed 16-bit operand size, i.e. optional 0x66.
|
||
* \325 - indicates fixed 32-bit operand size, i.e. optional 0x66.
|
||
* \326 - indicates fixed 64-bit operand size, i.e. optional 0x48.
|
||
* \327 - indicates that this instruction is only valid when the
|
||
* operand size is the default (instruction to disassembler,
|
||
* generates no code in the assembler)
|
||
* \331 - instruction not valid with REP prefix. Hint for
|
||
* disassembler only; for SSE instructions.
|
||
* \332 - disassemble a rep (0xF3 byte) prefix as repe not rep.
|
||
* \333 - 0xF3 prefix for SSE instructions
|
||
* \334 - 0xF2 prefix for SSE instructions
|
||
* \335 - Indicates 64-bit operand size with REX.W not necessary / 64-bit scalar vector operand size
|
||
* \336 - Indicates 32-bit scalar vector operand size
|
||
* \337 - Indicates 64-bit scalar vector operand size
|
||
|
||
* \350 - EVEX prefix for AVX instructions
|
||
* \351 - EVEX Vector length 512
|
||
* \352 - EVEX W1
|
||
|
||
* \361 - 0x66 prefix for SSE instructions
|
||
|
||
* \362 - VEX prefix for AVX instructions
|
||
* \363 - VEX W1
|
||
* \364 - VEX Vector length 256
|
||
|
||
* \366 - operand 2 (ymmreg,zmmreg) encoded in bit 4-7 of the immediate byte
|
||
* \367 - operand 3 (ymmreg,zmmreg) encoded in bit 4-7 of the immediate byte
|
||
|
||
* \370 - VEX 0F-FLAG
|
||
* \371 - VEX 0F38-FLAG
|
||
* \372 - VEX 0F3A-FLAG
|
||
|
||
|
||
}
|
||
|
||
var
|
||
{$ifdef i8086}
|
||
currval : longint;
|
||
{$else i8086}
|
||
currval : aint;
|
||
{$endif i8086}
|
||
currsym : tobjsymbol;
|
||
currrelreloc,
|
||
currabsreloc,
|
||
currabsreloc32 : TObjRelocationType;
|
||
{$ifdef x86_64}
|
||
rexwritten : boolean;
|
||
{$endif x86_64}
|
||
|
||
procedure getvalsym(opidx:longint);
|
||
begin
|
||
case oper[opidx]^.typ of
|
||
top_ref :
|
||
begin
|
||
currval:=oper[opidx]^.ref^.offset;
|
||
currsym:=ObjData.symbolref(oper[opidx]^.ref^.symbol);
|
||
{$ifdef i8086}
|
||
if oper[opidx]^.ref^.refaddr=addr_seg then
|
||
begin
|
||
currrelreloc:=RELOC_SEGREL;
|
||
currabsreloc:=RELOC_SEG;
|
||
currabsreloc32:=RELOC_SEG;
|
||
end
|
||
else if oper[opidx]^.ref^.refaddr=addr_dgroup then
|
||
begin
|
||
currrelreloc:=RELOC_DGROUPREL;
|
||
currabsreloc:=RELOC_DGROUP;
|
||
currabsreloc32:=RELOC_DGROUP;
|
||
end
|
||
else if oper[opidx]^.ref^.refaddr=addr_fardataseg then
|
||
begin
|
||
currrelreloc:=RELOC_FARDATASEGREL;
|
||
currabsreloc:=RELOC_FARDATASEG;
|
||
currabsreloc32:=RELOC_FARDATASEG;
|
||
end
|
||
else
|
||
{$endif i8086}
|
||
{$ifdef i386}
|
||
if (oper[opidx]^.ref^.refaddr=addr_pic) and
|
||
(tf_pic_uses_got in target_info.flags) then
|
||
begin
|
||
currrelreloc:=RELOC_PLT32;
|
||
currabsreloc:=RELOC_GOT32;
|
||
currabsreloc32:=RELOC_GOT32;
|
||
end
|
||
else if oper[opidx]^.ref^.refaddr=addr_ntpoff then
|
||
begin
|
||
currrelreloc:=RELOC_NTPOFF;
|
||
currabsreloc:=RELOC_NTPOFF;
|
||
currabsreloc32:=RELOC_NTPOFF;
|
||
end
|
||
else if oper[opidx]^.ref^.refaddr=addr_tlsgd then
|
||
begin
|
||
currrelreloc:=RELOC_TLSGD;
|
||
currabsreloc:=RELOC_TLSGD;
|
||
currabsreloc32:=RELOC_TLSGD;
|
||
end
|
||
else
|
||
{$endif i386}
|
||
{$ifdef x86_64}
|
||
if oper[opidx]^.ref^.refaddr=addr_pic then
|
||
begin
|
||
currrelreloc:=RELOC_PLT32;
|
||
currabsreloc:=RELOC_GOTPCREL;
|
||
currabsreloc32:=RELOC_GOTPCREL;
|
||
end
|
||
else if oper[opidx]^.ref^.refaddr=addr_pic_no_got then
|
||
begin
|
||
currrelreloc:=RELOC_RELATIVE;
|
||
currabsreloc:=RELOC_RELATIVE;
|
||
currabsreloc32:=RELOC_RELATIVE;
|
||
end
|
||
else if oper[opidx]^.ref^.refaddr=addr_tpoff then
|
||
begin
|
||
currrelreloc:=RELOC_TPOFF;
|
||
currabsreloc:=RELOC_TPOFF;
|
||
currabsreloc32:=RELOC_TPOFF;
|
||
end
|
||
else if oper[opidx]^.ref^.refaddr=addr_tlsgd then
|
||
begin
|
||
currrelreloc:=RELOC_TLSGD;
|
||
currabsreloc:=RELOC_TLSGD;
|
||
currabsreloc32:=RELOC_TLSGD;
|
||
end
|
||
else
|
||
{$endif x86_64}
|
||
begin
|
||
currrelreloc:=RELOC_RELATIVE;
|
||
currabsreloc:=RELOC_ABSOLUTE;
|
||
currabsreloc32:=RELOC_ABSOLUTE32;
|
||
end;
|
||
end;
|
||
top_const :
|
||
begin
|
||
{$ifdef i8086}
|
||
currval:=longint(oper[opidx]^.val);
|
||
{$else i8086}
|
||
currval:=aint(oper[opidx]^.val);
|
||
{$endif i8086}
|
||
currsym:=nil;
|
||
currabsreloc:=RELOC_ABSOLUTE;
|
||
currabsreloc32:=RELOC_ABSOLUTE32;
|
||
end;
|
||
else
|
||
Message(asmw_e_immediate_or_reference_expected);
|
||
end;
|
||
end;
|
||
|
||
{$ifdef x86_64}
|
||
procedure maybewriterex;
|
||
begin
|
||
if (rex<>0) and not(rexwritten) then
|
||
begin
|
||
rexwritten:=true;
|
||
objdata.writebytes(rex,1);
|
||
end;
|
||
end;
|
||
{$endif x86_64}
|
||
|
||
procedure objdata_writereloc(Data:TRelocDataInt;len:aword;p:TObjSymbol;Reloctype:TObjRelocationType);
|
||
begin
|
||
{$ifdef i386}
|
||
{ Special case of '_GLOBAL_OFFSET_TABLE_'
|
||
which needs a special relocation type R_386_GOTPC }
|
||
if assigned (p) and
|
||
(p.name='_GLOBAL_OFFSET_TABLE_') and
|
||
(tf_pic_uses_got in target_info.flags) then
|
||
begin
|
||
{ nothing else than a 4 byte relocation should occur
|
||
for GOT }
|
||
if len<>4 then
|
||
Message1(asmw_e_invalid_opcode_and_operands,GetString);
|
||
Reloctype:=RELOC_GOTPC;
|
||
{ We need to add the offset of the relocation
|
||
of _GLOBAL_OFFSET_TABLE symbol within
|
||
the current instruction }
|
||
inc(data,objdata.currobjsec.size-insoffset);
|
||
end;
|
||
{$endif i386}
|
||
objdata.writereloc(data,len,p,Reloctype);
|
||
end;
|
||
|
||
|
||
const
|
||
CondVal:array[TAsmCond] of byte=($0,
|
||
$7, $3, $2, $6, $2, $4, $F, $D, $C, $E, $6, $2,
|
||
$3, $7, $3, $5, $E, $C, $D, $F, $1, $B, $9, $5,
|
||
$0, $A, $A, $B, $8, $4);
|
||
var
|
||
i: integer;
|
||
c : byte;
|
||
pb : pbyte;
|
||
codes : pchar;
|
||
bytes : array[0..3] of byte;
|
||
rfield,
|
||
data,s,opidx : longint;
|
||
ea_data : ea;
|
||
relsym : TObjSymbol;
|
||
|
||
needed_VEX_Extension: boolean;
|
||
needed_VEX: boolean;
|
||
needed_EVEX: boolean;
|
||
needed_VSIB: boolean;
|
||
opmode: integer;
|
||
VEXvvvv: byte;
|
||
VEXmmmmm: byte;
|
||
VEXw : byte;
|
||
VEXpp : byte;
|
||
VEXll : byte;
|
||
EVEXvvvv: byte;
|
||
EVEXpp: byte;
|
||
EVEXr: byte;
|
||
EVEXx: byte;
|
||
EVEXv: byte;
|
||
EVEXll: byte;
|
||
EVEXw0: byte;
|
||
EVEXw1: byte;
|
||
EVEXz : byte;
|
||
EVEXaaa : byte;
|
||
EVEXb : byte;
|
||
EVEXmm : byte;
|
||
|
||
begin
|
||
{ safety check }
|
||
if objdata.currobjsec.size<>longword(insoffset) then
|
||
internalerror(200130121);
|
||
|
||
{ those variables are initialized inside local procedures, the dfa cannot handle this yet }
|
||
currsym:=nil;
|
||
currabsreloc:=RELOC_NONE;
|
||
currabsreloc32:=RELOC_NONE;
|
||
currrelreloc:=RELOC_NONE;
|
||
currval:=0;
|
||
|
||
{ check instruction's processor level }
|
||
{ todo: maybe adapt and enable this code for i386 and x86_64 as well }
|
||
{$ifdef i8086}
|
||
if objdata.CPUType<>cpu_none then
|
||
begin
|
||
if IF_8086 in insentry^.flags then
|
||
else if IF_186 in insentry^.flags then
|
||
begin
|
||
if objdata.CPUType<cpu_186 then
|
||
Message(asmw_e_instruction_not_supported_by_cpu);
|
||
end
|
||
else if IF_286 in insentry^.flags then
|
||
begin
|
||
if objdata.CPUType<cpu_286 then
|
||
Message(asmw_e_instruction_not_supported_by_cpu);
|
||
end
|
||
else if IF_386 in insentry^.flags then
|
||
begin
|
||
if objdata.CPUType<cpu_386 then
|
||
Message(asmw_e_instruction_not_supported_by_cpu);
|
||
end
|
||
else if IF_486 in insentry^.flags then
|
||
begin
|
||
if objdata.CPUType<cpu_486 then
|
||
Message(asmw_e_instruction_not_supported_by_cpu);
|
||
end
|
||
else if IF_PENT in insentry^.flags then
|
||
begin
|
||
if objdata.CPUType<cpu_Pentium then
|
||
Message(asmw_e_instruction_not_supported_by_cpu);
|
||
end
|
||
else if IF_P6 in insentry^.flags then
|
||
begin
|
||
if objdata.CPUType<cpu_Pentium2 then
|
||
Message(asmw_e_instruction_not_supported_by_cpu);
|
||
end
|
||
else if IF_KATMAI in insentry^.flags then
|
||
begin
|
||
if objdata.CPUType<cpu_Pentium3 then
|
||
Message(asmw_e_instruction_not_supported_by_cpu);
|
||
end
|
||
else if insentry^.flags*[IF_WILLAMETTE,IF_PRESCOTT]<>[] then
|
||
begin
|
||
if objdata.CPUType<cpu_Pentium4 then
|
||
Message(asmw_e_instruction_not_supported_by_cpu);
|
||
end
|
||
else if IF_NEC in insentry^.flags then
|
||
begin
|
||
{ the NEC V20/V30 extensions are incompatible with 386+, due to overlapping opcodes }
|
||
if objdata.CPUType>=cpu_386 then
|
||
Message(asmw_e_instruction_not_supported_by_cpu);
|
||
end
|
||
else if IF_SANDYBRIDGE in insentry^.flags then
|
||
begin
|
||
{ todo: handle these properly }
|
||
end;
|
||
end;
|
||
{$endif i8086}
|
||
|
||
{ load data to write }
|
||
codes:=insentry^.code;
|
||
{$ifdef x86_64}
|
||
rexwritten:=false;
|
||
{$endif x86_64}
|
||
{ Force word push/pop for registers }
|
||
if (opsize={$ifdef i8086}S_L{$else}S_W{$endif}) and ((codes[0]=#4) or (codes[0]=#6) or
|
||
((codes[0]=#1) and ((codes[2]=#5) or (codes[2]=#7)))) then
|
||
write0x66prefix(objdata);
|
||
|
||
// needed VEX Prefix (for AVX etc.)
|
||
|
||
needed_VEX := false;
|
||
needed_EVEX := false;
|
||
needed_VEX_Extension := false;
|
||
needed_VSIB := false;
|
||
opmode := -1;
|
||
VEXvvvv := 0;
|
||
VEXmmmmm := 0;
|
||
|
||
VEXll := 0;
|
||
VEXw := 0;
|
||
VEXpp := 0;
|
||
EVEXpp := 0;
|
||
EVEXvvvv := 0;
|
||
EVEXr := 0;
|
||
EVEXx := 0;
|
||
EVEXv := 0;
|
||
EVEXll := 0;
|
||
EVEXw0 := 0;
|
||
EVEXw1 := 0;
|
||
EVEXz := 0;
|
||
EVEXaaa := 0;
|
||
EVEXb := 0;
|
||
EVEXmm := 0;
|
||
|
||
repeat
|
||
c:=ord(codes^);
|
||
inc(codes);
|
||
|
||
case c of
|
||
&0: break;
|
||
&1,
|
||
&2,
|
||
&3: inc(codes,c);
|
||
&10,
|
||
&11,
|
||
&12: inc(codes, 1);
|
||
&74: opmode := 0;
|
||
&75: opmode := 1;
|
||
&76: opmode := 2;
|
||
&100..&227: begin
|
||
// AVX 512 - EVEX
|
||
// check operands
|
||
|
||
if (c shr 6) = 1 then
|
||
begin
|
||
opidx := c and 7;
|
||
if ops > opidx then
|
||
begin
|
||
if (oper[opidx]^.typ=top_reg) then
|
||
if getsupreg(oper[opidx]^.reg) and $10 = $0 then EVEXr := 1;
|
||
end
|
||
end
|
||
else EVEXr := 1; // modrm:reg not used =>> 1
|
||
|
||
opidx := (c shr 3) and 7;
|
||
if ops > opidx then
|
||
case oper[opidx]^.typ of
|
||
top_reg: if getsupreg(oper[opidx]^.reg) and $10 = $0 then EVEXx := 1;
|
||
top_ref: begin
|
||
if getsupreg(oper[opidx]^.ref^.index) and $08 = $0 then EVEXx := 1;
|
||
if getsubreg(oper[opidx]^.ref^.index) in [R_SUBMMX,R_SUBMMY,R_SUBMMZ] then
|
||
begin
|
||
// VSIB memory addresing
|
||
if getsupreg(oper[opidx]^.ref^.index) and $10 = $0 then EVEXv := 1; // VECTOR-Index
|
||
needed_VSIB := true;
|
||
end;
|
||
end;
|
||
else
|
||
Internalerror(2019081004);
|
||
end;
|
||
|
||
|
||
end;
|
||
&333: begin
|
||
VEXvvvv := VEXvvvv OR $02; // set SIMD-prefix $F3
|
||
VEXpp := $02; // set SIMD-prefix $F3
|
||
EVEXpp := $02; // set SIMD-prefix $F3
|
||
end;
|
||
&334: begin
|
||
VEXvvvv := VEXvvvv OR $03; // set SIMD-prefix $F2
|
||
VEXpp := $03; // set SIMD-prefix $F2
|
||
EVEXpp := $03; // set SIMD-prefix $F2
|
||
end;
|
||
&350: needed_EVEX := true; // AVX512 instruction or AVX128/256/512-instruction (depended on operands [x,y,z]mm16..)
|
||
&351: EVEXll := $02; // vectorlength = 512 bits AND no scalar
|
||
&352: EVEXw1 := $01;
|
||
&361: begin
|
||
VEXvvvv := VEXvvvv OR $01; // set SIMD-prefix $66
|
||
VEXpp := $01; // set SIMD-prefix $66
|
||
EVEXpp := $01; // set SIMD-prefix $66
|
||
end;
|
||
&362: needed_VEX := true;
|
||
&363: begin
|
||
needed_VEX_Extension := true;
|
||
VEXvvvv := VEXvvvv OR (1 shl 7); // set REX.W
|
||
VEXw := 1;
|
||
end;
|
||
&364: begin
|
||
VEXvvvv := VEXvvvv OR $04; // vectorlength = 256 bits AND no scalar
|
||
VEXll := $01;
|
||
EVEXll := $01;
|
||
end;
|
||
&366,
|
||
&367: begin
|
||
opidx:=c-&364; { 0366->operand 2, 0367->operand 3 }
|
||
if (ops > opidx) and
|
||
(oper[opidx]^.typ=top_reg) and
|
||
((oper[opidx]^.ot and OT_REG_EXTRA_MASK = otf_reg_xmm) or
|
||
(oper[opidx]^.ot and OT_REG_EXTRA_MASK = otf_reg_ymm) or
|
||
(oper[opidx]^.ot and OT_REG_EXTRA_MASK = otf_reg_zmm)) then
|
||
if (getsupreg(oper[opidx]^.reg) and $10 = $0) then EVEXx := 1;
|
||
end;
|
||
&370: begin
|
||
VEXmmmmm := VEXmmmmm OR $01; // set leading opcode byte $0F
|
||
EVEXmm := $01;
|
||
end;
|
||
&371: begin
|
||
needed_VEX_Extension := true;
|
||
VEXmmmmm := VEXmmmmm OR $02; // set leading opcode byte $0F38
|
||
EVEXmm := $02;
|
||
end;
|
||
&372: begin
|
||
needed_VEX_Extension := true;
|
||
VEXmmmmm := VEXmmmmm OR $03; // set leading opcode byte $0F3A
|
||
EVEXmm := $03;
|
||
end;
|
||
|
||
end;
|
||
until false;
|
||
|
||
{$ifndef x86_64}
|
||
EVEXv := 1;
|
||
EVEXx := 1;
|
||
EVEXr := 1;
|
||
{$endif}
|
||
|
||
if needed_VEX or needed_EVEX then
|
||
begin
|
||
if (opmode > ops) or
|
||
(opmode < -1) then
|
||
begin
|
||
Internalerror(777100);
|
||
end
|
||
else if opmode = -1 then
|
||
begin
|
||
VEXvvvv := VEXvvvv or ($0F shl 3); // set VEXvvvv bits (bits 6-3) to 1
|
||
EVEXvvvv := $0F;
|
||
{$ifdef x86_64}
|
||
if not(needed_vsib) then EVEXv := 1;
|
||
{$endif x86_64}
|
||
end
|
||
else if oper[opmode]^.typ = top_reg then
|
||
begin
|
||
VEXvvvv := VEXvvvv or ((not(regval(oper[opmode]^.reg)) and $07) shl 3);
|
||
EVEXvvvv := not(regval(oper[opmode]^.reg)) and $07;
|
||
|
||
{$ifdef x86_64}
|
||
if rexbits(oper[opmode]^.reg) = 0 then VEXvvvv := VEXvvvv or (1 shl 6);
|
||
|
||
if rexbits(oper[opmode]^.reg) = 0 then EVEXvvvv := EVEXvvvv or (1 shl 3);
|
||
if getsupreg(oper[opmode]^.reg) and $10 = 0 then EVEXv := 1;
|
||
{$else}
|
||
VEXvvvv := VEXvvvv or (1 shl 6);
|
||
EVEXvvvv := EVEXvvvv or (1 shl 3);
|
||
{$endif x86_64}
|
||
end
|
||
else Internalerror(777101);
|
||
|
||
if not(needed_VEX_Extension) then
|
||
begin
|
||
{$ifdef x86_64}
|
||
if rex and $0B <> 0 then needed_VEX_Extension := true;
|
||
{$endif x86_64}
|
||
end;
|
||
|
||
//TG
|
||
if needed_EVEX and needed_VEX then
|
||
begin
|
||
needed_EVEX := false;
|
||
|
||
|
||
if CheckUseEVEX then
|
||
begin
|
||
// EVEX-Flags r,v,x indicate extended-MMregister
|
||
// Flag = 0 =>> [x,y,z]mm16..[x,y,z]mm31
|
||
// Flag = 1 =>> [x,y,z]mm00..[x,y,z]mm15
|
||
|
||
needed_EVEX := true;
|
||
|
||
needed_VEX := false;
|
||
needed_VEX_Extension := false;
|
||
end;
|
||
end;
|
||
|
||
if needed_EVEX then
|
||
begin
|
||
EVEXaaa:= 0;
|
||
EVEXz := 0;
|
||
|
||
for i := 0 to ops - 1 do
|
||
if (oper[i]^.vopext and OTVE_VECTOR_MASK) <> 0 then
|
||
begin
|
||
if oper[i]^.vopext and OTVE_VECTOR_WRITEMASK = OTVE_VECTOR_WRITEMASK then
|
||
begin
|
||
EVEXaaa := oper[i]^.vopext and $07;
|
||
if oper[i]^.vopext and OTVE_VECTOR_ZERO = OTVE_VECTOR_ZERO then EVEXz := 1;
|
||
end;
|
||
|
||
if oper[i]^.vopext and OTVE_VECTOR_BCST = OTVE_VECTOR_BCST then
|
||
begin
|
||
EVEXb := 1;
|
||
end;
|
||
|
||
// flag EVEXb is multiple use (broadcast, sae and er)
|
||
if oper[i]^.vopext and OTVE_VECTOR_SAE = OTVE_VECTOR_SAE then
|
||
begin
|
||
EVEXb := 1;
|
||
end;
|
||
|
||
if oper[i]^.vopext and OTVE_VECTOR_ER = OTVE_VECTOR_ER then
|
||
begin
|
||
EVEXb := 1;
|
||
|
||
case oper[i]^.vopext and OTVE_VECTOR_ER_MASK of
|
||
OTVE_VECTOR_RNSAE: EVEXll := 0;
|
||
OTVE_VECTOR_RDSAE: EVEXll := 1;
|
||
OTVE_VECTOR_RUSAE: EVEXll := 2;
|
||
OTVE_VECTOR_RZSAE: EVEXll := 3;
|
||
else EVEXll := 0;
|
||
end;
|
||
end;
|
||
end;
|
||
|
||
|
||
bytes[0] := $62;
|
||
|
||
bytes[1] := ((EVEXmm and $03) shl 0) or
|
||
{$ifdef x86_64}
|
||
((not(rex) and $05) shl 5) or
|
||
{$else}
|
||
(($05) shl 5) or
|
||
{$endif x86_64}
|
||
((EVEXr and $01) shl 4) or
|
||
((EVEXx and $01) shl 6);
|
||
|
||
bytes[2] := ((EVEXpp and $03) shl 0) or
|
||
((1 and $01) shl 2) or // fixed in AVX512
|
||
((EVEXvvvv and $0F) shl 3) or
|
||
((EVEXw1 and $01) shl 7);
|
||
|
||
bytes[3] := ((EVEXaaa and $07) shl 0) or
|
||
((EVEXv and $01) shl 3) or
|
||
((EVEXb and $01) shl 4) or
|
||
((EVEXll and $03) shl 5) or
|
||
((EVEXz and $01) shl 7);
|
||
|
||
objdata.writebytes(bytes,4);
|
||
end
|
||
else if needed_VEX_Extension then
|
||
begin
|
||
// VEX-Prefix-Length = 3 Bytes
|
||
{$ifdef x86_64}
|
||
VEXmmmmm := VEXmmmmm or ((not(rex) and $07) shl 5); // set REX.rxb
|
||
VEXvvvv := VEXvvvv or ((rex and $08) shl 7); // set REX.w
|
||
{$else}
|
||
VEXmmmmm := VEXmmmmm or (7 shl 5); //
|
||
{$endif x86_64}
|
||
|
||
bytes[0]:=$C4;
|
||
bytes[1]:=VEXmmmmm;
|
||
bytes[2]:=VEXvvvv;
|
||
objdata.writebytes(bytes,3);
|
||
end
|
||
else
|
||
begin
|
||
// VEX-Prefix-Length = 2 Bytes
|
||
{$ifdef x86_64}
|
||
if rex and $04 = 0 then
|
||
{$endif x86_64}
|
||
begin
|
||
VEXvvvv := VEXvvvv or (1 shl 7);
|
||
end;
|
||
|
||
bytes[0]:=$C5;
|
||
bytes[1]:=VEXvvvv;
|
||
objdata.writebytes(bytes,2);
|
||
end;
|
||
end
|
||
else
|
||
begin
|
||
needed_VEX_Extension := false;
|
||
opmode := -1;
|
||
end;
|
||
|
||
if not(needed_EVEX) then
|
||
begin
|
||
for opidx := 0 to ops - 1 do
|
||
begin
|
||
if ops > opidx then
|
||
if (oper[opidx]^.typ=top_reg) and
|
||
(getregtype(oper[opidx]^.reg) = R_MMREGISTER) then
|
||
if getsupreg(oper[opidx]^.reg) and $10 = $10 then
|
||
begin
|
||
Message1(asmw_e_invalid_opcode_and_operands,GetString);
|
||
break;
|
||
end;
|
||
//badreg(oper[opidx]^.reg);
|
||
end;
|
||
end;
|
||
|
||
{ load data to write }
|
||
codes:=insentry^.code;
|
||
repeat
|
||
c:=ord(codes^);
|
||
inc(codes);
|
||
case c of
|
||
&0 :
|
||
break;
|
||
&1,&2,&3 :
|
||
begin
|
||
{$ifdef x86_64}
|
||
if not(needed_VEX or needed_EVEX) then // TG
|
||
maybewriterex;
|
||
{$endif x86_64}
|
||
objdata.writebytes(codes^,c);
|
||
inc(codes,c);
|
||
end;
|
||
&4,&6 :
|
||
begin
|
||
case oper[0]^.reg of
|
||
NR_CS:
|
||
bytes[0]:=$e;
|
||
NR_NO,
|
||
NR_DS:
|
||
bytes[0]:=$1e;
|
||
NR_ES:
|
||
bytes[0]:=$6;
|
||
NR_SS:
|
||
bytes[0]:=$16;
|
||
else
|
||
internalerror(777004);
|
||
end;
|
||
if c=&4 then
|
||
inc(bytes[0]);
|
||
objdata.writebytes(bytes,1);
|
||
end;
|
||
&5,&7 :
|
||
begin
|
||
case oper[0]^.reg of
|
||
NR_FS:
|
||
bytes[0]:=$a0;
|
||
NR_GS:
|
||
bytes[0]:=$a8;
|
||
else
|
||
internalerror(777005);
|
||
end;
|
||
if c=&5 then
|
||
inc(bytes[0]);
|
||
objdata.writebytes(bytes,1);
|
||
end;
|
||
&10,&11,&12 :
|
||
begin
|
||
{$ifdef x86_64}
|
||
if not(needed_VEX or needed_EVEX) then // TG
|
||
maybewriterex;
|
||
{$endif x86_64}
|
||
bytes[0]:=ord(codes^)+regval(oper[c-&10]^.reg);
|
||
inc(codes);
|
||
objdata.writebytes(bytes,1);
|
||
end;
|
||
&13 :
|
||
begin
|
||
bytes[0]:=ord(codes^)+condval[condition];
|
||
inc(codes);
|
||
objdata.writebytes(bytes,1);
|
||
end;
|
||
&14,&15,&16 :
|
||
begin
|
||
getvalsym(c-&14);
|
||
if (currval<-128) or (currval>127) then
|
||
Message2(asmw_e_value_exceeds_bounds,'signed byte',tostr(currval));
|
||
if assigned(currsym) then
|
||
objdata_writereloc(currval,1,currsym,currabsreloc)
|
||
else
|
||
objdata.writebytes(currval,1);
|
||
end;
|
||
&20,&21,&22 :
|
||
begin
|
||
getvalsym(c-&20);
|
||
if (currval<-256) or (currval>255) then
|
||
Message2(asmw_e_value_exceeds_bounds,'byte',tostr(currval));
|
||
if assigned(currsym) then
|
||
objdata_writereloc(currval,1,currsym,currabsreloc)
|
||
else
|
||
objdata.writebytes(currval,1);
|
||
end;
|
||
&23 :
|
||
begin
|
||
bytes[0]:=ord(codes^)+condval[inverse_cond(condition)];
|
||
inc(codes);
|
||
objdata.writebytes(bytes,1);
|
||
end;
|
||
&24,&25,&26,&27 :
|
||
begin
|
||
getvalsym(c-&24);
|
||
if IF_IMM3 in insentry^.flags then
|
||
begin
|
||
if (currval<0) or (currval>7) then
|
||
Message2(asmw_e_value_exceeds_bounds,'unsigned triad',tostr(currval));
|
||
end
|
||
else if IF_IMM4 in insentry^.flags then
|
||
begin
|
||
if (currval<0) or (currval>15) then
|
||
Message2(asmw_e_value_exceeds_bounds,'unsigned nibble',tostr(currval));
|
||
end
|
||
else
|
||
if (currval<0) or (currval>255) then
|
||
Message2(asmw_e_value_exceeds_bounds,'unsigned byte',tostr(currval));
|
||
if assigned(currsym) then
|
||
objdata_writereloc(currval,1,currsym,currabsreloc)
|
||
else
|
||
objdata.writebytes(currval,1);
|
||
end;
|
||
&30,&31,&32 : // 030..032
|
||
begin
|
||
getvalsym(c-&30);
|
||
{$ifndef i8086}
|
||
{ currval is an aint so this cannot happen on i8086 and causes only a warning }
|
||
if (currval<-65536) or (currval>65535) then
|
||
Message2(asmw_e_value_exceeds_bounds,'word',tostr(currval));
|
||
{$endif i8086}
|
||
if assigned(currsym)
|
||
{$ifdef i8086}
|
||
or (currabsreloc in [RELOC_DGROUP,RELOC_FARDATASEG])
|
||
{$endif i8086}
|
||
then
|
||
objdata_writereloc(currval,2,currsym,currabsreloc)
|
||
else
|
||
objdata.writebytes(currval,2);
|
||
end;
|
||
&34,&35,&36 : // 034..036
|
||
{ !!! These are intended (and used in opcode table) to select depending
|
||
on address size, *not* operand size. Works by coincidence only. }
|
||
begin
|
||
getvalsym(c-&34);
|
||
{$ifdef i8086}
|
||
if assigned(currsym) then
|
||
objdata_writereloc(currval,2,currsym,currabsreloc)
|
||
else
|
||
objdata.writebytes(currval,2);
|
||
{$else i8086}
|
||
if opsize=S_Q then
|
||
begin
|
||
if assigned(currsym) then
|
||
objdata_writereloc(currval,8,currsym,currabsreloc)
|
||
else
|
||
objdata.writebytes(currval,8);
|
||
end
|
||
else
|
||
begin
|
||
if assigned(currsym) then
|
||
objdata_writereloc(currval,4,currsym,currabsreloc32)
|
||
else
|
||
objdata.writebytes(currval,4);
|
||
end
|
||
{$endif i8086}
|
||
end;
|
||
&40,&41,&42 : // 040..042
|
||
begin
|
||
getvalsym(c-&40);
|
||
if assigned(currsym)
|
||
{$ifdef i8086}
|
||
or (currabsreloc in [RELOC_DGROUP,RELOC_FARDATASEG])
|
||
{$endif i8086}
|
||
then
|
||
objdata_writereloc(currval,4,currsym,currabsreloc32)
|
||
else
|
||
objdata.writebytes(currval,4);
|
||
end;
|
||
&44,&45,&46 :// 044..046 - select between word/dword/qword depending on
|
||
begin // address size (we support only default address sizes).
|
||
getvalsym(c-&44);
|
||
{$if defined(x86_64)}
|
||
if assigned(currsym) then
|
||
objdata_writereloc(currval,8,currsym,currabsreloc)
|
||
else
|
||
objdata.writebytes(currval,8);
|
||
{$elseif defined(i386)}
|
||
if assigned(currsym) then
|
||
objdata_writereloc(currval,4,currsym,currabsreloc32)
|
||
else
|
||
objdata.writebytes(currval,4);
|
||
{$elseif defined(i8086)}
|
||
if assigned(currsym) then
|
||
objdata_writereloc(currval,2,currsym,currabsreloc)
|
||
else
|
||
objdata.writebytes(currval,2);
|
||
{$endif}
|
||
end;
|
||
&50,&51,&52 : // 050..052 - byte relative operand
|
||
begin
|
||
getvalsym(c-&50);
|
||
data:=currval-insend;
|
||
{$push}
|
||
{$r-,q-} { disable also overflow as address returns a qword for x86_64 }
|
||
if assigned(currsym) then
|
||
inc(data,currsym.address);
|
||
{$pop}
|
||
if (data>127) or (data<-128) then
|
||
Message1(asmw_e_short_jmp_out_of_range,tostr(data));
|
||
objdata.writebytes(data,1);
|
||
end;
|
||
&54,&55,&56: // 054..056 - qword immediate operand
|
||
begin
|
||
getvalsym(c-&54);
|
||
if assigned(currsym) then
|
||
objdata_writereloc(currval,8,currsym,currabsreloc)
|
||
else
|
||
objdata.writebytes(currval,8);
|
||
end;
|
||
&60,&61,&62 :
|
||
begin
|
||
getvalsym(c-&60);
|
||
{$ifdef i8086}
|
||
if assigned(currsym) then
|
||
objdata_writereloc(currval,2,currsym,currrelreloc)
|
||
else
|
||
objdata_writereloc(currval-insend,2,nil,currabsreloc)
|
||
{$else i8086}
|
||
InternalError(777006);
|
||
{$endif i8086}
|
||
end;
|
||
&64,&65,&66 : // 064..066 - select between 16/32 address mode, but we support only 32 (only 16 on i8086)
|
||
begin
|
||
getvalsym(c-&64);
|
||
{$ifdef i8086}
|
||
if assigned(currsym) then
|
||
objdata_writereloc(currval,2,currsym,currrelreloc)
|
||
else
|
||
objdata_writereloc(currval-insend,2,nil,currabsreloc)
|
||
{$else i8086}
|
||
if assigned(currsym) then
|
||
objdata_writereloc(currval,4,currsym,currrelreloc)
|
||
else
|
||
objdata_writereloc(currval-insend,4,nil,currabsreloc32)
|
||
{$endif i8086}
|
||
end;
|
||
&70,&71,&72 : // 070..072 - long relative operand
|
||
begin
|
||
getvalsym(c-&70);
|
||
if assigned(currsym) then
|
||
objdata_writereloc(currval,4,currsym,currrelreloc)
|
||
else
|
||
objdata_writereloc(currval-insend,4,nil,currabsreloc32)
|
||
end;
|
||
&74,&75,&76 : ; // 074..076 - vex-coded vector operand
|
||
// ignore
|
||
&254,&255,&256 : // 0254..0256 - dword implicitly sign-extended to 64-bit (x86_64 only)
|
||
begin
|
||
getvalsym(c-&254);
|
||
{$ifdef x86_64}
|
||
{ for i386 as aint type is longint the
|
||
following test is useless }
|
||
if (currval<low(longint)) or (currval>high(longint)) then
|
||
Message2(asmw_e_value_exceeds_bounds,'signed dword',tostr(currval));
|
||
{$endif x86_64}
|
||
|
||
if assigned(currsym) then
|
||
objdata_writereloc(currval,4,currsym,currabsreloc32)
|
||
else
|
||
objdata.writebytes(currval,4);
|
||
end;
|
||
&300,&301,&302:
|
||
begin
|
||
{$if defined(x86_64) or defined(i8086)}
|
||
if (oper[c and 3]^.ot and OT_SIZE_MASK)=OT_BITS32 then
|
||
write0x67prefix(objdata);
|
||
{$endif x86_64 or i8086}
|
||
end;
|
||
&310 : { fixed 16-bit addr }
|
||
{$if defined(x86_64)}
|
||
{ every insentry having code 0310 must be marked with NOX86_64 }
|
||
InternalError(2011051302);
|
||
{$elseif defined(i386)}
|
||
write0x67prefix(objdata);
|
||
{$elseif defined(i8086)}
|
||
{nothing};
|
||
{$endif}
|
||
&311 : { fixed 32-bit addr }
|
||
{$if defined(x86_64) or defined(i8086)}
|
||
write0x67prefix(objdata)
|
||
{$endif x86_64 or i8086}
|
||
;
|
||
&320,&321,&322 :
|
||
begin
|
||
case oper[c-&320]^.ot and OT_SIZE_MASK of
|
||
{$if defined(i386) or defined(x86_64)}
|
||
OT_BITS16 :
|
||
{$elseif defined(i8086)}
|
||
OT_BITS32 :
|
||
{$endif}
|
||
write0x66prefix(objdata);
|
||
{$ifndef x86_64}
|
||
OT_BITS64 :
|
||
Message(asmw_e_64bit_not_supported);
|
||
{$endif x86_64}
|
||
end;
|
||
end;
|
||
&323 : {no action needed};
|
||
&325:
|
||
{$ifdef i8086}
|
||
write0x66prefix(objdata);
|
||
{$else i8086}
|
||
{no action needed};
|
||
{$endif i8086}
|
||
|
||
&324,
|
||
&361:
|
||
begin
|
||
{$ifndef i8086}
|
||
if not(needed_VEX or needed_EVEX) then
|
||
write0x66prefix(objdata);
|
||
{$endif not i8086}
|
||
end;
|
||
&326 :
|
||
begin
|
||
{$ifndef x86_64}
|
||
Message(asmw_e_64bit_not_supported);
|
||
{$endif x86_64}
|
||
end;
|
||
&333 :
|
||
begin
|
||
if not(needed_VEX or needed_EVEX) then
|
||
begin
|
||
bytes[0]:=$f3;
|
||
objdata.writebytes(bytes,1);
|
||
end;
|
||
end;
|
||
&334 :
|
||
begin
|
||
if not(needed_VEX or needed_EVEX) then
|
||
begin
|
||
bytes[0]:=$f2;
|
||
objdata.writebytes(bytes,1);
|
||
end;
|
||
end;
|
||
&335:
|
||
;
|
||
&336: ; // indicates 32-bit scalar vector operand {no action needed}
|
||
&337: ; // indicates 64-bit scalar vector operand {no action needed}
|
||
&312,
|
||
&327,
|
||
&331,&332 :
|
||
begin
|
||
{ these are dissambler hints or 32 bit prefixes which
|
||
are not needed }
|
||
end;
|
||
&362..&364: ; // VEX flags =>> nothing todo
|
||
&366, &367:
|
||
begin
|
||
opidx:=c-&364; { 0366->operand 2, 0367->operand 3 }
|
||
if (needed_VEX or needed_EVEX) and
|
||
(ops=4) and
|
||
(oper[opidx]^.typ=top_reg) and
|
||
(
|
||
((oper[opidx]^.ot and OT_REG_EXTRA_MASK)=otf_reg_xmm) or
|
||
((oper[opidx]^.ot and OT_REG_EXTRA_MASK)=otf_reg_ymm) or
|
||
((oper[opidx]^.ot and OT_REG_EXTRA_MASK)=otf_reg_zmm)
|
||
) then
|
||
begin
|
||
bytes[0] := ((getsupreg(oper[opidx]^.reg) and 15) shl 4);
|
||
objdata.writebytes(bytes,1);
|
||
end
|
||
else
|
||
Internalerror(2014032001);
|
||
end;
|
||
&350..&352: ; // EVEX flags =>> nothing todo
|
||
&370..&372: ; // VEX flags =>> nothing todo
|
||
&37:
|
||
begin
|
||
{$ifdef i8086}
|
||
if assigned(currsym) then
|
||
objdata_writereloc(0,2,currsym,RELOC_SEG)
|
||
else
|
||
InternalError(2015041503);
|
||
{$else i8086}
|
||
InternalError(777006);
|
||
{$endif i8086}
|
||
end;
|
||
else
|
||
begin
|
||
{ rex should be written at this point }
|
||
{$ifdef x86_64}
|
||
if not(needed_VEX or needed_EVEX) then // TG
|
||
if (rex<>0) and not(rexwritten) then
|
||
internalerror(200603191);
|
||
{$endif x86_64}
|
||
if (c>=&100) and (c<=&227) then // 0100..0227
|
||
begin
|
||
if (c<&177) then // 0177
|
||
begin
|
||
if (oper[c and 7]^.typ=top_reg) then
|
||
rfield:=regval(oper[c and 7]^.reg)
|
||
else
|
||
rfield:=regval(oper[c and 7]^.ref^.base);
|
||
end
|
||
else
|
||
rfield:=c and 7;
|
||
opidx:=(c shr 3) and 7;
|
||
|
||
if not process_ea(oper[opidx]^,ea_data,rfield, EVEXTupleState = etsNotTuple) then
|
||
Message(asmw_e_invalid_effective_address);
|
||
|
||
|
||
pb:=@bytes[0];
|
||
pb^:=ea_data.modrm;
|
||
inc(pb);
|
||
if ea_data.sib_present then
|
||
begin
|
||
pb^:=ea_data.sib;
|
||
inc(pb);
|
||
end;
|
||
|
||
s:=pb-@bytes[0];
|
||
objdata.writebytes(bytes,s);
|
||
|
||
case ea_data.bytes of
|
||
0 : ;
|
||
1 :
|
||
begin
|
||
if (oper[opidx]^.ot and OT_MEMORY)=OT_MEMORY then
|
||
begin
|
||
currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
|
||
{$ifdef i386}
|
||
if (oper[opidx]^.ref^.refaddr=addr_pic) and
|
||
(tf_pic_uses_got in target_info.flags) then
|
||
currabsreloc:=RELOC_GOT32
|
||
else
|
||
{$endif i386}
|
||
{$ifdef x86_64}
|
||
if oper[opidx]^.ref^.refaddr=addr_pic then
|
||
currabsreloc:=RELOC_GOTPCREL
|
||
else
|
||
{$endif x86_64}
|
||
currabsreloc:=RELOC_ABSOLUTE;
|
||
objdata_writereloc(oper[opidx]^.ref^.offset,1,currsym,currabsreloc);
|
||
end
|
||
else
|
||
begin
|
||
bytes[0]:=oper[opidx]^.ref^.offset;
|
||
objdata.writebytes(bytes,1);
|
||
end;
|
||
inc(s);
|
||
end;
|
||
2,4 :
|
||
begin
|
||
currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
|
||
currval:=oper[opidx]^.ref^.offset;
|
||
{$ifdef x86_64}
|
||
if oper[opidx]^.ref^.refaddr=addr_pic then
|
||
currabsreloc:=RELOC_GOTPCREL
|
||
else if oper[opidx]^.ref^.refaddr=addr_tlsgd then
|
||
currabsreloc:=RELOC_TLSGD
|
||
else if oper[opidx]^.ref^.refaddr=addr_tpoff then
|
||
currabsreloc:=RELOC_TPOFF
|
||
else
|
||
if oper[opidx]^.ref^.base=NR_RIP then
|
||
begin
|
||
currabsreloc:=RELOC_RELATIVE;
|
||
{ Adjust reloc value by number of bytes following the displacement,
|
||
but not if displacement is specified by literal constant }
|
||
if Assigned(currsym) then
|
||
Dec(currval,InsEnd-objdata.CurrObjSec.Size-ea_data.bytes);
|
||
end
|
||
else
|
||
{$endif x86_64}
|
||
{$ifdef i386}
|
||
if (oper[opidx]^.ref^.refaddr=addr_pic) and
|
||
(tf_pic_uses_got in target_info.flags) then
|
||
currabsreloc:=RELOC_GOT32
|
||
else if oper[opidx]^.ref^.refaddr=addr_tlsgd then
|
||
currabsreloc:=RELOC_TLSGD
|
||
else if oper[opidx]^.ref^.refaddr=addr_ntpoff then
|
||
currabsreloc:=RELOC_NTPOFF
|
||
else
|
||
{$endif i386}
|
||
{$ifdef i8086}
|
||
if ea_data.bytes=2 then
|
||
currabsreloc:=RELOC_ABSOLUTE
|
||
else
|
||
{$endif i8086}
|
||
currabsreloc:=RELOC_ABSOLUTE32;
|
||
|
||
if (currabsreloc in [RELOC_ABSOLUTE32{$ifdef i8086},RELOC_ABSOLUTE{$endif}]) and
|
||
(Assigned(oper[opidx]^.ref^.relsymbol)) then
|
||
begin
|
||
relsym:=objdata.symbolref(oper[opidx]^.ref^.relsymbol);
|
||
if relsym.objsection=objdata.CurrObjSec then
|
||
begin
|
||
currval:=objdata.CurrObjSec.size+ea_data.bytes-relsym.offset+currval;
|
||
{$ifdef i8086}
|
||
if ea_data.bytes=4 then
|
||
currabsreloc:=RELOC_RELATIVE32
|
||
else
|
||
{$endif i8086}
|
||
currabsreloc:=RELOC_RELATIVE;
|
||
end
|
||
else
|
||
begin
|
||
currabsreloc:=RELOC_PIC_PAIR;
|
||
currval:=relsym.offset;
|
||
end;
|
||
end;
|
||
objdata_writereloc(currval,ea_data.bytes,currsym,currabsreloc);
|
||
inc(s,ea_data.bytes);
|
||
end;
|
||
end;
|
||
end
|
||
else
|
||
InternalError(777007);
|
||
end;
|
||
end;
|
||
until false;
|
||
end;
|
||
|
||
|
||
function taicpu.is_same_reg_move(regtype: Tregistertype):boolean;
|
||
begin
|
||
result:=(((opcode=A_MOV) or (opcode=A_XCHG)) and
|
||
(regtype = R_INTREGISTER) and
|
||
(ops=2) and
|
||
(oper[0]^.typ=top_reg) and
|
||
(oper[1]^.typ=top_reg) and
|
||
(oper[0]^.reg=oper[1]^.reg)
|
||
) or
|
||
({ checking the opcodes is a long "or" chain, so check first the registers which is more selective }
|
||
((regtype = R_MMREGISTER) and
|
||
(ops=2) and
|
||
(oper[0]^.typ=top_reg) and
|
||
(oper[1]^.typ=top_reg) and
|
||
(oper[0]^.reg=oper[1]^.reg)) and
|
||
(
|
||
(opcode=A_MOVSS) or (opcode=A_MOVSD) or
|
||
(opcode=A_MOVQ) or (opcode=A_MOVD) or
|
||
(opcode=A_MOVAPS) or (opcode=A_MOVAPD) or
|
||
(opcode=A_MOVUPS) or (opcode=A_MOVUPD) or
|
||
(opcode=A_MOVDQA) or (opcode=A_MOVDQU) or
|
||
(opcode=A_VMOVSS) or (opcode=A_VMOVSD) or
|
||
(opcode=A_VMOVQ) or (opcode=A_VMOVD) or
|
||
(opcode=A_VMOVAPS) or (opcode=A_VMOVAPD) or
|
||
(opcode=A_VMOVUPS) or (opcode=A_VMOVUPD) or
|
||
(opcode=A_VMOVDQA) or (opcode=A_VMOVDQU)
|
||
)
|
||
);
|
||
end;
|
||
|
||
|
||
procedure build_spilling_operation_type_table;
|
||
var
|
||
opcode : tasmop;
|
||
begin
|
||
new(operation_type_table);
|
||
fillchar(operation_type_table^,sizeof(toperation_type_table),byte(operand_read));
|
||
for opcode:=low(tasmop) to high(tasmop) do
|
||
with InsProp[opcode] do
|
||
begin
|
||
if Ch_Rop1 in Ch then
|
||
operation_type_table^[opcode,0]:=operand_read;
|
||
if Ch_Wop1 in Ch then
|
||
operation_type_table^[opcode,0]:=operand_write;
|
||
if [Ch_RWop1,Ch_Mop1]*Ch<>[] then
|
||
operation_type_table^[opcode,0]:=operand_readwrite;
|
||
if Ch_Rop2 in Ch then
|
||
operation_type_table^[opcode,1]:=operand_read;
|
||
if Ch_Wop2 in Ch then
|
||
operation_type_table^[opcode,1]:=operand_write;
|
||
if [Ch_RWop2,Ch_Mop2]*Ch<>[] then
|
||
operation_type_table^[opcode,1]:=operand_readwrite;
|
||
if Ch_Rop3 in Ch then
|
||
operation_type_table^[opcode,2]:=operand_read;
|
||
if Ch_Wop3 in Ch then
|
||
operation_type_table^[opcode,2]:=operand_write;
|
||
if [Ch_RWop3,Ch_Mop3]*Ch<>[] then
|
||
operation_type_table^[opcode,2]:=operand_readwrite;
|
||
if Ch_Rop4 in Ch then
|
||
operation_type_table^[opcode,3]:=operand_read;
|
||
if Ch_Wop4 in Ch then
|
||
operation_type_table^[opcode,3]:=operand_write;
|
||
if [Ch_RWop4,Ch_Mop4]*Ch<>[] then
|
||
operation_type_table^[opcode,3]:=operand_readwrite;
|
||
end;
|
||
end;
|
||
|
||
|
||
function taicpu.spilling_get_operation_type(opnr: longint): topertype;
|
||
begin
|
||
{ the information in the instruction table is made for the string copy
|
||
operation MOVSD so hack here (FK)
|
||
|
||
VMOVSS and VMOVSD has two and three operand flavours, this cannot modelled by x86ins.dat
|
||
so fix it here (FK)
|
||
}
|
||
if ((opcode=A_MOVSD) or (opcode=A_VMOVSS) or (opcode=A_VMOVSD)) and (ops=2) then
|
||
begin
|
||
case opnr of
|
||
0:
|
||
result:=operand_read;
|
||
1:
|
||
result:=operand_write;
|
||
else
|
||
internalerror(200506055);
|
||
end
|
||
end
|
||
{ IMUL has 1, 2 and 3-operand forms }
|
||
else if opcode=A_IMUL then
|
||
begin
|
||
case ops of
|
||
1:
|
||
if opnr=0 then
|
||
result:=operand_read
|
||
else
|
||
internalerror(2014011802);
|
||
2:
|
||
begin
|
||
case opnr of
|
||
0:
|
||
result:=operand_read;
|
||
1:
|
||
result:=operand_readwrite;
|
||
else
|
||
internalerror(2014011803);
|
||
end;
|
||
end;
|
||
3:
|
||
begin
|
||
case opnr of
|
||
0,1:
|
||
result:=operand_read;
|
||
2:
|
||
result:=operand_write;
|
||
else
|
||
internalerror(2014011804);
|
||
end;
|
||
end;
|
||
else
|
||
internalerror(2014011805);
|
||
end;
|
||
end
|
||
else
|
||
result:=operation_type_table^[opcode,opnr];
|
||
end;
|
||
|
||
|
||
function spilling_create_load(const ref:treference;r:tregister):Taicpu;
|
||
var
|
||
tmpref: treference;
|
||
begin
|
||
tmpref:=ref;
|
||
{$ifdef i8086}
|
||
if tmpref.segment=NR_SS then
|
||
tmpref.segment:=NR_NO;
|
||
{$endif i8086}
|
||
case getregtype(r) of
|
||
R_INTREGISTER :
|
||
begin
|
||
if getsubreg(r)=R_SUBH then
|
||
inc(tmpref.offset);
|
||
{ we don't need special code here for 32 bit loads on x86_64, since
|
||
those will automatically zero-extend the upper 32 bits. }
|
||
result:=taicpu.op_ref_reg(A_MOV,reg2opsize(r),tmpref,r);
|
||
end;
|
||
R_MMREGISTER :
|
||
if current_settings.fputype in fpu_avx_instructionsets then
|
||
case getsubreg(r) of
|
||
R_SUBMMD:
|
||
result:=taicpu.op_ref_reg(A_VMOVSD,S_NO,tmpref,r);
|
||
R_SUBMMS:
|
||
result:=taicpu.op_ref_reg(A_VMOVSS,S_NO,tmpref,r);
|
||
R_SUBQ,
|
||
R_SUBMMWHOLE:
|
||
result:=taicpu.op_ref_reg(A_VMOVQ,S_NO,tmpref,r);
|
||
else
|
||
internalerror(200506043);
|
||
end
|
||
else
|
||
case getsubreg(r) of
|
||
R_SUBMMD:
|
||
result:=taicpu.op_ref_reg(A_MOVSD,S_NO,tmpref,r);
|
||
R_SUBMMS:
|
||
result:=taicpu.op_ref_reg(A_MOVSS,S_NO,tmpref,r);
|
||
R_SUBQ,
|
||
R_SUBMMWHOLE:
|
||
result:=taicpu.op_ref_reg(A_MOVQ,S_NO,tmpref,r);
|
||
else
|
||
internalerror(200506043);
|
||
end;
|
||
else
|
||
internalerror(200401041);
|
||
end;
|
||
end;
|
||
|
||
|
||
function spilling_create_store(r:tregister; const ref:treference):Taicpu;
|
||
var
|
||
size: topsize;
|
||
tmpref: treference;
|
||
begin
|
||
tmpref:=ref;
|
||
{$ifdef i8086}
|
||
if tmpref.segment=NR_SS then
|
||
tmpref.segment:=NR_NO;
|
||
{$endif i8086}
|
||
case getregtype(r) of
|
||
R_INTREGISTER :
|
||
begin
|
||
if getsubreg(r)=R_SUBH then
|
||
inc(tmpref.offset);
|
||
size:=reg2opsize(r);
|
||
{$ifdef x86_64}
|
||
{ even if it's a 32 bit reg, we still have to spill 64 bits
|
||
because we often perform 64 bit operations on them }
|
||
if (size=S_L) then
|
||
begin
|
||
size:=S_Q;
|
||
r:=newreg(getregtype(r),getsupreg(r),R_SUBWHOLE);
|
||
end;
|
||
{$endif x86_64}
|
||
result:=taicpu.op_reg_ref(A_MOV,size,r,tmpref);
|
||
end;
|
||
R_MMREGISTER :
|
||
if current_settings.fputype in fpu_avx_instructionsets then
|
||
case getsubreg(r) of
|
||
R_SUBMMD:
|
||
result:=taicpu.op_reg_ref(A_VMOVSD,S_NO,r,tmpref);
|
||
R_SUBMMS:
|
||
result:=taicpu.op_reg_ref(A_VMOVSS,S_NO,r,tmpref);
|
||
R_SUBQ,
|
||
R_SUBMMWHOLE:
|
||
result:=taicpu.op_reg_ref(A_VMOVQ,S_NO,r,tmpref);
|
||
else
|
||
internalerror(200506042);
|
||
end
|
||
else
|
||
case getsubreg(r) of
|
||
R_SUBMMD:
|
||
result:=taicpu.op_reg_ref(A_MOVSD,S_NO,r,tmpref);
|
||
R_SUBMMS:
|
||
result:=taicpu.op_reg_ref(A_MOVSS,S_NO,r,tmpref);
|
||
R_SUBQ,
|
||
R_SUBMMWHOLE:
|
||
result:=taicpu.op_reg_ref(A_MOVQ,S_NO,r,tmpref);
|
||
else
|
||
internalerror(200506042);
|
||
end;
|
||
else
|
||
internalerror(200401041);
|
||
end;
|
||
end;
|
||
|
||
|
||
{$ifdef i8086}
|
||
procedure taicpu.loadsegsymbol(opidx:longint;s:tasmsymbol);
|
||
var
|
||
r: treference;
|
||
begin
|
||
reference_reset_symbol(r,s,0,1,[]);
|
||
r.refaddr:=addr_seg;
|
||
loadref(opidx,r);
|
||
end;
|
||
{$endif i8086}
|
||
|
||
{*****************************************************************************
|
||
Instruction table
|
||
*****************************************************************************}
|
||
|
||
procedure BuildInsTabCache;
|
||
var
|
||
i : longint;
|
||
begin
|
||
new(instabcache);
|
||
FillChar(instabcache^,sizeof(tinstabcache),$ff);
|
||
i:=0;
|
||
while (i<InsTabEntries) do
|
||
begin
|
||
if InsTabCache^[InsTab[i].OPcode]=-1 then
|
||
InsTabCache^[InsTab[i].OPcode]:=i;
|
||
inc(i);
|
||
end;
|
||
end;
|
||
|
||
|
||
procedure BuildInsTabMemRefSizeInfoCache;
|
||
var
|
||
AsmOp: TasmOp;
|
||
i,j: longint;
|
||
insentry : PInsEntry;
|
||
codes : pchar;
|
||
c : byte;
|
||
|
||
MRefInfo: TMemRefSizeInfo;
|
||
SConstInfo: TConstSizeInfo;
|
||
actRegSize: int64;
|
||
actMemSize: int64;
|
||
actConstSize: int64;
|
||
actRegCount: integer;
|
||
actMemCount: integer;
|
||
actConstCount: integer;
|
||
actRegTypes : int64;
|
||
actRegMemTypes: int64;
|
||
NewRegSize: int64;
|
||
|
||
actVMemCount : integer;
|
||
actVMemTypes : int64;
|
||
|
||
RegMMXSizeMask: int64;
|
||
RegXMMSizeMask: int64;
|
||
RegYMMSizeMask: int64;
|
||
RegZMMSizeMask: int64;
|
||
|
||
RegMMXConstSizeMask: int64;
|
||
RegXMMConstSizeMask: int64;
|
||
RegYMMConstSizeMask: int64;
|
||
RegZMMConstSizeMask: int64;
|
||
|
||
RegBCSTSizeMask: int64;
|
||
RegBCSTXMMSizeMask: int64;
|
||
RegBCSTYMMSizeMask: int64;
|
||
RegBCSTZMMSizeMask: int64;
|
||
ExistsMemRef : boolean;
|
||
|
||
bitcount : integer;
|
||
ExistsCode336 : boolean;
|
||
ExistsCode337 : boolean;
|
||
ExistsSSEAVXReg : boolean;
|
||
|
||
function bitcnt(aValue: int64): integer;
|
||
var
|
||
i: integer;
|
||
begin
|
||
result := 0;
|
||
|
||
for i := 0 to 63 do
|
||
begin
|
||
if (aValue mod 2) = 1 then
|
||
begin
|
||
inc(result);
|
||
end;
|
||
|
||
aValue := aValue shr 1;
|
||
end;
|
||
end;
|
||
|
||
begin
|
||
new(InsTabMemRefSizeInfoCache);
|
||
FillChar(InsTabMemRefSizeInfoCache^,sizeof(TInsTabMemRefSizeInfoCache),0);
|
||
|
||
for AsmOp := low(TAsmOp) to high(TAsmOp) do
|
||
begin
|
||
i := InsTabCache^[AsmOp];
|
||
|
||
if i >= 0 then
|
||
begin
|
||
InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiUnknown;
|
||
InsTabMemRefSizeInfoCache^[AsmOp].MemRefSizeBCST := msbUnknown;
|
||
InsTabMemRefSizeInfoCache^[AsmOp].BCSTXMMMultiplicator := 0;
|
||
InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiUnknown;
|
||
InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := false;
|
||
InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes := [];
|
||
|
||
insentry:=@instab[i];
|
||
RegMMXSizeMask := 0;
|
||
RegXMMSizeMask := 0;
|
||
RegYMMSizeMask := 0;
|
||
RegZMMSizeMask := 0;
|
||
|
||
RegMMXConstSizeMask := 0;
|
||
RegXMMConstSizeMask := 0;
|
||
RegYMMConstSizeMask := 0;
|
||
RegZMMConstSizeMask := 0;
|
||
|
||
RegBCSTSizeMask:= 0;
|
||
RegBCSTXMMSizeMask := 0;
|
||
RegBCSTYMMSizeMask := 0;
|
||
RegBCSTZMMSizeMask := 0;
|
||
ExistsMemRef := false;
|
||
|
||
while (insentry^.opcode=AsmOp) do
|
||
begin
|
||
MRefInfo := msiUnknown;
|
||
|
||
actRegSize := 0;
|
||
actRegCount := 0;
|
||
actRegTypes := 0;
|
||
NewRegSize := 0;
|
||
|
||
actMemSize := 0;
|
||
actMemCount := 0;
|
||
actRegMemTypes := 0;
|
||
|
||
actVMemCount := 0;
|
||
actVMemTypes := 0;
|
||
|
||
actConstSize := 0;
|
||
actConstCount := 0;
|
||
|
||
ExistsCode336 := false; // indicate fixed operand size 32 bit
|
||
ExistsCode337 := false; // indicate fixed operand size 64 bit
|
||
ExistsSSEAVXReg := false;
|
||
|
||
// parse insentry^.code for &336 and &337
|
||
// &336 (octal) = 222 (decimal) == fixed operand size 32 bit
|
||
// &337 (octal) = 223 (decimal) == fixed operand size 64 bit
|
||
for i := low(insentry^.code) to high(insentry^.code) do
|
||
begin
|
||
case insentry^.code[i] of
|
||
#222: ExistsCode336 := true;
|
||
#223: ExistsCode337 := true;
|
||
#0,#1,#2,#3: break;
|
||
end;
|
||
end;
|
||
|
||
for i := 0 to insentry^.ops -1 do
|
||
begin
|
||
if (insentry^.optypes[i] and OT_REGISTER) = OT_REGISTER then
|
||
case insentry^.optypes[i] and (OT_XMMREG or OT_YMMREG or OT_ZMMREG or OT_KREG or OT_REG_EXTRA_MASK) of
|
||
OT_XMMREG,
|
||
OT_YMMREG,
|
||
OT_ZMMREG: ExistsSSEAVXReg := true;
|
||
else;
|
||
end;
|
||
end;
|
||
|
||
|
||
for j := 0 to insentry^.ops -1 do
|
||
begin
|
||
if ((insentry^.optypes[j] and OT_XMEM32) = OT_XMEM32) OR
|
||
((insentry^.optypes[j] and OT_XMEM64) = OT_XMEM64) OR
|
||
((insentry^.optypes[j] and OT_YMEM32) = OT_YMEM32) OR
|
||
((insentry^.optypes[j] and OT_YMEM64) = OT_YMEM64) OR
|
||
((insentry^.optypes[j] and OT_ZMEM32) = OT_ZMEM32) OR
|
||
((insentry^.optypes[j] and OT_ZMEM64) = OT_ZMEM64) then
|
||
begin
|
||
inc(actVMemCount);
|
||
|
||
case insentry^.optypes[j] and (OT_XMEM32 OR OT_XMEM64 OR OT_YMEM32 OR OT_YMEM64 OR OT_ZMEM32 OR OT_ZMEM64) of
|
||
OT_XMEM32: actVMemTypes := actVMemTypes or OT_XMEM32;
|
||
OT_XMEM64: actVMemTypes := actVMemTypes or OT_XMEM64;
|
||
OT_YMEM32: actVMemTypes := actVMemTypes or OT_YMEM32;
|
||
OT_YMEM64: actVMemTypes := actVMemTypes or OT_YMEM64;
|
||
OT_ZMEM32: actVMemTypes := actVMemTypes or OT_ZMEM32;
|
||
OT_ZMEM64: actVMemTypes := actVMemTypes or OT_ZMEM64;
|
||
else InternalError(777206);
|
||
end;
|
||
end
|
||
else if (insentry^.optypes[j] and OT_REGISTER) = OT_REGISTER then
|
||
begin
|
||
inc(actRegCount);
|
||
|
||
NewRegSize := (insentry^.optypes[j] and OT_SIZE_MASK);
|
||
if NewRegSize = 0 then
|
||
begin
|
||
case insentry^.optypes[j] and (OT_MMXREG or OT_XMMREG or OT_YMMREG or OT_ZMMREG or OT_KREG or OT_REG_EXTRA_MASK) of
|
||
OT_MMXREG: begin
|
||
NewRegSize := OT_BITS64;
|
||
end;
|
||
OT_XMMREG: begin
|
||
NewRegSize := OT_BITS128;
|
||
InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
|
||
end;
|
||
OT_YMMREG: begin
|
||
NewRegSize := OT_BITS256;
|
||
InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
|
||
end;
|
||
OT_ZMMREG: begin
|
||
NewRegSize := OT_BITS512;
|
||
InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
|
||
end;
|
||
OT_KREG: begin
|
||
InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
|
||
end;
|
||
|
||
else NewRegSize := not(0);
|
||
end;
|
||
end;
|
||
|
||
actRegSize := actRegSize or NewRegSize;
|
||
actRegTypes := actRegTypes or (insentry^.optypes[j] and (OT_MMXREG or OT_XMMREG or OT_YMMREG or OT_ZMMREG or OT_KREG or OT_REG_EXTRA_MASK));
|
||
end
|
||
else if ((insentry^.optypes[j] and OT_MEMORY) <> 0) then
|
||
begin
|
||
inc(actMemCount);
|
||
|
||
|
||
if ExistsSSEAVXReg and ExistsCode336 then
|
||
actMemSize := actMemSize or OT_BITS32
|
||
else if ExistsSSEAVXReg and ExistsCode337 then
|
||
actMemSize := actMemSize or OT_BITS64
|
||
else
|
||
actMemSize:=actMemSize or (insentry^.optypes[j] and (OT_SIZE_MASK OR OT_VECTORBCST));
|
||
|
||
if (insentry^.optypes[j] and OT_REGMEM) = OT_REGMEM then
|
||
begin
|
||
actRegMemTypes := actRegMemTypes or insentry^.optypes[j];
|
||
end;
|
||
end
|
||
else if ((insentry^.optypes[j] and OT_IMMEDIATE) = OT_IMMEDIATE) then
|
||
begin
|
||
inc(actConstCount);
|
||
|
||
actConstSize := actConstSize or (insentry^.optypes[j] and OT_SIZE_MASK);
|
||
end
|
||
end;
|
||
|
||
if actConstCount > 0 then
|
||
begin
|
||
case actConstSize of
|
||
0: SConstInfo := csiNoSize;
|
||
OT_BITS8: SConstInfo := csiMem8;
|
||
OT_BITS16: SConstInfo := csiMem16;
|
||
OT_BITS32: SConstInfo := csiMem32;
|
||
OT_BITS64: SConstInfo := csiMem64;
|
||
else SConstInfo := csiMultiple;
|
||
end;
|
||
|
||
if InsTabMemRefSizeInfoCache^[AsmOp].ConstSize = csiUnknown then
|
||
begin
|
||
InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := SConstInfo;
|
||
end
|
||
else if InsTabMemRefSizeInfoCache^[AsmOp].ConstSize <> SConstInfo then
|
||
begin
|
||
InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiMultiple;
|
||
end;
|
||
end;
|
||
|
||
if actVMemCount > 0 then
|
||
begin
|
||
if actVMemCount = 1 then
|
||
begin
|
||
if actVMemTypes > 0 then
|
||
begin
|
||
case actVMemTypes of
|
||
OT_XMEM32: MRefInfo := msiXMem32;
|
||
OT_XMEM64: MRefInfo := msiXMem64;
|
||
OT_YMEM32: MRefInfo := msiYMem32;
|
||
OT_YMEM64: MRefInfo := msiYMem64;
|
||
OT_ZMEM32: MRefInfo := msiZMem32;
|
||
OT_ZMEM64: MRefInfo := msiZMem64;
|
||
else InternalError(777208);
|
||
end;
|
||
|
||
case actRegTypes of
|
||
OT_XMMREG: case MRefInfo of
|
||
msiXMem32,
|
||
msiXMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS128;
|
||
msiYMem32,
|
||
msiYMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS256;
|
||
msiZMem32,
|
||
msiZMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS512;
|
||
else InternalError(777210);
|
||
end;
|
||
OT_YMMREG: case MRefInfo of
|
||
msiXMem32,
|
||
msiXMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS128;
|
||
msiYMem32,
|
||
msiYMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS256;
|
||
msiZMem32,
|
||
msiZMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS512;
|
||
else InternalError(777211);
|
||
end;
|
||
OT_ZMMREG: case MRefInfo of
|
||
msiXMem32,
|
||
msiXMem64: RegZMMSizeMask := RegZMMSizeMask or OT_BITS128;
|
||
msiYMem32,
|
||
msiYMem64: RegZMMSizeMask := RegZMMSizeMask or OT_BITS256;
|
||
msiZMem32,
|
||
msiZMem64: RegZMMSizeMask := RegZMMSizeMask or OT_BITS512;
|
||
else InternalError(777211);
|
||
end;
|
||
|
||
//else InternalError(777209);
|
||
end;
|
||
|
||
|
||
if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnknown then
|
||
begin
|
||
InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := MRefInfo;
|
||
end
|
||
else if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> MRefInfo then
|
||
begin
|
||
if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in [msiXMem32, msiXMem64, msiYMem32, msiYMem64, msiZMem32, msiZMem64] then
|
||
begin
|
||
InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiVMemMultiple;
|
||
end
|
||
else if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> msiVMemMultiple then InternalError(777212);
|
||
end;
|
||
|
||
end;
|
||
end
|
||
else InternalError(777207);
|
||
end
|
||
else
|
||
begin
|
||
if (actMemCount=2) and ((AsmOp=A_MOVS) or (AsmOp=A_CMPS)) then actMemCount:=1;
|
||
|
||
ExistsMemRef := ExistsMemRef or (actMemCount > 0);
|
||
|
||
case actMemCount of
|
||
0: ; // nothing todo
|
||
1: begin
|
||
MRefInfo := msiUnknown;
|
||
|
||
if not(ExistsCode336 or ExistsCode337) then
|
||
case actRegMemTypes and (OT_MMXRM or OT_XMMRM or OT_YMMRM or OT_ZMMRM or OT_REG_EXTRA_MASK) of
|
||
OT_MMXRM: actMemSize := actMemSize or OT_BITS64;
|
||
OT_XMMRM: actMemSize := actMemSize or OT_BITS128;
|
||
OT_YMMRM: actMemSize := actMemSize or OT_BITS256;
|
||
OT_ZMMRM: actMemSize := actMemSize or OT_BITS512;
|
||
end;
|
||
|
||
case actMemSize of
|
||
0: MRefInfo := msiNoSize;
|
||
OT_BITS8: MRefInfo := msiMem8;
|
||
OT_BITS16: MRefInfo := msiMem16;
|
||
OT_BITS32: MRefInfo := msiMem32;
|
||
OT_BITSB32: MRefInfo := msiBMem32;
|
||
OT_BITS64: MRefInfo := msiMem64;
|
||
OT_BITSB64: MRefInfo := msiBMem64;
|
||
OT_BITS128: MRefInfo := msiMem128;
|
||
OT_BITS256: MRefInfo := msiMem256;
|
||
OT_BITS512: MRefInfo := msiMem512;
|
||
OT_BITS80,
|
||
OT_FAR,
|
||
OT_NEAR,
|
||
OT_SHORT: ; // ignore
|
||
else
|
||
begin
|
||
bitcount := bitcnt(actMemSize);
|
||
|
||
if bitcount > 1 then MRefInfo := msiMultiple
|
||
else InternalError(777203);
|
||
end;
|
||
end;
|
||
|
||
if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnknown then
|
||
begin
|
||
InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := MRefInfo;
|
||
end
|
||
else
|
||
begin
|
||
// ignore broadcast-memory
|
||
if not(MRefInfo in [msiBMem32, msiBMem64]) then
|
||
begin
|
||
if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> MRefInfo then
|
||
begin
|
||
with InsTabMemRefSizeInfoCache^[AsmOp] do
|
||
begin
|
||
if ((MemRefSize in [msiMem8, msiMULTIPLEMinSize8]) OR (MRefInfo = msiMem8)) then MemRefSize := msiMultipleMinSize8
|
||
else if ((MemRefSize in [ msiMem16, msiMULTIPLEMinSize16]) OR (MRefInfo = msiMem16)) then MemRefSize := msiMultipleMinSize16
|
||
else if ((MemRefSize in [ msiMem32, msiMULTIPLEMinSize32]) OR (MRefInfo = msiMem32)) then MemRefSize := msiMultipleMinSize32
|
||
else if ((MemRefSize in [ msiMem64, msiMULTIPLEMinSize64]) OR (MRefInfo = msiMem64)) then MemRefSize := msiMultipleMinSize64
|
||
else if ((MemRefSize in [msiMem128, msiMULTIPLEMinSize128]) OR (MRefInfo = msiMem128)) then MemRefSize := msiMultipleMinSize128
|
||
else if ((MemRefSize in [msiMem256, msiMULTIPLEMinSize256]) OR (MRefInfo = msiMem256)) then MemRefSize := msiMultipleMinSize256
|
||
else if ((MemRefSize in [msiMem512, msiMULTIPLEMinSize512]) OR (MRefInfo = msiMem512)) then MemRefSize := msiMultipleMinSize512
|
||
else MemRefSize := msiMultiple;
|
||
end;
|
||
end;
|
||
end;
|
||
end;
|
||
|
||
//if not(MRefInfo in [msiBMem32, msiBMem64]) and (actRegCount > 0) then
|
||
if actRegCount > 0 then
|
||
begin
|
||
if MRefInfo in [msiBMem32, msiBMem64] then
|
||
begin
|
||
if IF_BCST2 in insentry^.flags then InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes := InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes + [bt1to2];
|
||
if IF_BCST4 in insentry^.flags then InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes := InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes + [bt1to4];
|
||
if IF_BCST8 in insentry^.flags then InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes := InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes + [bt1to8];
|
||
if IF_BCST16 in insentry^.flags then InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes := InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes + [bt1to16];
|
||
|
||
//InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes
|
||
|
||
// BROADCAST - OPERAND
|
||
RegBCSTSizeMask := RegBCSTSizeMask or actMemSize;
|
||
|
||
case actRegTypes and (OT_XMMREG or OT_YMMREG or OT_ZMMREG or OT_REG_EXTRA_MASK) of
|
||
OT_XMMREG: RegBCSTXMMSizeMask := RegBCSTXMMSizeMask or actMemSize;
|
||
OT_YMMREG: RegBCSTYMMSizeMask := RegBCSTYMMSizeMask or actMemSize;
|
||
OT_ZMMREG: RegBCSTZMMSizeMask := RegBCSTZMMSizeMask or actMemSize;
|
||
else begin
|
||
|
||
RegBCSTXMMSizeMask := not(0);
|
||
RegBCSTYMMSizeMask := not(0);
|
||
RegBCSTZMMSizeMask := not(0);
|
||
end;
|
||
end;
|
||
end
|
||
else
|
||
case actRegTypes and (OT_MMXREG or OT_XMMREG or OT_YMMREG or OT_ZMMREG or OT_REG_EXTRA_MASK) of
|
||
OT_MMXREG: if actConstCount > 0 then RegMMXConstSizeMask := RegMMXConstSizeMask or actMemSize
|
||
else RegMMXSizeMask := RegMMXSizeMask or actMemSize;
|
||
OT_XMMREG: if actConstCount > 0 then RegXMMConstSizeMask := RegXMMConstSizeMask or actMemSize
|
||
else RegXMMSizeMask := RegXMMSizeMask or actMemSize;
|
||
OT_YMMREG: if actConstCount > 0 then RegYMMConstSizeMask := RegYMMConstSizeMask or actMemSize
|
||
else RegYMMSizeMask := RegYMMSizeMask or actMemSize;
|
||
OT_ZMMREG: if actConstCount > 0 then RegZMMConstSizeMask := RegZMMConstSizeMask or actMemSize
|
||
else RegZMMSizeMask := RegZMMSizeMask or actMemSize;
|
||
else begin
|
||
RegMMXSizeMask := not(0);
|
||
RegXMMSizeMask := not(0);
|
||
RegYMMSizeMask := not(0);
|
||
RegZMMSizeMask := not(0);
|
||
|
||
RegMMXConstSizeMask := not(0);
|
||
RegXMMConstSizeMask := not(0);
|
||
RegYMMConstSizeMask := not(0);
|
||
RegZMMConstSizeMask := not(0);
|
||
end;
|
||
end;
|
||
end
|
||
else
|
||
|
||
|
||
end
|
||
else InternalError(777202);
|
||
end;
|
||
end;
|
||
|
||
inc(insentry);
|
||
end;
|
||
if InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX then
|
||
begin
|
||
case RegBCSTSizeMask of
|
||
0: ; // ignore;
|
||
OT_BITSB32: begin
|
||
InsTabMemRefSizeInfoCache^[AsmOp].MemRefSizeBCST := msbBCST32;
|
||
InsTabMemRefSizeInfoCache^[AsmOp].BCSTXMMMultiplicator := 4;
|
||
end;
|
||
OT_BITSB64: begin
|
||
InsTabMemRefSizeInfoCache^[AsmOp].MemRefSizeBCST := msbBCST64;
|
||
InsTabMemRefSizeInfoCache^[AsmOp].BCSTXMMMultiplicator := 2;
|
||
end;
|
||
else begin
|
||
InsTabMemRefSizeInfoCache^[AsmOp].MemRefSizeBCST := msbMultiple;
|
||
end;;
|
||
end;
|
||
end;
|
||
|
||
|
||
if (InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in MemRefMultiples) and
|
||
(InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX)then
|
||
begin
|
||
if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiVMemMultiple then
|
||
begin
|
||
if ((RegXMMSizeMask = OT_BITS128) or (RegXMMSizeMask = 0)) and
|
||
((RegYMMSizeMask = OT_BITS256) or (RegYMMSizeMask = 0)) and
|
||
((RegZMMSizeMask = OT_BITS512) or (RegZMMSizeMask = 0)) and
|
||
((RegXMMSizeMask or RegYMMSizeMask or RegZMMSizeMask) <> 0) then
|
||
begin
|
||
InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiVMemRegSize;
|
||
end;
|
||
end
|
||
else if (RegMMXSizeMask or RegMMXConstSizeMask) <> 0 then
|
||
begin
|
||
if ((RegMMXSizeMask or RegMMXConstSizeMask) = OT_BITS64) and
|
||
((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS128) and
|
||
((RegYMMSizeMask or RegYMMConstSizeMask) = 0) and
|
||
((RegZMMSizeMask or RegZMMConstSizeMask) = 0) then
|
||
begin
|
||
InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegSize;
|
||
end;
|
||
end
|
||
else if (((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS128) or ((RegXMMSizeMask or RegXMMConstSizeMask) = 0)) and
|
||
(((RegYMMSizeMask or RegYMMConstSizeMask) = OT_BITS256) or ((RegYMMSizeMask or RegYMMConstSizeMask) = 0)) and
|
||
(((RegZMMSizeMask or RegZMMConstSizeMask) = OT_BITS512) or ((RegZMMSizeMask or RegZMMConstSizeMask) = 0)) and
|
||
(((RegXMMSizeMask or RegXMMConstSizeMask or
|
||
RegYMMSizeMask or RegYMMConstSizeMask or
|
||
RegZMMSizeMask or RegZMMConstSizeMask)) <> 0) then
|
||
begin
|
||
InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegSize;
|
||
end
|
||
else if (RegXMMSizeMask or RegXMMConstSizeMask = OT_BITS16) and
|
||
(RegYMMSizeMask or RegYMMConstSizeMask = OT_BITS32) and
|
||
(RegZMMSizeMask or RegZMMConstSizeMask = 0) then
|
||
begin
|
||
InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx16y32;
|
||
end
|
||
else if (RegXMMSizeMask or RegXMMConstSizeMask = OT_BITS16) and
|
||
(RegYMMSizeMask or RegYMMConstSizeMask = OT_BITS32) and
|
||
(RegZMMSizeMask or RegZMMConstSizeMask = OT_BITS64) then
|
||
begin
|
||
InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx16y32z64;
|
||
end
|
||
else if ((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS32) and
|
||
((RegYMMSizeMask or RegYMMConstSizeMask) = OT_BITS64) then
|
||
begin
|
||
if ((RegZMMSizeMask or RegZMMConstSizeMask) = 0) then
|
||
begin
|
||
InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx32y64;
|
||
end
|
||
else if ((RegZMMSizeMask or RegZMMConstSizeMask) = OT_BITS128) then
|
||
begin
|
||
InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx32y64z128;
|
||
end;
|
||
end
|
||
else if ((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS64) and
|
||
((RegYMMSizeMask or RegYMMConstSizeMask) = OT_BITS128) and
|
||
((RegZMMSizeMask or RegZMMConstSizeMask) = 0) then
|
||
begin
|
||
InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y128;
|
||
end
|
||
else if ((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS64) and
|
||
((RegYMMSizeMask or RegYMMConstSizeMask) = OT_BITS128) and
|
||
((RegZMMSizeMask or RegZMMConstSizeMask) = OT_BITS256) then
|
||
begin
|
||
InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y128z256;
|
||
end
|
||
else if ((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS64) and
|
||
((RegYMMSizeMask or RegYMMConstSizeMask) = OT_BITS256) and
|
||
((RegZMMSizeMask or RegZMMConstSizeMask) = 0) then
|
||
begin
|
||
InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y256;
|
||
end
|
||
else if ((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS64) and
|
||
((RegYMMSizeMask or RegYMMConstSizeMask) = OT_BITS256) and
|
||
((RegZMMSizeMask or RegZMMConstSizeMask) = OT_BITS512) then
|
||
begin
|
||
InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y256z512;
|
||
end
|
||
else if ((RegXMMConstSizeMask = 0) or (RegXMMConstSizeMask = OT_BITS128)) and
|
||
((RegYMMConstSizeMask = 0) or (RegYMMConstSizeMask = OT_BITS256)) and
|
||
((RegZMMConstSizeMask = 0) or (RegZMMConstSizeMask = OT_BITS512)) and
|
||
((RegXMMConstSizeMask or RegYMMConstSizeMask or RegZMMConstSizeMask) <> 0) and
|
||
(
|
||
((RegXMMSizeMask or RegYMMSizeMask or RegZMMSizeMask) = OT_BITS128) or
|
||
((RegXMMSizeMask or RegYMMSizeMask or RegZMMSizeMask) = OT_BITS256) or
|
||
((RegXMMSizeMask or RegYMMSizeMask or RegZMMSizeMask) = OT_BITS512)
|
||
) then
|
||
begin
|
||
case RegXMMSizeMask or RegYMMSizeMask or RegZMMSizeMask of
|
||
OT_BITS128: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegConst128;
|
||
OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegConst256;
|
||
OT_BITS512: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegConst512;
|
||
else InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMultiple;
|
||
end;
|
||
end
|
||
else
|
||
begin
|
||
if not(
|
||
(AsmOp = A_CVTSI2SS) or
|
||
(AsmOp = A_CVTSI2SD) or
|
||
(AsmOp = A_CVTPD2DQ) or
|
||
(AsmOp = A_VCVTPD2DQ) or
|
||
(AsmOp = A_VCVTPD2PS) or
|
||
(AsmOp = A_VCVTSI2SD) or
|
||
(AsmOp = A_VCVTSI2SS) or
|
||
(AsmOp = A_VCVTTPD2DQ) or
|
||
(AsmOp = A_VCVTPD2UDQ) or
|
||
(AsmOp = A_VCVTQQ2PS) or
|
||
(AsmOp = A_VCVTTPD2UDQ) or
|
||
(AsmOp = A_VCVTUQQ2PS) or
|
||
(AsmOp = A_VCVTUSI2SD) or
|
||
(AsmOp = A_VCVTUSI2SS) or
|
||
|
||
|
||
// TODO check
|
||
(AsmOp = A_VCMPSS)
|
||
|
||
|
||
) then
|
||
|
||
InternalError(777205);
|
||
end;
|
||
|
||
end
|
||
else if (InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX) and
|
||
(InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnknown) and
|
||
(not(ExistsMemRef)) then
|
||
begin
|
||
InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiNoMemRef;
|
||
end;
|
||
end;
|
||
end;
|
||
|
||
for AsmOp := low(TAsmOp) to high(TAsmOp) do
|
||
begin
|
||
|
||
|
||
// only supported intructiones with SSE- or AVX-operands
|
||
if not(InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX) then
|
||
begin
|
||
InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiUnknown;
|
||
InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiUnknown;
|
||
end;
|
||
end;
|
||
end;
|
||
|
||
procedure InitAsm;
|
||
begin
|
||
build_spilling_operation_type_table;
|
||
if not assigned(instabcache) then
|
||
BuildInsTabCache;
|
||
|
||
if not assigned(InsTabMemRefSizeInfoCache) then
|
||
BuildInsTabMemRefSizeInfoCache;
|
||
|
||
end;
|
||
|
||
|
||
procedure DoneAsm;
|
||
begin
|
||
if assigned(operation_type_table) then
|
||
begin
|
||
dispose(operation_type_table);
|
||
operation_type_table:=nil;
|
||
end;
|
||
if assigned(instabcache) then
|
||
begin
|
||
dispose(instabcache);
|
||
instabcache:=nil;
|
||
end;
|
||
|
||
if assigned(InsTabMemRefSizeInfoCache) then
|
||
begin
|
||
dispose(InsTabMemRefSizeInfoCache);
|
||
InsTabMemRefSizeInfoCache:=nil;
|
||
end;
|
||
end;
|
||
|
||
|
||
begin
|
||
cai_align:=tai_align;
|
||
cai_cpu:=taicpu;
|
||
end.
|