mirror of
				https://gitlab.com/freepascal.org/fpc/source.git
				synced 2025-10-31 17:31:42 +01:00 
			
		
		
		
	 eeba1770aa
			
		
	
	
		eeba1770aa
		
	
	
	
	
		
			
			- MaxTanh is now the exact value Ln(MaxExtended)/2
  - The 'for' loops in MinValue and MaxValue can start with the second
    element instead of the first one
  - Added more overloaded versions of Min and Max functions
		
	
			
		
			
				
	
	
		
			973 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			ObjectPascal
		
	
	
	
	
	
			
		
		
	
	
			973 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			ObjectPascal
		
	
	
	
	
	
| {
 | |
|     $Id$
 | |
|     This file is part of the Free Pascal run time library.
 | |
|     Copyright (c) 1999-2000 by Florian Klaempfl
 | |
|     member of the Free Pascal development team
 | |
| 
 | |
|     See the file COPYING.FPC, included in this distribution,
 | |
|     for details about the copyright.
 | |
| 
 | |
|     This program is distributed in the hope that it will be useful,
 | |
|     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 | |
| 
 | |
|  **********************************************************************}
 | |
| {
 | |
|   This unit is an equivalent to the Delphi math unit
 | |
|   (with some improvements)
 | |
| 
 | |
|   About assembler usage:
 | |
|   ----------------------
 | |
|   I used as few as possible assembler to allow an easy port
 | |
|   to other processors. Today, I think it's wasted time to write
 | |
|   assembler because different versions of a family of processors
 | |
|   need different implementations.
 | |
| 
 | |
|   To improve performance, I changed all integer arguments and
 | |
|   functions results to longint, because 16 bit instructions are
 | |
|   lethal for a modern intel processor.
 | |
|                                                       (FK)
 | |
| 
 | |
|   What's to do:
 | |
|     o a lot of function :), search for !!!!
 | |
|     o some statistical functions
 | |
|     o all financial functions
 | |
|     o optimizations
 | |
| }
 | |
| 
 | |
| unit math;
 | |
| interface
 | |
| 
 | |
| {$MODE objfpc}
 | |
| 
 | |
|     uses
 | |
|        sysutils;
 | |
| 
 | |
|     const { Ranges of the IEEE floating point types, including denormals }
 | |
|       MinSingle    =  1.5e-45;
 | |
|       MaxSingle    =  3.4e+38;
 | |
|       MinDouble    =  5.0e-324;
 | |
|       MaxDouble    =  1.7e+308;
 | |
|       MinExtended  =  3.4e-4932;
 | |
|       MaxExtended  =  1.1e+4932;
 | |
|       MinComp      = -9.223372036854775807e+18;
 | |
|       MaxComp      =  9.223372036854775807e+18;
 | |
| 
 | |
|     type
 | |
|        { the original delphi functions use extended as argument, }
 | |
|        { but I would prefer double, because 8 bytes is a very    }
 | |
|        { natural size for the processor                          }
 | |
|        { WARNING : changing float type will                      }
 | |
|        { break all assembler code  PM                            }
 | |
|        float = extended;
 | |
|        PFloat = ^Float;
 | |
|        PInteger = ^Integer;
 | |
|        
 | |
|        tpaymenttime = (ptendofperiod,ptstartofperiod);
 | |
| 
 | |
|        einvalidargument = class(ematherror);
 | |
| 
 | |
| { Min/max determination }
 | |
| function MinIntValue(const Data: array of Integer): Integer;
 | |
| function MaxIntValue(const Data: array of Integer): Integer;
 | |
| 
 | |
| { Extra, not present in Delphi, but used frequently  }
 | |
| function Min(a, b: Integer): Integer;
 | |
| function Max(a, b: Integer): Integer;
 | |
| function Min(a, b: Cardinal): Cardinal;
 | |
| function Max(a, b: Cardinal): Cardinal;
 | |
| function Min(a, b: Int64): Int64;
 | |
| function Max(a, b: Int64): Int64;
 | |
| function Min(a, b: Single): Single;
 | |
| function Max(a, b: Single): Single;
 | |
| function Min(a, b: Double): Double;
 | |
| function Max(a, b: Double): Double;
 | |
| function Min(a, b: Extended): Extended;
 | |
| function Max(a, b: Extended): Extended;
 | |
| 
 | |
| { angle conversion }
 | |
| 
 | |
| function degtorad(deg : float) : float;
 | |
| function radtodeg(rad : float) : float;
 | |
| function gradtorad(grad : float) : float;
 | |
| function radtograd(rad : float) : float;
 | |
| function degtograd(deg : float) : float;
 | |
| function gradtodeg(grad : float) : float;
 | |
| { one cycle are 2*Pi rad }
 | |
| function cycletorad(cycle : float) : float;
 | |
| function radtocycle(rad : float) : float;
 | |
| 
 | |
| { trigoniometric functions }
 | |
| 
 | |
| function tan(x : float) : float;
 | |
| function cotan(x : float) : float;
 | |
| procedure sincos(theta : float;var sinus,cosinus : float);
 | |
| 
 | |
| { inverse functions }
 | |
| 
 | |
| function arccos(x : float) : float;
 | |
| function arcsin(x : float) : float;
 | |
| 
 | |
| { calculates arctan(x/y) and returns an angle in the correct quadrant }
 | |
| function arctan2(x,y : float) : float;
 | |
| 
 | |
| { hyperbolic functions }
 | |
| 
 | |
| function cosh(x : float) : float;
 | |
| function sinh(x : float) : float;
 | |
| function tanh(x : float) : float;
 | |
| 
 | |
| { area functions }
 | |
| 
 | |
| { delphi names: }
 | |
| function arccosh(x : float) : float;
 | |
| function arcsinh(x : float) : float;
 | |
| function arctanh(x : float) : float;
 | |
| { IMHO the function should be called as follows (FK) }
 | |
| function arcosh(x : float) : float;
 | |
| function arsinh(x : float) : float;
 | |
| function artanh(x : float) : float;
 | |
| 
 | |
| { triangle functions }
 | |
| 
 | |
| { returns the length of the hypotenuse of a right triangle }
 | |
| { if x and y are the other sides                           }
 | |
| function hypot(x,y : float) : float;
 | |
| 
 | |
| { logarithm functions }
 | |
| 
 | |
| function log10(x : float) : float;
 | |
| function log2(x : float) : float;
 | |
| function logn(n,x : float) : float;
 | |
| 
 | |
| { returns natural logarithm of x+1 }
 | |
| function lnxp1(x : float) : float;
 | |
| 
 | |
| { exponential functions }
 | |
| 
 | |
| function power(base,exponent : float) : float;
 | |
| { base^exponent }
 | |
| function intpower(base : float;exponent : longint) : float;
 | |
| 
 | |
| { number converting }
 | |
| 
 | |
| { rounds x towards positive infinity }
 | |
| function ceil(x : float) : longint;
 | |
| { rounds x towards negative infinity }
 | |
| function floor(x : float) : longint;
 | |
| 
 | |
| { misc. functions }
 | |
| 
 | |
| { splits x into mantissa and exponent (to base 2) }
 | |
| procedure frexp(x : float;var mantissa,exponent : float);
 | |
| { returns x*(2^p) }
 | |
| function ldexp(x : float;p : longint) : float;
 | |
| 
 | |
| { statistical functions }
 | |
| 
 | |
| function mean(const data : array of float) : float;
 | |
| function sum(const data : array of float) : float;
 | |
| function mean(const data : PFloat; Const N : longint) : float;
 | |
| function sum(const data : PFloat; Const N : Longint) : float;
 | |
| function sumofsquares(const data : array of float) : float;
 | |
| function sumofsquares(const data : PFloat; Const N : Integer) : float;
 | |
| { calculates the sum and the sum of squares of data }
 | |
| procedure sumsandsquares(const data : array of float;
 | |
|   var sum,sumofsquares : float);
 | |
| procedure sumsandsquares(const data : PFloat; Const N : Integer;
 | |
|   var sum,sumofsquares : float);
 | |
| function minvalue(const data : array of float) : float;
 | |
| function minvalue(const data : array of integer) : Integer;
 | |
| function minvalue(const data : PFloat; Const N : Integer) : float;
 | |
| function MinValue(const Data : PInteger; Const N : Integer): Integer;
 | |
| function maxvalue(const data : array of float) : float;
 | |
| function maxvalue(const data : array of integer) : Integer;
 | |
| function maxvalue(const data : PFloat; Const N : Integer) : float;
 | |
| function maxvalue(const data : PInteger; Const N : Integer) : Integer;
 | |
| { calculates the standard deviation }
 | |
| function stddev(const data : array of float) : float;
 | |
| function stddev(const data : PFloat; Const N : Integer) : float;
 | |
| { calculates the mean and stddev }
 | |
| procedure meanandstddev(const data : array of float;
 | |
|   var mean,stddev : float);
 | |
| procedure meanandstddev(const data : PFloat;
 | |
|   Const N : Longint;var mean,stddev : float);
 | |
| function variance(const data : array of float) : float;
 | |
| function totalvariance(const data : array of float) : float;
 | |
| function variance(const data : PFloat; Const N : Integer) : float;
 | |
| function totalvariance(const data : PFloat; Const N : Integer) : float;
 | |
| { returns random values with gaussian distribution }
 | |
| function randg(mean,stddev : float) : float;
 | |
| 
 | |
| { I don't know what the following functions do: }
 | |
| function popnstddev(const data : array of float) : float;
 | |
| function popnstddev(const data : PFloat; Const N : Integer) : float;
 | |
| function popnvariance(const data : PFloat; Const N : Integer) : float;
 | |
| function popnvariance(const data : array of float) : float;
 | |
| procedure momentskewkurtosis(const data : array of float;
 | |
|   var m1,m2,m3,m4,skew,kurtosis : float);
 | |
| procedure momentskewkurtosis(const data : PFloat; Const N : Integer;
 | |
|   var m1,m2,m3,m4,skew,kurtosis : float);
 | |
| 
 | |
| { geometrical function }
 | |
| 
 | |
| { returns the euclidean L2 norm }
 | |
| function norm(const data : array of float) : float;
 | |
| function norm(const data : PFloat; Const N : Integer) : float;
 | |
| 
 | |
| implementation
 | |
| 
 | |
| ResourceString
 | |
|   SMathError = 'Math Error : %s';
 | |
|   SInvalidArgument = 'Invalid argument';
 | |
|   
 | |
| Procedure DoMathError(Const S : String);
 | |
| begin
 | |
|   Raise EMathError.CreateFmt(SMathError,[S]);
 | |
| end;
 | |
| 
 | |
| Procedure InvalidArgument;
 | |
| 
 | |
| begin
 | |
|   Raise EInvalidArgument.Create(SInvalidArgument);
 | |
| end;
 | |
| 
 | |
| function degtorad(deg : float) : float;
 | |
| 
 | |
|   begin
 | |
|      degtorad:=deg*(pi/180.0);
 | |
|   end;
 | |
| 
 | |
| function radtodeg(rad : float) : float;
 | |
| 
 | |
|   begin
 | |
|      radtodeg:=rad*(180.0/pi);
 | |
|   end;
 | |
| 
 | |
| function gradtorad(grad : float) : float;
 | |
| 
 | |
|   begin
 | |
|      gradtorad:=grad*(pi/200.0);
 | |
|   end;
 | |
| 
 | |
| function radtograd(rad : float) : float;
 | |
| 
 | |
|   begin
 | |
|      radtograd:=rad*(200.0/pi);
 | |
|   end;
 | |
| 
 | |
| function degtograd(deg : float) : float;
 | |
| 
 | |
|   begin
 | |
|      degtograd:=deg*(200.0/180.0);
 | |
|   end;
 | |
| 
 | |
| function gradtodeg(grad : float) : float;
 | |
| 
 | |
|   begin
 | |
|      gradtodeg:=grad*(180.0/200.0);
 | |
|   end;
 | |
| 
 | |
| function cycletorad(cycle : float) : float;
 | |
| 
 | |
|   begin
 | |
|      cycletorad:=(2*pi)*cycle;
 | |
|   end;
 | |
| 
 | |
| function radtocycle(rad : float) : float;
 | |
| 
 | |
|   begin
 | |
|      { avoid division }
 | |
|      radtocycle:=rad*(1/(2*pi));
 | |
|   end;
 | |
| 
 | |
| function tan(x : float) : float;
 | |
| 
 | |
|   begin
 | |
|      Tan:=Sin(x)/Cos(x)
 | |
|   end;
 | |
| 
 | |
| function cotan(x : float) : float;
 | |
| 
 | |
|   begin
 | |
|      cotan:=Cos(X)/Sin(X);
 | |
|   end;
 | |
| 
 | |
| procedure sincos(theta : float;var sinus,cosinus : float);
 | |
| 
 | |
|   begin
 | |
|   {$ifndef i386}
 | |
|   sinus:=sin(theta);
 | |
|   cosinus:=cos(theta);
 | |
|   {$else}
 | |
|   asm
 | |
|     fldt theta
 | |
|     fsincos
 | |
|     fwait
 | |
|     movl cosinus,%eax
 | |
|     fstpt (%eax)
 | |
|     movl sinus,%eax
 | |
|     fstpt (%eax)
 | |
|   end;
 | |
|   {$endif}
 | |
|   end;
 | |
| 
 | |
| { Sign, ArcSin and ArcCos from Arjan van Dijk (arjan.vanDijk@User.METAIR.WAU.NL) }
 | |
| 
 | |
| function sign(x : float) : float;
 | |
| begin
 | |
|   if      x > 0 then sign :=  1.0
 | |
|   else if x < 0 then sign := -1.0
 | |
|   else               sign :=  0.0;
 | |
| end;
 | |
| 
 | |
| function arcsin(x : float) : float;
 | |
| begin
 | |
|   if abs(x) > 1 then InvalidArgument
 | |
|   else if abs(x) < 0.5 then
 | |
|     arcsin := arctan(x/sqrt(1-sqr(x)))
 | |
|   else
 | |
|     arcsin := sign(x) * (pi*0.5 - arctan(sqrt(1 / sqr(x) - 1)));
 | |
| end;
 | |
| 
 | |
| function Arccos(x : Float) : Float;
 | |
| begin
 | |
|   arccos := pi*0.5 - arcsin(x);
 | |
| end;
 | |
| 
 | |
| 
 | |
| function arctan2( x,y : float) : float;
 | |
| 
 | |
|   {$ifndef i386}
 | |
|   begin
 | |
|   ArcTan2:=ArcTan(x/y);
 | |
|   {$else}
 | |
|     { without the assembler keyword, you have to store the result to }
 | |
|     { __result at the end of the assembler block (JM)                }
 | |
|     assembler;
 | |
|     asm
 | |
|     fldt X
 | |
|     fldt Y
 | |
|     fpatan
 | |
|     //leave
 | |
|     // ret $20 This is wrong for 4 byte aligned OS !!
 | |
|   {$endif}
 | |
|   end;
 | |
| 
 | |
| function cosh(x : float) : float;
 | |
| 
 | |
|   var
 | |
|      temp : float;
 | |
| 
 | |
|   begin
 | |
|      temp:=exp(x);
 | |
|      cosh:=0.5*(temp+1.0/temp);
 | |
|   end;
 | |
| 
 | |
| function sinh(x : float) : float;
 | |
| 
 | |
|   var
 | |
|      temp : float;
 | |
| 
 | |
|   begin
 | |
|      temp:=exp(x);
 | |
|      sinh:=0.5*(temp-1.0/temp);
 | |
|   end;
 | |
| 
 | |
| Const MaxTanh = 5678.22249441322; // Ln(MaxExtended)/2
 | |
| 
 | |
| function tanh(x : float) : float;
 | |
| 
 | |
|   var Temp : float;
 | |
| 
 | |
|   begin
 | |
|      if x>MaxTanh then exit(1.0)
 | |
|      else if x<-MaxTanh then exit (-1.0);
 | |
|      temp:=exp(-2*x);
 | |
|      tanh:=(1-temp)/(1+temp)
 | |
|   end;
 | |
| 
 | |
| function arccosh(x : float) : float;
 | |
| 
 | |
|   begin
 | |
|      arccosh:=arcosh(x);
 | |
|   end;
 | |
| 
 | |
| function arcsinh(x : float) : float;
 | |
| 
 | |
|   begin
 | |
|      arcsinh:=arsinh(x);
 | |
|   end;
 | |
| 
 | |
| function arctanh(x : float) : float;
 | |
| 
 | |
|   begin
 | |
|      if x>1 then InvalidArgument;
 | |
|      arctanh:=artanh(x);
 | |
|   end;
 | |
| 
 | |
| function arcosh(x : float) : float;
 | |
| 
 | |
|   begin
 | |
|      if x<1 then InvalidArgument;
 | |
|      arcosh:=Ln(x+Sqrt(x*x-1));
 | |
|   end;
 | |
| 
 | |
| function arsinh(x : float) : float;
 | |
| 
 | |
|   begin
 | |
|      arsinh:=Ln(x+Sqrt(1+x*x));
 | |
|   end;
 | |
| 
 | |
| function artanh(x : float) : float;
 | |
|   begin
 | |
|     If abs(x)>1 then InvalidArgument;
 | |
|     artanh:=(Ln((1+x)/(1-x)))*0.5;
 | |
|   end;
 | |
| 
 | |
| function hypot(x,y : float) : float;
 | |
| 
 | |
|   begin
 | |
|      hypot:=Sqrt(x*x+y*y)
 | |
|   end;
 | |
| 
 | |
| function log10(x : float) : float;
 | |
| 
 | |
|   begin
 | |
|      log10:=ln(x)/ln(10);
 | |
|   end;
 | |
| 
 | |
| function log2(x : float) : float;
 | |
| 
 | |
|   begin
 | |
|      log2:=ln(x)/ln(2)
 | |
|   end;
 | |
| 
 | |
| function logn(n,x : float) : float;
 | |
| 
 | |
|   begin
 | |
|      if n<0 then InvalidArgument;
 | |
|      logn:=ln(x)/ln(n);
 | |
|   end;
 | |
| 
 | |
| function lnxp1(x : float) : float;
 | |
| 
 | |
|   begin
 | |
|      if x<-1 then
 | |
|        InvalidArgument;
 | |
|      lnxp1:=ln(1+x);
 | |
|   end;
 | |
| 
 | |
| function power(base,exponent : float) : float;
 | |
| 
 | |
|   begin
 | |
|     If Exponent=0.0 then 
 | |
|       Result:=1.0
 | |
|     else
 | |
|       If base>0.0 then
 | |
|         Power:=exp(exponent * ln (base))
 | |
|       else if base=0.0 then
 | |
|         Result:=0.0
 | |
|       else
 | |
|         InvalidArgument
 | |
|   end;
 | |
| 
 | |
| function intpower(base : float;exponent : longint) : float;
 | |
| 
 | |
|   var
 | |
|      i : longint;
 | |
| 
 | |
|   begin
 | |
|      i:=abs(exponent);
 | |
|      intpower:=1.0;
 | |
|      while i>0 do
 | |
|        begin
 | |
|           while (i and 1)=0 do
 | |
|             begin
 | |
|                i:=i shr 1;
 | |
|                base:=sqr(base);
 | |
|             end;
 | |
|           i:=i-1;
 | |
|           intpower:=intpower*base;
 | |
|        end;
 | |
|      if exponent<0 then
 | |
|        intpower:=1.0/intpower;
 | |
|   end;
 | |
| 
 | |
| function ceil(x : float) : longint;
 | |
| 
 | |
|   begin
 | |
|     Ceil:=Trunc(x);
 | |
|     If Frac(x)>0 then
 | |
|       Ceil:=Ceil+1;
 | |
|   end;
 | |
| 
 | |
| function floor(x : float) : longint;
 | |
| 
 | |
|   begin
 | |
|      Floor:=Trunc(x);
 | |
|      If Frac(x)<0 then
 | |
|        Floor := Floor-1;
 | |
|   end;
 | |
| 
 | |
| procedure frexp(x : float;var mantissa,exponent : float);
 | |
| 
 | |
|   begin
 | |
| 
 | |
|   end;
 | |
| 
 | |
| function ldexp(x : float;p : longint) : float;
 | |
| 
 | |
|   begin
 | |
|      ldexp:=x*intpower(2.0,p);
 | |
|   end;
 | |
| 
 | |
| function mean(const data : array of float) : float;
 | |
| 
 | |
|   begin
 | |
|      Result:=Mean(@data[0],High(Data)+1);
 | |
|   end;
 | |
| 
 | |
| function mean(const data : PFloat; Const N : longint) : float;
 | |
| 
 | |
|   begin
 | |
|      mean:=sum(Data,N);
 | |
|      mean:=mean/N;
 | |
|   end;
 | |
| 
 | |
| function sum(const data : array of float) : float;
 | |
| 
 | |
|   begin
 | |
|      Result:=Sum(@Data[0],High(Data)+1);
 | |
|   end;
 | |
| 
 | |
| function sum(const data : PFloat;Const N : longint) : float;
 | |
| 
 | |
|   var
 | |
|      i : longint;
 | |
| 
 | |
|   begin
 | |
|      sum:=0.0;
 | |
|      for i:=0 to N-1 do
 | |
|        sum:=sum+data[i];
 | |
|   end;
 | |
| 
 | |
|  function sumofsquares(const data : array of float) : float;
 | |
|  
 | |
|  begin
 | |
|    Result:=sumofsquares(@data[0],High(Data)+1);
 | |
|  end;
 | |
|  
 | |
|  function sumofsquares(const data : PFloat; Const N : Integer) : float;
 | |
| 
 | |
|   var
 | |
|      i : longint;
 | |
| 
 | |
|   begin
 | |
|      sumofsquares:=0.0;
 | |
|      for i:=0 to N-1 do
 | |
|        sumofsquares:=sumofsquares+sqr(data[i]);
 | |
|   end;
 | |
| 
 | |
| procedure sumsandsquares(const data : array of float;
 | |
|   var sum,sumofsquares : float);
 | |
| 
 | |
| begin
 | |
|   sumsandsquares (@Data[0],High(Data)+1,Sum,sumofsquares);
 | |
| end;
 | |
| 
 | |
| procedure sumsandsquares(const data : PFloat; Const N : Integer;
 | |
|   var sum,sumofsquares : float);
 | |
| 
 | |
|   var
 | |
|      i : Integer;
 | |
|      temp : float;
 | |
| 
 | |
|   begin
 | |
|      sumofsquares:=0.0;
 | |
|      sum:=0.0;
 | |
|      for i:=0 to N-1 do
 | |
|        begin
 | |
|           temp:=data[i];
 | |
|           sumofsquares:=sumofsquares+sqr(temp);
 | |
|           sum:=sum+temp;
 | |
|        end;
 | |
|   end;
 | |
| 
 | |
| 
 | |
| 
 | |
| function stddev(const data : array of float) : float;
 | |
| 
 | |
| begin
 | |
|   Result:=Stddev(@Data[0],High(Data)+1)
 | |
| end;
 | |
| 
 | |
| function stddev(const data : PFloat; Const N : Integer) : float;
 | |
| 
 | |
|   begin
 | |
|      StdDev:=Sqrt(Variance(Data,N));
 | |
|   end;
 | |
| 
 | |
| procedure meanandstddev(const data : array of float;
 | |
|   var mean,stddev : float);
 | |
| 
 | |
| begin
 | |
|   Meanandstddev(@Data[0],High(Data)+1,Mean,stddev);
 | |
| end;
 | |
| 
 | |
| procedure meanandstddev(const data : PFloat;
 | |
|   Const N : Longint;var mean,stddev : float);
 | |
| 
 | |
| Var I : longint;
 | |
| 
 | |
| begin
 | |
|   Mean:=0;
 | |
|   StdDev:=0;
 | |
|   For I:=0 to N-1 do
 | |
|     begin
 | |
|     Mean:=Mean+Data[i];
 | |
|     StdDev:=StdDev+Sqr(Data[i]);
 | |
|     end;
 | |
|   Mean:=Mean/N;
 | |
|   StdDev:=(StdDev-N*Sqr(Mean));
 | |
|   If N>1 then
 | |
|     StdDev:=Sqrt(Stddev/(N-1))
 | |
|   else  
 | |
|     StdDev:=0;
 | |
| end;
 | |
| 
 | |
| function variance(const data : array of float) : float;
 | |
| 
 | |
|   begin
 | |
|      Variance:=Variance(@Data[0],High(Data)+1);
 | |
|   end;
 | |
| 
 | |
| function variance(const data : PFloat; Const N : Integer) : float;
 | |
| 
 | |
|   begin
 | |
|      If N=1 then 
 | |
|        Result:=0
 | |
|      else
 | |
|        Result:=TotalVariance(Data,N)/(N-1);
 | |
|   end;
 | |
| 
 | |
| function totalvariance(const data : array of float) : float;
 | |
| 
 | |
| begin
 | |
|   Result:=TotalVariance(@Data[0],High(Data)+1);
 | |
| end;
 | |
| 
 | |
| function totalvariance(const data : Pfloat;Const N : Integer) : float;
 | |
| 
 | |
|    var S,SS : Float;
 | |
| 
 | |
|   begin
 | |
|     If N=1 then
 | |
|       Result:=0
 | |
|     else
 | |
|       begin
 | |
|       SumsAndSquares(Data,N,S,SS);
 | |
|       Result := SS-Sqr(S)/N;
 | |
|       end;
 | |
|   end;
 | |
| 
 | |
| function randg(mean,stddev : float) : float;
 | |
| 
 | |
|   Var U1,S2 : Float;
 | |
| 
 | |
|   begin
 | |
|      repeat
 | |
|        u1:= 2*random-1;
 | |
|        S2:=Sqr(U1)+sqr(2*random-1);
 | |
|      until s2<1;
 | |
|      randg:=Sqrt(-2*ln(S2)/S2)*u1*stddev+Mean;
 | |
|   end;
 | |
| 
 | |
| function popnstddev(const data : array of float) : float;
 | |
| 
 | |
|   begin
 | |
|      PopnStdDev:=Sqrt(PopnVariance(@Data[0],High(Data)+1));
 | |
|   end;
 | |
| 
 | |
| function popnstddev(const data : PFloat; Const N : Integer) : float;
 | |
| 
 | |
|   begin
 | |
|      PopnStdDev:=Sqrt(PopnVariance(Data,N));
 | |
|   end;
 | |
| 
 | |
| function popnvariance(const data : array of float) : float;
 | |
| 
 | |
| begin
 | |
|   popnvariance:=popnvariance(@data[0],high(Data)+1);
 | |
| end;
 | |
| 
 | |
| function popnvariance(const data : PFloat; Const N : Integer) : float;
 | |
| 
 | |
|   begin
 | |
|      PopnVariance:=TotalVariance(Data,N)/N;
 | |
|   end;
 | |
| 
 | |
| procedure momentskewkurtosis(const data : array of float;
 | |
|   var m1,m2,m3,m4,skew,kurtosis : float);
 | |
| 
 | |
| begin
 | |
|   momentskewkurtosis(@Data[0],High(Data)+1,m1,m2,m3,m4,skew,kurtosis);
 | |
| end;
 | |
| 
 | |
| procedure momentskewkurtosis(const data : PFloat; Const N : Integer;
 | |
|   var m1,m2,m3,m4,skew,kurtosis : float);
 | |
| 
 | |
|   Var S,SS,SC,SQ,invN,Acc,M1S,S2N,S3N,temp : Float;
 | |
|       I : Longint;
 | |
| 
 | |
|   begin
 | |
|      invN:=1.0/N;
 | |
|      s:=0;
 | |
|      ss:=0;
 | |
|      sq:=0;
 | |
|      sc:=0;
 | |
|      for i:=0 to N-1 do
 | |
|        begin
 | |
|        temp:=Data[i];   { faster }
 | |
|        S:=S+temp;
 | |
|        acc:=temp*temp;
 | |
|        ss:=ss+acc;
 | |
|        Acc:=acc*temp;
 | |
|        Sc:=sc+acc;
 | |
|        acc:=acc*temp;
 | |
|        sq:=sq+acc;
 | |
|        end;
 | |
|      M1:=s*invN;
 | |
|      M1S:=M1*M1;
 | |
|      S2N:=SS*invN;
 | |
|      S3N:=SC*invN;
 | |
|      M2:=S2N-M1S;
 | |
|      M3:=S3N-(M1*3*S2N) + 2*M1S*M1;
 | |
|      M4:=SQ*invN - (M1 * 4 * S3N) + (M1S*6*S2N-3*Sqr(M1S));
 | |
|      Skew:=M3*power(M2,-3/2);
 | |
|      Kurtosis:=M4 / Sqr(M2);
 | |
|   end;
 | |
| 
 | |
| function norm(const data : array of float) : float;
 | |
| 
 | |
|   begin
 | |
|      norm:=Norm(@data[0],High(Data)+1);
 | |
|   end;
 | |
| 
 | |
| function norm(const data : PFloat; Const N : Integer) : float;
 | |
| 
 | |
|   begin
 | |
|      norm:=sqrt(sumofsquares(data,N));
 | |
|   end;
 | |
| 
 | |
| 
 | |
| function MinIntValue(const Data: array of Integer): Integer;
 | |
| var
 | |
|   I: Integer;
 | |
| begin
 | |
|   Result := Data[Low(Data)];
 | |
|   For I := Succ(Low(Data)) To High(Data) Do
 | |
|     If Data[I] < Result Then Result := Data[I];
 | |
| end;
 | |
| 
 | |
| function MinValue(const Data: array of Integer): Integer;
 | |
| 
 | |
| begin
 | |
|   Result:=MinValue(Pinteger(@Data[0]),High(Data)+1)
 | |
| end;
 | |
| 
 | |
| function MinValue(const Data: PInteger; Const N : Integer): Integer;
 | |
| var
 | |
|   I: Integer;
 | |
| begin
 | |
|   Result := Data[0];
 | |
|   For I := 1 To N-1 do
 | |
|     If Data[I] < Result Then Result := Data[I];
 | |
| end;
 | |
| 
 | |
| 
 | |
| function minvalue(const data : array of float) : float;
 | |
| 
 | |
| begin
 | |
|    Result:=minvalue(PFloat(@data[0]),High(Data)+1);
 | |
| end;
 | |
| 
 | |
| function minvalue(const data : PFloat; Const N : Integer) : float;
 | |
| 
 | |
| var
 | |
|    i : longint;
 | |
| 
 | |
| begin
 | |
|    { get an initial value }
 | |
|    minvalue:=data[0];
 | |
|    for i:=1 to N-1 do
 | |
|      if data[i]<minvalue then
 | |
|        minvalue:=data[i];
 | |
| end;
 | |
| 
 | |
| function MaxIntValue(const Data: array of Integer): Integer;
 | |
| var
 | |
|   I: Integer;
 | |
| begin
 | |
|   Result := Data[Low(Data)];
 | |
|   For I := Succ(Low(Data)) To High(Data) Do
 | |
|     If Data[I] > Result Then Result := Data[I];
 | |
| end;
 | |
| 
 | |
| function maxvalue(const data : array of float) : float;
 | |
| 
 | |
| begin
 | |
|    Result:=maxvalue(PFloat(@data[0]),High(Data)+1);
 | |
| end;
 | |
| 
 | |
| function maxvalue(const data : PFloat; Const N : Integer) : float;
 | |
| 
 | |
| var
 | |
|    i : longint;
 | |
| 
 | |
| begin
 | |
|    { get an initial value }
 | |
|    maxvalue:=data[0];
 | |
|    for i:=1 to N-1 do
 | |
|      if data[i]>maxvalue then
 | |
|        maxvalue:=data[i];
 | |
| end;
 | |
| 
 | |
| function MaxValue(const Data: array of Integer): Integer;
 | |
| 
 | |
| begin
 | |
|   Result:=MaxValue(PInteger(@Data[0]),High(Data)+1)
 | |
| end;
 | |
| 
 | |
| function maxvalue(const data : PInteger; Const N : Integer) : Integer;
 | |
| 
 | |
| var
 | |
|    i : longint;
 | |
| 
 | |
| begin
 | |
|    { get an initial value }
 | |
|    maxvalue:=data[0];
 | |
|    for i:=1 to N-1 do
 | |
|      if data[i]>maxvalue then
 | |
|        maxvalue:=data[i];
 | |
| end;
 | |
| 
 | |
| 
 | |
| function Min(a, b: Integer): Integer;
 | |
| begin
 | |
|   if a < b then
 | |
|     Result := a
 | |
|   else
 | |
|     Result := b;
 | |
| end;
 | |
| 
 | |
| function Max(a, b: Integer): Integer;
 | |
| begin
 | |
|   if a > b then
 | |
|     Result := a
 | |
|   else
 | |
|     Result := b;
 | |
| end;
 | |
| 
 | |
| function Min(a, b: Cardinal): Cardinal;
 | |
| begin
 | |
|   if a < b then
 | |
|     Result := a
 | |
|   else
 | |
|     Result := b;
 | |
| end;
 | |
| 
 | |
| function Max(a, b: Cardinal): Cardinal;
 | |
| begin
 | |
|   if a > b then
 | |
|     Result := a
 | |
|   else
 | |
|     Result := b;
 | |
| end;
 | |
| 
 | |
| function Min(a, b: Int64): Int64;
 | |
| begin
 | |
|   if a < b then
 | |
|     Result := a
 | |
|   else
 | |
|     Result := b;
 | |
| end;
 | |
| 
 | |
| function Max(a, b: Int64): Int64;
 | |
| begin
 | |
|   if a > b then
 | |
|     Result := a
 | |
|   else
 | |
|     Result := b;
 | |
| end;
 | |
| 
 | |
| function Min(a, b: Single): Single;
 | |
| begin
 | |
|   if a < b then
 | |
|     Result := a
 | |
|   else
 | |
|     Result := b;
 | |
| end;
 | |
| 
 | |
| function Max(a, b: Single): Single;
 | |
| begin
 | |
|   if a > b then
 | |
|     Result := a
 | |
|   else
 | |
|     Result := b;
 | |
| end;
 | |
| 
 | |
| function Min(a, b: Double): Double;
 | |
| begin
 | |
|   if a < b then
 | |
|     Result := a
 | |
|   else
 | |
|     Result := b;
 | |
| end;
 | |
| 
 | |
| function Max(a, b: Double): Double;
 | |
| begin
 | |
|   if a > b then
 | |
|     Result := a
 | |
|   else
 | |
|     Result := b;
 | |
| end;
 | |
| 
 | |
| function Min(a, b: Extended): Extended;
 | |
| begin
 | |
|   if a < b then
 | |
|     Result := a
 | |
|   else
 | |
|     Result := b;
 | |
| end;
 | |
| 
 | |
| function Max(a, b: Extended): Extended;
 | |
| begin
 | |
|   if a > b then
 | |
|     Result := a
 | |
|   else
 | |
|     Result := b;
 | |
| end;
 | |
| 
 | |
| 
 | |
| end.
 | |
| {
 | |
|   $Log$
 | |
|   Revision 1.4  2000-07-30 10:01:04  sg
 | |
|   * Made some modifications suggested by Markus Kaemmerer:
 | |
|     - MaxTanh is now the exact value Ln(MaxExtended)/2
 | |
|     - The 'for' loops in MinValue and MaxValue can start with the second
 | |
|       element instead of the first one
 | |
|     - Added more overloaded versions of Min and Max functions
 | |
| 
 | |
|   Revision 1.3  2000/07/29 18:07:45  sg
 | |
|   * Applied patches by Markus Kaemmerer:
 | |
|     - Added ranges of the IEEE floating point types, including denormals
 | |
|     - in sincos function: The arguments are of type Extended, so they
 | |
|       need 't' as size suffix in FPU instructions, and not 'l'!
 | |
| 
 | |
|   Revision 1.2  2000/07/13 11:33:51  michael
 | |
|   + removed logs
 | |
|  
 | |
| }
 |