fpc/compiler/pparautl.pas

1307 lines
58 KiB
ObjectPascal

{
Copyright (c) 1998-2002 by Florian Klaempfl, Daniel Mantione
Helpers for dealing with subroutine parameters during parsing
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit pparautl;
{$i fpcdefs.inc}
interface
uses
symtype,symconst,symdef;
procedure insert_funcret_para(pd:tabstractprocdef);
procedure insert_parentfp_para(pd:tabstractprocdef);
procedure insert_self_and_vmt_para(pd:tabstractprocdef);
procedure insert_funcret_local(pd:tprocdef);
procedure insert_hidden_para(p:TObject;arg:pointer);
procedure check_c_para(pd:Tabstractprocdef);
procedure insert_struct_hidden_paras(astruct: tabstractrecorddef);
type
// flags of the *handle_calling_convention routines
thccflag=(
hcc_declaration, // declaration (as opposed to definition, i.e. interface rather than implementation)
hcc_check, // perform checks and outup errors if found
hcc_insert_hidden_paras // insert hidden parameters
);
thccflags=set of thccflag;
const
hcc_default_actions_intf=[hcc_declaration,hcc_check,hcc_insert_hidden_paras];
hcc_default_actions_intf_struct=hcc_default_actions_intf-[hcc_insert_hidden_paras];
hcc_default_actions_impl=[hcc_check,hcc_insert_hidden_paras];
hcc_default_actions_parse=[hcc_check,hcc_insert_hidden_paras];
PD_VIRTUAL_MUTEXCLPO = [po_interrupt,po_exports,po_overridingmethod,po_inline,po_staticmethod];
{ may take procdef, procvardef or defs for which is_funcref is true }
procedure handle_calling_convention(pd_or_invkdef:tdef;flags:thccflags);
function proc_add_definition(var currpd:tprocdef):boolean;
{ create "parent frame pointer" record skeleton for procdef, in which local
variables and parameters from pd accessed from nested routines can be
stored }
procedure build_parentfpstruct(pd: tprocdef);
implementation
uses
globals,globtype,cclasses,cutils,verbose,systems,fmodule,
tokens,
symbase,symsym,symtable,symutil,defutil,defcmp,blockutl,
{$ifdef jvm}
jvmdef,
{$endif jvm}
node,nbas,
aasmbase,
paramgr;
procedure insert_funcret_para(pd:tabstractprocdef);
const
name_result='result';
var
storepos : tfileposinfo;
vs : tparavarsym;
paranr : word;
begin
if not(pd.proctypeoption in [potype_constructor,potype_destructor]) and
not is_void(pd.returndef) and
not (df_generic in pd.defoptions) and
{ if this was originally an anonymous function then this was already
done earlier }
not ((pd.typ=procdef) and tprocdef(pd).was_anonymous) and
paramanager.ret_in_param(pd.returndef,pd) and
not assigned(pd.parast.find(name_result)) then
begin
storepos:=current_tokenpos;
if pd.typ=procdef then
current_tokenpos:=tprocdef(pd).fileinfo;
{$if defined(i386)}
{ For left to right add it at the end to be delphi compatible.
In the case of safecalls with safecal-exceptions support the
funcret-para is (from the 'c'-point of view) a normal parameter
which has to be added to the end of the parameter-list }
if (pd.proccalloption in (pushleftright_pocalls)) or
((tf_safecall_exceptions in target_info.flags) and
(pd.proccalloption=pocall_safecall)) then
paranr:=paranr_result_leftright
else
{$elseif defined(SUPPORT_SAFECALL)}
if (tf_safecall_exceptions in target_info.flags) and
(pd.proccalloption = pocall_safecall) then
paranr:=paranr_result_leftright
else
{$endif}
if is_managed_type(pd.returndef) then
paranr:=paranr_result_managed
else
paranr:=paranr_result;
{ Generate result variable accessing function result }
vs:=cparavarsym.create('$'+name_result,paranr,vs_var,pd.returndef,[vo_is_funcret,vo_is_hidden_para]);
pd.parast.insertsym(vs);
{ Store this symbol as funcretsym for procedures }
if pd.typ=procdef then
tprocdef(pd).funcretsym:=vs;
current_tokenpos:=storepos;
end;
end;
procedure insert_parentfp_para(pd:tabstractprocdef);
const
name_parentfp='parentfp';
var
storepos : tfileposinfo;
vs : tparavarsym;
paranr : longint;
begin
if (pd.parast.symtablelevel>normal_function_level) and
not assigned(pd.parast.find(name_parentfp)) then
begin
storepos:=current_tokenpos;
if pd.typ=procdef then
current_tokenpos:=tprocdef(pd).fileinfo;
{ if no support for nested procvars is activated, use the old
calling convention to pass the parent frame pointer for backwards
compatibility }
if not(m_nested_procvars in current_settings.modeswitches) then
paranr:=paranr_parentfp
{ nested procvars require Delphi-style parentfp passing, see
po_delphi_nested_cc declaration for more info }
{$if defined(i386) or defined(i8086)}
else if (pd.proccalloption in pushleftright_pocalls) then
paranr:=paranr_parentfp_delphi_cc_leftright
{$endif i386 or i8086}
else
paranr:=paranr_parentfp_delphi_cc;
{ Generate frame pointer. It can't be put in a register since it
must be accessable from nested routines }
if not(target_info.system in systems_fpnestedstruct) or
{ in case of errors or declared procvardef types, prevent invalid
type cast and possible nil pointer dereference }
not assigned(pd.owner.defowner) or
(pd.owner.defowner.typ<>procdef) then
begin
vs:=cparavarsym.create('$'+name_parentfp,paranr,vs_value
,parentfpvoidpointertype,[vo_is_parentfp,vo_is_hidden_para]);
end
else
begin
if not assigned(tprocdef(pd.owner.defowner).parentfpstruct) then
build_parentfpstruct(tprocdef(pd.owner.defowner));
vs:=cparavarsym.create('$'+name_parentfp,paranr,vs_value,
tprocdef(pd.owner.defowner).parentfpstructptrtype,[vo_is_parentfp,vo_is_hidden_para]);
end;
pd.parast.insertsym(vs);
current_tokenpos:=storepos;
end;
end;
procedure insert_self_and_vmt_para(pd:tabstractprocdef);
const
name_cmd='_cmd';
name_self='self';
name_block_literal='_block_literal';
name_vmt='vmt';
var
storepos : tfileposinfo;
vs : tparavarsym;
hdef : tdef;
selfdef : tdef;
vsp : tvarspez;
aliasvs : tabsolutevarsym;
sl : tpropaccesslist;
begin
if (pd.typ=procdef) and
is_objc_class_or_protocol(tprocdef(pd).struct) and
(pd.parast.symtablelevel=normal_function_level) then
begin
if not assigned(pd.parast.find(name_cmd)) or
not assigned(pd.parast.find(name_self)) then
begin
{ insert Objective-C self and selector parameters }
vs:=cparavarsym.create('$'+name_cmd,paranr_objc_cmd,vs_value,objc_seltype,[vo_is_msgsel,vo_is_hidden_para]);
pd.parast.insertsym(vs);
{ make accessible to code }
sl:=tpropaccesslist.create;
sl.addsym(sl_load,vs);
aliasvs:=cabsolutevarsym.create_ref('_CMD',objc_seltype,sl);
include(aliasvs.varoptions,vo_is_msgsel);
tlocalsymtable(tprocdef(pd).localst).insertsym(aliasvs);
if (po_classmethod in pd.procoptions) then
{ compatible with what gcc does }
hdef:=objc_idtype
else
hdef:=tprocdef(pd).struct;
vs:=cparavarsym.create('$'+name_self,paranr_objc_self,vs_value,hdef,[vo_is_self,vo_is_hidden_para]);
pd.parast.insertsym(vs);
end;
end
else if (pd.typ=procvardef) and
pd.is_methodpointer then
begin
if not assigned(pd.parast.find(name_self)) then
begin
{ Generate self variable }
vs:=cparavarsym.create('$'+name_self,paranr_self,vs_value,voidpointertype,[vo_is_self,vo_is_hidden_para]);
pd.parast.insertsym(vs);
end;
end
{ while only procvardefs of this type can be declared in Pascal code,
internally we also generate procdefs of this type when creating
block wrappers }
else if (po_is_block in pd.procoptions) then
begin
if not assigned(pd.parast.find('$'+name_block_literal)) then
begin
{ generate the first hidden parameter, which is a so-called "block
literal" describing the block and containing its invocation
procedure }
hdef:=cpointerdef.getreusable(get_block_literal_type_for_proc(pd));
{ mark as vo_is_parentfp so that proc2procvar comparisons will
succeed when assigning arbitrary routines to the block }
vs:=cparavarsym.create('$'+name_block_literal,paranr_blockselfpara,vs_value,
hdef,[vo_is_hidden_para,vo_is_parentfp]
);
pd.parast.insertsym(vs);
if pd.typ=procdef then
begin
{ make accessible to code }
sl:=tpropaccesslist.create;
sl.addsym(sl_load,vs);
aliasvs:=cabsolutevarsym.create_ref('FPC_BLOCK_SELF',hdef,sl);
include(aliasvs.varoptions,vo_is_parentfp);
tlocalsymtable(tprocdef(pd).localst).insertsym(aliasvs);
end;
end;
end
else
begin
if (pd.typ=procdef) and
assigned(tprocdef(pd).struct) and
(
(pd.parast.symtablelevel=normal_function_level) or
([po_anonymous,po_methodpointer]<=pd.procoptions)
) then
begin
{ static class methods have no hidden self/vmt pointer }
if pd.no_self_node then
exit;
storepos:=current_tokenpos;
current_tokenpos:=tprocdef(pd).fileinfo;
{ Generate VMT variable for constructor/destructor }
if (pd.proctypeoption in [potype_constructor,potype_destructor]) and
not(is_cppclass(tprocdef(pd).struct) or
is_record(tprocdef(pd).struct) or
is_javaclass(tprocdef(pd).struct) or
(
{ no vmt for record/type helper constructors }
is_objectpascal_helper(tprocdef(pd).struct) and
(tobjectdef(tprocdef(pd).struct).extendeddef.typ<>objectdef)
)) and
not assigned(pd.parast.find(name_vmt)) then
begin
vs:=cparavarsym.create('$'+name_vmt,paranr_vmt,vs_value,cclassrefdef.create(tprocdef(pd).struct),[vo_is_vmt,vo_is_hidden_para]);
pd.parast.insertsym(vs);
end;
{ for helpers the type of Self is equivalent to the extended
type or equal to an instance of it }
if is_objectpascal_helper(tprocdef(pd).struct) then
selfdef:=tobjectdef(tprocdef(pd).struct).extendeddef
else if is_objccategory(tprocdef(pd).struct) then
selfdef:=tobjectdef(tprocdef(pd).struct).childof
else
selfdef:=tprocdef(pd).struct;
{ Generate self variable, for classes we need
to use the generic voidpointer to be compatible with
methodpointers }
vsp:=vs_value;
if (po_staticmethod in pd.procoptions) or
(po_classmethod in pd.procoptions) then
hdef:=cclassrefdef.create(selfdef)
else
begin
if is_object(selfdef) or (selfdef.typ<>objectdef) then
vsp:=vs_var;
hdef:=selfdef;
end;
vs:=tparavarsym(pd.parast.find(name_self));
if not assigned(vs) or (vs.typ<>paravarsym) or (vs.vardef<>hdef) then
begin
vs:=cparavarsym.create('$'+name_self,paranr_self,vsp,hdef,[vo_is_self,vo_is_hidden_para]);
pd.parast.insertsym(vs);
end;
current_tokenpos:=storepos;
end;
end;
end;
procedure insert_funcret_local(pd:tprocdef);
var
storepos : tfileposinfo;
vs : tlocalvarsym;
aliasvs : tabsolutevarsym;
sl : tpropaccesslist;
hs : string;
begin
storepos:=current_tokenpos;
current_tokenpos:=pd.fileinfo;
{ The result from constructors and destructors can't be accessed directly }
if not(pd.proctypeoption in [potype_constructor,potype_destructor]) and
not is_void(pd.returndef) and
(not(po_assembler in pd.procoptions) or paramanager.asm_result_var(pd.returndef,pd)) then
begin
{ We need to insert a varsym for the result in the localst
when it is returning in a register }
{ we also need to do this for a generic procdef as we didn't allow
the creation of a result symbol in insert_funcret_para, but we need
a valid funcretsym }
if (df_generic in pd.defoptions) or
not paramanager.ret_in_param(pd.returndef,pd) then
begin
vs:=clocalvarsym.create('$result',vs_value,pd.returndef,[vo_is_funcret]);
pd.localst.insertsym(vs,false);
pd.funcretsym:=vs;
end;
{ insert the name of the procedure as alias for the function result,
we can't use realname because that will not work for compilerprocs
as the name is lowercase and unreachable from the code;
don't insert this alias for an anonymous function unless an
explicit name is provided }
if (
(pd.proctypeoption<>potype_operator) and
not (po_anonymous in pd.procoptions)
) or assigned(pd.resultname) then
begin
if assigned(pd.resultname) then
hs:=pd.resultname^
else
hs:=pd.procsym.name;
if (hs='') then
hs:='$_result';
sl:=tpropaccesslist.create;
sl.addsym(sl_load,pd.funcretsym);
aliasvs:=cabsolutevarsym.create_ref(hs,pd.returndef,sl);
include(aliasvs.varoptions,vo_is_funcret);
tlocalsymtable(pd.localst).insertsym(aliasvs);
end;
{ insert result also if support is on }
if (m_result in current_settings.modeswitches) then
begin
sl:=tpropaccesslist.create;
sl.addsym(sl_load,pd.funcretsym);
aliasvs:=cabsolutevarsym.create_ref('RESULT',pd.returndef,sl);
include(aliasvs.varoptions,vo_is_funcret);
include(aliasvs.varoptions,vo_is_result);
tlocalsymtable(pd.localst).insertsym(aliasvs);
end;
end;
if pd.generate_safecall_wrapper then
begin
{ vo_is_funcret is necessary so the local only gets freed after we loaded its
value into the return register }
vs:=clocalvarsym.create('$safecallresult',vs_value,search_system_type('HRESULT').typedef,[vo_is_funcret]);
{ do not put this variable in a register. The register which will be bound
to this symbol will not be allocated automatically. Which means it will
be re-used wich breaks the code. Besides this it is questionable if it is
an optimization if one of the registers is kept allocated during the complete
function, without ever using it.
(It would be better to re-write the safecall-support in such a way that this
variable it not needed at all, but that the HRESULT is set when the method
is finalized) }
vs.varregable:=vr_none;
pd.localst.insertsym(vs);
end;
current_tokenpos:=storepos;
end;
procedure insert_hidden_para(p:TObject;arg:pointer);
const
name_high = 'high';
name_typinfo = 'typinfo';
var
n : tsymstr;
hvs : tparavarsym;
pd : tabstractprocdef absolute arg;
begin
if (tsym(p).typ<>paravarsym) then
exit;
with tparavarsym(p) do
begin
{ We need a local copy for a value parameter when only the
address is pushed. Open arrays and Array of Const are
an exception because they are allocated at runtime and the
address that is pushed is patched.
Arrays passed to cdecl routines are special: they are pointers in
C and hence must be passed as such. Due to historical reasons, if
a cdecl routine is implemented in Pascal, we still make a copy on
the callee side. Do this the same on platforms that normally must
make a copy on the caller side, as otherwise the behaviour will
be different (and less perfomant) for routines implemented in C }
if (varspez=vs_value) and
paramanager.push_addr_param(varspez,vardef,pd.proccalloption) and
not(is_open_array(vardef) or
is_array_of_const(vardef)) and
(not(target_info.system in systems_caller_copy_addr_value_para) or
((pd.proccalloption in cdecl_pocalls) and
(vardef.typ=arraydef))) then
include(varoptions,vo_has_local_copy);
{ needs high parameter ? }
if paramanager.push_high_param(varspez,vardef,pd.proccalloption) then
begin
n:=name_high+name;
if not assigned(owner.find(n)) then
begin
{$ifdef cpu8bitalu}
if is_shortstring(vardef) then
hvs:=cparavarsym.create('$'+n,paranr+1,vs_const,aluuinttype,[vo_is_high_para,vo_is_hidden_para])
else
{$endif cpu8bitalu}
hvs:=cparavarsym.create('$'+n,paranr+1,vs_const,sizesinttype,[vo_is_high_para,vo_is_hidden_para]);
hvs.symoptions:=[];
owner.insertsym(hvs);
{ don't place to register if it will be accessed from implicit finally block }
if (varspez=vs_value) and
is_open_array(vardef) and
is_managed_type(vardef) then
hvs.varregable:=vr_none;
end;
end
else
begin
{ Give a warning that cdecl routines does not include high()
support }
if (pd.proccalloption in cdecl_pocalls) and
paramanager.push_high_param(varspez,vardef,pocall_default) then
begin
if is_open_string(vardef) then
MessagePos(fileinfo,parser_w_cdecl_no_openstring);
if not(po_external in pd.procoptions) and
(pd.typ<>procvardef) and
not is_objc_class_or_protocol(tprocdef(pd).struct) then
if is_array_of_const(vardef) then
MessagePos(fileinfo,parser_e_varargs_need_cdecl_and_external)
else
MessagePos(fileinfo,parser_w_cdecl_has_no_high);
end;
if (vardef.typ=formaldef) and (Tformaldef(vardef).typed) then
begin
n:=name_typinfo+name;
if not assigned(owner.find(n)) then
begin
hvs:=cparavarsym.create('$'+n,paranr+1,vs_const,voidpointertype,
[vo_is_typinfo_para,vo_is_hidden_para]);
owner.insertsym(hvs);
end;
end;
end;
end;
end;
procedure check_c_para(pd:Tabstractprocdef);
var
i,
lastparaidx : longint;
sym : TSym;
begin
lastparaidx:=pd.parast.SymList.Count-1;
for i:=0 to pd.parast.SymList.Count-1 do
begin
sym:=tsym(pd.parast.SymList[i]);
if (sym.typ=paravarsym) and
(tparavarsym(sym).vardef.typ=arraydef) then
begin
if not is_variant_array(tparavarsym(sym).vardef) and
not is_array_of_const(tparavarsym(sym).vardef) and
(tparavarsym(sym).varspez<>vs_var) then
MessagePos(tparavarsym(sym).fileinfo,parser_h_c_arrays_are_references);
if is_array_of_const(tparavarsym(sym).vardef) and
(i<lastparaidx) and
(tsym(pd.parast.SymList[i+1]).typ=paravarsym) and
not(vo_is_high_para in tparavarsym(pd.parast.SymList[i+1]).varoptions) then
MessagePos(tparavarsym(sym).fileinfo,parser_e_C_array_of_const_must_be_last);
end;
end;
end;
procedure insert_struct_hidden_paras(astruct: tabstractrecorddef);
var
pd: tdef;
i: longint;
oldpos: tfileposinfo;
begin
// handle calling conventions of record methods
oldpos:=current_filepos;
{ don't keep track of procdefs in a separate list, because the
compiler may add additional procdefs (e.g. property wrappers for
the jvm backend) }
for i := 0 to astruct.symtable.deflist.count - 1 do
begin
pd:=tdef(astruct.symtable.deflist[i]);
if pd.typ<>procdef then
continue;
current_filepos:=tprocdef(pd).fileinfo;
handle_calling_convention(tprocdef(pd),[hcc_declaration,hcc_insert_hidden_paras]);
end;
current_filepos:=oldpos;
end;
procedure set_addr_param_regable(p:TObject;arg:pointer);
begin
if (tsym(p).typ<>paravarsym) then
exit;
with tparavarsym(p) do
begin
if (not needs_finalization) and
paramanager.push_addr_param(varspez,vardef,tprocdef(arg).proccalloption) then
varregable:=vr_addr;
end;
end;
procedure handle_calling_convention(pd_or_invkdef:tdef;flags:thccflags);
var
pd : tabstractprocdef;
begin
if is_funcref(pd_or_invkdef) then
pd:=get_invoke_procdef(tobjectdef(pd_or_invkdef))
else if pd_or_invkdef.typ in [procdef,procvardef] then
pd:=tabstractprocdef(pd_or_invkdef)
else
internalerror(2022012502);
if hcc_check in flags then
begin
{ set the default calling convention if none provided }
if (pd.typ=procdef) and
(is_objc_class_or_protocol(tprocdef(pd).struct) or
is_cppclass(tprocdef(pd).struct)) then
begin
{ none of the explicit calling conventions should be allowed }
if (po_hascallingconvention in pd.procoptions) then
internalerror(2009032501);
if is_cppclass(tprocdef(pd).struct) then
pd.proccalloption:=pocall_cppdecl
else
pd.proccalloption:=pocall_cdecl;
end
else if not(po_hascallingconvention in pd.procoptions) then
pd.proccalloption:=current_settings.defproccall
else
begin
if pd.proccalloption=pocall_none then
internalerror(200309081);
end;
{ handle proccall specific settings }
case pd.proccalloption of
pocall_cdecl,
pocall_cppdecl,
pocall_sysv_abi_cdecl,
pocall_ms_abi_cdecl:
begin
{ check C cdecl para types }
check_c_para(pd);
end;
pocall_far16 :
begin
{ Temporary stub, must be rewritten to support OS/2 far16 }
Message1(parser_w_proc_directive_ignored,'FAR16');
end;
else
;
end;
{ Inlining is enabled and supported? }
if (po_inline in pd.procoptions) and
not(cs_do_inline in current_settings.localswitches) then
begin
{ Give an error if inline is not supported by the compiler mode,
otherwise only give a hint that this procedure will not be inlined }
if not(m_default_inline in current_settings.modeswitches) then
Message(parser_e_proc_inline_not_supported)
else
Message(parser_h_inlining_disabled);
exclude(pd.procoptions,po_inline);
end;
{ For varargs directive also cdecl and external must be defined }
if (po_varargs in pd.procoptions) then
begin
{ check first for external in the interface, if available there
then the cdecl must also be there since there is no implementation
available to contain it }
if hcc_declaration in flags then
begin
{ if external is available, then cdecl must also be available,
procvars don't need external }
if not((po_external in pd.procoptions) or
(pd.typ=procvardef) or
{ for objcclasses this is checked later, because the entire
class may be external. }
is_objc_class_or_protocol(tprocdef(pd).struct)) and
not(pd.proccalloption in (cdecl_pocalls + [pocall_stdcall])) then
Message(parser_e_varargs_need_cdecl_and_external);
end
else
begin
{ both must be defined now }
if not((po_external in pd.procoptions) or
(pd.typ=procvardef)) or
not(pd.proccalloption in cstylearrayofconst) then
Message(parser_e_varargs_need_cdecl_and_external);
end;
end;
end;
if hcc_insert_hidden_paras in flags then
begin
{ If the paraloc info has been calculated already, it will be missing for
the new parameters we add below. This should never be necessary before
we add them, as users of this information would not process these extra
parameters in that case }
if pd.has_paraloc_info<>callnoside then
internalerror(2019031610);
{ insert hidden high parameters }
pd.parast.SymList.ForEachCall(@insert_hidden_para,pd);
{ insert hidden self parameter }
insert_self_and_vmt_para(pd);
{ insert funcret parameter if required }
insert_funcret_para(pd);
{ Make var parameters regable, this must be done after the calling
convention is set. }
{ this must be done before parentfp is insert, because getting all cases
where parentfp must be in a memory location isn't catched properly so
we put parentfp never in a register }
pd.parast.SymList.ForEachCall(@set_addr_param_regable,pd);
{ insert parentfp parameter if required }
insert_parentfp_para(pd);
end;
{ Calculate parameter tlist }
pd.calcparas;
end;
function proc_add_definition(var currpd:tprocdef):boolean;
function check_generic_parameters(fwpd,currpd:tprocdef):boolean;
var
i : longint;
fwsym,
currsym : tsym;
currtype : ttypesym absolute currsym;
fileinfo : tfileposinfo;
begin
result:=true;
if fwpd.genericparas.count<>currpd.genericparas.count then
internalerror(2018090101);
for i:=0 to fwpd.genericparas.count-1 do
begin
fwsym:=tsym(fwpd.genericparas[i]);
currsym:=tsym(currpd.genericparas[i]);
if fwsym.name<>currsym.name then
begin
messagepos1(currsym.fileinfo,sym_e_generic_type_param_mismatch,currsym.realname);
messagepos1(fwsym.fileinfo,sym_e_generic_type_param_decl,fwsym.realname);
result:=false;
end;
if (fwpd.interfacedef or assigned(fwpd.struct)) and
(
((currsym.typ=typesym) and (df_genconstraint in currtype.typedef.defoptions)) or
(currsym.typ=constsym)
) then
begin
if currsym.typ=constsym then
fileinfo:=currsym.fileinfo
else
fileinfo:=tstoreddef(currtype.typedef).genconstraintdata.fileinfo;
messagepos(fileinfo,parser_e_generic_constraints_not_allowed_here);
result:=false;
end;
if not fwpd.interfacedef and not assigned(fwpd.struct) and
(fwsym.typ=constsym) then
begin
{ without modeswitch RepeatForward we need to check here
if the type of the constants match }
if (currsym.typ<>constsym) or not equal_defs(tconstsym(fwsym).constdef,tconstsym(currsym).constdef) then
begin
messagepos1(currpd.fileinfo,parser_e_header_dont_match_forward,currpd.fullprocname(false));
result:=false;
end;
end;
end;
end;
function equal_generic_procdefs(fwpd,currpd:tprocdef;out sameparas,sameret:boolean):boolean;
var
i : longint;
fwsym,
currsym : tsym;
currtype : ttypesym absolute currsym;
convdummy: tconverttype;
pddummy: tprocdef;
begin
result:=false;
sameparas:=false;
sameret:=false;
if fwpd.genericparas.count<>currpd.genericparas.count then
exit;
{ comparing generic declarations is a bit more cumbersome as the
defs of the generic parameter types are not equal, especially if the
declaration contains constraints; essentially we have two cases:
- proc declared in interface of unit (or in class/record/object)
and defined in implementation; here the fwpd might contain
constraints while currpd must only contain undefineddefs
- forward declaration in implementation: here constraints must be
repeated }
for i:=0 to fwpd.genericparas.count-1 do
begin
fwsym:=tsym(fwpd.genericparas[i]);
currsym:=tsym(currpd.genericparas[i]);
{ if the type in the currpd isn't a pure undefineddef (thus there
are constraints and the fwpd was declared in the interface, then
we can stop right there }
if fwpd.interfacedef and
(
(currsym.typ=constsym) or
((currsym.typ=typesym) and
(
(currtype.typedef.typ<>undefineddef) or
(df_genconstraint in currtype.typedef.defoptions)
)
)
)then
exit;
if not fwpd.interfacedef then
begin
if (fwsym.typ=constsym) and (currsym.typ=constsym) then
begin
{ check whether the constant type for forward functions match }
if not equal_defs(tconstsym(fwsym).constdef,tconstsym(currsym).constdef) then
exit;
end
else if (fwsym.typ=constsym) then
{ if the forward sym is a constant, the implementation needs to be one
as well }
exit;
end;
end;
if compare_paras(fwpd.paras,currpd.paras,cp_none,[cpo_ignorehidden,cpo_openequalisexact,cpo_ignoreuniv,cpo_generic])<>te_exact then
exit;
sameparas:=true;
if (df_specialization in tstoreddef(fwpd.returndef).defoptions) and (df_specialization in tstoreddef(currpd.returndef).defoptions) then
{ for specializations we're happy with equal defs instead of exactly the same defs }
result:=equal_defs(fwpd.returndef,currpd.returndef)
else
begin
{ strictly compare defs using compare_defs_ext, but allow
non exactly equal undefineddefs }
convdummy:=tc_none;
pddummy:=nil;
result:=(compare_defs_ext(fwpd.returndef,currpd.returndef,nothingn,convdummy,pddummy,[cdo_allow_variant,cdo_strict_undefined_check])=te_exact) or
equal_genfunc_paradefs(fwpd.returndef,currpd.returndef,fwpd.parast,currpd.parast);
end;
{ the result variable is only set depending on the return type, so we
can simply use "result" }
sameret:=result;
end;
function equal_signature(fwpd,currpd:tprocdef;out sameparas,sameret:boolean):boolean;
begin
sameparas:=compare_paras(fwpd.paras,currpd.paras,cp_none,[cpo_ignorehidden,cpo_openequalisexact,cpo_ignoreuniv])=te_exact;
sameret:=compare_defs(fwpd.returndef,currpd.returndef,nothingn)=te_exact;
result:=sameparas and sameret;
end;
{
Add definition aprocdef to the overloaded definitions of aprocsym. If a
forwarddef is found and reused it returns true
}
var
fwpd : tprocdef;
currparasym,
fwparasym : tsym;
currparacnt,
fwparacnt,
curridx,
fwidx,
i : longint;
po_comp : tprocoptions;
paracompopt: tcompare_paras_options;
sameparasfound,
gensameparas,
gensameret,
sameparas,
sameret,
forwardfound : boolean;
symentry: TSymEntry;
item : tlinkedlistitem;
begin
forwardfound:=false;
if assigned(currpd.struct) and
(currpd.struct.symtable.moduleid<>current_module.moduleid) and
not (df_specialization in currpd.defoptions) then
begin
result:=false;
exit;
end;
sameparasfound:=false;
fwpd:=nil;
{ check overloaded functions if the same function already exists }
for i:=0 to tprocsym(currpd.procsym).ProcdefList.Count-1 do
begin
fwpd:=tprocdef(tprocsym(currpd.procsym).ProcdefList[i]);
{ can happen for internally generated routines }
if (fwpd=currpd) then
begin
result:=true;
exit;
end;
{ Skip overloaded definitions that are declared in other units }
if fwpd.procsym<>currpd.procsym then
continue;
gensameparas:=false;
gensameret:=false;
sameparas:=false;
sameret:=false;
{ check the parameters, for delphi/tp it is possible to
leave the parameters away in the implementation (forwarddef=false).
But for an overload declared function this is not allowed }
if { check if empty implementation arguments match is allowed }
(
not(m_repeat_forward in current_settings.modeswitches) and
not(currpd.forwarddef) and
is_bareprocdef(currpd) and
not(po_overload in fwpd.procoptions)
) or
(
fwpd.is_generic and
currpd.is_generic and
equal_generic_procdefs(fwpd,currpd,gensameparas,gensameret)
) or
{ check arguments, we need to check only the user visible parameters. The hidden parameters
can be in a different location because of the calling convention, eg. L-R vs. R-L order (PFV)
don't check default values here, because routines that are the same except for their default
values should be reported as mismatches (since you can't overload based on different default
parameter values) }
(
not fwpd.is_generic and
not currpd.is_generic and
equal_signature(fwpd,currpd,sameparas,sameret)
) then
begin
{ Check if we've found the forwarddef, if found then
we need to update the forward def with the current
implementation settings }
if fwpd.forwarddef then
begin
forwardfound:=true;
if not(m_repeat_forward in current_settings.modeswitches) and
(fwpd.proccalloption<>currpd.proccalloption) then
paracompopt:=[cpo_ignorehidden,cpo_comparedefaultvalue,cpo_openequalisexact,cpo_ignoreuniv]
else
paracompopt:=[cpo_comparedefaultvalue,cpo_openequalisexact,cpo_ignoreuniv];
{ Check calling convention }
if (fwpd.proccalloption<>currpd.proccalloption) then
begin
{ In delphi it is possible to specify the calling
convention in the interface or implementation if
there was no convention specified in the other
part }
if (m_delphi in current_settings.modeswitches) then
begin
if not(po_hascallingconvention in currpd.procoptions) then
currpd.proccalloption:=fwpd.proccalloption
else
if not(po_hascallingconvention in fwpd.procoptions) then
fwpd.proccalloption:=currpd.proccalloption
else
begin
MessagePos(currpd.fileinfo,parser_e_call_convention_dont_match_forward);
tprocsym(currpd.procsym).write_parameter_lists(currpd);
{ restore interface settings }
currpd.proccalloption:=fwpd.proccalloption;
end;
end
else
begin
MessagePos(currpd.fileinfo,parser_e_call_convention_dont_match_forward);
tprocsym(currpd.procsym).write_parameter_lists(currpd);
{ restore interface settings }
currpd.proccalloption:=fwpd.proccalloption;
end;
end;
{ Check static }
if (po_staticmethod in fwpd.procoptions) then
begin
if not (po_staticmethod in currpd.procoptions) then
begin
include(currpd.procoptions, po_staticmethod);
if (po_classmethod in currpd.procoptions) then
begin
{ remove self from the hidden paras }
symentry:=currpd.parast.Find('self');
if symentry<>nil then
begin
currpd.parast.DeleteSym(symentry);
currpd.calcparas;
end;
end;
end;
end;
{ Check if the procedure type and return type are correct,
also the parameters must match also with the type and that
if the implementation has default parameters, the interface
also has them and that if they both have them, that they
have the same value }
if ((m_repeat_forward in current_settings.modeswitches) or
not is_bareprocdef(currpd)) and
(
(
fwpd.is_generic and
currpd.is_generic and
not equal_generic_procdefs(fwpd,currpd,sameparas,sameret)
) or
(
(
not fwpd.is_generic or
not currpd.is_generic
) and
(
(compare_paras(fwpd.paras,currpd.paras,cp_all,paracompopt)<>te_exact) or
(compare_defs(fwpd.returndef,currpd.returndef,nothingn)<>te_exact)
)
)
) then
begin
MessagePos1(currpd.fileinfo,parser_e_header_dont_match_forward,
fwpd.fullprocname(false));
tprocsym(currpd.procsym).write_parameter_lists(currpd);
break;
end;
{ Check if both are declared forward }
if fwpd.forwarddef and currpd.forwarddef then
begin
MessagePos1(currpd.fileinfo,parser_e_function_already_declared_public_forward,
currpd.fullprocname(false));
end;
{ internconst or internproc only need to be defined once }
if (fwpd.proccalloption=pocall_internproc) then
currpd.proccalloption:=fwpd.proccalloption
else
if (currpd.proccalloption=pocall_internproc) then
fwpd.proccalloption:=currpd.proccalloption;
{ Check procedure options, Delphi requires that class is
repeated in the implementation for class methods }
if (m_fpc in current_settings.modeswitches) then
po_comp:=[po_classmethod,po_varargs,po_methodpointer,po_interrupt]
else
po_comp:=[po_classmethod,po_methodpointer];
if ((po_comp * fwpd.procoptions)<>(po_comp * currpd.procoptions)) or
(fwpd.proctypeoption <> currpd.proctypeoption) or
{ if the implementation version has an "overload" modifier,
the interface version must also have it (otherwise we can
get annoying crashes due to interface crc changes) }
(not(po_overload in fwpd.procoptions) and
(po_overload in currpd.procoptions)) or
{ same with noreturn }
(not(po_noreturn in fwpd.procoptions) and
(po_noreturn in currpd.procoptions)) then
begin
MessagePos1(currpd.fileinfo,parser_e_header_dont_match_forward,
fwpd.fullprocname(false));
tprocsym(fwpd.procsym).write_parameter_lists(fwpd);
{ This error is non-fatal, we can recover }
end;
{ Forward declaration is external? }
if (po_external in fwpd.procoptions) then
MessagePos(currpd.fileinfo,parser_e_proc_already_external);
{ check for conflicts with "virtual" if this is a virtual
method, as "virtual" cannot be repeated in the
implementation and hence does not get checked against }
if (po_virtualmethod in fwpd.procoptions) then
begin
po_comp:=currpd.procoptions*PD_VIRTUAL_MUTEXCLPO;
if po_comp<>[] then
MessagePos2(currpd.fileinfo,parser_e_proc_dir_conflict,tokeninfo^[_VIRTUAL].str,get_first_proc_str(po_comp));
end;
{ Check parameters }
if (m_repeat_forward in current_settings.modeswitches) or
(currpd.minparacount>0) then
begin
{ If mangled names are equal then they have the same amount of arguments }
{ We can check the names of the arguments }
{ both symtables are in the same order from left to right }
curridx:=0;
fwidx:=0;
currparacnt:=currpd.parast.SymList.Count;
fwparacnt:=fwpd.parast.SymList.Count;
repeat
{ skip default parameter constsyms }
while (curridx<currparacnt) and
(tsym(currpd.parast.SymList[curridx]).typ<>paravarsym) do
inc(curridx);
while (fwidx<fwparacnt) and
(tsym(fwpd.parast.SymList[fwidx]).typ<>paravarsym) do
inc(fwidx);
{ stop when one of the two lists is at the end }
if (fwidx>=fwparacnt) or (curridx>=currparacnt) then
break;
{ compare names of parameters, ignore implictly
renamed parameters }
currparasym:=tsym(currpd.parast.SymList[curridx]);
fwparasym:=tsym(fwpd.parast.SymList[fwidx]);
if not(sp_implicitrename in currparasym.symoptions) and
not(sp_implicitrename in fwparasym.symoptions) then
begin
if (currparasym.name<>fwparasym.name) then
begin
MessagePos3(currpd.fileinfo,parser_e_header_different_var_names,
tprocsym(currpd.procsym).realname,fwparasym.realname,currparasym.realname);
break;
end;
end;
{ next parameter }
inc(curridx);
inc(fwidx);
until false;
end;
{ check that the type parameter names for generic methods match;
we check this here and not in equal_generic_procdefs as the defs
might still be different due to their parameters, so we'd generate
errors without any need }
if currpd.is_generic and fwpd.is_generic then
{ an error here is recoverable, so we simply continue }
check_generic_parameters(fwpd,currpd);
{ Everything is checked, now we can update the forward declaration
with the new data from the implementation }
fwpd.forwarddef:=currpd.forwarddef;
fwpd.hasforward:=true;
fwpd.procoptions:=fwpd.procoptions+currpd.procoptions;
{ marked as local but exported from unit? }
if (po_kylixlocal in fwpd.procoptions) and (fwpd.owner.symtabletype=globalsymtable) then
MessagePos(fwpd.fileinfo,type_e_cant_export_local);
if fwpd.extnumber=$ffff then
fwpd.extnumber:=currpd.extnumber;
while not currpd.aliasnames.empty do
fwpd.aliasnames.insert(currpd.aliasnames.getfirst);
{ update fileinfo so position references the implementation,
also update funcretsym if it is already generated }
fwpd.fileinfo:=currpd.fileinfo;
if assigned(fwpd.funcretsym) then
fwpd.funcretsym.fileinfo:=currpd.fileinfo;
if assigned(currpd.deprecatedmsg) then
begin
stringdispose(fwpd.deprecatedmsg);
fwpd.deprecatedmsg:=stringdup(currpd.deprecatedmsg^);
end;
{ import names }
if assigned(currpd.import_dll) then
begin
stringdispose(fwpd.import_dll);
fwpd.import_dll:=stringdup(currpd.import_dll^);
end;
if assigned(currpd.import_name) then
begin
stringdispose(fwpd.import_name);
fwpd.import_name:=stringdup(currpd.import_name^);
end;
fwpd.import_nr:=currpd.import_nr;
{ for compilerproc defines we need to rename and update the
symbolname to lowercase so users can' access it (can't do
it immediately, because then the implementation symbol
won't be matched) }
if po_compilerproc in fwpd.procoptions then
begin
fwpd.setcompilerprocname;
current_module.add_public_asmsym(fwpd.procsym.realname,AB_GLOBAL,AT_FUNCTION);
end;
if po_public in fwpd.procoptions then
begin
item:=fwpd.aliasnames.first;
while assigned(item) do
begin
current_module.add_public_asmsym(TCmdStrListItem(item).str,AB_GLOBAL,AT_FUNCTION);
item:=item.next;
end;
end;
{ Release current procdef }
currpd.owner.deletedef(currpd);
currpd:=fwpd;
end
else
begin
{ abstract methods aren't forward defined, but this }
{ needs another error message }
if (po_abstractmethod in fwpd.procoptions) then
MessagePos(currpd.fileinfo,parser_e_abstract_no_definition)
else
begin
MessagePos(currpd.fileinfo,parser_e_overloaded_have_same_parameters);
tprocsym(currpd.procsym).write_parameter_lists(currpd);
end;
end;
{ we found one proc with the same arguments, there are no others
so we can stop }
break;
end;
{ check for allowing overload directive }
if not(m_fpc in current_settings.modeswitches) then
begin
{ overload directive turns on overloading }
if ((po_overload in currpd.procoptions) or
(po_overload in fwpd.procoptions)) then
begin
{ check if all procs have overloading, but not if the proc is a method or
already declared forward, then the check is already done }
if not(fwpd.hasforward or
assigned(currpd.struct) or
(currpd.forwarddef<>fwpd.forwarddef) or
((po_overload in currpd.procoptions) and
(po_overload in fwpd.procoptions))) then
begin
MessagePos1(currpd.fileinfo,parser_e_no_overload_for_all_procs,currpd.procsym.realname);
break;
end
end
else
begin
if not(fwpd.forwarddef) then
begin
if (m_tp7 in current_settings.modeswitches) then
MessagePos(currpd.fileinfo,parser_e_procedure_overloading_is_off)
else
MessagePos1(currpd.fileinfo,parser_e_no_overload_for_all_procs,currpd.procsym.realname);
break;
end;
end;
end; { equal arguments }
{ we found a match with the same parameter signature, but mismatching
return types; complain about that, but only once we've checked for
a forward to improve error recovery }
if (sameparas and not sameret and
{ ensure that specifiers are the same as well }
(compare_paras(fwpd.paras,currpd.paras,cp_all,[cpo_ignorehidden,cpo_openequalisexact,cpo_ignoreuniv])=te_exact)
) or (gensameparas and not gensameret) then
sameparasfound:=true;
end;
if sameparasfound and
not (currpd.proctypeoption=potype_operator) and
(
{ allow overloads with different result types for external java
classes as Java supports covariant return types when implementing
interfaces and e.g. AbstractStringBuilder uses that }
not assigned(currpd.struct) or
not is_java_class_or_interface(currpd.struct) or
not (oo_is_external in tobjectdef(currpd.struct).objectoptions)
) then
begin
MessagePos(currpd.fileinfo,parser_e_overloaded_have_same_parameters);
tprocsym(currpd.procsym).write_parameter_lists(currpd);
end;
{ if we didn't reuse a forwarddef then we add the procdef to the overloaded
list }
if not forwardfound then
begin
{ can happen in Delphi mode }
if (currpd.proctypeoption = potype_function) and
is_void(currpd.returndef) then
MessagePos1(currpd.fileinfo,parser_e_no_funcret_specified,currpd.procsym.realname);
tprocsym(currpd.procsym).ProcdefList.Add(currpd);
if not currpd.forwarddef and (po_public in currpd.procoptions) then
begin
item:=currpd.aliasnames.first;
while assigned(item) do
begin
current_module.add_public_asmsym(TCmdStrListItem(item).str,AB_GLOBAL,AT_FUNCTION);
item:=item.next;
end;
end;
end;
proc_add_definition:=forwardfound;
end;
procedure build_parentfpstruct(pd: tprocdef);
var
nestedvars: tsym;
nestedvarsst: tsymtable;
pnestedvarsdef,
nestedvarsdef: tdef;
old_symtablestack: tsymtablestack;
begin
{ make sure the defs are not registered in the current symtablestack,
because they may be for a parent procdef (changeowner does remove a def
from the symtable in which it was originally created, so that by itself
is not enough) }
old_symtablestack:=symtablestack;
symtablestack:=old_symtablestack.getcopyuntil(current_module.localsymtable);
{ create struct to hold local variables and parameters that are
accessed from within nested routines (start with extra dollar to prevent
the JVM from thinking this is a nested class in the unit) }
nestedvarsst:=trecordsymtable.create('$'+current_module.realmodulename^+'$$_fpc_nestedvars$'+pd.unique_id_str,
current_settings.alignment.localalignmax,current_settings.alignment.localalignmin);
nestedvarsdef:=crecorddef.create(nestedvarsst.name^,nestedvarsst);
{$ifdef jvm}
maybe_guarantee_record_typesym(nestedvarsdef,nestedvarsdef.owner);
{ don't add clone/FpcDeepCopy, because the field names are not all
representable in source form and we don't need them anyway }
symtablestack.push(trecorddef(nestedvarsdef).symtable);
maybe_add_public_default_java_constructor(trecorddef(nestedvarsdef));
insert_struct_hidden_paras(trecorddef(nestedvarsdef));
symtablestack.pop(trecorddef(nestedvarsdef).symtable);
{$endif}
symtablestack.free;
symtablestack:=old_symtablestack.getcopyuntil(pd.localst);
pnestedvarsdef:=cpointerdef.getreusable(nestedvarsdef);
if not(po_assembler in pd.procoptions) then
begin
nestedvars:=clocalvarsym.create('$nestedvars',vs_var,nestedvarsdef,[]);
include(nestedvars.symoptions,sp_internal);
pd.localst.insertsym(nestedvars);
pd.parentfpstruct:=nestedvars;
pd.parentfpinitblock:=cblocknode.create(nil);
end;
symtablestack.free;
pd.parentfpstructptrtype:=pnestedvarsdef;
symtablestack:=old_symtablestack;
end;
end.