fpc/compiler/nadd.pas
pierre b486f926ce * taddnode.first_addstring, avoid memory leak if
left or right is an empty string.

git-svn-id: trunk@5550 -
2006-12-07 13:03:51 +00:00

2624 lines
104 KiB
ObjectPascal

{
Copyright (c) 1998-2002 by Florian Klaempfl
Type checking and register allocation for add nodes
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit nadd;
{$i fpcdefs.inc}
{ define addstringopt}
interface
uses
node,symtype;
type
taddnode = class(tbinopnode)
resultrealdef : tdef;
constructor create(tt : tnodetype;l,r : tnode);override;
function pass_1 : tnode;override;
function pass_typecheck:tnode;override;
function simplify : tnode;override;
{$ifdef state_tracking}
function track_state_pass(exec_known:boolean):boolean;override;
{$endif}
protected
{ override the following if you want to implement }
{ parts explicitely in the code generator (JM) }
function first_addstring: tnode; virtual;
function first_addset: tnode; virtual;
{ only implements "muln" nodes, the rest always has to be done in }
{ the code generator for performance reasons (JM) }
function first_add64bitint: tnode; virtual;
{ override and return false if you can handle 32x32->64 }
{ bit multiplies directly in your code generator. If }
{ this function is overridden to return false, you can }
{ get multiplies with left/right both s32bit or u32bit, }
{ and resultdef of the muln s64bit or u64bit }
function use_generic_mul32to64: boolean; virtual;
{ This routine calls internal runtime library helpers
for all floating point arithmetic in the case
where the emulation switches is on. Otherwise
returns nil, and everything must be done in
the code generation phase.
}
function first_addfloat : tnode; virtual;
private
{ checks whether a muln can be calculated as a 32bit }
{ * 32bit -> 64 bit }
function try_make_mul32to64: boolean;
end;
taddnodeclass = class of taddnode;
var
{ caddnode is used to create nodes of the add type }
{ the virtual constructor allows to assign }
{ another class type to caddnode => processor }
{ specific node types can be created }
caddnode : taddnodeclass;
implementation
uses
{$IFNDEF USE_FAKE_SYSUTILS}
sysutils,
{$ELSE}
fksysutl,
{$ENDIF}
globtype,systems,
cutils,verbose,globals,widestr,
symconst,symdef,symsym,symtable,defutil,defcmp,
cgbase,
htypechk,pass_1,
nld,nbas,nmat,ncnv,ncon,nset,nopt,ncal,ninl,nmem,nutils,
{$ifdef state_tracking}
nstate,
{$endif}
cpuinfo,procinfo;
{*****************************************************************************
TADDNODE
*****************************************************************************}
{$maxfpuregisters 0}
function getbestreal(t1,t2 : tdef) : tdef;
const
floatweight : array[tfloattype] of byte =
(2,3,4,0,1,5);
begin
if t1.typ=floatdef then
begin
result:=t1;
if t2.typ=floatdef then
begin
{ when a comp or currency is used, use always the
best float type to calculate the result }
if (tfloatdef(t2).floattype in [s64comp,s64currency]) or
(tfloatdef(t2).floattype in [s64comp,s64currency]) then
result:=pbestrealtype^
else
if floatweight[tfloatdef(t2).floattype]>floatweight[tfloatdef(t1).floattype] then
result:=t2;
end;
end
else if t2.typ=floatdef then
result:=t2
else internalerror(200508061);
end;
constructor taddnode.create(tt : tnodetype;l,r : tnode);
begin
inherited create(tt,l,r);
end;
function taddnode.simplify : tnode;
var
t : tnode;
lt,rt : tnodetype;
rd,ld : tdef;
rv,lv : tconstexprint;
rvd,lvd : bestreal;
ws1,ws2 : pcompilerwidestring;
concatstrings : boolean;
c1,c2 : array[0..1] of char;
s1,s2 : pchar;
l1,l2 : longint;
resultset : Tconstset;
b : boolean;
begin
result:=nil;
{ is one a real float, then both need to be floats, this
need to be done before the constant folding so constant
operation on a float and int are also handled }
resultrealdef:=pbestrealtype^;
if (right.resultdef.typ=floatdef) or (left.resultdef.typ=floatdef) then
begin
{ when both floattypes are already equal then use that
floattype for results }
if (right.resultdef.typ=floatdef) and
(left.resultdef.typ=floatdef) and
(tfloatdef(left.resultdef).floattype=tfloatdef(right.resultdef).floattype) then
resultrealdef:=left.resultdef
{ when there is a currency type then use currency, but
only when currency is defined as float }
else
if (is_currency(right.resultdef) or
is_currency(left.resultdef)) and
((s64currencytype.typ = floatdef) or
(nodetype <> slashn)) then
begin
resultrealdef:=s64currencytype;
inserttypeconv(right,resultrealdef);
inserttypeconv(left,resultrealdef);
end
else
begin
resultrealdef:=getbestreal(left.resultdef,right.resultdef);
inserttypeconv(right,resultrealdef);
inserttypeconv(left,resultrealdef);
end;
end;
{ If both operands are constant and there is a widechar
or widestring then convert everything to widestring. This
allows constant folding like char+widechar }
if is_constnode(right) and is_constnode(left) and
(is_widestring(right.resultdef) or
is_widestring(left.resultdef) or
is_widechar(right.resultdef) or
is_widechar(left.resultdef)) then
begin
inserttypeconv(right,cwidestringtype);
inserttypeconv(left,cwidestringtype);
end;
{ load easier access variables }
rd:=right.resultdef;
ld:=left.resultdef;
rt:=right.nodetype;
lt:=left.nodetype;
if (nodetype = slashn) and
(((rt = ordconstn) and
(tordconstnode(right).value = 0)) or
((rt = realconstn) and
(trealconstnode(right).value_real = 0.0))) then
begin
if (cs_check_range in current_settings.localswitches) or
(cs_check_overflow in current_settings.localswitches) then
begin
result:=crealconstnode.create(1,pbestrealtype^);
Message(parser_e_division_by_zero);
exit;
end;
end;
{ both are int constants }
if (
(
is_constintnode(left) and
is_constintnode(right)
) or
(
is_constboolnode(left) and
is_constboolnode(right) and
(nodetype in [slashn,ltn,lten,gtn,gten,equaln,unequaln,andn,xorn,orn])
) or
(
is_constenumnode(left) and
is_constenumnode(right) and
allowenumop(nodetype))
) or
(
(lt = pointerconstn) and
is_constintnode(right) and
(nodetype in [addn,subn])
) or
(
(lt in [pointerconstn,niln]) and
(rt in [pointerconstn,niln]) and
(nodetype in [ltn,lten,gtn,gten,equaln,unequaln,subn])
) then
begin
t:=nil;
{ when comparing/substracting pointers, make sure they are }
{ of the same type (JM) }
if (lt = pointerconstn) and (rt = pointerconstn) then
begin
if not(cs_extsyntax in current_settings.moduleswitches) and
not(nodetype in [equaln,unequaln]) then
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename)
else
if (nodetype <> subn) and
is_voidpointer(rd) then
inserttypeconv(right,left.resultdef)
else if (nodetype <> subn) and
is_voidpointer(ld) then
inserttypeconv(left,right.resultdef)
else if not(equal_defs(ld,rd)) then
IncompatibleTypes(ld,rd);
end
else if (ld.typ=enumdef) and (rd.typ=enumdef) then
begin
if not(equal_defs(ld,rd)) then
inserttypeconv(right,left.resultdef);
end;
{ load values }
case lt of
ordconstn:
lv:=tordconstnode(left).value;
pointerconstn:
lv:=tpointerconstnode(left).value;
niln:
lv:=0;
else
internalerror(2002080202);
end;
case rt of
ordconstn:
rv:=tordconstnode(right).value;
pointerconstn:
rv:=tpointerconstnode(right).value;
niln:
rv:=0;
else
internalerror(2002080203);
end;
if (lt = pointerconstn) and
(rt <> pointerconstn) then
rv := rv * tpointerdef(left.resultdef).pointeddef.size;
if (rt = pointerconstn) and
(lt <> pointerconstn) then
lv := lv * tpointerdef(right.resultdef).pointeddef.size;
case nodetype of
addn :
begin
{$ifopt Q-}
{$define OVERFLOW_OFF}
{$Q+}
{$endif}
try
if (lt=pointerconstn) then
t := cpointerconstnode.create(lv+rv,left.resultdef)
else
if is_integer(ld) then
t := genintconstnode(lv+rv)
else
t := cordconstnode.create(lv+rv,left.resultdef,(ld.typ<>enumdef));
except
on E:EIntOverflow do
begin
Message(parser_e_arithmetic_operation_overflow);
{ Recover }
t:=genintconstnode(0)
end;
end;
{$ifdef OVERFLOW_OFF}
{$Q-}
{$undef OVERFLOW_OFF}
{$endif}
end;
subn :
begin
{$ifopt Q-}
{$define OVERFLOW_OFF}
{$Q+}
{$endif}
try
if (lt=pointerconstn) then
begin
{ pointer-pointer results in an integer }
if (rt=pointerconstn) then
t := genintconstnode((lv-rv) div tpointerdef(ld).pointeddef.size)
else
t := cpointerconstnode.create(lv-rv,left.resultdef);
end
else
begin
if is_integer(ld) then
t:=genintconstnode(lv-rv)
else
t:=cordconstnode.create(lv-rv,left.resultdef,(ld.typ<>enumdef));
end;
except
on E:EIntOverflow do
begin
Message(parser_e_arithmetic_operation_overflow);
{ Recover }
t:=genintconstnode(0)
end;
end;
{$ifdef OVERFLOW_OFF}
{$Q-}
{$undef OVERFLOW_OFF}
{$endif}
end;
muln :
begin
{$ifopt Q-}
{$define OVERFLOW_OFF}
{$Q+}
{$endif}
try
if (torddef(ld).ordtype <> u64bit) or
(torddef(rd).ordtype <> u64bit) then
t:=genintconstnode(lv*rv)
else
t:=genintconstnode(int64(qword(lv)*qword(rv)));
except
on E:EIntOverflow do
begin
Message(parser_e_arithmetic_operation_overflow);
{ Recover }
t:=genintconstnode(0)
end;
end;
{$ifdef OVERFLOW_OFF}
{$Q-}
{$undef OVERFLOW_OFF}
{$endif}
end;
xorn :
if is_integer(ld) then
t:=genintconstnode(lv xor rv)
else
t:=cordconstnode.create(lv xor rv,left.resultdef,true);
orn :
if is_integer(ld) then
t:=genintconstnode(lv or rv)
else
t:=cordconstnode.create(lv or rv,left.resultdef,true);
andn :
if is_integer(ld) then
t:=genintconstnode(lv and rv)
else
t:=cordconstnode.create(lv and rv,left.resultdef,true);
ltn :
t:=cordconstnode.create(ord(lv<rv),booltype,true);
lten :
t:=cordconstnode.create(ord(lv<=rv),booltype,true);
gtn :
t:=cordconstnode.create(ord(lv>rv),booltype,true);
gten :
t:=cordconstnode.create(ord(lv>=rv),booltype,true);
equaln :
t:=cordconstnode.create(ord(lv=rv),booltype,true);
unequaln :
t:=cordconstnode.create(ord(lv<>rv),booltype,true);
slashn :
begin
{ int/int becomes a real }
rvd:=rv;
lvd:=lv;
t:=crealconstnode.create(lvd/rvd,resultrealdef);
end;
else
begin
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
t:=cnothingnode.create;
end;
end;
result:=t;
exit;
end;
{ both real constants ? }
if (lt=realconstn) and (rt=realconstn) then
begin
lvd:=trealconstnode(left).value_real;
rvd:=trealconstnode(right).value_real;
case nodetype of
addn :
t:=crealconstnode.create(lvd+rvd,resultrealdef);
subn :
t:=crealconstnode.create(lvd-rvd,resultrealdef);
muln :
t:=crealconstnode.create(lvd*rvd,resultrealdef);
starstarn,
caretn :
begin
if lvd<0 then
begin
Message(parser_e_invalid_float_operation);
t:=crealconstnode.create(0,resultrealdef);
end
else if lvd=0 then
t:=crealconstnode.create(1.0,resultrealdef)
else
t:=crealconstnode.create(exp(ln(lvd)*rvd),resultrealdef);
end;
slashn :
t:=crealconstnode.create(lvd/rvd,resultrealdef);
ltn :
t:=cordconstnode.create(ord(lvd<rvd),booltype,true);
lten :
t:=cordconstnode.create(ord(lvd<=rvd),booltype,true);
gtn :
t:=cordconstnode.create(ord(lvd>rvd),booltype,true);
gten :
t:=cordconstnode.create(ord(lvd>=rvd),booltype,true);
equaln :
t:=cordconstnode.create(ord(lvd=rvd),booltype,true);
unequaln :
t:=cordconstnode.create(ord(lvd<>rvd),booltype,true);
else
begin
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
t:=cnothingnode.create;
end;
end;
result:=t;
exit;
end;
{ first, we handle widestrings, so we can check later for }
{ stringconstn only }
{ widechars are converted above to widestrings too }
{ this isn't veryy efficient, but I don't think }
{ that it does matter that much (FK) }
if (lt=stringconstn) and (rt=stringconstn) and
(tstringconstnode(left).cst_type=cst_widestring) and
(tstringconstnode(right).cst_type=cst_widestring) then
begin
initwidestring(ws1);
initwidestring(ws2);
copywidestring(pcompilerwidestring(tstringconstnode(left).value_str),ws1);
copywidestring(pcompilerwidestring(tstringconstnode(right).value_str),ws2);
case nodetype of
addn :
begin
concatwidestrings(ws1,ws2);
t:=cstringconstnode.createwstr(ws1);
end;
ltn :
t:=cordconstnode.create(byte(comparewidestrings(ws1,ws2)<0),booltype,true);
lten :
t:=cordconstnode.create(byte(comparewidestrings(ws1,ws2)<=0),booltype,true);
gtn :
t:=cordconstnode.create(byte(comparewidestrings(ws1,ws2)>0),booltype,true);
gten :
t:=cordconstnode.create(byte(comparewidestrings(ws1,ws2)>=0),booltype,true);
equaln :
t:=cordconstnode.create(byte(comparewidestrings(ws1,ws2)=0),booltype,true);
unequaln :
t:=cordconstnode.create(byte(comparewidestrings(ws1,ws2)<>0),booltype,true);
else
begin
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
t:=cnothingnode.create;
end;
end;
donewidestring(ws1);
donewidestring(ws2);
result:=t;
exit;
end;
{ concating strings ? }
concatstrings:=false;
if (lt=ordconstn) and (rt=ordconstn) and
is_char(ld) and is_char(rd) then
begin
c1[0]:=char(byte(tordconstnode(left).value));
c1[1]:=#0;
l1:=1;
c2[0]:=char(byte(tordconstnode(right).value));
c2[1]:=#0;
l2:=1;
s1:=@c1[0];
s2:=@c2[0];
concatstrings:=true;
end
else if (lt=stringconstn) and (rt=ordconstn) and is_char(rd) then
begin
s1:=tstringconstnode(left).value_str;
l1:=tstringconstnode(left).len;
c2[0]:=char(byte(tordconstnode(right).value));
c2[1]:=#0;
s2:=@c2[0];
l2:=1;
concatstrings:=true;
end
else if (lt=ordconstn) and (rt=stringconstn) and is_char(ld) then
begin
c1[0]:=char(byte(tordconstnode(left).value));
c1[1]:=#0;
l1:=1;
s1:=@c1[0];
s2:=tstringconstnode(right).value_str;
l2:=tstringconstnode(right).len;
concatstrings:=true;
end
else if (lt=stringconstn) and (rt=stringconstn) then
begin
s1:=tstringconstnode(left).value_str;
l1:=tstringconstnode(left).len;
s2:=tstringconstnode(right).value_str;
l2:=tstringconstnode(right).len;
concatstrings:=true;
end;
if concatstrings then
begin
case nodetype of
addn :
t:=cstringconstnode.createpchar(concatansistrings(s1,s2,l1,l2),l1+l2);
ltn :
t:=cordconstnode.create(byte(compareansistrings(s1,s2,l1,l2)<0),booltype,true);
lten :
t:=cordconstnode.create(byte(compareansistrings(s1,s2,l1,l2)<=0),booltype,true);
gtn :
t:=cordconstnode.create(byte(compareansistrings(s1,s2,l1,l2)>0),booltype,true);
gten :
t:=cordconstnode.create(byte(compareansistrings(s1,s2,l1,l2)>=0),booltype,true);
equaln :
t:=cordconstnode.create(byte(compareansistrings(s1,s2,l1,l2)=0),booltype,true);
unequaln :
t:=cordconstnode.create(byte(compareansistrings(s1,s2,l1,l2)<>0),booltype,true);
else
begin
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
t:=cnothingnode.create;
end;
end;
result:=t;
exit;
end;
{ set constant evaluation }
if (right.nodetype=setconstn) and
not assigned(tsetconstnode(right).left) and
(left.nodetype=setconstn) and
not assigned(tsetconstnode(left).left) then
begin
{ check if size adjusting is needed, only for left
to right as the other way is checked in the typeconv }
if (tsetdef(right.resultdef).settype=smallset) and
(tsetdef(left.resultdef).settype<>smallset) then
right.resultdef:=tsetdef.create(tsetdef(right.resultdef).elementdef,255);
{ check base types }
inserttypeconv(left,right.resultdef);
if codegenerror then
begin
{ recover by only returning the left part }
result:=left;
left:=nil;
exit;
end;
case nodetype of
addn :
begin
resultset:=tsetconstnode(right).value_set^ + tsetconstnode(left).value_set^;
t:=csetconstnode.create(@resultset,left.resultdef);
end;
muln :
begin
resultset:=tsetconstnode(right).value_set^ * tsetconstnode(left).value_set^;
t:=csetconstnode.create(@resultset,left.resultdef);
end;
subn :
begin
resultset:=tsetconstnode(left).value_set^ - tsetconstnode(right).value_set^;
t:=csetconstnode.create(@resultset,left.resultdef);
end;
symdifn :
begin
resultset:=tsetconstnode(right).value_set^ >< tsetconstnode(left).value_set^;
t:=csetconstnode.create(@resultset,left.resultdef);
end;
unequaln :
begin
b:=tsetconstnode(right).value_set^ <> tsetconstnode(left).value_set^;
t:=cordconstnode.create(byte(b),booltype,true);
end;
equaln :
begin
b:=tsetconstnode(right).value_set^ = tsetconstnode(left).value_set^;
t:=cordconstnode.create(byte(b),booltype,true);
end;
lten :
begin
b:=tsetconstnode(left).value_set^ <= tsetconstnode(right).value_set^;
t:=cordconstnode.create(byte(b),booltype,true);
end;
gten :
begin
b:=tsetconstnode(left).value_set^ >= tsetconstnode(right).value_set^;
t:=cordconstnode.create(byte(b),booltype,true);
end;
else
begin
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
t:=cnothingnode.create;
end;
end;
result:=t;
exit;
end;
end;
function taddnode.pass_typecheck:tnode;
var
hp : tnode;
lt,rt : tnodetype;
rd,ld : tdef;
ot : tnodetype;
hsym : tfieldvarsym;
i : longint;
strtype : tstringtype;
b : boolean;
{$ifdef state_tracking}
factval : Tnode;
change : boolean;
{$endif}
begin
result:=nil;
{ first do the two subtrees }
typecheckpass(left);
typecheckpass(right);
{ both left and right need to be valid }
set_varstate(left,vs_read,[vsf_must_be_valid]);
set_varstate(right,vs_read,[vsf_must_be_valid]);
if codegenerror then
exit;
{ tp procvar support }
maybe_call_procvar(left,true);
maybe_call_procvar(right,true);
{ convert array constructors to sets, because there is no other operator
possible for array constructors }
if is_array_constructor(left.resultdef) then
begin
arrayconstructor_to_set(left);
typecheckpass(left);
end;
if is_array_constructor(right.resultdef) then
begin
arrayconstructor_to_set(right);
typecheckpass(right);
end;
{ allow operator overloading }
hp:=self;
if isbinaryoverloaded(hp) then
begin
result:=hp;
exit;
end;
{ Stop checking when an error was found in the operator checking }
if codegenerror then
begin
result:=cerrornode.create;
exit;
end;
{ Kylix allows enum+ordconstn in an enum declaration (blocktype
is bt_type), we need to do the conversion here before the
constant folding }
if (m_delphi in current_settings.modeswitches) and
(blocktype=bt_type) then
begin
if (left.resultdef.typ=enumdef) and
(right.resultdef.typ=orddef) then
begin
{ insert explicit typecast to default signed int }
left:=ctypeconvnode.create_internal(left,sinttype);
typecheckpass(left);
end
else
if (left.resultdef.typ=orddef) and
(right.resultdef.typ=enumdef) then
begin
{ insert explicit typecast to default signed int }
right:=ctypeconvnode.create_internal(right,sinttype);
typecheckpass(right);
end;
end;
result:=simplify;
if assigned(result) then
exit;
{ load easier access variables }
rd:=right.resultdef;
ld:=left.resultdef;
rt:=right.nodetype;
lt:=left.nodetype;
{ but an int/int gives real/real! }
if (nodetype=slashn) and not(is_vector(left.resultdef)) and not(is_vector(right.resultdef)) then
begin
if is_currency(left.resultdef) and
is_currency(right.resultdef) then
{ In case of currency, converting to float means dividing by 10000 }
{ However, since this is already a division, both divisions by }
{ 10000 are eliminated when we divide the results -> we can skip }
{ them. }
if s64currencytype.typ = floatdef then
begin
{ there's no s64comptype or so, how do we avoid the type conversion?
left.resultdef := s64comptype;
right.resultdef := s64comptype; }
end
else
begin
left.resultdef := s64inttype;
right.resultdef := s64inttype;
end
else if (left.resultdef.typ <> floatdef) and
(right.resultdef.typ <> floatdef) then
CGMessage(type_h_use_div_for_int);
inserttypeconv(right,resultrealdef);
inserttypeconv(left,resultrealdef);
end
{ if both are orddefs then check sub types }
else if (ld.typ=orddef) and (rd.typ=orddef) then
begin
{ optimize multiplacation by a power of 2 }
if not(cs_check_overflow in current_settings.localswitches) and
(nodetype = muln) and
(((left.nodetype = ordconstn) and
ispowerof2(tordconstnode(left).value,i)) or
((right.nodetype = ordconstn) and
ispowerof2(tordconstnode(right).value,i))) then
begin
if left.nodetype = ordconstn then
begin
tordconstnode(left).value := i;
result := cshlshrnode.create(shln,right,left);
end
else
begin
tordconstnode(right).value := i;
result := cshlshrnode.create(shln,left,right);
end;
left := nil;
right := nil;
exit;
end;
{ set for & and | operations in macpas mode: they only work on }
{ booleans, and always short circuit evaluation }
if (nf_short_bool in flags) then
begin
if not is_boolean(ld) then
begin
inserttypeconv(left,booltype);
ld := left.resultdef;
end;
if not is_boolean(rd) then
begin
inserttypeconv(right,booltype);
rd := right.resultdef;
end;
end;
{ 2 booleans? Make them equal to the largest boolean }
if (is_boolean(ld) and is_boolean(rd)) or
(nf_short_bool in flags) then
begin
if torddef(left.resultdef).size>torddef(right.resultdef).size then
begin
right:=ctypeconvnode.create_internal(right,left.resultdef);
ttypeconvnode(right).convtype:=tc_bool_2_bool;
typecheckpass(right);
end
else if torddef(left.resultdef).size<torddef(right.resultdef).size then
begin
left:=ctypeconvnode.create_internal(left,right.resultdef);
ttypeconvnode(left).convtype:=tc_bool_2_bool;
typecheckpass(left);
end;
case nodetype of
xorn,
ltn,
lten,
gtn,
gten,
andn,
orn:
begin
end;
unequaln,
equaln:
begin
if not(cs_full_boolean_eval in current_settings.localswitches) or
(nf_short_bool in flags) then
begin
{ Remove any compares with constants }
if (left.nodetype=ordconstn) then
begin
hp:=right;
b:=(tordconstnode(left).value<>0);
ot:=nodetype;
left.free;
left:=nil;
right:=nil;
if (not(b) and (ot=equaln)) or
(b and (ot=unequaln)) then
begin
hp:=cnotnode.create(hp);
end;
result:=hp;
exit;
end;
if (right.nodetype=ordconstn) then
begin
hp:=left;
b:=(tordconstnode(right).value<>0);
ot:=nodetype;
right.free;
right:=nil;
left:=nil;
if (not(b) and (ot=equaln)) or
(b and (ot=unequaln)) then
begin
hp:=cnotnode.create(hp);
end;
result:=hp;
exit;
end;
end;
end;
else
begin
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
result:=cnothingnode.create;
exit;
end;
end;
end
{ Both are chars? }
else if is_char(rd) and is_char(ld) then
begin
if nodetype=addn then
begin
resultdef:=cshortstringtype;
if not(is_constcharnode(left) and is_constcharnode(right)) then
begin
inserttypeconv(left,cshortstringtype);
{$ifdef addstringopt}
hp := genaddsstringcharoptnode(self);
result := hp;
exit;
{$endif addstringopt}
end;
end;
end
{ There is a widechar? }
else if is_widechar(rd) or is_widechar(ld) then
begin
{ widechar+widechar gives widestring }
if nodetype=addn then
begin
inserttypeconv(left,cwidestringtype);
if (torddef(rd).ordtype<>uwidechar) then
inserttypeconv(right,cwidechartype);
resultdef:=cwidestringtype;
end
else
begin
if (torddef(ld).ordtype<>uwidechar) then
inserttypeconv(left,cwidechartype);
if (torddef(rd).ordtype<>uwidechar) then
inserttypeconv(right,cwidechartype);
end;
end
{ is there a currency type ? }
else if ((torddef(rd).ordtype=scurrency) or (torddef(ld).ordtype=scurrency)) then
begin
if (torddef(ld).ordtype<>scurrency) then
inserttypeconv(left,s64currencytype);
if (torddef(rd).ordtype<>scurrency) then
inserttypeconv(right,s64currencytype);
end
{ and,or,xor work on bit patterns and don't care
about the sign of integers }
{ compares don't need extension to native int size either }
{ as long as both values are signed or unsigned }
else if is_integer(ld) and is_integer(rd) and
((nodetype in [andn,orn,xorn]) or
((nodetype in [equaln,unequaln,gtn,gten,ltn,lten]) and
not(is_signed(ld) xor is_signed(rd)))) then
begin
if rd.size>ld.size then
inserttypeconv_internal(left,right.resultdef)
else
inserttypeconv_internal(right,left.resultdef);
end
{ is there a signed 64 bit type ? }
else if ((torddef(rd).ordtype=s64bit) or (torddef(ld).ordtype=s64bit)) then
begin
if (torddef(ld).ordtype<>s64bit) then
inserttypeconv(left,s64inttype);
if (torddef(rd).ordtype<>s64bit) then
inserttypeconv(right,s64inttype);
end
{ is there a unsigned 64 bit type ? }
else if ((torddef(rd).ordtype=u64bit) or (torddef(ld).ordtype=u64bit)) then
begin
if (torddef(ld).ordtype<>u64bit) then
inserttypeconv(left,u64inttype);
if (torddef(rd).ordtype<>u64bit) then
inserttypeconv(right,u64inttype);
end
{ 64 bit cpus do calculations always in 64 bit }
{$ifndef cpu64bit}
{ is there a cardinal? }
else if ((torddef(rd).ordtype=u32bit) or (torddef(ld).ordtype=u32bit)) then
begin
{ convert positive constants to u32bit }
if (torddef(ld).ordtype<>u32bit) and
is_constintnode(left) and
(tordconstnode(left).value >= 0) then
inserttypeconv(left,u32inttype);
if (torddef(rd).ordtype<>u32bit) and
is_constintnode(right) and
(tordconstnode(right).value >= 0) then
inserttypeconv(right,u32inttype);
{ when one of the operand is signed perform
the operation in 64bit, can't use rd/ld here because there
could be already typeconvs inserted }
if is_signed(left.resultdef) or
is_signed(right.resultdef) then
begin
CGMessage(type_w_mixed_signed_unsigned);
inserttypeconv(left,s64inttype);
inserttypeconv(right,s64inttype);
end
else
begin
if (torddef(left.resultdef).ordtype<>u32bit) then
inserttypeconv(left,u32inttype);
if (torddef(right.resultdef).ordtype<>u32bit) then
inserttypeconv(right,u32inttype);
end;
end
{$endif cpu64bit}
{ generic ord conversion is sinttype }
else
begin
{ if the left or right value is smaller than the normal
type sinttype and is unsigned, and the other value
is a constant < 0, the result will always be false/true
for equal / unequal nodes.
}
if (
{ left : unsigned ordinal var, right : < 0 constant }
(
((is_signed(ld)=false) and (is_constintnode(left) =false)) and
((is_constintnode(right)) and (tordconstnode(right).value < 0))
) or
{ right : unsigned ordinal var, left : < 0 constant }
(
((is_signed(rd)=false) and (is_constintnode(right) =false)) and
((is_constintnode(left)) and (tordconstnode(left).value < 0))
)
) then
begin
if nodetype = equaln then
CGMessage(type_w_signed_unsigned_always_false)
else
if nodetype = unequaln then
CGMessage(type_w_signed_unsigned_always_true)
else
if (is_constintnode(left) and (nodetype in [ltn,lten])) or
(is_constintnode(right) and (nodetype in [gtn,gten])) then
CGMessage(type_w_signed_unsigned_always_true)
else
if (is_constintnode(right) and (nodetype in [ltn,lten])) or
(is_constintnode(left) and (nodetype in [gtn,gten])) then
CGMessage(type_w_signed_unsigned_always_false);
end;
{ When there is a signed type or there is a minus operation
we convert to signed int. Otherwise (both are unsigned) we keep
the result also unsigned. This is compatible with Delphi (PFV) }
if is_signed(ld) or
is_signed(rd) or
(nodetype=subn) then
begin
inserttypeconv(right,sinttype);
inserttypeconv(left,sinttype);
end
else
begin
inserttypeconv(right,uinttype);
inserttypeconv(left,uinttype);
end;
end;
end
{ if both are floatdefs, conversion is already done before constant folding }
else if (ld.typ=floatdef) then
begin
if not(nodetype in [addn,subn,muln,slashn,equaln,unequaln,ltn,lten,gtn,gten]) then
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
end
{ left side a setdef, must be before string processing,
else array constructor can be seen as array of char (PFV) }
else if (ld.typ=setdef) then
begin
{ trying to add a set element? }
if (nodetype=addn) and (rd.typ<>setdef) then
begin
if (rt=setelementn) then
begin
if not(equal_defs(tsetdef(ld).elementdef,rd)) then
CGMessage(type_e_set_element_are_not_comp);
end
else
CGMessage(type_e_mismatch)
end
else
begin
if not(nodetype in [addn,subn,symdifn,muln,equaln,unequaln,lten,gten]) then
CGMessage(type_e_set_operation_unknown);
{ right def must be a also be set }
if (rd.typ<>setdef) or not(equal_defs(rd,ld)) then
CGMessage(type_e_set_element_are_not_comp);
end;
{ ranges require normsets }
if (tsetdef(ld).settype=smallset) and
(rt=setelementn) and
assigned(tsetelementnode(right).right) then
begin
{ generate a temporary normset def, it'll be destroyed
when the symtable is unloaded }
inserttypeconv(left,tsetdef.create(tsetdef(ld).elementdef,255));
end;
{ if the right side is also a setdef then the settype must
be the same as the left setdef }
if (rd.typ=setdef) and
(tsetdef(ld).settype<>tsetdef(rd).settype) then
begin
{ when right is a normset we need to typecast both
to normsets }
if (tsetdef(rd).settype=normset) then
inserttypeconv(left,right.resultdef)
else
inserttypeconv(right,left.resultdef);
end;
end
{ pointer comparision and subtraction }
else if (
(rd.typ=pointerdef) and (ld.typ=pointerdef)
) or
{ compare/add pchar to variable (not stringconst) char arrays
by addresses like BP/Delphi }
(
(nodetype in [equaln,unequaln,subn,addn]) and
(
((is_pchar(ld) or (lt=niln)) and is_chararray(rd) and (rt<>stringconstn)) or
((is_pchar(rd) or (rt=niln)) and is_chararray(ld) and (lt<>stringconstn))
)
) then
begin
{ convert char array to pointer }
if is_chararray(rd) then
begin
inserttypeconv(right,charpointertype);
rd:=right.resultdef;
end
else if is_chararray(ld) then
begin
inserttypeconv(left,charpointertype);
ld:=left.resultdef;
end;
case nodetype of
equaln,unequaln :
begin
if is_voidpointer(right.resultdef) then
inserttypeconv(right,left.resultdef)
else if is_voidpointer(left.resultdef) then
inserttypeconv(left,right.resultdef)
else if not(equal_defs(ld,rd)) then
IncompatibleTypes(ld,rd);
{ now that the type checking is done, convert both to charpointer, }
{ because methodpointers are 8 bytes even though only the first 4 }
{ bytes must be compared. This can happen here if we are in }
{ TP/Delphi mode, because there @methodpointer = voidpointer (but }
{ a voidpointer of 8 bytes). A conversion to voidpointer would be }
{ optimized away, since the result already was a voidpointer, so }
{ use a charpointer instead (JM) }
inserttypeconv_internal(left,charpointertype);
inserttypeconv_internal(right,charpointertype);
end;
ltn,lten,gtn,gten:
begin
if (cs_extsyntax in current_settings.moduleswitches) then
begin
if is_voidpointer(right.resultdef) then
inserttypeconv(right,left.resultdef)
else if is_voidpointer(left.resultdef) then
inserttypeconv(left,right.resultdef)
else if not(equal_defs(ld,rd)) then
IncompatibleTypes(ld,rd);
end
else
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
end;
subn:
begin
if (cs_extsyntax in current_settings.moduleswitches) then
begin
if is_voidpointer(right.resultdef) then
begin
if is_big_untyped_addrnode(right) then
CGMessage1(type_w_untyped_arithmetic_unportable,node2opstr(nodetype));
inserttypeconv(right,left.resultdef)
end
else if is_voidpointer(left.resultdef) then
inserttypeconv(left,right.resultdef)
else if not(equal_defs(ld,rd)) then
IncompatibleTypes(ld,rd);
end
else
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
if not(nf_has_pointerdiv in flags) and
(tpointerdef(rd).pointeddef.size>1) then
begin
hp:=getcopy;
include(hp.flags,nf_has_pointerdiv);
result:=cmoddivnode.create(divn,hp,cordconstnode.create(tpointerdef(rd).pointeddef.size,sinttype,false));
end;
resultdef:=sinttype;
exit;
end;
else
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
end;
end
{ is one of the operands a string?,
chararrays are also handled as strings (after conversion), also take
care of chararray+chararray and chararray+char.
Note: Must be done after pointerdef+pointerdef has been checked, else
pchar is converted to string }
else if (rd.typ=stringdef) or
(ld.typ=stringdef) or
((is_pchar(rd) or is_chararray(rd) or is_char(rd) or is_open_chararray(rd) or
is_pwidechar(rd) or is_widechararray(rd) or is_widechar(rd) or is_open_widechararray(rd)) and
(is_pchar(ld) or is_chararray(ld) or is_char(ld) or is_open_chararray(ld) or
is_pwidechar(ld) or is_widechararray(ld) or is_widechar(ld) or is_open_widechararray(ld))) then
begin
if (nodetype in [addn,equaln,unequaln,lten,gten,ltn,gtn]) then
begin
{ Is there a widestring? }
if is_widestring(rd) or is_widestring(ld) or
is_pwidechar(rd) or is_widechararray(rd) or is_widechar(rd) or is_open_widechararray(rd) or
is_pwidechar(ld) or is_widechararray(ld) or is_widechar(ld) or is_open_widechararray(ld) then
strtype:= st_widestring
else
if is_ansistring(rd) or is_ansistring(ld) or
((cs_ansistrings in current_settings.localswitches) and
//todo: Move some of this to longstring's then they are implemented?
(
is_pchar(rd) or (is_chararray(rd) and (rd.size > 255)) or is_open_chararray(rd) or
is_pchar(ld) or (is_chararray(ld) and (ld.size > 255)) or is_open_chararray(ld)
)
) then
strtype:= st_ansistring
else
if is_longstring(rd) or is_longstring(ld) then
strtype:= st_longstring
else
begin
{$warning todo: add a warning/hint here if one converting a too large array}
{ nodes is PChar, array [with size > 255] or OpenArrayOfChar.
Note: Delphi halts with error if "array [0..xx] of char"
is assigned to ShortString and string length is less
then array size }
strtype:= st_shortstring;
end;
// Now convert nodes to common string type
case strtype of
st_widestring :
begin
if not(is_widestring(rd)) then
inserttypeconv(right,cwidestringtype);
if not(is_widestring(ld)) then
inserttypeconv(left,cwidestringtype);
end;
st_ansistring :
begin
if not(is_ansistring(rd)) then
inserttypeconv(right,cansistringtype);
if not(is_ansistring(ld)) then
inserttypeconv(left,cansistringtype);
end;
st_longstring :
begin
if not(is_longstring(rd)) then
inserttypeconv(right,clongstringtype);
if not(is_longstring(ld)) then
inserttypeconv(left,clongstringtype);
end;
st_shortstring :
begin
if not(is_shortstring(ld)) then
inserttypeconv(left,cshortstringtype);
{ don't convert char, that can be handled by the optimized node }
if not(is_shortstring(rd) or is_char(rd)) then
inserttypeconv(right,cshortstringtype);
end;
else
internalerror(2005101);
end;
end
else
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
end
{ class or interface equation }
else if is_class_or_interface(rd) or is_class_or_interface(ld) then
begin
if (nodetype in [equaln,unequaln]) then
begin
if is_class_or_interface(rd) and is_class_or_interface(ld) then
begin
if tobjectdef(rd).is_related(tobjectdef(ld)) then
inserttypeconv(right,left.resultdef)
else
inserttypeconv(left,right.resultdef);
end
else if is_class_or_interface(rd) then
inserttypeconv(left,right.resultdef)
else
inserttypeconv(right,left.resultdef);
end
else
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
end
else if (rd.typ=classrefdef) and (ld.typ=classrefdef) then
begin
if (nodetype in [equaln,unequaln]) then
begin
if tobjectdef(tclassrefdef(rd).pointeddef).is_related(
tobjectdef(tclassrefdef(ld).pointeddef)) then
inserttypeconv(right,left.resultdef)
else
inserttypeconv(left,right.resultdef);
end
else
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
end
{ allows comperasion with nil pointer }
else if is_class_or_interface(rd) or (rd.typ=classrefdef) then
begin
if (nodetype in [equaln,unequaln]) then
inserttypeconv(left,right.resultdef)
else
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
end
else if is_class_or_interface(ld) or (ld.typ=classrefdef) then
begin
if (nodetype in [equaln,unequaln]) then
inserttypeconv(right,left.resultdef)
else
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
end
{ support procvar=nil,procvar<>nil }
else if ((ld.typ=procvardef) and (rt=niln)) or
((rd.typ=procvardef) and (lt=niln)) then
begin
if not(nodetype in [equaln,unequaln]) then
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
{ find proc field in methodpointer record }
hsym:=tfieldvarsym(trecorddef(methodpointertype).symtable.Find('proc'));
if not assigned(hsym) then
internalerror(200412043);
{ For methodpointers compare only tmethodpointer.proc }
if (rd.typ=procvardef) and
(not tprocvardef(rd).is_addressonly) then
begin
right:=csubscriptnode.create(
hsym,
ctypeconvnode.create_internal(right,methodpointertype));
typecheckpass(right);
end;
if (ld.typ=procvardef) and
(not tprocvardef(ld).is_addressonly) then
begin
left:=csubscriptnode.create(
hsym,
ctypeconvnode.create_internal(left,methodpointertype));
typecheckpass(left);
end;
end
{ support dynamicarray=nil,dynamicarray<>nil }
else if (is_dynamic_array(ld) and (rt=niln)) or
(is_dynamic_array(rd) and (lt=niln)) or
(is_dynamic_array(ld) and is_dynamic_array(rd)) then
begin
if not(nodetype in [equaln,unequaln]) then
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
end
{$ifdef SUPPORT_MMX}
{ mmx support, this must be before the zero based array
check }
else if (cs_mmx in current_settings.localswitches) and
is_mmx_able_array(ld) and
is_mmx_able_array(rd) and
equal_defs(ld,rd) then
begin
case nodetype of
addn,subn,xorn,orn,andn:
;
{ mul is a little bit restricted }
muln:
if not(mmx_type(ld) in [mmxu16bit,mmxs16bit,mmxfixed16]) then
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
else
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
end;
end
{$endif SUPPORT_MMX}
{ vector support, this must be before the zero based array
check }
else if (cs_support_vectors in current_settings.globalswitches) and
is_vector(ld) and
is_vector(rd) and
equal_defs(ld,rd) then
begin
if not(nodetype in [addn,subn,xorn,orn,andn,muln,slashn]) then
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
{ both defs must be equal, so taking left or right as resultdef doesn't matter }
resultdef:=left.resultdef;
end
{ this is a little bit dangerous, also the left type }
{ pointer to should be checked! This broke the mmx support }
else if (rd.typ=pointerdef) or
(is_zero_based_array(rd) and (rt<>stringconstn)) then
begin
if is_zero_based_array(rd) then
begin
resultdef:=tpointerdef.create(tarraydef(rd).elementdef);
inserttypeconv(right,resultdef);
end
else
resultdef:=right.resultdef;
inserttypeconv(left,sinttype);
if nodetype=addn then
begin
if not(cs_extsyntax in current_settings.moduleswitches) or
(not(is_pchar(ld)) and not(m_add_pointer in current_settings.modeswitches)) then
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
if (rd.typ=pointerdef) and
(tpointerdef(rd).pointeddef.size>1) then
begin
left:=caddnode.create(muln,left,
cordconstnode.create(tpointerdef(rd).pointeddef.size,sinttype,true));
typecheckpass(left);
end;
end
else
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
end
else if (ld.typ=pointerdef) or
(is_zero_based_array(ld) and (lt<>stringconstn)) then
begin
if is_zero_based_array(ld) then
begin
resultdef:=tpointerdef.create(tarraydef(ld).elementdef);
inserttypeconv(left,resultdef);
end
else
resultdef:=left.resultdef;
inserttypeconv(right,sinttype);
if nodetype in [addn,subn] then
begin
if not(cs_extsyntax in current_settings.moduleswitches) or
(not(is_pchar(ld)) and not(m_add_pointer in current_settings.modeswitches)) then
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
if (ld.typ=pointerdef) then
begin
if is_big_untyped_addrnode(left) then
CGMessage1(type_w_untyped_arithmetic_unportable,node2opstr(nodetype));
if (tpointerdef(ld).pointeddef.size>1) then
begin
right:=caddnode.create(muln,right,
cordconstnode.create(tpointerdef(ld).pointeddef.size,sinttype,true));
typecheckpass(right);
end
end else
if is_zero_based_array(ld) and
(tarraydef(ld).elementdef.size>1) then
begin
right:=caddnode.create(muln,right,
cordconstnode.create(tarraydef(ld).elementdef.size,sinttype,true));
typecheckpass(right);
end;
end
else
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
end
else if (rd.typ=procvardef) and
(ld.typ=procvardef) and
equal_defs(rd,ld) then
begin
if (nodetype in [equaln,unequaln]) then
begin
if tprocvardef(rd).is_addressonly then
begin
inserttypeconv_internal(right,voidpointertype);
inserttypeconv_internal(left,voidpointertype);
end
else
begin
{ find proc field in methodpointer record }
hsym:=tfieldvarsym(trecorddef(methodpointertype).symtable.Find('proc'));
if not assigned(hsym) then
internalerror(200412043);
{ Compare tmehodpointer(left).proc }
right:=csubscriptnode.create(
hsym,
ctypeconvnode.create_internal(right,methodpointertype));
typecheckpass(right);
left:=csubscriptnode.create(
hsym,
ctypeconvnode.create_internal(left,methodpointertype));
typecheckpass(left);
end;
end
else
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
end
{ enums }
else if (ld.typ=enumdef) and (rd.typ=enumdef) then
begin
if allowenumop(nodetype) then
inserttypeconv(right,left.resultdef)
else
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),ld.typename,rd.typename);
end
{ generic conversion, this is for error recovery }
else
begin
inserttypeconv(left,sinttype);
inserttypeconv(right,sinttype);
end;
{ set resultdef if not already done }
if not assigned(resultdef) then
begin
case nodetype of
ltn,lten,gtn,gten,equaln,unequaln :
resultdef:=booltype;
slashn :
resultdef:=resultrealdef;
addn:
begin
{ for strings, return is always a 255 char string }
if is_shortstring(left.resultdef) then
resultdef:=cshortstringtype
else
resultdef:=left.resultdef;
end;
else
resultdef:=left.resultdef;
end;
end;
{ when the result is currency we need some extra code for
multiplication and division. this should not be done when
the muln or slashn node is created internally }
if not(nf_is_currency in flags) and
is_currency(resultdef) then
begin
case nodetype of
slashn :
begin
{ slashn will only work with floats }
hp:=caddnode.create(muln,getcopy,crealconstnode.create(10000.0,s64currencytype));
include(hp.flags,nf_is_currency);
result:=hp;
end;
muln :
begin
if s64currencytype.typ=floatdef then
hp:=caddnode.create(slashn,getcopy,crealconstnode.create(10000.0,s64currencytype))
else
hp:=cmoddivnode.create(divn,getcopy,cordconstnode.create(10000,s64currencytype,false));
include(hp.flags,nf_is_currency);
result:=hp
end;
end;
end;
end;
function taddnode.first_addstring: tnode;
const
swap_relation: array [ltn..unequaln] of Tnodetype=(gtn, gten, ltn, lten, equaln, unequaln);
var
p: tnode;
newstatement : tstatementnode;
tempnode : ttempcreatenode;
begin
{ when we get here, we are sure that both the left and the right }
{ node are both strings of the same stringtype (JM) }
case nodetype of
addn:
begin
if (left.nodetype=stringconstn) and (tstringconstnode(left).len=0) then
begin
result:=right;
left.free;
left:=nil;
right:=nil;
exit;
end;
if (right.nodetype=stringconstn) and (tstringconstnode(right).len=0) then
begin
result:=left;
left:=nil;
right.free;
right:=nil;
exit;
end;
{ create the call to the concat routine both strings as arguments }
if assigned(aktassignmentnode) and
(aktassignmentnode.right=self) and
(aktassignmentnode.left.resultdef=resultdef) and
valid_for_var(aktassignmentnode.left,false) then
begin
result:=ccallnode.createintern('fpc_'+
tstringdef(resultdef).stringtypname+'_concat',
ccallparanode.create(right,
ccallparanode.create(left,
ccallparanode.create(aktassignmentnode.left.getcopy,nil))));
include(aktassignmentnode.flags,nf_assign_done_in_right);
firstpass(result);
end
else
begin
result:=internalstatements(newstatement);
tempnode:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,true);
addstatement(newstatement,tempnode);
addstatement(newstatement,ccallnode.createintern('fpc_'+
tstringdef(resultdef).stringtypname+'_concat',
ccallparanode.create(right,
ccallparanode.create(left,
ccallparanode.create(ctemprefnode.create(tempnode),nil)))));
addstatement(newstatement,ctempdeletenode.create_normal_temp(tempnode));
addstatement(newstatement,ctemprefnode.create(tempnode));
end;
{ we reused the arguments }
left := nil;
right := nil;
end;
ltn,lten,gtn,gten,equaln,unequaln :
begin
{ generate better code for comparison with empty string, we
only need to compare the length with 0 }
if (nodetype in [equaln,unequaln,gtn,gten,ltn,lten]) and
(((left.nodetype=stringconstn) and (tstringconstnode(left).len=0)) or
((right.nodetype=stringconstn) and (tstringconstnode(right).len=0))) then
begin
{ switch so that the constant is always on the right }
if left.nodetype = stringconstn then
begin
p := left;
left := right;
right := p;
nodetype:=swap_relation[nodetype];
end;
if is_shortstring(left.resultdef) or
(nodetype in [gtn,gten,ltn,lten]) then
{ compare the length with 0 }
result := caddnode.create(nodetype,
cinlinenode.create(in_length_x,false,left),
cordconstnode.create(0,s32inttype,false))
else
begin
{ compare the pointer with nil (for ansistrings etc), }
{ faster than getting the length (JM) }
result:= caddnode.create(nodetype,
ctypeconvnode.create_internal(left,voidpointertype),
cpointerconstnode.create(0,voidpointertype));
end;
{ left is reused }
left := nil;
{ right isn't }
right.free;
right := nil;
exit;
end;
{ no string constant -> call compare routine }
result := ccallnode.createintern('fpc_'+
tstringdef(left.resultdef).stringtypname+'_compare',
ccallparanode.create(right,ccallparanode.create(left,nil)));
{ and compare its result with 0 according to the original operator }
result := caddnode.create(nodetype,result,
cordconstnode.create(0,s32inttype,false));
left := nil;
right := nil;
end;
end;
end;
function taddnode.first_addset : tnode;
procedure call_varset_helper(const n : string);
var
newstatement : tstatementnode;
temp : ttempcreatenode;
begin
{ add two var sets }
result:=internalstatements(newstatement);
{ create temp for result }
temp:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,true);
addstatement(newstatement,temp);
addstatement(newstatement,ccallnode.createintern(n,
ccallparanode.create(cordconstnode.create(resultdef.size,sinttype,false),
ccallparanode.create(ctemprefnode.create(temp),
ccallparanode.create(right,
ccallparanode.create(left,nil)))))
);
{ remove reused parts from original node }
left:=nil;
right:=nil;
{ the last statement should return the value as
location and type, this is done be referencing the
temp and converting it first from a persistent temp to
normal temp }
addstatement(newstatement,ctempdeletenode.create_normal_temp(temp));
addstatement(newstatement,ctemprefnode.create(temp));
end;
var
procname: string[31];
tempn: tnode;
paras: tcallparanode;
srsym: ttypesym;
newstatement : tstatementnode;
temp : ttempcreatenode;
begin
if is_varset(left.resultdef) or is_varset(right.resultdef) then
begin
case nodetype of
equaln,unequaln,lten,gten:
begin
case nodetype of
equaln,unequaln:
procname := 'fpc_varset_comp_sets';
lten,gten:
begin
procname := 'fpc_varset_contains_sets';
{ (left >= right) = (right <= left) }
if nodetype = gten then
begin
tempn := left;
left := right;
right := tempn;
end;
end;
end;
result := ccallnode.createinternres(procname,
ccallparanode.create(cordconstnode.create(left.resultdef.size,sinttype,false),
ccallparanode.create(right,
ccallparanode.create(left,nil))),resultdef);
{ left and right are reused as parameters }
left := nil;
right := nil;
{ for an unequaln, we have to negate the result of comp_sets }
if nodetype = unequaln then
result := cnotnode.create(result);
end;
addn:
begin
{ optimize first loading of a set }
if (right.nodetype=setelementn) and
not(assigned(tsetelementnode(right).right)) and
is_emptyset(left) then
begin
result:=internalstatements(newstatement);
{ create temp for result }
temp:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,true);
addstatement(newstatement,temp);
addstatement(newstatement,ccallnode.createintern('fpc_varset_create_element',
ccallparanode.create(ctemprefnode.create(temp),
ccallparanode.create(cordconstnode.create(resultdef.size,sinttype,false),
ccallparanode.create(ctypeconvnode.create_internal(tsetelementnode(right).left,sinttype),nil))))
);
{ the last statement should return the value as
location and type, this is done be referencing the
temp and converting it first from a persistent temp to
normal temp }
addstatement(newstatement,ctempdeletenode.create_normal_temp(temp));
addstatement(newstatement,ctemprefnode.create(temp));
tsetelementnode(right).left := nil;
end
else
begin
if right.nodetype=setelementn then
begin
result:=internalstatements(newstatement);
{ create temp for result }
temp:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,true);
addstatement(newstatement,temp);
{ add a range or a single element? }
if assigned(tsetelementnode(right).right) then
addstatement(newstatement,ccallnode.createintern('fpc_varset_set_range',
ccallparanode.create(cordconstnode.create(resultdef.size,sinttype,false),
ccallparanode.create(ctypeconvnode.create_internal(tsetelementnode(tsetelementnode(right).right),sinttype),
ccallparanode.create(ctypeconvnode.create_internal(tsetelementnode(tsetelementnode(right).left),sinttype),
ccallparanode.create(ctemprefnode.create(temp),
ccallparanode.create(left,nil))))))
)
else
addstatement(newstatement,ccallnode.createintern('fpc_varset_set',
ccallparanode.create(cordconstnode.create(resultdef.size,sinttype,false),
ccallparanode.create(ctypeconvnode.create_internal(tsetelementnode(right).left,sinttype),
ccallparanode.create(ctemprefnode.create(temp),
ccallparanode.create(left,nil)))))
);
{ remove reused parts from original node }
tsetelementnode(right).right:=nil;
tsetelementnode(right).left:=nil;
left:=nil;
{ the last statement should return the value as
location and type, this is done be referencing the
temp and converting it first from a persistent temp to
normal temp }
addstatement(newstatement,ctempdeletenode.create_normal_temp(temp));
addstatement(newstatement,ctemprefnode.create(temp));
end
else
call_varset_helper('fpc_varset_add_sets');
end
end;
subn:
call_varset_helper('fpc_varset_sub_sets');
symdifn:
call_varset_helper('fpc_varset_symdif_sets');
muln:
call_varset_helper('fpc_varset_mul_sets');
else
internalerror(200609241);
end;
end
else
begin
{ get the sym that represents the fpc_normal_set type }
srsym:=search_system_type('FPC_NORMAL_SET');
case nodetype of
equaln,unequaln,lten,gten:
begin
case nodetype of
equaln,unequaln:
procname := 'fpc_set_comp_sets';
lten,gten:
begin
procname := 'fpc_set_contains_sets';
{ (left >= right) = (right <= left) }
if nodetype = gten then
begin
tempn := left;
left := right;
right := tempn;
end;
end;
end;
{ convert the arguments (explicitely) to fpc_normal_set's }
left := ctypeconvnode.create_internal(left,srsym.typedef);
right := ctypeconvnode.create_internal(right,srsym.typedef);
result := ccallnode.createintern(procname,ccallparanode.create(right,
ccallparanode.create(left,nil)));
{ left and right are reused as parameters }
left := nil;
right := nil;
{ for an unequaln, we have to negate the result of comp_sets }
if nodetype = unequaln then
result := cnotnode.create(result);
end;
addn:
begin
{ optimize first loading of a set }
if (right.nodetype=setelementn) and
not(assigned(tsetelementnode(right).right)) and
is_emptyset(left) then
begin
{ type cast the value to pass as argument to a byte, }
{ since that's what the helper expects }
tsetelementnode(right).left :=
ctypeconvnode.create_internal(tsetelementnode(right).left,u8inttype);
{ set the resultdef to the actual one (otherwise it's }
{ "fpc_normal_set") }
result := ccallnode.createinternres('fpc_set_create_element',
ccallparanode.create(tsetelementnode(right).left,nil),
resultdef);
{ reused }
tsetelementnode(right).left := nil;
end
else
begin
if right.nodetype=setelementn then
begin
{ convert the arguments to bytes, since that's what }
{ the helper expects }
tsetelementnode(right).left :=
ctypeconvnode.create_internal(tsetelementnode(right).left,
u8inttype);
{ convert the original set (explicitely) to an }
{ fpc_normal_set so we can pass it to the helper }
left := ctypeconvnode.create_internal(left,srsym.typedef);
{ add a range or a single element? }
if assigned(tsetelementnode(right).right) then
begin
tsetelementnode(right).right :=
ctypeconvnode.create_internal(tsetelementnode(right).right,
u8inttype);
{ create the call }
result := ccallnode.createinternres('fpc_set_set_range',
ccallparanode.create(tsetelementnode(right).right,
ccallparanode.create(tsetelementnode(right).left,
ccallparanode.create(left,nil))),resultdef);
end
else
begin
result := ccallnode.createinternres('fpc_set_set_byte',
ccallparanode.create(tsetelementnode(right).left,
ccallparanode.create(left,nil)),resultdef);
end;
{ remove reused parts from original node }
tsetelementnode(right).right := nil;
tsetelementnode(right).left := nil;
left := nil;
end
else
begin
{ add two sets }
{ convert the sets to fpc_normal_set's }
result := ccallnode.createinternres('fpc_set_add_sets',
ccallparanode.create(
ctypeconvnode.create_explicit(right,srsym.typedef),
ccallparanode.create(
ctypeconvnode.create_internal(left,srsym.typedef),nil)),resultdef);
{ remove reused parts from original node }
left := nil;
right := nil;
end;
end
end;
subn,symdifn,muln:
begin
{ convert the sets to fpc_normal_set's }
paras := ccallparanode.create(ctypeconvnode.create_internal(right,srsym.typedef),
ccallparanode.create(ctypeconvnode.create_internal(left,srsym.typedef),nil));
case nodetype of
subn:
result := ccallnode.createinternres('fpc_set_sub_sets',
paras,resultdef);
symdifn:
result := ccallnode.createinternres('fpc_set_symdif_sets',
paras,resultdef);
muln:
result := ccallnode.createinternres('fpc_set_mul_sets',
paras,resultdef);
end;
{ remove reused parts from original node }
left := nil;
right := nil;
end;
else
internalerror(200108311);
end;
end;
end;
function taddnode.use_generic_mul32to64: boolean;
begin
result := true;
end;
function taddnode.try_make_mul32to64: boolean;
function canbe32bitint(v: tconstexprint; fromdef: torddef; todefsigned: boolean): boolean;
begin
if (fromdef.ordtype <> u64bit) then
result :=
((v >= 0) or
todefsigned) and
(v >= low(longint)) and
(v <= high(longint))
else
result :=
(qword(v) >= low(cardinal)) and
(qword(v) <= high(cardinal))
end;
var
temp: tnode;
begin
result := false;
if ((left.nodetype = typeconvn) and
is_integer(ttypeconvnode(left).left.resultdef) and
(not(torddef(ttypeconvnode(left).left.resultdef).ordtype in [u64bit,s64bit])) and
(((right.nodetype = ordconstn) and
canbe32bitint(tordconstnode(right).value,torddef(right.resultdef),is_signed(left.resultdef))) or
((right.nodetype = typeconvn) and
is_integer(ttypeconvnode(right).left.resultdef) and
not(torddef(ttypeconvnode(right).left.resultdef).ordtype in [u64bit,s64bit])) and
(is_signed(ttypeconvnode(left).left.resultdef) =
is_signed(ttypeconvnode(right).left.resultdef)))) then
begin
temp := ttypeconvnode(left).left;
ttypeconvnode(left).left := nil;
left.free;
left := temp;
if (right.nodetype = typeconvn) then
begin
temp := ttypeconvnode(right).left;
ttypeconvnode(right).left := nil;
right.free;
right := temp;
end;
if (is_signed(left.resultdef)) then
begin
inserttypeconv(left,s32inttype);
inserttypeconv(right,s32inttype);
end
else
begin
inserttypeconv(left,u32inttype);
inserttypeconv(right,u32inttype);
end;
firstpass(left);
firstpass(right);
result := true;
end;
end;
function taddnode.first_add64bitint: tnode;
var
procname: string[31];
temp: tnode;
power: longint;
begin
result := nil;
{ create helper calls mul }
if nodetype <> muln then
exit;
{ make sure that if there is a constant, that it's on the right }
if left.nodetype = ordconstn then
begin
temp := right;
right := left;
left := temp;
end;
{ can we use a shift instead of a mul? }
if not (cs_check_overflow in current_settings.localswitches) and
(right.nodetype = ordconstn) and
ispowerof2(tordconstnode(right).value,power) then
begin
tordconstnode(right).value := power;
result := cshlshrnode.create(shln,left,right);
{ left and right are reused }
left := nil;
right := nil;
{ return firstpassed new node }
exit;
end;
if not(use_generic_mul32to64) and
try_make_mul32to64 then
exit;
{ when currency is used set the result of the
parameters to s64bit, so they are not converted }
if is_currency(resultdef) then
begin
left.resultdef:=s64inttype;
right.resultdef:=s64inttype;
end;
{ otherwise, create the parameters for the helper }
right := ccallparanode.create(
cordconstnode.create(ord(cs_check_overflow in current_settings.localswitches),booltype,true),
ccallparanode.create(right,ccallparanode.create(left,nil)));
left := nil;
{ only qword needs the unsigned code, the
signed code is also used for currency }
if is_signed(resultdef) then
procname := 'fpc_mul_int64'
else
procname := 'fpc_mul_qword';
result := ccallnode.createintern(procname,right);
right := nil;
end;
function taddnode.first_addfloat : tnode;
var
procname: string[31];
{ do we need to reverse the result ? }
notnode : boolean;
fdef : tdef;
begin
result := nil;
notnode := false;
{ In non-emulation mode, real opcodes are
emitted for floating point values.
}
if not (cs_fp_emulation in current_settings.moduleswitches) then
exit;
if not(target_info.system in system_wince) then
begin
case tfloatdef(left.resultdef).floattype of
s32real:
begin
fdef:=search_system_type('FLOAT32REC').typedef;
procname:='float32';
end;
s64real:
begin
fdef:=search_system_type('FLOAT64').typedef;
procname:='float64';
end;
{!!! not yet implemented
s128real:
}
else
internalerror(2005082601);
end;
case nodetype of
addn:
procname:=procname+'_add';
muln:
procname:=procname+'_mul';
subn:
procname:=procname+'_sub';
slashn:
procname:=procname+'_div';
ltn:
procname:=procname+'_lt';
lten:
procname:=procname+'_le';
gtn:
begin
procname:=procname+'_le';
notnode:=true;
end;
gten:
begin
procname:=procname+'_lt';
notnode:=true;
end;
equaln:
procname:=procname+'_eq';
unequaln:
begin
procname:=procname+'_eq';
notnode:=true;
end;
else
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),left.resultdef.typename,right.resultdef.typename);
end;
end
else
begin
case nodetype of
addn:
procname:='ADD';
muln:
procname:='MUL';
subn:
procname:='SUB';
slashn:
procname:='DIV';
ltn:
procname:='LT';
lten:
procname:='LE';
gtn:
procname:='GT';
gten:
procname:='GE';
equaln:
procname:='EQ';
unequaln:
procname:='NE';
else
CGMessage3(type_e_operator_not_supported_for_types,node2opstr(nodetype),left.resultdef.typename,right.resultdef.typename);
end;
case tfloatdef(left.resultdef).floattype of
s32real:
begin
procname:=procname+'S';
if nodetype in [addn,muln,subn,slashn] then
procname:=lower(procname);
end;
s64real:
procname:=procname+'D';
{!!! not yet implemented
s128real:
}
else
internalerror(2005082602);
end;
end;
{ cast softfpu result? }
if not(target_info.system in system_wince) then
begin
if nodetype in [ltn,lten,gtn,gten,equaln,unequaln] then
resultdef:=booltype;
result:=ctypeconvnode.create_internal(ccallnode.createintern(procname,ccallparanode.create(
ctypeconvnode.create_internal(right,fdef),
ccallparanode.create(
ctypeconvnode.create_internal(left,fdef),nil))),resultdef);
end
else
result:=ccallnode.createintern(procname,ccallparanode.create(right,
ccallparanode.create(left,nil)));
left:=nil;
right:=nil;
{ do we need to reverse the result }
if notnode then
result:=cnotnode.create(result);
end;
function taddnode.pass_1 : tnode;
var
{$ifdef addstringopt}
hp : tnode;
{$endif addstringopt}
lt,rt : tnodetype;
rd,ld : tdef;
begin
result:=nil;
{ Can we optimize multiple string additions into a single call?
This need to be done on a complete tree to detect the multiple
add nodes and is therefor done before the subtrees are processed }
if canbemultistringadd(self) then
begin
result := genmultistringadd(self);
exit;
end;
{ first do the two subtrees }
firstpass(left);
firstpass(right);
if codegenerror then
exit;
{ load easier access variables }
rd:=right.resultdef;
ld:=left.resultdef;
rt:=right.nodetype;
lt:=left.nodetype;
{ int/int gives real/real! }
if nodetype=slashn then
begin
{$ifdef cpufpemu}
if (current_settings.fputype=fpu_soft) or (cs_fp_emulation in current_settings.moduleswitches) then
begin
result:=first_addfloat;
if assigned(result) then
exit;
end;
{$endif cpufpemu}
expectloc:=LOC_FPUREGISTER;
{ maybe we need an integer register to save }
{ a reference }
if ((left.expectloc<>LOC_FPUREGISTER) or
(right.expectloc<>LOC_FPUREGISTER)) and
(left.registersint=right.registersint) then
calcregisters(self,1,1,0)
else
calcregisters(self,0,1,0);
{ an add node always first loads both the left and the }
{ right in the fpu before doing the calculation. However, }
{ calcregisters(0,2,0) will overestimate the number of }
{ necessary registers (it will make it 3 in case one of }
{ the operands is already in the fpu) (JM) }
if ((left.expectloc<>LOC_FPUREGISTER) or
(right.expectloc<>LOC_FPUREGISTER)) and
(registersfpu < 2) then
inc(registersfpu);
end
{ if both are orddefs then check sub types }
else if (ld.typ=orddef) and (rd.typ=orddef) then
begin
{ 2 booleans ? }
if is_boolean(ld) and is_boolean(rd) then
begin
if (not(cs_full_boolean_eval in current_settings.localswitches) or
(nf_short_bool in flags)) and
(nodetype in [andn,orn]) then
begin
expectloc:=LOC_JUMP;
calcregisters(self,0,0,0);
end
else
begin
if nodetype in [ltn,lten,gtn,gten,equaln,unequaln] then
begin
expectloc:=LOC_FLAGS;
if (left.expectloc in [LOC_JUMP,LOC_FLAGS]) and
(left.expectloc in [LOC_JUMP,LOC_FLAGS]) then
calcregisters(self,2,0,0)
else
calcregisters(self,1,0,0);
end
else
begin
expectloc:=LOC_REGISTER;
calcregisters(self,0,0,0);
end;
end;
end
else
{ Both are chars? only convert to shortstrings for addn }
if is_char(ld) then
begin
if nodetype=addn then
internalerror(200103291);
expectloc:=LOC_FLAGS;
calcregisters(self,1,0,0);
end
{$ifndef cpu64bit}
{ is there a 64 bit type ? }
else if (torddef(ld).ordtype in [s64bit,u64bit,scurrency]) then
begin
result := first_add64bitint;
if assigned(result) then
exit;
if nodetype in [addn,subn,muln,andn,orn,xorn] then
expectloc:=LOC_REGISTER
else
expectloc:=LOC_JUMP;
calcregisters(self,2,0,0)
end
{$endif cpu64bit}
{ is there a cardinal? }
else if (torddef(ld).ordtype=u32bit) then
begin
if nodetype in [addn,subn,muln,andn,orn,xorn] then
expectloc:=LOC_REGISTER
else
expectloc:=LOC_FLAGS;
calcregisters(self,1,0,0);
{ for unsigned mul we need an extra register }
if nodetype=muln then
inc(registersint);
end
{ generic s32bit conversion }
else
begin
if nodetype in [addn,subn,muln,andn,orn,xorn] then
expectloc:=LOC_REGISTER
else
expectloc:=LOC_FLAGS;
calcregisters(self,1,0,0);
end;
end
{ left side a setdef, must be before string processing,
else array constructor can be seen as array of char (PFV) }
else if (ld.typ=setdef) then
begin
if tsetdef(ld).settype=smallset then
begin
if nodetype in [ltn,lten,gtn,gten,equaln,unequaln] then
expectloc:=LOC_FLAGS
else
expectloc:=LOC_REGISTER;
{ are we adding set elements ? }
if right.nodetype=setelementn then
calcregisters(self,2,0,0)
else
calcregisters(self,1,0,0);
end
else
{$ifdef MMXSET}
{$ifdef i386}
if cs_mmx in current_settings.localswitches then
begin
expectloc:=LOC_MMXREGISTER;
calcregisters(self,0,0,4);
end
else
{$endif}
{$endif MMXSET}
begin
result := first_addset;
if assigned(result) then
exit;
expectloc:=LOC_CREFERENCE;
calcregisters(self,0,0,0);
{ here we call SET... }
include(current_procinfo.flags,pi_do_call);
end;
end
{ compare pchar by addresses like BP/Delphi }
else if is_pchar(ld) then
begin
if nodetype in [addn,subn,muln,andn,orn,xorn] then
expectloc:=LOC_REGISTER
else
expectloc:=LOC_FLAGS;
calcregisters(self,1,0,0);
end
{ is one of the operands a string }
else if (ld.typ=stringdef) then
begin
if is_widestring(ld) then
begin
{ this is only for add, the comparisaion is handled later }
expectloc:=LOC_REGISTER;
end
else if is_ansistring(ld) then
begin
{ this is only for add, the comparisaion is handled later }
expectloc:=LOC_REGISTER;
end
else if is_longstring(ld) then
begin
{ this is only for add, the comparisaion is handled later }
expectloc:=LOC_REFERENCE;
end
else
begin
{$ifdef addstringopt}
{ can create a call which isn't handled by callparatemp }
if canbeaddsstringcharoptnode(self) then
begin
hp := genaddsstringcharoptnode(self);
pass_1 := hp;
exit;
end
else
{$endif addstringopt}
begin
{ Fix right to be shortstring }
if is_char(right.resultdef) then
begin
inserttypeconv(right,cshortstringtype);
firstpass(right);
end;
end;
{$ifdef addstringopt}
{ can create a call which isn't handled by callparatemp }
if canbeaddsstringcsstringoptnode(self) then
begin
hp := genaddsstringcsstringoptnode(self);
pass_1 := hp;
exit;
end;
{$endif addstringopt}
end;
{ otherwise, let addstring convert everything }
result := first_addstring;
exit;
end
{ is one a real float ? }
else if (rd.typ=floatdef) or (ld.typ=floatdef) then
begin
{$ifdef cpufpemu}
if (current_settings.fputype=fpu_soft) or (cs_fp_emulation in current_settings.moduleswitches) then
begin
result:=first_addfloat;
if assigned(result) then
exit;
end;
{$endif cpufpemu}
if nodetype in [addn,subn,muln,andn,orn,xorn] then
expectloc:=LOC_FPUREGISTER
else
expectloc:=LOC_FLAGS;
calcregisters(self,0,1,0);
{ an add node always first loads both the left and the }
{ right in the fpu before doing the calculation. However, }
{ calcregisters(0,2,0) will overestimate the number of }
{ necessary registers (it will make it 3 in case one of }
{ the operands is already in the fpu) (JM) }
if ((left.expectloc<>LOC_FPUREGISTER) or
(right.expectloc<>LOC_FPUREGISTER)) and
(registersfpu < 2) then
inc(registersfpu);
end
{ pointer comperation and subtraction }
else if (ld.typ=pointerdef) then
begin
if nodetype in [addn,subn,muln,andn,orn,xorn] then
expectloc:=LOC_REGISTER
else
expectloc:=LOC_FLAGS;
calcregisters(self,1,0,0);
end
else if is_class_or_interface(ld) then
begin
expectloc:=LOC_FLAGS;
calcregisters(self,1,0,0);
end
else if (ld.typ=classrefdef) then
begin
expectloc:=LOC_FLAGS;
calcregisters(self,1,0,0);
end
{ support procvar=nil,procvar<>nil }
else if ((ld.typ=procvardef) and (rt=niln)) or
((rd.typ=procvardef) and (lt=niln)) then
begin
expectloc:=LOC_FLAGS;
calcregisters(self,1,0,0);
end
{$ifdef SUPPORT_MMX}
{ mmx support, this must be before the zero based array
check }
else if (cs_mmx in current_settings.localswitches) and is_mmx_able_array(ld) and
is_mmx_able_array(rd) then
begin
expectloc:=LOC_MMXREGISTER;
calcregisters(self,0,0,1);
end
{$endif SUPPORT_MMX}
else if (rd.typ=pointerdef) or (ld.typ=pointerdef) then
begin
expectloc:=LOC_REGISTER;
calcregisters(self,1,0,0);
end
else if (rd.typ=procvardef) and
(ld.typ=procvardef) and
equal_defs(rd,ld) then
begin
expectloc:=LOC_FLAGS;
calcregisters(self,1,0,0);
end
else if (ld.typ=enumdef) then
begin
expectloc:=LOC_FLAGS;
calcregisters(self,1,0,0);
end
{$ifdef SUPPORT_MMX}
else if (cs_mmx in current_settings.localswitches) and
is_mmx_able_array(ld) and
is_mmx_able_array(rd) then
begin
expectloc:=LOC_MMXREGISTER;
calcregisters(self,0,0,1);
end
{$endif SUPPORT_MMX}
{ the general solution is to convert to 32 bit int }
else
begin
expectloc:=LOC_REGISTER;
calcregisters(self,1,0,0);
end;
end;
{$ifdef state_tracking}
function Taddnode.track_state_pass(exec_known:boolean):boolean;
var factval:Tnode;
begin
track_state_pass:=false;
if left.track_state_pass(exec_known) then
begin
track_state_pass:=true;
left.resultdef:=nil;
do_typecheckpass(left);
end;
factval:=aktstate.find_fact(left);
if factval<>nil then
begin
track_state_pass:=true;
left.destroy;
left:=factval.getcopy;
end;
if right.track_state_pass(exec_known) then
begin
track_state_pass:=true;
right.resultdef:=nil;
do_typecheckpass(right);
end;
factval:=aktstate.find_fact(right);
if factval<>nil then
begin
track_state_pass:=true;
right.destroy;
right:=factval.getcopy;
end;
end;
{$endif}
begin
caddnode:=taddnode;
end.