fpc/compiler/nadd.pas
2000-10-01 19:48:23 +00:00

1272 lines
50 KiB
ObjectPascal

{
$Id$
Copyright (c) 1998-2000 by Florian Klaempfl
Type checking and register allocation for add nodes
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit nadd;
{$i defines.inc}
interface
uses
node;
type
taddnode = class(tbinopnode)
procedure make_bool_equal_size;
function pass_1 : tnode;override;
end;
var
{ caddnode is used to create nodes of the add type }
{ the virtual constructor allows to assign }
{ another class type to caddnode => processor }
{ specific node types can be created }
caddnode : class of taddnode;
implementation
uses
globtype,systems,tokens,
cobjects,cutils,verbose,globals,
symconst,symtable,aasm,types,
cpuinfo,
{$ifdef newcg}
cgbase,
{$else newcg}
hcodegen,
{$endif newcg}
htypechk,pass_1,
ncal,nmat,ncnv,nld,ncon,nset,
cpubase;
{*****************************************************************************
TADDNODE
*****************************************************************************}
{$ifdef fpc}
{$maxfpuregisters 0}
{$endif fpc}
procedure taddnode.make_bool_equal_size;
begin
if porddef(left.resulttype)^.typ>porddef(right.resulttype)^.typ then
begin
right:=gentypeconvnode(right,porddef(left.resulttype));
ttypeconvnode(right).convtype:=tc_bool_2_int;
include(right.flags,nf_explizit);
firstpass(right);
end
else
if porddef(left.resulttype)^.typ<porddef(right.resulttype)^.typ then
begin
left:=gentypeconvnode(left,porddef(right.resulttype));
ttypeconvnode(left).convtype:=tc_bool_2_int;
include(left.flags,nf_explizit);
firstpass(left);
end;
end;
function taddnode.pass_1 : tnode;
var
t,hp : tnode;
ot,
lt,rt : tnodetype;
rv,lv : longint;
rvd,lvd : bestreal;
resdef,
rd,ld : pdef;
tempdef : pdef;
concatstrings : boolean;
{ to evalute const sets }
resultset : pconstset;
i : longint;
b : boolean;
convdone : boolean;
s1,s2 : pchar;
l1,l2 : longint;
begin
pass_1:=nil;
{ first do the two subtrees }
firstpass(left);
firstpass(right);
if codegenerror then
exit;
{ convert array constructors to sets, because there is no other operator
possible for array constructors }
if is_array_constructor(left.resulttype) then
arrayconstructor_to_set(tarrayconstructnode(left));
if is_array_constructor(right.resulttype) then
arrayconstructor_to_set(tarrayconstructnode(right));
{ both left and right need to be valid }
set_varstate(left,true);
set_varstate(right,true);
{ load easier access variables }
lt:=left.nodetype;
rt:=right.nodetype;
rd:=right.resulttype;
ld:=left.resulttype;
convdone:=false;
hp:=self;
if isbinaryoverloaded(hp) then
begin
pass_1:=hp;
exit;
end;
{ compact consts }
{ convert int consts to real consts, if the }
{ other operand is a real const }
if (rt=realconstn) and is_constintnode(left) then
begin
t:=genrealconstnode(tordconstnode(left).value,right.resulttype);
left.free;
left:=t;
lt:=realconstn;
end;
if (lt=realconstn) and is_constintnode(right) then
begin
t:=genrealconstnode(tordconstnode(right).value,left.resulttype);
right.free;
right:=t;
rt:=realconstn;
end;
{ both are int constants, also allow operations on two equal enums
in fpc mode (Needed for conversion of C code) }
if ((lt=ordconstn) and (rt=ordconstn)) and
((is_constintnode(left) and is_constintnode(right)) or
(is_constboolnode(left) and is_constboolnode(right) and
(nodetype in [ltn,lten,gtn,gten,equaln,unequaln,andn,xorn,orn]))) then
begin
{ xor, and, or are handled different from arithmetic }
{ operations regarding the result type }
{ return a boolean for boolean operations (and,xor,or) }
if is_constboolnode(left) then
resdef:=booldef
else if is_64bitint(rd) or is_64bitint(ld) then
resdef:=cs64bitdef
else
resdef:=s32bitdef;
lv:=tordconstnode(left).value;
rv:=tordconstnode(right).value;
case nodetype of
addn : t:=genintconstnode(lv+rv);
subn : t:=genintconstnode(lv-rv);
muln : t:=genintconstnode(lv*rv);
xorn : t:=genordinalconstnode(lv xor rv,resdef);
orn: t:=genordinalconstnode(lv or rv,resdef);
andn: t:=genordinalconstnode(lv and rv,resdef);
ltn : t:=genordinalconstnode(ord(lv<rv),booldef);
lten : t:=genordinalconstnode(ord(lv<=rv),booldef);
gtn : t:=genordinalconstnode(ord(lv>rv),booldef);
gten : t:=genordinalconstnode(ord(lv>=rv),booldef);
equaln : t:=genordinalconstnode(ord(lv=rv),booldef);
unequaln : t:=genordinalconstnode(ord(lv<>rv),booldef);
slashn : begin
{ int/int becomes a real }
if int(rv)=0 then
begin
Message(parser_e_invalid_float_operation);
t:=genrealconstnode(0,bestrealdef^);
end
else
t:=genrealconstnode(int(lv)/int(rv),bestrealdef^);
firstpass(t);
end;
else
CGMessage(type_e_mismatch);
end;
pass_1:=t;
exit;
end;
{ both real constants ? }
if (lt=realconstn) and (rt=realconstn) then
begin
lvd:=trealconstnode(left).value_real;
rvd:=trealconstnode(right).value_real;
case nodetype of
addn : t:=genrealconstnode(lvd+rvd,bestrealdef^);
subn : t:=genrealconstnode(lvd-rvd,bestrealdef^);
muln : t:=genrealconstnode(lvd*rvd,bestrealdef^);
starstarn,
caretn : begin
if lvd<0 then
begin
Message(parser_e_invalid_float_operation);
t:=genrealconstnode(0,bestrealdef^);
end
else if lvd=0 then
t:=genrealconstnode(1.0,bestrealdef^)
else
t:=genrealconstnode(exp(ln(lvd)*rvd),bestrealdef^);
end;
slashn :
begin
if rvd=0 then
begin
Message(parser_e_invalid_float_operation);
t:=genrealconstnode(0,bestrealdef^);
end
else
t:=genrealconstnode(lvd/rvd,bestrealdef^);
end;
ltn : t:=genordinalconstnode(ord(lvd<rvd),booldef);
lten : t:=genordinalconstnode(ord(lvd<=rvd),booldef);
gtn : t:=genordinalconstnode(ord(lvd>rvd),booldef);
gten : t:=genordinalconstnode(ord(lvd>=rvd),booldef);
equaln : t:=genordinalconstnode(ord(lvd=rvd),booldef);
unequaln : t:=genordinalconstnode(ord(lvd<>rvd),booldef);
else
CGMessage(type_e_mismatch);
end;
pass_1:=t;
exit;
end;
{ concating strings ? }
concatstrings:=false;
s1:=nil;
s2:=nil;
if (lt=ordconstn) and (rt=ordconstn) and
is_char(ld) and is_char(rd) then
begin
s1:=strpnew(char(byte(tordconstnode(left).value)));
s2:=strpnew(char(byte(tordconstnode(right).value)));
l1:=1;
l2:=1;
concatstrings:=true;
end
else
if (lt=stringconstn) and (rt=ordconstn) and is_char(rd) then
begin
s1:=tstringconstnode(left).getpcharcopy;
l1:=tstringconstnode(left).len;
s2:=strpnew(char(byte(tordconstnode(right).value)));
l2:=1;
concatstrings:=true;
end
else
if (lt=ordconstn) and (rt=stringconstn) and is_char(ld) then
begin
s1:=strpnew(char(byte(tordconstnode(left).value)));
l1:=1;
s2:=tstringconstnode(right).getpcharcopy;
l2:=tstringconstnode(right).len;
concatstrings:=true;
end
else if (lt=stringconstn) and (rt=stringconstn) then
begin
s1:=tstringconstnode(left).getpcharcopy;
l1:=tstringconstnode(left).len;
s2:=tstringconstnode(right).getpcharcopy;
l2:=tstringconstnode(right).len;
concatstrings:=true;
end;
{ I will need to translate all this to ansistrings !!! }
if concatstrings then
begin
case nodetype of
addn :
t:=genpcharconstnode(concatansistrings(s1,s2,l1,l2),l1+l2);
ltn :
t:=genordinalconstnode(byte(compareansistrings(s1,s2,l1,l2)<0),booldef);
lten :
t:=genordinalconstnode(byte(compareansistrings(s1,s2,l1,l2)<=0),booldef);
gtn :
t:=genordinalconstnode(byte(compareansistrings(s1,s2,l1,l2)>0),booldef);
gten :
t:=genordinalconstnode(byte(compareansistrings(s1,s2,l1,l2)>=0),booldef);
equaln :
t:=genordinalconstnode(byte(compareansistrings(s1,s2,l1,l2)=0),booldef);
unequaln :
t:=genordinalconstnode(byte(compareansistrings(s1,s2,l1,l2)<>0),booldef);
end;
ansistringdispose(s1,l1);
ansistringdispose(s2,l2);
pass_1:=t;
exit;
end;
{ if both are orddefs then check sub types }
if (ld^.deftype=orddef) and (rd^.deftype=orddef) then
begin
{ 2 booleans ? }
if is_boolean(ld) and is_boolean(rd) then
begin
if (cs_full_boolean_eval in aktlocalswitches) or
(nodetype in [xorn,ltn,lten,gtn,gten]) then
begin
make_bool_equal_size;
if (left.location.loc in [LOC_JUMP,LOC_FLAGS]) and
(left.location.loc in [LOC_JUMP,LOC_FLAGS]) then
calcregisters(self,2,0,0)
else
calcregisters(self,1,0,0);
end
else
case nodetype of
andn,
orn:
begin
make_bool_equal_size;
calcregisters(self,0,0,0);
location.loc:=LOC_JUMP;
end;
unequaln,
equaln:
begin
make_bool_equal_size;
{ Remove any compares with constants }
if (left.nodetype=ordconstn) then
begin
hp:=right;
b:=(tordconstnode(left).value<>0);
ot:=nodetype;
left.free;
left:=nil;
right:=nil;
if (not(b) and (ot=equaln)) or
(b and (ot=unequaln)) then
begin
hp:=cnotnode.create(hp);
firstpass(hp);
end;
pass_1:=hp;
exit;
end;
if (right.nodetype=ordconstn) then
begin
hp:=left;
b:=(tordconstnode(right).value<>0);
ot:=nodetype;
right.free;
right:=nil;
left:=nil;
if (not(b) and (ot=equaln)) or
(b and (ot=unequaln)) then
begin
hp:=cnotnode.create(hp);
firstpass(hp);
end;
pass_1:=hp;
exit;
end;
if (left.location.loc in [LOC_JUMP,LOC_FLAGS]) and
(left.location.loc in [LOC_JUMP,LOC_FLAGS]) then
calcregisters(self,2,0,0)
else
calcregisters(self,1,0,0);
end;
else
CGMessage(type_e_mismatch);
end;
(*
{ these one can't be in flags! }
Yes they can, secondadd converts the loc_flags to a register.
The typeconversions below are simply removed by firsttypeconv()
because the resulttype of left = left.resulttype
(surprise! :) (JM)
if nodetype in [xorn,unequaln,equaln] then
begin
if left.location.loc=LOC_FLAGS then
begin
left:=gentypeconvnode(left,porddef(left.resulttype));
left.convtype:=tc_bool_2_int;
left.explizit:=true;
firstpass(left);
end;
if right.location.loc=LOC_FLAGS then
begin
right:=gentypeconvnode(right,porddef(right.resulttype));
right.convtype:=tc_bool_2_int;
right.explizit:=true;
firstpass(right);
end;
{ readjust registers }
calcregisters(p,1,0,0);
end;
*)
convdone:=true;
end
else
{ Both are chars? only convert to shortstrings for addn }
if is_char(rd) and is_char(ld) then
begin
if nodetype=addn then
begin
left:=gentypeconvnode(left,cshortstringdef);
right:=gentypeconvnode(right,cshortstringdef);
firstpass(left);
firstpass(right);
{ here we call STRCOPY }
procinfo^.flags:=procinfo^.flags or pi_do_call;
calcregisters(self,0,0,0);
location.loc:=LOC_MEM;
end
else
calcregisters(self,1,0,0);
convdone:=true;
end
{ is there a 64 bit type ? }
else if ((porddef(rd)^.typ=s64bit) or (porddef(ld)^.typ=s64bit)) and
{ the / operator is handled later }
(nodetype<>slashn) then
begin
if (porddef(ld)^.typ<>s64bit) then
begin
left:=gentypeconvnode(left,cs64bitdef);
firstpass(left);
end;
if (porddef(rd)^.typ<>s64bit) then
begin
right:=gentypeconvnode(right,cs64bitdef);
firstpass(right);
end;
calcregisters(self,2,0,0);
convdone:=true;
end
else if ((porddef(rd)^.typ=u64bit) or (porddef(ld)^.typ=u64bit)) and
{ the / operator is handled later }
(nodetype<>slashn) then
begin
if (porddef(ld)^.typ<>u64bit) then
begin
left:=gentypeconvnode(left,cu64bitdef);
firstpass(left);
end;
if (porddef(rd)^.typ<>u64bit) then
begin
right:=gentypeconvnode(right,cu64bitdef);
firstpass(right);
end;
calcregisters(self,2,0,0);
convdone:=true;
end
else
{ is there a cardinal? }
if ((porddef(rd)^.typ=u32bit) or (porddef(ld)^.typ=u32bit)) and
{ the / operator is handled later }
(nodetype<>slashn) then
begin
{ convert constants to u32bit }
{$ifndef cardinalmulfix}
if (porddef(ld)^.typ<>u32bit) then
begin
{ s32bit will be used for when the other is also s32bit }
{ the following line doesn't make any sense: it's the same as }
{ if ((porddef(rd)^.typ=u32bit) or (porddef(ld)^.typ=u32bit)) and }
{ (porddef(ld)^.typ<>u32bit) and (porddef(rd)^.typ=s32bit) then }
{ which can be simplified to }
{ if ((porddef(rd)^.typ=u32bit) and (porddef(rd)^.typ=s32bit) then }
{ which can never be true (JM) }
if (porddef(rd)^.typ=s32bit) and (lt<>ordconstn) then
left:=gentypeconvnode(left,s32bitdef)
else
left:=gentypeconvnode(left,u32bitdef);
firstpass(left);
end;
if (porddef(rd)^.typ<>u32bit) then
begin
{ s32bit will be used for when the other is also s32bit }
if (porddef(ld)^.typ=s32bit) and (rt<>ordconstn) then
right:=gentypeconvnode(right,s32bitdef)
else
right:=gentypeconvnode(right,u32bitdef);
firstpass(right);
end;
{$else cardinalmulfix}
{ only do a conversion if the nodes have different signs }
if (porddef(rd)^.typ=u32bit) xor (porddef(ld)^.typ=u32bit) then
if (porddef(rd)^.typ=u32bit) then
begin
{ can we make them both unsigned? }
if (porddef(ld)^.typ in [u8bit,u16bit]) or
(is_constintnode(left) and
(nodetype <> subn) and
(left.value > 0)) then
left:=gentypeconvnode(left,u32bitdef)
else
left:=gentypeconvnode(left,s32bitdef);
firstpass(left);
end
else {if (porddef(ld)^.typ=u32bit) then}
begin
{ can we make them both unsigned? }
if (porddef(rd)^.typ in [u8bit,u16bit]) or
(is_constintnode(right) and
(right.value > 0)) then
right:=gentypeconvnode(right,u32bitdef)
else
right:=gentypeconvnode(right,s32bitdef);
firstpass(right);
end;
{$endif cardinalmulfix}
calcregisters(self,1,0,0);
{ for unsigned mul we need an extra register }
{ registers32:=left.registers32+right.registers32; }
if nodetype=muln then
inc(registers32);
convdone:=true;
end;
end
else
{ left side a setdef, must be before string processing,
else array constructor can be seen as array of char (PFV) }
if (ld^.deftype=setdef) {or is_array_constructor(ld)} then
begin
{ trying to add a set element? }
if (nodetype=addn) and (rd^.deftype<>setdef) then
begin
if (rt=setelementn) then
begin
if not(is_equal(psetdef(ld)^.elementtype.def,rd)) then
CGMessage(type_e_set_element_are_not_comp);
end
else
CGMessage(type_e_mismatch)
end
else
begin
if not(nodetype in [addn,subn,symdifn,muln,equaln,unequaln
{$IfNDef NoSetInclusion}
,lten,gten
{$EndIf NoSetInclusion}
]) then
CGMessage(type_e_set_operation_unknown);
{ right def must be a also be set }
if (rd^.deftype<>setdef) or not(is_equal(rd,ld)) then
CGMessage(type_e_set_element_are_not_comp);
end;
{ ranges require normsets }
if (psetdef(ld)^.settype=smallset) and
(rt=setelementn) and
assigned(tsetelementnode(right).right) then
begin
{ generate a temporary normset def, it'll be destroyed
when the symtable is unloaded }
tempdef:=new(psetdef,init(psetdef(ld)^.elementtype.def,255));
left:=gentypeconvnode(left,tempdef);
firstpass(left);
ld:=left.resulttype;
end;
{ if the destination is not a smallset then insert a typeconv
which loads a smallset into a normal set }
if (psetdef(ld)^.settype<>smallset) and
(psetdef(rd)^.settype=smallset) then
begin
if (right.nodetype=setconstn) then
begin
t:=gensetconstnode(tsetconstnode(right).value_set,psetdef(left.resulttype));
tsetconstnode(t).left:=tsetconstnode(right).left;
tsetconstnode(right).left:=nil;
right.free;
right:=t;
end
else
right:=gentypeconvnode(right,psetdef(left.resulttype));
firstpass(right);
end;
{ do constant evaluation }
if (right.nodetype=setconstn) and
not assigned(tsetconstnode(right).left) and
(left.nodetype=setconstn) and
not assigned(tsetconstnode(left).left) then
begin
new(resultset);
case nodetype of
addn : begin
for i:=0 to 31 do
resultset^[i]:=
tsetconstnode(right).value_set^[i] or tsetconstnode(left).value_set^[i];
t:=gensetconstnode(resultset,psetdef(ld));
end;
muln : begin
for i:=0 to 31 do
resultset^[i]:=
tsetconstnode(right).value_set^[i] and tsetconstnode(left).value_set^[i];
t:=gensetconstnode(resultset,psetdef(ld));
end;
subn : begin
for i:=0 to 31 do
resultset^[i]:=
tsetconstnode(left).value_set^[i] and not(tsetconstnode(right).value_set^[i]);
t:=gensetconstnode(resultset,psetdef(ld));
end;
symdifn : begin
for i:=0 to 31 do
resultset^[i]:=
tsetconstnode(left).value_set^[i] xor tsetconstnode(right).value_set^[i];
t:=gensetconstnode(resultset,psetdef(ld));
end;
unequaln : begin
b:=true;
for i:=0 to 31 do
if tsetconstnode(right).value_set^[i]=tsetconstnode(left).value_set^[i] then
begin
b:=false;
break;
end;
t:=genordinalconstnode(ord(b),booldef);
end;
equaln : begin
b:=true;
for i:=0 to 31 do
if tsetconstnode(right).value_set^[i]<>tsetconstnode(left).value_set^[i] then
begin
b:=false;
break;
end;
t:=genordinalconstnode(ord(b),booldef);
end;
{$IfNDef NoSetInclusion}
lten : Begin
b := true;
For i := 0 to 31 Do
If (tsetconstnode(right).value_set^[i] And tsetconstnode(left).value_set^[i]) <>
tsetconstnode(left).value_set^[i] Then
Begin
b := false;
Break
End;
t := genordinalconstnode(ord(b),booldef);
End;
gten : Begin
b := true;
For i := 0 to 31 Do
If (tsetconstnode(left).value_set^[i] And tsetconstnode(right).value_set^[i]) <>
tsetconstnode(right).value_set^[i] Then
Begin
b := false;
Break
End;
t := genordinalconstnode(ord(b),booldef);
End;
{$EndIf NoSetInclusion}
end;
dispose(resultset);
firstpass(t);
pass_1:=t;
exit;
end
else
if psetdef(ld)^.settype=smallset then
begin
{ are we adding set elements ? }
if right.nodetype=setelementn then
calcregisters(self,2,0,0)
else
calcregisters(self,1,0,0);
location.loc:=LOC_REGISTER;
end
else
begin
calcregisters(self,0,0,0);
{ here we call SET... }
procinfo^.flags:=procinfo^.flags or pi_do_call;
location.loc:=LOC_MEM;
end;
convdone:=true;
end
else
{ compare pchar to char arrays by addresses
like BP/Delphi }
if (is_pchar(ld) and is_chararray(rd)) or
(is_pchar(rd) and is_chararray(ld)) then
begin
if is_chararray(rd) then
begin
right:=gentypeconvnode(right,ld);
firstpass(right);
end
else
begin
left:=gentypeconvnode(left,rd);
firstpass(left);
end;
location.loc:=LOC_REGISTER;
calcregisters(self,1,0,0);
convdone:=true;
end
else
{ is one of the operands a string?,
chararrays are also handled as strings (after conversion) }
if (rd^.deftype=stringdef) or (ld^.deftype=stringdef) or
((is_chararray(rd) or is_char(rd)) and
(is_chararray(ld) or is_char(ld))) then
begin
if is_widestring(rd) or is_widestring(ld) then
begin
if not(is_widestring(rd)) then
right:=gentypeconvnode(right,cwidestringdef);
if not(is_widestring(ld)) then
left:=gentypeconvnode(left,cwidestringdef);
resulttype:=cwidestringdef;
{ this is only for add, the comparisaion is handled later }
location.loc:=LOC_REGISTER;
end
else if is_ansistring(rd) or is_ansistring(ld) then
begin
if not(is_ansistring(rd)) then
right:=gentypeconvnode(right,cansistringdef);
if not(is_ansistring(ld)) then
left:=gentypeconvnode(left,cansistringdef);
{ we use ansistrings so no fast exit here }
procinfo^.no_fast_exit:=true;
resulttype:=cansistringdef;
{ this is only for add, the comparisaion is handled later }
location.loc:=LOC_REGISTER;
end
else if is_longstring(rd) or is_longstring(ld) then
begin
if not(is_longstring(rd)) then
right:=gentypeconvnode(right,clongstringdef);
if not(is_longstring(ld)) then
left:=gentypeconvnode(left,clongstringdef);
resulttype:=clongstringdef;
{ this is only for add, the comparisaion is handled later }
location.loc:=LOC_MEM;
end
else
begin
if not(is_shortstring(rd))
{$ifdef newoptimizations2}
{$ifdef i386}
{ shortstring + char handled seperately (JM) }
and (not(cs_optimize in aktglobalswitches) or
(nodetype <> addn) or not(is_char(rd)))
{$endif i386}
{$endif newoptimizations2}
then
right:=gentypeconvnode(right,cshortstringdef);
if not(is_shortstring(ld)) then
left:=gentypeconvnode(left,cshortstringdef);
resulttype:=cshortstringdef;
{ this is only for add, the comparisaion is handled later }
location.loc:=LOC_MEM;
end;
{ only if there is a type cast we need to do again }
{ the first pass }
if left.nodetype=typeconvn then
firstpass(left);
if right.nodetype=typeconvn then
firstpass(right);
{ here we call STRCONCAT or STRCMP or STRCOPY }
procinfo^.flags:=procinfo^.flags or pi_do_call;
if location.loc=LOC_MEM then
calcregisters(self,0,0,0)
else
calcregisters(self,1,0,0);
{$ifdef newoptimizations2}
{$ifdef i386}
{ not always necessary, only if it is not a constant char and }
{ not a regvar, but don't know how to check this here (JM) }
if is_char(rd) then
inc(registers32);
{$endif i386}
{$endif newoptimizations2}
convdone:=true;
end
else
{ is one a real float ? }
if (rd^.deftype=floatdef) or (ld^.deftype=floatdef) then
begin
{ if one is a fixed, then convert to f32bit }
if ((rd^.deftype=floatdef) and (pfloatdef(rd)^.typ=f32bit)) or
((ld^.deftype=floatdef) and (pfloatdef(ld)^.typ=f32bit)) then
begin
if not is_integer(rd) or (nodetype<>muln) then
right:=gentypeconvnode(right,s32fixeddef);
if not is_integer(ld) or (nodetype<>muln) then
left:=gentypeconvnode(left,s32fixeddef);
firstpass(left);
firstpass(right);
calcregisters(self,1,0,0);
location.loc:=LOC_REGISTER;
end
else
{ convert both to bestreal }
begin
right:=gentypeconvnode(right,bestrealdef^);
left:=gentypeconvnode(left,bestrealdef^);
firstpass(left);
firstpass(right);
calcregisters(self,0,1,0);
location.loc:=LOC_FPU;
end;
convdone:=true;
end
else
{ pointer comperation and subtraction }
if (rd^.deftype=pointerdef) and (ld^.deftype=pointerdef) then
begin
location.loc:=LOC_REGISTER;
{ right:=gentypeconvnode(right,ld); }
{ firstpass(right); }
calcregisters(self,1,0,0);
case nodetype of
equaln,unequaln :
begin
if is_equal(right.resulttype,voidpointerdef) then
begin
right:=gentypeconvnode(right,ld);
firstpass(right);
end
else if is_equal(left.resulttype,voidpointerdef) then
begin
left:=gentypeconvnode(left,rd);
firstpass(left);
end
else if not(is_equal(ld,rd)) then
CGMessage(type_e_mismatch);
end;
ltn,lten,gtn,gten:
begin
if is_equal(right.resulttype,voidpointerdef) then
begin
right:=gentypeconvnode(right,ld);
firstpass(right);
end
else if is_equal(left.resulttype,voidpointerdef) then
begin
left:=gentypeconvnode(left,rd);
firstpass(left);
end
else if not(is_equal(ld,rd)) then
CGMessage(type_e_mismatch);
if not(cs_extsyntax in aktmoduleswitches) then
CGMessage(type_e_mismatch);
end;
subn:
begin
if not(is_equal(ld,rd)) then
CGMessage(type_e_mismatch);
if not(cs_extsyntax in aktmoduleswitches) then
CGMessage(type_e_mismatch);
resulttype:=s32bitdef;
exit;
end;
else CGMessage(type_e_mismatch);
end;
convdone:=true;
end
else
if (rd^.deftype=objectdef) and (ld^.deftype=objectdef) and
pobjectdef(rd)^.is_class and pobjectdef(ld)^.is_class then
begin
location.loc:=LOC_REGISTER;
if pobjectdef(rd)^.is_related(pobjectdef(ld)) then
right:=gentypeconvnode(right,ld)
else
left:=gentypeconvnode(left,rd);
firstpass(right);
firstpass(left);
calcregisters(self,1,0,0);
case nodetype of
equaln,unequaln : ;
else CGMessage(type_e_mismatch);
end;
convdone:=true;
end
else
if (rd^.deftype=classrefdef) and (ld^.deftype=classrefdef) then
begin
location.loc:=LOC_REGISTER;
if pobjectdef(pclassrefdef(rd)^.pointertype.def)^.is_related(pobjectdef(
pclassrefdef(ld)^.pointertype.def)) then
right:=gentypeconvnode(right,ld)
else
left:=gentypeconvnode(left,rd);
firstpass(right);
firstpass(left);
calcregisters(self,1,0,0);
case nodetype of
equaln,unequaln : ;
else CGMessage(type_e_mismatch);
end;
convdone:=true;
end
else
{ allows comperasion with nil pointer }
if (rd^.deftype=objectdef) and
pobjectdef(rd)^.is_class then
begin
location.loc:=LOC_REGISTER;
left:=gentypeconvnode(left,rd);
firstpass(left);
calcregisters(self,1,0,0);
case nodetype of
equaln,unequaln : ;
else CGMessage(type_e_mismatch);
end;
convdone:=true;
end
else
if (ld^.deftype=objectdef) and
pobjectdef(ld)^.is_class then
begin
location.loc:=LOC_REGISTER;
right:=gentypeconvnode(right,ld);
firstpass(right);
calcregisters(self,1,0,0);
case nodetype of
equaln,unequaln : ;
else CGMessage(type_e_mismatch);
end;
convdone:=true;
end
else
if (rd^.deftype=classrefdef) then
begin
left:=gentypeconvnode(left,rd);
firstpass(left);
calcregisters(self,1,0,0);
case nodetype of
equaln,unequaln : ;
else CGMessage(type_e_mismatch);
end;
convdone:=true;
end
else
if (ld^.deftype=classrefdef) then
begin
right:=gentypeconvnode(right,ld);
firstpass(right);
calcregisters(self,1,0,0);
case nodetype of
equaln,unequaln : ;
else
CGMessage(type_e_mismatch);
end;
convdone:=true;
end
else
{ support procvar=nil,procvar<>nil }
if ((ld^.deftype=procvardef) and (rt=niln)) or
((rd^.deftype=procvardef) and (lt=niln)) then
begin
calcregisters(self,1,0,0);
location.loc:=LOC_REGISTER;
case nodetype of
equaln,unequaln : ;
else
CGMessage(type_e_mismatch);
end;
convdone:=true;
end
else
{$ifdef SUPPORT_MMX}
if (cs_mmx in aktlocalswitches) and is_mmx_able_array(ld) and
is_mmx_able_array(rd) and is_equal(ld,rd) then
begin
firstpass(right);
firstpass(left);
case nodetype of
addn,subn,xorn,orn,andn:
;
{ mul is a little bit restricted }
muln:
if not(mmx_type(left.resulttype) in
[mmxu16bit,mmxs16bit,mmxfixed16]) then
CGMessage(type_e_mismatch);
else
CGMessage(type_e_mismatch);
end;
location.loc:=LOC_MMXREGISTER;
calcregisters(self,0,0,1);
convdone:=true;
end
else
{$endif SUPPORT_MMX}
{ this is a little bit dangerous, also the left type }
{ should be checked! This broke the mmx support }
if (rd^.deftype=pointerdef) or
is_zero_based_array(rd) then
begin
if is_zero_based_array(rd) then
begin
resulttype:=new(ppointerdef,init(parraydef(rd)^.elementtype));
right:=gentypeconvnode(right,resulttype);
firstpass(right);
end;
location.loc:=LOC_REGISTER;
left:=gentypeconvnode(left,s32bitdef);
firstpass(left);
calcregisters(self,1,0,0);
if nodetype=addn then
begin
if not(cs_extsyntax in aktmoduleswitches) or
(not(is_pchar(ld)) and not(m_add_pointer in aktmodeswitches)) then
CGMessage(type_e_mismatch);
{ Dirty hack, to support multiple firstpasses (PFV) }
if (resulttype=nil) and
(rd^.deftype=pointerdef) and
(ppointerdef(rd)^.pointertype.def^.size>1) then
begin
left:=caddnode.create(muln,left,genordinalconstnode(ppointerdef(rd)^.pointertype.def^.size,s32bitdef));
firstpass(left);
end;
end
else
CGMessage(type_e_mismatch);
convdone:=true;
end
else
if (ld^.deftype=pointerdef) or
is_zero_based_array(ld) then
begin
if is_zero_based_array(ld) then
begin
resulttype:=new(ppointerdef,init(parraydef(ld)^.elementtype));
left:=gentypeconvnode(left,resulttype);
firstpass(left);
end;
location.loc:=LOC_REGISTER;
right:=gentypeconvnode(right,s32bitdef);
firstpass(right);
calcregisters(self,1,0,0);
case nodetype of
addn,subn : begin
if not(cs_extsyntax in aktmoduleswitches) or
(not(is_pchar(ld)) and not(m_add_pointer in aktmodeswitches)) then
CGMessage(type_e_mismatch);
{ Dirty hack, to support multiple firstpasses (PFV) }
if (resulttype=nil) and
(ld^.deftype=pointerdef) and
(ppointerdef(ld)^.pointertype.def^.size>1) then
begin
right:=caddnode.create(muln,right,
genordinalconstnode(ppointerdef(ld)^.pointertype.def^.size,s32bitdef));
firstpass(right);
end;
end;
else
CGMessage(type_e_mismatch);
end;
convdone:=true;
end
else
if (rd^.deftype=procvardef) and (ld^.deftype=procvardef) and is_equal(rd,ld) then
begin
calcregisters(self,1,0,0);
location.loc:=LOC_REGISTER;
case nodetype of
equaln,unequaln : ;
else
CGMessage(type_e_mismatch);
end;
convdone:=true;
end
else
if (ld^.deftype=enumdef) and (rd^.deftype=enumdef) then
begin
if not(is_equal(ld,rd)) then
begin
right:=gentypeconvnode(right,ld);
firstpass(right);
end;
calcregisters(self,1,0,0);
case nodetype of
equaln,unequaln,
ltn,lten,gtn,gten : ;
else CGMessage(type_e_mismatch);
end;
convdone:=true;
end;
{ the general solution is to convert to 32 bit int }
if not convdone then
begin
{ but an int/int gives real/real! }
if nodetype=slashn then
begin
CGMessage(type_h_use_div_for_int);
right:=gentypeconvnode(right,bestrealdef^);
left:=gentypeconvnode(left,bestrealdef^);
firstpass(left);
firstpass(right);
{ maybe we need an integer register to save }
{ a reference }
if ((left.location.loc<>LOC_FPU) or
(right.location.loc<>LOC_FPU)) and
(left.registers32=right.registers32) then
calcregisters(self,1,1,0)
else
calcregisters(self,0,1,0);
location.loc:=LOC_FPU;
end
else
begin
right:=gentypeconvnode(right,s32bitdef);
left:=gentypeconvnode(left,s32bitdef);
firstpass(left);
firstpass(right);
calcregisters(self,1,0,0);
location.loc:=LOC_REGISTER;
end;
end;
if codegenerror then
exit;
{ determines result type for comparions }
{ here the is a problem with multiple passes }
{ example length(s)+1 gets internal 'longint' type first }
{ if it is a arg it is converted to 'LONGINT' }
{ but a second first pass will reset this to 'longint' }
case nodetype of
ltn,lten,gtn,gten,equaln,unequaln:
begin
if (not assigned(resulttype)) or
(resulttype^.deftype=stringdef) then
resulttype:=booldef;
if is_64bitint(left.resulttype) then
location.loc:=LOC_JUMP
else
location.loc:=LOC_FLAGS;
end;
xorn:
begin
if not assigned(resulttype) then
resulttype:=left.resulttype;
location.loc:=LOC_REGISTER;
end;
addn:
begin
if not assigned(resulttype) then
begin
{ for strings, return is always a 255 char string }
if is_shortstring(left.resulttype) then
resulttype:=cshortstringdef
else
resulttype:=left.resulttype;
end;
end;
{$ifdef cardinalmulfix}
muln:
{ if we multiply an unsigned with a signed number, the result is signed }
{ in the other cases, the result remains signed or unsigned depending on }
{ the multiplication factors (JM) }
if (left.resulttype^.deftype = orddef) and
(right.resulttype^.deftype = orddef) and
is_signed(right.resulttype) then
resulttype := right.resulttype
else resulttype := left.resulttype;
(*
subn:
{ if we substract a u32bit from a positive constant, the result becomes }
{ s32bit as well (JM) }
begin
if (right.resulttype^.deftype = orddef) and
(left.resulttype^.deftype = orddef) and
(porddef(right.resulttype)^.typ = u32bit) and
is_constintnode(left) and
{ (porddef(left.resulttype)^.typ <> u32bit) and}
(left.value > 0) then
begin
left := gentypeconvnode(left,u32bitdef);
firstpass(left);
end;
resulttype:=left.resulttype;
end;
*)
{$endif cardinalmulfix}
else
resulttype:=left.resulttype;
end;
end;
begin
caddnode:=taddnode;
end.
{
$Log$
Revision 1.12 2000-10-01 19:48:23 peter
* lot of compile updates for cg11
Revision 1.11 2000/09/30 16:08:45 peter
* more cg11 updates
Revision 1.10 2000/09/28 19:49:52 florian
*** empty log message ***
Revision 1.9 2000/09/27 21:33:22 florian
* finally nadd.pas compiles
Revision 1.8 2000/09/27 20:25:44 florian
* more stuff fixed
Revision 1.7 2000/09/27 18:14:31 florian
* fixed a lot of syntax errors in the n*.pas stuff
Revision 1.6 2000/09/24 15:06:19 peter
* use defines.inc
Revision 1.5 2000/09/22 22:42:52 florian
* more fixes
Revision 1.4 2000/09/21 12:22:42 jonas
* put piece of code between -dnewoptimizations2 since it wasn't
necessary otherwise
+ support for full boolean evaluation (from tcadd)
Revision 1.3 2000/09/20 21:50:59 florian
* updated
Revision 1.2 2000/08/29 08:24:45 jonas
* some modifications to -dcardinalmulfix code
Revision 1.1 2000/08/26 12:24:20 florian
* initial release
}