mirror of
https://gitlab.com/freepascal.org/fpc/source.git
synced 2025-04-07 05:48:34 +02:00
2812 lines
71 KiB
ObjectPascal
2812 lines
71 KiB
ObjectPascal
{
|
|
This file is part of the Free Pascal run time library.
|
|
Copyright (c) 1999-2005 by Florian Klaempfl
|
|
member of the Free Pascal development team
|
|
|
|
See the file COPYING.FPC, included in this distribution,
|
|
for details about the copyright.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
**********************************************************************}
|
|
{-------------------------------------------------------------------------
|
|
Using functions from AMath/DAMath libraries, which are covered by the
|
|
following license:
|
|
|
|
(C) Copyright 2009-2013 Wolfgang Ehrhardt
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from
|
|
the use of this software.
|
|
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it
|
|
freely, subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not
|
|
claim that you wrote the original software. If you use this software in
|
|
a product, an acknowledgment in the product documentation would be
|
|
appreciated but is not required.
|
|
|
|
2. Altered source versions must be plainly marked as such, and must not be
|
|
misrepresented as being the original software.
|
|
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
----------------------------------------------------------------------------}
|
|
{
|
|
This unit is an equivalent to the Delphi Math unit
|
|
(with some improvements)
|
|
|
|
What's to do:
|
|
o some statistical functions
|
|
o optimizations
|
|
}
|
|
|
|
{$MODE objfpc}
|
|
{$inline on }
|
|
{$GOTO on}
|
|
unit Math;
|
|
interface
|
|
|
|
|
|
{$ifndef FPUNONE}
|
|
uses
|
|
sysutils;
|
|
|
|
{$IFDEF FPDOC_MATH}
|
|
Type
|
|
Float = MaxFloatType;
|
|
|
|
Const
|
|
MinFloat = 0;
|
|
MaxFloat = 0;
|
|
{$ENDIF}
|
|
|
|
{ Ranges of the IEEE floating point types, including denormals }
|
|
{$ifdef FPC_HAS_TYPE_SINGLE}
|
|
const
|
|
{ values according to
|
|
https://en.wikipedia.org/wiki/Single-precision_floating-point_format#Single-precision_examples
|
|
}
|
|
MinSingle = 1.1754943508e-38;
|
|
MaxSingle = 3.4028234664e+38;
|
|
{$endif FPC_HAS_TYPE_SINGLE}
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
const
|
|
{ values according to
|
|
https://en.wikipedia.org/wiki/Double-precision_floating-point_format#Double-precision_examples
|
|
}
|
|
MinDouble = 2.2250738585072014e-308;
|
|
MaxDouble = 1.7976931348623157e+308;
|
|
{$endif FPC_HAS_TYPE_DOUBLE}
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
const
|
|
MinExtended = 3.4e-4932;
|
|
MaxExtended = 1.1e+4932;
|
|
{$endif FPC_HAS_TYPE_EXTENDED}
|
|
{$ifdef FPC_HAS_TYPE_COMP}
|
|
const
|
|
MinComp = -9.223372036854775807e+18;
|
|
MaxComp = 9.223372036854775807e+18;
|
|
{$endif FPC_HAS_TYPE_COMP}
|
|
|
|
{ the original delphi functions use extended as argument, }
|
|
{ but I would prefer double, because 8 bytes is a very }
|
|
{ natural size for the processor }
|
|
{ WARNING : changing float type will }
|
|
{ break all assembler code PM }
|
|
{$if defined(FPC_HAS_TYPE_FLOAT128)}
|
|
type
|
|
Float = Float128;
|
|
|
|
const
|
|
MinFloat = MinFloat128;
|
|
MaxFloat = MaxFloat128;
|
|
{$elseif defined(FPC_HAS_TYPE_EXTENDED)}
|
|
type
|
|
Float = extended;
|
|
|
|
const
|
|
MinFloat = MinExtended;
|
|
MaxFloat = MaxExtended;
|
|
{$elseif defined(FPC_HAS_TYPE_DOUBLE)}
|
|
type
|
|
Float = double;
|
|
|
|
const
|
|
MinFloat = MinDouble;
|
|
MaxFloat = MaxDouble;
|
|
{$elseif defined(FPC_HAS_TYPE_SINGLE)}
|
|
type
|
|
Float = single;
|
|
|
|
const
|
|
MinFloat = MinSingle;
|
|
MaxFloat = MaxSingle;
|
|
{$else}
|
|
{$fatal At least one floating point type must be supported}
|
|
{$endif}
|
|
|
|
type
|
|
PFloat = ^Float;
|
|
PInteger = ObjPas.PInteger;
|
|
|
|
TPaymentTime = (ptEndOfPeriod,ptStartOfPeriod);
|
|
|
|
EInvalidArgument = class(ematherror);
|
|
|
|
TValueRelationship = -1..1;
|
|
|
|
const
|
|
EqualsValue = 0;
|
|
LessThanValue = Low(TValueRelationship);
|
|
GreaterThanValue = High(TValueRelationship);
|
|
|
|
|
|
|
|
{$push}
|
|
{$R-}
|
|
{$Q-}
|
|
NaN = 0.0/0.0;
|
|
Infinity = 1.0/0.0;
|
|
NegInfinity = -1.0/0.0;
|
|
{$pop}
|
|
|
|
|
|
{$IFDEF FPDOC_MATH}
|
|
|
|
// This must be after the above defines.
|
|
|
|
{$DEFINE FPC_HAS_TYPE_SINGLE}
|
|
{$DEFINE FPC_HAS_TYPE_DOUBLE}
|
|
{$DEFINE FPC_HAS_TYPE_EXTENDED}
|
|
{$DEFINE FPC_HAS_TYPE_COMP}
|
|
{$ENDIF}
|
|
|
|
{ Min/max determination }
|
|
function MinIntValue(const Data: array of Integer): Integer;
|
|
function MaxIntValue(const Data: array of Integer): Integer;
|
|
|
|
{ Extra, not present in Delphi, but used frequently }
|
|
function Min(a, b: Integer): Integer;inline; overload;
|
|
function Max(a, b: Integer): Integer;inline; overload;
|
|
{ this causes more trouble than it solves
|
|
function Min(a, b: Cardinal): Cardinal; overload;
|
|
function Max(a, b: Cardinal): Cardinal; overload;
|
|
}
|
|
function Min(a, b: Int64): Int64;inline; overload;
|
|
function Max(a, b: Int64): Int64;inline; overload;
|
|
function Min(a, b: QWord): QWord;inline; overload;
|
|
function Max(a, b: QWord): QWord;inline; overload;
|
|
{$ifdef FPC_HAS_TYPE_SINGLE}
|
|
function Min(a, b: Single): Single;inline; overload;
|
|
function Max(a, b: Single): Single;inline; overload;
|
|
{$endif FPC_HAS_TYPE_SINGLE}
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
function Min(a, b: Double): Double;inline; overload;
|
|
function Max(a, b: Double): Double;inline; overload;
|
|
{$endif FPC_HAS_TYPE_DOUBLE}
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
function Min(a, b: Extended): Extended;inline; overload;
|
|
function Max(a, b: Extended): Extended;inline; overload;
|
|
{$endif FPC_HAS_TYPE_EXTENDED}
|
|
|
|
function InRange(const AValue, AMin, AMax: Integer): Boolean;inline; overload;
|
|
function InRange(const AValue, AMin, AMax: Int64): Boolean;inline; overload;
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
function InRange(const AValue, AMin, AMax: Double): Boolean;inline; overload;
|
|
{$endif FPC_HAS_TYPE_DOUBLE}
|
|
|
|
function EnsureRange(const AValue, AMin, AMax: Integer): Integer;inline; overload;
|
|
function EnsureRange(const AValue, AMin, AMax: Int64): Int64;inline; overload;
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
function EnsureRange(const AValue, AMin, AMax: Double): Double;inline; overload;
|
|
{$endif FPC_HAS_TYPE_DOUBLE}
|
|
|
|
|
|
procedure DivMod(Dividend: LongInt; Divisor: Word; var Result, Remainder: Word);
|
|
procedure DivMod(Dividend: LongInt; Divisor: Word; var Result, Remainder: SmallInt);
|
|
procedure DivMod(Dividend: DWord; Divisor: DWord; var Result, Remainder: DWord);
|
|
procedure DivMod(Dividend: LongInt; Divisor: LongInt; var Result, Remainder: LongInt);
|
|
|
|
{ Floating point modulo}
|
|
{$ifdef FPC_HAS_TYPE_SINGLE}
|
|
function FMod(const a, b: Single): Single;inline;overload;
|
|
{$endif FPC_HAS_TYPE_SINGLE}
|
|
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
function FMod(const a, b: Double): Double;inline;overload;
|
|
{$endif FPC_HAS_TYPE_DOUBLE}
|
|
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
function FMod(const a, b: Extended): Extended;inline;overload;
|
|
{$endif FPC_HAS_TYPE_EXTENDED}
|
|
|
|
operator mod(const a,b:float) c:float;inline;
|
|
|
|
// Sign functions
|
|
Type
|
|
TValueSign = -1..1;
|
|
|
|
const
|
|
NegativeValue = Low(TValueSign);
|
|
ZeroValue = 0;
|
|
PositiveValue = High(TValueSign);
|
|
|
|
function Sign(const AValue: Integer): TValueSign;inline; overload;
|
|
function Sign(const AValue: Int64): TValueSign;inline; overload;
|
|
{$ifdef FPC_HAS_TYPE_SINGLE}
|
|
function Sign(const AValue: Single): TValueSign;inline; overload;
|
|
{$endif}
|
|
function Sign(const AValue: Double): TValueSign;inline; overload;
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
function Sign(const AValue: Extended): TValueSign;inline; overload;
|
|
{$endif}
|
|
|
|
function IsZero(const A: Single; Epsilon: Single): Boolean; overload;
|
|
function IsZero(const A: Single): Boolean;inline; overload;
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
function IsZero(const A: Double; Epsilon: Double): Boolean; overload;
|
|
function IsZero(const A: Double): Boolean;inline; overload;
|
|
{$endif FPC_HAS_TYPE_DOUBLE}
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
function IsZero(const A: Extended; Epsilon: Extended): Boolean; overload;
|
|
function IsZero(const A: Extended): Boolean;inline; overload;
|
|
{$endif FPC_HAS_TYPE_EXTENDED}
|
|
|
|
function IsNan(const d : Single): Boolean; overload;
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
function IsNan(const d : Double): Boolean; overload;
|
|
{$endif FPC_HAS_TYPE_DOUBLE}
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
function IsNan(const d : Extended): Boolean; overload;
|
|
{$endif FPC_HAS_TYPE_EXTENDED}
|
|
|
|
function IsInfinite(const d : Single): Boolean; overload;
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
function IsInfinite(const d : Double): Boolean; overload;
|
|
{$endif FPC_HAS_TYPE_DOUBLE}
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
function IsInfinite(const d : Extended): Boolean; overload;
|
|
{$endif FPC_HAS_TYPE_EXTENDED}
|
|
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
function SameValue(const A, B: Extended): Boolean;inline; overload;
|
|
{$endif}
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
function SameValue(const A, B: Double): Boolean;inline; overload;
|
|
{$endif}
|
|
function SameValue(const A, B: Single): Boolean;inline; overload;
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
function SameValue(const A, B: Extended; Epsilon: Extended): Boolean; overload;
|
|
{$endif}
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
function SameValue(const A, B: Double; Epsilon: Double): Boolean; overload;
|
|
{$endif}
|
|
function SameValue(const A, B: Single; Epsilon: Single): Boolean; overload;
|
|
|
|
type
|
|
TRoundToRange = -37..37;
|
|
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
function RoundTo(const AValue: Double; const Digits: TRoundToRange): Double;
|
|
{$endif}
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
function RoundTo(const AVAlue: Extended; const Digits: TRoundToRange): Extended;
|
|
{$endif}
|
|
{$ifdef FPC_HAS_TYPE_SINGLE}
|
|
function RoundTo(const AValue: Single; const Digits: TRoundToRange): Single;
|
|
{$endif}
|
|
{$ifdef FPC_HAS_TYPE_SINGLE}
|
|
function SimpleRoundTo(const AValue: Single; const Digits: TRoundToRange = -2): Single;
|
|
{$endif}
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
function SimpleRoundTo(const AValue: Double; const Digits: TRoundToRange = -2): Double;
|
|
{$endif}
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
function SimpleRoundTo(const AValue: Extended; const Digits: TRoundToRange = -2): Extended;
|
|
{$endif}
|
|
|
|
|
|
{ angle conversion }
|
|
|
|
function DegToRad(deg : float) : float;inline;
|
|
function RadToDeg(rad : float) : float;inline;
|
|
function GradToRad(grad : float) : float;inline;
|
|
function RadToGrad(rad : float) : float;inline;
|
|
function DegToGrad(deg : float) : float;inline;
|
|
function GradToDeg(grad : float) : float;inline;
|
|
{ one cycle are 2*Pi rad }
|
|
function CycleToRad(cycle : float) : float;inline;
|
|
function RadToCycle(rad : float) : float;inline;
|
|
{$ifdef FPC_HAS_TYPE_SINGLE}
|
|
Function DegNormalize(deg : single) : single; inline;
|
|
{$ENDIF}
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
Function DegNormalize(deg : double) : double; inline;
|
|
{$ENDIF}
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
Function DegNormalize(deg : extended) : extended; inline;
|
|
{$ENDIF}
|
|
|
|
{ trigoniometric functions }
|
|
|
|
function Tan(x : float) : float;
|
|
function Cotan(x : float) : float;
|
|
function Cot(x : float) : float; inline;
|
|
{$ifdef FPC_HAS_TYPE_SINGLE}
|
|
procedure SinCos(theta : single;out sinus,cosinus : single);
|
|
{$endif}
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
procedure SinCos(theta : double;out sinus,cosinus : double);
|
|
{$endif}
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
procedure SinCos(theta : extended;out sinus,cosinus : extended);
|
|
{$endif}
|
|
|
|
|
|
function Secant(x : float) : float; inline;
|
|
function Cosecant(x : float) : float; inline;
|
|
function Sec(x : float) : float; inline;
|
|
function Csc(x : float) : float; inline;
|
|
|
|
{ inverse functions }
|
|
|
|
function ArcCos(x : float) : float;
|
|
function ArcSin(x : float) : float;
|
|
|
|
{ calculates arctan(y/x) and returns an angle in the correct quadrant }
|
|
function ArcTan2(y,x : float) : float;
|
|
|
|
{ hyperbolic functions }
|
|
|
|
function CosH(x : float) : float;
|
|
function SinH(x : float) : float;
|
|
function TanH(x : float) : float;
|
|
|
|
{ area functions }
|
|
|
|
{ delphi names: }
|
|
function ArcCosH(x : float) : float;inline;
|
|
function ArcSinH(x : float) : float;inline;
|
|
function ArcTanH(x : float) : float;inline;
|
|
{ IMHO the function should be called as follows (FK) }
|
|
function ArCosH(x : float) : float;
|
|
function ArSinH(x : float) : float;
|
|
function ArTanH(x : float) : float;
|
|
|
|
{ triangle functions }
|
|
|
|
{ returns the length of the hypotenuse of a right triangle }
|
|
{ if x and y are the other sides }
|
|
function Hypot(x,y : float) : float;
|
|
|
|
{ logarithm functions }
|
|
|
|
function Log10(x : float) : float;
|
|
function Log2(x : float) : float;
|
|
function LogN(n,x : float) : float;
|
|
|
|
{ returns natural logarithm of x+1, accurate for x values near zero }
|
|
function LnXP1(x : float) : float;
|
|
|
|
{ exponential functions }
|
|
|
|
function Power(base,exponent : float) : float;
|
|
{ base^exponent }
|
|
function IntPower(base : float;const exponent : Integer) : float;
|
|
|
|
operator ** (bas,expo : float) e: float; inline;
|
|
operator ** (bas,expo : int64) i: int64; inline;
|
|
|
|
{ number converting }
|
|
|
|
{ rounds x towards positive infinity }
|
|
function Ceil(x : float) : Integer;
|
|
function Ceil64(x: float): Int64;
|
|
{ rounds x towards negative infinity }
|
|
function Floor(x : float) : Integer;
|
|
function Floor64(x: float): Int64;
|
|
|
|
{ misc. functions }
|
|
|
|
{ splits x into mantissa and exponent (to base 2) }
|
|
procedure Frexp(X: float; var Mantissa: float; var Exponent: integer);
|
|
{ returns x*(2^p) }
|
|
function Ldexp(x : float; const p : Integer) : float;
|
|
|
|
{ statistical functions }
|
|
|
|
{$ifdef FPC_HAS_TYPE_SINGLE}
|
|
function Mean(const data : array of Single) : float;
|
|
function Sum(const data : array of Single) : float;inline;
|
|
function Mean(const data : PSingle; Const N : longint) : float;
|
|
function Sum(const data : PSingle; Const N : Longint) : float;
|
|
{$endif FPC_HAS_TYPE_SINGLE}
|
|
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
function Mean(const data : array of double) : float;inline;
|
|
function Sum(const data : array of double) : float;inline;
|
|
function Mean(const data : PDouble; Const N : longint) : float;
|
|
function Sum(const data : PDouble; Const N : Longint) : float;
|
|
{$endif FPC_HAS_TYPE_DOUBLE}
|
|
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
function Mean(const data : array of Extended) : float;
|
|
function Sum(const data : array of Extended) : float;inline;
|
|
function Mean(const data : PExtended; Const N : longint) : float;
|
|
function Sum(const data : PExtended; Const N : Longint) : float;
|
|
{$endif FPC_HAS_TYPE_EXTENDED}
|
|
|
|
function SumInt(const data : PInt64;Const N : longint) : Int64;
|
|
function SumInt(const data : array of Int64) : Int64;inline;
|
|
function Mean(const data : PInt64; const N : Longint):Float;
|
|
function Mean(const data: array of Int64):Float;
|
|
function SumInt(const data : PInteger; Const N : longint) : Int64;
|
|
function SumInt(const data : array of Integer) : Int64;inline;
|
|
function Mean(const data : PInteger; const N : Longint):Float;
|
|
function Mean(const data: array of Integer):Float;
|
|
|
|
|
|
{$ifdef FPC_HAS_TYPE_SINGLE}
|
|
function SumOfSquares(const data : array of Single) : float;inline;
|
|
function SumOfSquares(const data : PSingle; Const N : Integer) : float;
|
|
{ calculates the sum and the sum of squares of data }
|
|
procedure SumsAndSquares(const data : array of Single;
|
|
var sum,sumofsquares : float);inline;
|
|
procedure SumsAndSquares(const data : PSingle; Const N : Integer;
|
|
var sum,sumofsquares : float);
|
|
{$endif FPC_HAS_TYPE_SINGLE}
|
|
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
function SumOfSquares(const data : array of double) : float;
|
|
function SumOfSquares(const data : PDouble; Const N : Integer) : float;
|
|
{ calculates the sum and the sum of squares of data }
|
|
procedure SumsAndSquares(const data : array of Double;
|
|
var sum,sumofsquares : float);inline;
|
|
procedure SumsAndSquares(const data : PDouble; Const N : Integer;
|
|
var sum,sumofsquares : float);
|
|
{$endif FPC_HAS_TYPE_DOUBLE}
|
|
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
function SumOfSquares(const data : array of Extended) : float;inline;
|
|
function SumOfSquares(const data : PExtended; Const N : Integer) : float;
|
|
{ calculates the sum and the sum of squares of data }
|
|
procedure SumsAndSquares(const data : array of Extended;
|
|
var sum,sumofsquares : float);inline;
|
|
procedure SumsAndSquares(const data : PExtended; Const N : Integer;
|
|
var sum,sumofsquares : float);
|
|
{$endif FPC_HAS_TYPE_EXTENDED}
|
|
|
|
{$ifdef FPC_HAS_TYPE_SINGLE}
|
|
function MinValue(const data : array of Single) : Single;inline;
|
|
function MinValue(const data : PSingle; Const N : Integer) : Single;
|
|
function MaxValue(const data : array of Single) : Single;inline;
|
|
function MaxValue(const data : PSingle; Const N : Integer) : Single;
|
|
{$endif FPC_HAS_TYPE_SINGLE}
|
|
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
function MinValue(const data : array of Double) : Double;inline;
|
|
function MinValue(const data : PDouble; Const N : Integer) : Double;
|
|
function MaxValue(const data : array of Double) : Double;inline;
|
|
function MaxValue(const data : PDouble; Const N : Integer) : Double;
|
|
{$endif FPC_HAS_TYPE_DOUBLE}
|
|
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
function MinValue(const data : array of Extended) : Extended;inline;
|
|
function MinValue(const data : PExtended; Const N : Integer) : Extended;
|
|
function MaxValue(const data : array of Extended) : Extended;inline;
|
|
function MaxValue(const data : PExtended; Const N : Integer) : Extended;
|
|
{$endif FPC_HAS_TYPE_EXTENDED}
|
|
|
|
function MinValue(const data : array of integer) : Integer;inline;
|
|
function MinValue(const Data : PInteger; Const N : Integer): Integer;
|
|
|
|
function MaxValue(const data : array of integer) : Integer;inline;
|
|
function MaxValue(const data : PInteger; Const N : Integer) : Integer;
|
|
|
|
{ returns random values with gaussian distribution }
|
|
function RandG(mean,stddev : float) : float;
|
|
|
|
function RandomRange(const aFrom, aTo: Integer): Integer;
|
|
function RandomRange(const aFrom, aTo: Int64): Int64;
|
|
|
|
{$ifdef FPC_HAS_TYPE_SINGLE}
|
|
{ calculates the standard deviation }
|
|
function StdDev(const data : array of Single) : float;inline;
|
|
function StdDev(const data : PSingle; Const N : Integer) : float;
|
|
{ calculates the mean and stddev }
|
|
procedure MeanAndStdDev(const data : array of Single;
|
|
var mean,stddev : float);inline;
|
|
procedure MeanAndStdDev(const data : PSingle;
|
|
Const N : Longint;var mean,stddev : float);
|
|
function Variance(const data : array of Single) : float;inline;
|
|
function TotalVariance(const data : array of Single) : float;inline;
|
|
function Variance(const data : PSingle; Const N : Integer) : float;
|
|
function TotalVariance(const data : PSingle; Const N : Integer) : float;
|
|
|
|
{ Population (aka uncorrected) variance and standard deviation }
|
|
function PopnStdDev(const data : array of Single) : float;inline;
|
|
function PopnStdDev(const data : PSingle; Const N : Integer) : float;
|
|
function PopnVariance(const data : PSingle; Const N : Integer) : float;
|
|
function PopnVariance(const data : array of Single) : float;inline;
|
|
procedure MomentSkewKurtosis(const data : array of Single;
|
|
out m1,m2,m3,m4,skew,kurtosis : float);inline;
|
|
procedure MomentSkewKurtosis(const data : PSingle; Const N : Integer;
|
|
out m1,m2,m3,m4,skew,kurtosis : float);
|
|
|
|
{ geometrical function }
|
|
|
|
{ returns the euclidean L2 norm }
|
|
function Norm(const data : array of Single) : float;inline;
|
|
function Norm(const data : PSingle; Const N : Integer) : float;
|
|
{$endif FPC_HAS_TYPE_SINGLE}
|
|
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
{ calculates the standard deviation }
|
|
function StdDev(const data : array of Double) : float;inline;
|
|
function StdDev(const data : PDouble; Const N : Integer) : float;
|
|
{ calculates the mean and stddev }
|
|
procedure MeanAndStdDev(const data : array of Double;
|
|
var mean,stddev : float);inline;
|
|
procedure MeanAndStdDev(const data : PDouble;
|
|
Const N : Longint;var mean,stddev : float);
|
|
function Variance(const data : array of Double) : float;inline;
|
|
function TotalVariance(const data : array of Double) : float;inline;
|
|
function Variance(const data : PDouble; Const N : Integer) : float;
|
|
function TotalVariance(const data : PDouble; Const N : Integer) : float;
|
|
|
|
{ Population (aka uncorrected) variance and standard deviation }
|
|
function PopnStdDev(const data : array of Double) : float;inline;
|
|
function PopnStdDev(const data : PDouble; Const N : Integer) : float;
|
|
function PopnVariance(const data : PDouble; Const N : Integer) : float;
|
|
function PopnVariance(const data : array of Double) : float;inline;
|
|
procedure MomentSkewKurtosis(const data : array of Double;
|
|
out m1,m2,m3,m4,skew,kurtosis : float);inline;
|
|
procedure MomentSkewKurtosis(const data : PDouble; Const N : Integer;
|
|
out m1,m2,m3,m4,skew,kurtosis : float);
|
|
|
|
{ geometrical function }
|
|
|
|
{ returns the euclidean L2 norm }
|
|
function Norm(const data : array of double) : float;inline;
|
|
function Norm(const data : PDouble; Const N : Integer) : float;
|
|
{$endif FPC_HAS_TYPE_DOUBLE}
|
|
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
{ calculates the standard deviation }
|
|
function StdDev(const data : array of Extended) : float;inline;
|
|
function StdDev(const data : PExtended; Const N : Integer) : float;
|
|
{ calculates the mean and stddev }
|
|
procedure MeanAndStdDev(const data : array of Extended;
|
|
var mean,stddev : float);inline;
|
|
procedure MeanAndStdDev(const data : PExtended;
|
|
Const N : Longint;var mean,stddev : float);
|
|
function Variance(const data : array of Extended) : float;inline;
|
|
function TotalVariance(const data : array of Extended) : float;inline;
|
|
function Variance(const data : PExtended; Const N : Integer) : float;
|
|
function TotalVariance(const data : PExtended; Const N : Integer) : float;
|
|
|
|
{ Population (aka uncorrected) variance and standard deviation }
|
|
function PopnStdDev(const data : array of Extended) : float;inline;
|
|
function PopnStdDev(const data : PExtended; Const N : Integer) : float;
|
|
function PopnVariance(const data : PExtended; Const N : Integer) : float;
|
|
function PopnVariance(const data : array of Extended) : float;inline;
|
|
procedure MomentSkewKurtosis(const data : array of Extended;
|
|
out m1,m2,m3,m4,skew,kurtosis : float);inline;
|
|
procedure MomentSkewKurtosis(const data : PExtended; Const N : Integer;
|
|
out m1,m2,m3,m4,skew,kurtosis : float);
|
|
|
|
{ geometrical function }
|
|
|
|
{ returns the euclidean L2 norm }
|
|
function Norm(const data : array of Extended) : float;inline;
|
|
function Norm(const data : PExtended; Const N : Integer) : float;
|
|
{$endif FPC_HAS_TYPE_EXTENDED}
|
|
|
|
{ Financial functions }
|
|
|
|
function FutureValue(ARate: Float; NPeriods: Integer;
|
|
APayment, APresentValue: Float; APaymentTime: TPaymentTime): Float;
|
|
|
|
function InterestRate(NPeriods: Integer; APayment, APresentValue, AFutureValue: Float;
|
|
APaymentTime: TPaymentTime): Float;
|
|
|
|
function NumberOfPeriods(ARate, APayment, APresentValue, AFutureValue: Float;
|
|
APaymentTime: TPaymentTime): Float;
|
|
|
|
function Payment(ARate: Float; NPeriods: Integer;
|
|
APresentValue, AFutureValue: Float; APaymentTime: TPaymentTime): Float;
|
|
|
|
function PresentValue(ARate: Float; NPeriods: Integer;
|
|
APayment, AFutureValue: Float; APaymentTime: TPaymentTime): Float;
|
|
|
|
{ Misc functions }
|
|
|
|
function IfThen(val:boolean;const iftrue:integer; const iffalse:integer= 0) :integer; inline; overload;
|
|
function IfThen(val:boolean;const iftrue:int64 ; const iffalse:int64 = 0) :int64; inline; overload;
|
|
function IfThen(val:boolean;const iftrue:double ; const iffalse:double =0.0):double; inline; overload;
|
|
|
|
function CompareValue ( const A, B : Integer) : TValueRelationship; inline;
|
|
function CompareValue ( const A, B : Int64) : TValueRelationship; inline;
|
|
function CompareValue ( const A, B : QWord) : TValueRelationship; inline;
|
|
|
|
{$ifdef FPC_HAS_TYPE_SINGLE}
|
|
function CompareValue ( const A, B : Single; delta : Single = 0.0 ) : TValueRelationship; inline;
|
|
{$endif}
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
function CompareValue ( const A, B : Double; delta : Double = 0.0) : TValueRelationship; inline;
|
|
{$endif}
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
function CompareValue ( const A, B : Extended; delta : Extended = 0.0 ) : TValueRelationship; inline;
|
|
{$endif}
|
|
|
|
function RandomFrom(const AValues: array of Double): Double; overload;
|
|
function RandomFrom(const AValues: array of Integer): Integer; overload;
|
|
function RandomFrom(const AValues: array of Int64): Int64; overload;
|
|
{$if FPC_FULLVERSION >=30101}
|
|
generic function RandomFrom<T>(const AValues:array of T):T;
|
|
{$endif}
|
|
|
|
{ cpu specific stuff }
|
|
|
|
type
|
|
TFPURoundingMode = system.TFPURoundingMode;
|
|
TFPUPrecisionMode = system.TFPUPrecisionMode;
|
|
TFPUException = system.TFPUException;
|
|
TFPUExceptionMask = system.TFPUExceptionMask;
|
|
|
|
function GetRoundMode: TFPURoundingMode;
|
|
function SetRoundMode(const RoundMode: TFPURoundingMode): TFPURoundingMode;
|
|
function GetPrecisionMode: TFPUPrecisionMode;
|
|
function SetPrecisionMode(const Precision: TFPUPrecisionMode): TFPUPrecisionMode;
|
|
function GetExceptionMask: TFPUExceptionMask;
|
|
function SetExceptionMask(const Mask: TFPUExceptionMask): TFPUExceptionMask;
|
|
procedure ClearExceptions(RaisePending: Boolean =true);
|
|
|
|
|
|
implementation
|
|
|
|
function copysign(x,y: float): float; forward; { returns abs(x)*sign(y) }
|
|
|
|
{ include cpu specific stuff }
|
|
{$i mathu.inc}
|
|
|
|
ResourceString
|
|
SMathError = 'Math Error : %s';
|
|
SInvalidArgument = 'Invalid argument';
|
|
|
|
Procedure DoMathError(Const S : String);
|
|
begin
|
|
Raise EMathError.CreateFmt(SMathError,[S]);
|
|
end;
|
|
|
|
Procedure InvalidArgument;
|
|
|
|
begin
|
|
Raise EInvalidArgument.Create(SInvalidArgument);
|
|
end;
|
|
|
|
|
|
function Sign(const AValue: Integer): TValueSign;inline;
|
|
|
|
begin
|
|
result:=TValueSign(
|
|
SarLongint(AValue,sizeof(AValue)*8-1) or { gives -1 for negative values, 0 otherwise }
|
|
(longint(-AValue) shr (sizeof(AValue)*8-1)) { gives 1 for positive values, 0 otherwise }
|
|
);
|
|
end;
|
|
|
|
function Sign(const AValue: Int64): TValueSign;inline;
|
|
|
|
begin
|
|
{$ifdef cpu64}
|
|
result:=TValueSign(
|
|
SarInt64(AValue,sizeof(AValue)*8-1) or
|
|
(-AValue shr (sizeof(AValue)*8-1))
|
|
);
|
|
{$else cpu64}
|
|
If Avalue<0 then
|
|
Result:=NegativeValue
|
|
else If Avalue>0 then
|
|
Result:=PositiveValue
|
|
else
|
|
Result:=ZeroValue;
|
|
{$endif}
|
|
end;
|
|
|
|
{$ifdef FPC_HAS_TYPE_SINGLE}
|
|
function Sign(const AValue: Single): TValueSign;inline;
|
|
|
|
begin
|
|
Result:=ord(AValue>0.0)-ord(AValue<0.0);
|
|
end;
|
|
{$endif}
|
|
|
|
|
|
function Sign(const AValue: Double): TValueSign;inline;
|
|
|
|
begin
|
|
Result:=ord(AValue>0.0)-ord(AValue<0.0);
|
|
end;
|
|
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
function Sign(const AValue: Extended): TValueSign;inline;
|
|
|
|
begin
|
|
Result:=ord(AValue>0.0)-ord(AValue<0.0);
|
|
end;
|
|
{$endif}
|
|
|
|
function degtorad(deg : float) : float;inline;
|
|
begin
|
|
degtorad:=deg*(pi/180.0);
|
|
end;
|
|
|
|
function radtodeg(rad : float) : float;inline;
|
|
begin
|
|
radtodeg:=rad*(180.0/pi);
|
|
end;
|
|
|
|
function gradtorad(grad : float) : float;inline;
|
|
begin
|
|
gradtorad:=grad*(pi/200.0);
|
|
end;
|
|
|
|
function radtograd(rad : float) : float;inline;
|
|
begin
|
|
radtograd:=rad*(200.0/pi);
|
|
end;
|
|
|
|
function degtograd(deg : float) : float;inline;
|
|
begin
|
|
degtograd:=deg*(200.0/180.0);
|
|
end;
|
|
|
|
function gradtodeg(grad : float) : float;inline;
|
|
begin
|
|
gradtodeg:=grad*(180.0/200.0);
|
|
end;
|
|
|
|
function cycletorad(cycle : float) : float;inline;
|
|
begin
|
|
cycletorad:=(2*pi)*cycle;
|
|
end;
|
|
|
|
function radtocycle(rad : float) : float;inline;
|
|
begin
|
|
{ avoid division }
|
|
radtocycle:=rad*(1/(2*pi));
|
|
end;
|
|
|
|
{$ifdef FPC_HAS_TYPE_SINGLE}
|
|
Function DegNormalize(deg : single) : single;
|
|
|
|
begin
|
|
Result:=Deg-Int(Deg/360)*360;
|
|
If Result<0 then Result:=Result+360;
|
|
end;
|
|
{$ENDIF}
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
Function DegNormalize(deg : double) : double; inline;
|
|
|
|
begin
|
|
Result:=Deg-Int(Deg/360)*360;
|
|
If (Result<0) then Result:=Result+360;
|
|
end;
|
|
{$ENDIF}
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
Function DegNormalize(deg : extended) : extended; inline;
|
|
|
|
begin
|
|
Result:=Deg-Int(Deg/360)*360;
|
|
If Result<0 then Result:=Result+360;
|
|
end;
|
|
{$ENDIF}
|
|
|
|
{$ifndef FPC_MATH_HAS_TAN}
|
|
function tan(x : float) : float;
|
|
var
|
|
_sin,_cos : float;
|
|
begin
|
|
sincos(x,_sin,_cos);
|
|
tan:=_sin/_cos;
|
|
end;
|
|
{$endif FPC_MATH_HAS_TAN}
|
|
|
|
|
|
{$ifndef FPC_MATH_HAS_COTAN}
|
|
function cotan(x : float) : float;
|
|
var
|
|
_sin,_cos : float;
|
|
begin
|
|
sincos(x,_sin,_cos);
|
|
cotan:=_cos/_sin;
|
|
end;
|
|
{$endif FPC_MATH_HAS_COTAN}
|
|
|
|
function cot(x : float) : float; inline;
|
|
begin
|
|
cot := cotan(x);
|
|
end;
|
|
|
|
|
|
{$ifndef FPC_MATH_HAS_SINCOS}
|
|
{$ifdef FPC_HAS_TYPE_SINGLE}
|
|
procedure sincos(theta : single;out sinus,cosinus : single);
|
|
begin
|
|
sinus:=sin(theta);
|
|
cosinus:=cos(theta);
|
|
end;
|
|
{$endif}
|
|
|
|
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
procedure sincos(theta : double;out sinus,cosinus : double);
|
|
begin
|
|
sinus:=sin(theta);
|
|
cosinus:=cos(theta);
|
|
end;
|
|
{$endif}
|
|
|
|
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
procedure sincos(theta : extended;out sinus,cosinus : extended);
|
|
begin
|
|
sinus:=sin(theta);
|
|
cosinus:=cos(theta);
|
|
end;
|
|
{$endif}
|
|
{$endif FPC_MATH_HAS_SINCOS}
|
|
|
|
|
|
function secant(x : float) : float; inline;
|
|
begin
|
|
secant := 1 / cos(x);
|
|
end;
|
|
|
|
|
|
function cosecant(x : float) : float; inline;
|
|
begin
|
|
cosecant := 1 / sin(x);
|
|
end;
|
|
|
|
|
|
function sec(x : float) : float; inline;
|
|
begin
|
|
sec := secant(x);
|
|
end;
|
|
|
|
|
|
function csc(x : float) : float; inline;
|
|
begin
|
|
csc := cosecant(x);
|
|
end;
|
|
|
|
{ arcsin and arccos functions from AMath library (C) Copyright 2009-2013 Wolfgang Ehrhardt }
|
|
function arcsin(x : float) : float;
|
|
begin
|
|
arcsin:=arctan2(x,sqrt((1.0-x)*(1.0+x)));
|
|
end;
|
|
|
|
function Arccos(x : Float) : Float;
|
|
begin
|
|
if abs(x)=1.0 then
|
|
if x<0.0 then
|
|
arccos:=Pi
|
|
else
|
|
arccos:=0
|
|
else
|
|
arccos:=arctan2(sqrt((1.0-x)*(1.0+x)),x);
|
|
end;
|
|
|
|
|
|
{$ifndef FPC_MATH_HAS_ARCTAN2}
|
|
function arctan2(y,x : float) : float;
|
|
begin
|
|
if (x=0) then
|
|
begin
|
|
if y=0 then
|
|
arctan2:=0.0
|
|
else if y>0 then
|
|
arctan2:=pi/2
|
|
else if y<0 then
|
|
arctan2:=-pi/2;
|
|
end
|
|
else
|
|
ArcTan2:=ArcTan(y/x);
|
|
if x<0.0 then
|
|
ArcTan2:=ArcTan2+pi;
|
|
if ArcTan2>pi then
|
|
ArcTan2:=ArcTan2-2*pi;
|
|
end;
|
|
{$endif FPC_MATH_HAS_ARCTAN2}
|
|
|
|
|
|
function cosh(x : float) : float;
|
|
var
|
|
temp : float;
|
|
begin
|
|
temp:=exp(x);
|
|
cosh:=0.5*(temp+1.0/temp);
|
|
end;
|
|
|
|
function sinh(x : float) : float;
|
|
var
|
|
temp : float;
|
|
begin
|
|
temp:=exp(x);
|
|
{ copysign ensures that sinh(-0.0)=-0.0 }
|
|
sinh:=copysign(0.5*(temp-1.0/temp),x);
|
|
end;
|
|
|
|
Const MaxTanh = 5678.22249441322; // Ln(MaxExtended)/2
|
|
|
|
function tanh(x : float) : float;
|
|
var Temp : float;
|
|
begin
|
|
if x>MaxTanh then exit(1.0)
|
|
else if x<-MaxTanh then exit (-1.0);
|
|
temp:=exp(-2*x);
|
|
tanh:=(1-temp)/(1+temp)
|
|
end;
|
|
|
|
function arccosh(x : float) : float; inline;
|
|
begin
|
|
arccosh:=arcosh(x);
|
|
end;
|
|
|
|
function arcsinh(x : float) : float;inline;
|
|
begin
|
|
arcsinh:=arsinh(x);
|
|
end;
|
|
|
|
function arctanh(x : float) : float;inline;
|
|
begin
|
|
arctanh:=artanh(x);
|
|
end;
|
|
|
|
function arcosh(x : float) : float;
|
|
begin
|
|
{ Provides accuracy about 4*eps near 1.0 }
|
|
arcosh:=Ln(x+Sqrt((x-1.0)*(x+1.0)));
|
|
end;
|
|
|
|
function arsinh(x : float) : float;
|
|
var
|
|
z: float;
|
|
begin
|
|
z:=abs(x);
|
|
z:=Ln(z+Sqrt(1+z*z));
|
|
{ copysign ensures that arsinh(-Inf)=-Inf and arsinh(-0.0)=-0.0 }
|
|
arsinh:=copysign(z,x);
|
|
end;
|
|
|
|
function artanh(x : float) : float;
|
|
begin
|
|
artanh:=(lnxp1(x)-lnxp1(-x))*0.5;
|
|
end;
|
|
|
|
{ hypot function from AMath library (C) Copyright 2009-2013 Wolfgang Ehrhardt }
|
|
function hypot(x,y : float) : float;
|
|
begin
|
|
x:=abs(x);
|
|
y:=abs(y);
|
|
if (x>y) then
|
|
hypot:=x*sqrt(1.0+sqr(y/x))
|
|
else if (x>0.0) then
|
|
hypot:=y*sqrt(1.0+sqr(x/y))
|
|
else
|
|
hypot:=y;
|
|
end;
|
|
|
|
function log10(x : float) : float;
|
|
begin
|
|
log10:=ln(x)*0.43429448190325182765; { 1/ln(10) }
|
|
end;
|
|
|
|
{$ifndef FPC_MATH_HAS_LOG2}
|
|
function log2(x : float) : float;
|
|
begin
|
|
log2:=ln(x)*1.4426950408889634079; { 1/ln(2) }
|
|
end;
|
|
{$endif FPC_MATH_HAS_LOG2}
|
|
|
|
function logn(n,x : float) : float;
|
|
begin
|
|
logn:=ln(x)/ln(n);
|
|
end;
|
|
|
|
{ lnxp1 function from AMath library (C) Copyright 2009-2013 Wolfgang Ehrhardt }
|
|
function lnxp1(x : float) : float;
|
|
var
|
|
y: float;
|
|
begin
|
|
if (x>=4.0) then
|
|
lnxp1:=ln(1.0+x)
|
|
else
|
|
begin
|
|
y:=1.0+x;
|
|
if (y=1.0) then
|
|
lnxp1:=x
|
|
else
|
|
begin
|
|
lnxp1:=ln(y); { lnxp1(-1) = ln(0) = -Inf }
|
|
if y>0.0 then
|
|
lnxp1:=lnxp1+(x-(y-1.0))/y;
|
|
end;
|
|
end;
|
|
end;
|
|
|
|
|
|
function power(base,exponent : float) : float;
|
|
begin
|
|
if Exponent=0.0 then
|
|
result:=1.0
|
|
else if (base=0.0) and (exponent>0.0) then
|
|
result:=0.0
|
|
else if (abs(exponent)<=maxint) and (frac(exponent)=0.0) then
|
|
result:=intpower(base,trunc(exponent))
|
|
else
|
|
result:=exp(exponent * ln (base));
|
|
end;
|
|
|
|
|
|
function intpower(base : float;const exponent : Integer) : float;
|
|
var
|
|
i : longint;
|
|
begin
|
|
if (base = 0.0) and (exponent = 0) then
|
|
result:=1
|
|
else
|
|
begin
|
|
if exponent<0 then
|
|
base:=1.0/base;
|
|
i:=abs(exponent);
|
|
intpower:=1.0;
|
|
while i>0 do
|
|
begin
|
|
while (i and 1)=0 do
|
|
begin
|
|
i:=i shr 1;
|
|
base:=sqr(base);
|
|
end;
|
|
i:=i-1;
|
|
intpower:=intpower*base;
|
|
end;
|
|
end;
|
|
end;
|
|
|
|
|
|
operator ** (bas,expo : float) e: float; inline;
|
|
begin
|
|
e:=power(bas,expo);
|
|
end;
|
|
|
|
|
|
operator ** (bas,expo : int64) i: int64; inline;
|
|
begin
|
|
i:=round(intpower(bas,expo));
|
|
end;
|
|
|
|
|
|
function ceil(x : float) : integer;
|
|
begin
|
|
Result:=Trunc(x)+ord(Frac(x)>0);
|
|
end;
|
|
|
|
|
|
function ceil64(x: float): Int64;
|
|
begin
|
|
Result:=Trunc(x)+ord(Frac(x)>0);
|
|
end;
|
|
|
|
|
|
function floor(x : float) : integer;
|
|
begin
|
|
Result:=Trunc(x)-ord(Frac(x)<0);
|
|
end;
|
|
|
|
|
|
function floor64(x: float): Int64;
|
|
begin
|
|
Result:=Trunc(x)-ord(Frac(x)<0);
|
|
end;
|
|
|
|
|
|
procedure Frexp(X: float; var Mantissa: float; var Exponent: integer);
|
|
begin
|
|
Exponent:=0;
|
|
if (X<>0) then
|
|
if (abs(X)<0.5) then
|
|
repeat
|
|
X:=X*2;
|
|
Dec(Exponent);
|
|
until (abs(X)>=0.5)
|
|
else
|
|
while (abs(X)>=1) do
|
|
begin
|
|
X:=X/2;
|
|
Inc(Exponent);
|
|
end;
|
|
Mantissa:=X;
|
|
end;
|
|
|
|
function ldexp(x : float;const p : Integer) : float;
|
|
begin
|
|
ldexp:=x*intpower(2.0,p);
|
|
end;
|
|
|
|
{$ifdef FPC_HAS_TYPE_SINGLE}
|
|
function mean(const data : array of Single) : float;
|
|
|
|
begin
|
|
Result:=Mean(PSingle(@data[0]),High(Data)+1);
|
|
end;
|
|
|
|
function mean(const data : PSingle; Const N : longint) : float;
|
|
begin
|
|
mean:=sum(Data,N);
|
|
mean:=mean/N;
|
|
end;
|
|
|
|
function sum(const data : array of Single) : float;inline;
|
|
begin
|
|
Result:=Sum(PSingle(@Data[0]),High(Data)+1);
|
|
end;
|
|
|
|
function sum(const data : PSingle;Const N : longint) : float;
|
|
var
|
|
i : longint;
|
|
begin
|
|
sum:=0.0;
|
|
for i:=0 to N-1 do
|
|
sum:=sum+data[i];
|
|
end;
|
|
{$endif FPC_HAS_TYPE_SINGLE}
|
|
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
function mean(const data : array of Double) : float; inline;
|
|
begin
|
|
Result:=Mean(PDouble(@data[0]),High(Data)+1);
|
|
end;
|
|
|
|
function mean(const data : PDouble; Const N : longint) : float;
|
|
begin
|
|
mean:=sum(Data,N);
|
|
mean:=mean/N;
|
|
end;
|
|
|
|
function sum(const data : array of Double) : float; inline;
|
|
begin
|
|
Result:=Sum(PDouble(@Data[0]),High(Data)+1);
|
|
end;
|
|
|
|
function sum(const data : PDouble;Const N : longint) : float;
|
|
var
|
|
i : longint;
|
|
begin
|
|
sum:=0.0;
|
|
for i:=0 to N-1 do
|
|
sum:=sum+data[i];
|
|
end;
|
|
{$endif FPC_HAS_TYPE_DOUBLE}
|
|
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
function mean(const data : array of Extended) : float;
|
|
begin
|
|
Result:=Mean(PExtended(@data[0]),High(Data)+1);
|
|
end;
|
|
|
|
function mean(const data : PExtended; Const N : longint) : float;
|
|
begin
|
|
mean:=sum(Data,N);
|
|
mean:=mean/N;
|
|
end;
|
|
|
|
function sum(const data : array of Extended) : float; inline;
|
|
begin
|
|
Result:=Sum(PExtended(@Data[0]),High(Data)+1);
|
|
end;
|
|
|
|
function sum(const data : PExtended;Const N : longint) : float;
|
|
var
|
|
i : longint;
|
|
begin
|
|
sum:=0.0;
|
|
for i:=0 to N-1 do
|
|
sum:=sum+data[i];
|
|
end;
|
|
{$endif FPC_HAS_TYPE_EXTENDED}
|
|
|
|
function sumInt(const data : PInt64;Const N : longint) : Int64;
|
|
var
|
|
i : longint;
|
|
begin
|
|
sumInt:=0;
|
|
for i:=0 to N-1 do
|
|
sumInt:=sumInt+data[i];
|
|
end;
|
|
|
|
function sumInt(const data : array of Int64) : Int64; inline;
|
|
begin
|
|
Result:=SumInt(PInt64(@Data[0]),High(Data)+1);
|
|
end;
|
|
|
|
function mean(const data : PInt64; const N : Longint):Float;
|
|
begin
|
|
mean:=sumInt(Data,N);
|
|
mean:=mean/N;
|
|
end;
|
|
|
|
function mean(const data: array of Int64):Float;
|
|
begin
|
|
mean:=mean(PInt64(@data[0]),High(Data)+1);
|
|
end;
|
|
|
|
function sumInt(const data : PInteger; Const N : longint) : Int64;
|
|
var
|
|
i : longint;
|
|
begin
|
|
sumInt:=0;
|
|
for i:=0 to N-1 do
|
|
sumInt:=sumInt+data[i];
|
|
end;
|
|
|
|
function sumInt(const data : array of Integer) : Int64;inline;
|
|
begin
|
|
Result:=sumInt(PInteger(@Data[0]),High(Data)+1);
|
|
end;
|
|
|
|
function mean(const data : PInteger; const N : Longint):Float;
|
|
begin
|
|
mean:=sumInt(Data,N);
|
|
mean:=mean/N;
|
|
end;
|
|
|
|
function mean(const data: array of Integer):Float;
|
|
begin
|
|
mean:=mean(PInteger(@data[0]),High(Data)+1);
|
|
end;
|
|
|
|
{$ifdef FPC_HAS_TYPE_SINGLE}
|
|
function sumofsquares(const data : array of Single) : float; inline;
|
|
begin
|
|
Result:=sumofsquares(PSingle(@data[0]),High(Data)+1);
|
|
end;
|
|
|
|
function sumofsquares(const data : PSingle; Const N : Integer) : float;
|
|
var
|
|
i : longint;
|
|
begin
|
|
sumofsquares:=0.0;
|
|
for i:=0 to N-1 do
|
|
sumofsquares:=sumofsquares+sqr(data[i]);
|
|
end;
|
|
|
|
procedure sumsandsquares(const data : array of Single;
|
|
var sum,sumofsquares : float); inline;
|
|
begin
|
|
sumsandsquares (PSingle(@Data[0]),High(Data)+1,Sum,sumofsquares);
|
|
end;
|
|
|
|
procedure sumsandsquares(const data : PSingle; Const N : Integer;
|
|
var sum,sumofsquares : float);
|
|
var
|
|
i : Integer;
|
|
temp : float;
|
|
begin
|
|
sumofsquares:=0.0;
|
|
sum:=0.0;
|
|
for i:=0 to N-1 do
|
|
begin
|
|
temp:=data[i];
|
|
sumofsquares:=sumofsquares+sqr(temp);
|
|
sum:=sum+temp;
|
|
end;
|
|
end;
|
|
{$endif FPC_HAS_TYPE_SINGLE}
|
|
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
function sumofsquares(const data : array of Double) : float; inline;
|
|
begin
|
|
Result:=sumofsquares(PDouble(@data[0]),High(Data)+1);
|
|
end;
|
|
|
|
function sumofsquares(const data : PDouble; Const N : Integer) : float;
|
|
var
|
|
i : longint;
|
|
begin
|
|
sumofsquares:=0.0;
|
|
for i:=0 to N-1 do
|
|
sumofsquares:=sumofsquares+sqr(data[i]);
|
|
end;
|
|
|
|
procedure sumsandsquares(const data : array of Double;
|
|
var sum,sumofsquares : float);
|
|
begin
|
|
sumsandsquares (PDouble(@Data[0]),High(Data)+1,Sum,sumofsquares);
|
|
end;
|
|
|
|
procedure sumsandsquares(const data : PDouble; Const N : Integer;
|
|
var sum,sumofsquares : float);
|
|
var
|
|
i : Integer;
|
|
temp : float;
|
|
begin
|
|
sumofsquares:=0.0;
|
|
sum:=0.0;
|
|
for i:=0 to N-1 do
|
|
begin
|
|
temp:=data[i];
|
|
sumofsquares:=sumofsquares+sqr(temp);
|
|
sum:=sum+temp;
|
|
end;
|
|
end;
|
|
{$endif FPC_HAS_TYPE_DOUBLE}
|
|
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
function sumofsquares(const data : array of Extended) : float; inline;
|
|
begin
|
|
Result:=sumofsquares(PExtended(@data[0]),High(Data)+1);
|
|
end;
|
|
|
|
function sumofsquares(const data : PExtended; Const N : Integer) : float;
|
|
var
|
|
i : longint;
|
|
begin
|
|
sumofsquares:=0.0;
|
|
for i:=0 to N-1 do
|
|
sumofsquares:=sumofsquares+sqr(data[i]);
|
|
end;
|
|
|
|
procedure sumsandsquares(const data : array of Extended;
|
|
var sum,sumofsquares : float); inline;
|
|
begin
|
|
sumsandsquares (PExtended(@Data[0]),High(Data)+1,Sum,sumofsquares);
|
|
end;
|
|
|
|
procedure sumsandsquares(const data : PExtended; Const N : Integer;
|
|
var sum,sumofsquares : float);
|
|
var
|
|
i : Integer;
|
|
temp : float;
|
|
begin
|
|
sumofsquares:=0.0;
|
|
sum:=0.0;
|
|
for i:=0 to N-1 do
|
|
begin
|
|
temp:=data[i];
|
|
sumofsquares:=sumofsquares+sqr(temp);
|
|
sum:=sum+temp;
|
|
end;
|
|
end;
|
|
{$endif FPC_HAS_TYPE_EXTENDED}
|
|
|
|
function randg(mean,stddev : float) : float;
|
|
Var U1,S2 : Float;
|
|
begin
|
|
repeat
|
|
u1:= 2*random-1;
|
|
S2:=Sqr(U1)+sqr(2*random-1);
|
|
until s2<1;
|
|
randg:=Sqrt(-2*ln(S2)/S2)*u1*stddev+Mean;
|
|
end;
|
|
|
|
|
|
function RandomRange(const aFrom, aTo: Integer): Integer;
|
|
begin
|
|
Result:=Random(Abs(aFrom-aTo))+Min(aTo,AFrom);
|
|
end;
|
|
|
|
|
|
function RandomRange(const aFrom, aTo: Int64): Int64;
|
|
begin
|
|
Result:=Random(Abs(aFrom-aTo))+Min(aTo,AFrom);
|
|
end;
|
|
|
|
|
|
{$ifdef FPC_HAS_TYPE_SINGLE}
|
|
procedure MeanAndTotalVariance
|
|
(const data: PSingle; N: LongInt; var mu, variance: float);
|
|
var i: LongInt;
|
|
begin
|
|
mu := Mean( data, N );
|
|
variance := 0;
|
|
for i := 0 to N - 1 do
|
|
variance := variance + Sqr( data[i] - mu );
|
|
end;
|
|
|
|
function stddev(const data : array of Single) : float; inline;
|
|
begin
|
|
Result:=Stddev(PSingle(@Data[0]),High(Data)+1);
|
|
end;
|
|
|
|
function stddev(const data : PSingle; Const N : Integer) : float;
|
|
begin
|
|
StdDev:=Sqrt(Variance(Data,N));
|
|
end;
|
|
|
|
procedure meanandstddev(const data : array of Single;
|
|
var mean,stddev : float); inline;
|
|
begin
|
|
Meanandstddev(PSingle(@Data[0]),High(Data)+1,Mean,stddev);
|
|
end;
|
|
|
|
procedure meanandstddev
|
|
( const data: PSingle;
|
|
const N: Longint;
|
|
var mean,
|
|
stdDev: Float
|
|
);
|
|
var totalVariance: float;
|
|
begin
|
|
MeanAndTotalVariance( data, N, mean, totalVariance );
|
|
if N < 2 then stdDev := 0
|
|
else stdDev := Sqrt( totalVariance / ( N - 1 ) );
|
|
end;
|
|
|
|
function variance(const data : array of Single) : float; inline;
|
|
begin
|
|
Variance:=Variance(PSingle(@Data[0]),High(Data)+1);
|
|
end;
|
|
|
|
function variance(const data : PSingle; Const N : Integer) : float;
|
|
begin
|
|
If N=1 then
|
|
Result:=0
|
|
else
|
|
Result:=TotalVariance(Data,N)/(N-1);
|
|
end;
|
|
|
|
function totalvariance(const data : array of Single) : float; inline;
|
|
begin
|
|
Result:=TotalVariance(PSingle(@Data[0]),High(Data)+1);
|
|
end;
|
|
|
|
function totalvariance(const data : PSingle; const N : Integer) : float;
|
|
var mu: float;
|
|
begin
|
|
MeanAndTotalVariance( data, N, mu, result );
|
|
end;
|
|
|
|
function popnstddev(const data : array of Single) : float;
|
|
begin
|
|
PopnStdDev:=Sqrt(PopnVariance(PSingle(@Data[0]),High(Data)+1));
|
|
end;
|
|
|
|
function popnstddev(const data : PSingle; Const N : Integer) : float;
|
|
begin
|
|
PopnStdDev:=Sqrt(PopnVariance(Data,N));
|
|
end;
|
|
|
|
function popnvariance(const data : array of Single) : float; inline;
|
|
|
|
begin
|
|
popnvariance:=popnvariance(PSingle(@data[0]),high(Data)+1);
|
|
end;
|
|
|
|
function popnvariance(const data : PSingle; Const N : Integer) : float;
|
|
|
|
begin
|
|
PopnVariance:=TotalVariance(Data,N)/N;
|
|
end;
|
|
|
|
procedure momentskewkurtosis(const data : array of single;
|
|
out m1,m2,m3,m4,skew,kurtosis : float); inline;
|
|
begin
|
|
momentskewkurtosis(PSingle(@Data[0]),High(Data)+1,m1,m2,m3,m4,skew,kurtosis);
|
|
end;
|
|
|
|
procedure momentskewkurtosis(
|
|
const data: pSingle;
|
|
Const N: integer;
|
|
out m1: float;
|
|
out m2: float;
|
|
out m3: float;
|
|
out m4: float;
|
|
out skew: float;
|
|
out kurtosis: float
|
|
);
|
|
var
|
|
i: integer;
|
|
value : psingle;
|
|
deviation, deviation2: single;
|
|
reciprocalN: float;
|
|
begin
|
|
m1 := 0;
|
|
reciprocalN := 1/N;
|
|
value := data;
|
|
for i := 0 to N-1 do
|
|
begin
|
|
m1 := m1 + value^;
|
|
inc(value);
|
|
end;
|
|
m1 := reciprocalN * m1;
|
|
|
|
m2 := 0;
|
|
m3 := 0;
|
|
m4 := 0;
|
|
value := data;
|
|
for i := 0 to N-1 do
|
|
begin
|
|
deviation := (value^-m1);
|
|
deviation2 := deviation * deviation;
|
|
m2 := m2 + deviation2;
|
|
m3 := m3 + deviation2 * deviation;
|
|
m4 := m4 + deviation2 * deviation2;
|
|
inc(value);
|
|
end;
|
|
m2 := reciprocalN * m2;
|
|
m3 := reciprocalN * m3;
|
|
m4 := reciprocalN * m4;
|
|
|
|
skew := m3 / (sqrt(m2)*m2);
|
|
kurtosis := m4 / (m2 * m2);
|
|
end;
|
|
|
|
function norm(const data : array of Single) : float; inline;
|
|
begin
|
|
norm:=Norm(PSingle(@data[0]),High(Data)+1);
|
|
end;
|
|
|
|
function norm(const data : PSingle; Const N : Integer) : float;
|
|
|
|
begin
|
|
norm:=sqrt(sumofsquares(data,N));
|
|
end;
|
|
{$endif FPC_HAS_TYPE_SINGLE}
|
|
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
procedure MeanAndTotalVariance
|
|
(const data: PDouble; N: LongInt; var mu, variance: float);
|
|
var i: LongInt;
|
|
begin
|
|
mu := Mean( data, N );
|
|
variance := 0;
|
|
for i := 0 to N - 1 do
|
|
variance := variance + Sqr( data[i] - mu );
|
|
end;
|
|
|
|
function stddev(const data : array of Double) : float; inline;
|
|
begin
|
|
Result:=Stddev(PDouble(@Data[0]),High(Data)+1)
|
|
end;
|
|
|
|
function stddev(const data : PDouble; Const N : Integer) : float;
|
|
begin
|
|
StdDev:=Sqrt(Variance(Data,N));
|
|
end;
|
|
|
|
procedure meanandstddev(const data : array of Double;
|
|
var mean,stddev : float);
|
|
|
|
begin
|
|
Meanandstddev(PDouble(@Data[0]),High(Data)+1,Mean,stddev);
|
|
end;
|
|
|
|
procedure meanandstddev
|
|
( const data: PDouble;
|
|
const N: Longint;
|
|
var mean,
|
|
stdDev: Float
|
|
);
|
|
var totalVariance: float;
|
|
begin
|
|
MeanAndTotalVariance( data, N, mean, totalVariance );
|
|
if N < 2 then stdDev := 0
|
|
else stdDev := Sqrt( totalVariance / ( N - 1 ) );
|
|
end;
|
|
|
|
function variance(const data : array of Double) : float; inline;
|
|
begin
|
|
Variance:=Variance(PDouble(@Data[0]),High(Data)+1);
|
|
end;
|
|
|
|
function variance(const data : PDouble; Const N : Integer) : float;
|
|
|
|
begin
|
|
If N=1 then
|
|
Result:=0
|
|
else
|
|
Result:=TotalVariance(Data,N)/(N-1);
|
|
end;
|
|
|
|
function totalvariance(const data : array of Double) : float; inline;
|
|
begin
|
|
Result:=TotalVariance(PDouble(@Data[0]),High(Data)+1);
|
|
end;
|
|
|
|
function totalvariance(const data : PDouble; const N : Integer) : float;
|
|
var mu: float;
|
|
begin
|
|
MeanAndTotalVariance( data, N, mu, result );
|
|
end;
|
|
|
|
function popnstddev(const data : array of Double) : float;
|
|
|
|
begin
|
|
PopnStdDev:=Sqrt(PopnVariance(PDouble(@Data[0]),High(Data)+1));
|
|
end;
|
|
|
|
function popnstddev(const data : PDouble; Const N : Integer) : float;
|
|
|
|
begin
|
|
PopnStdDev:=Sqrt(PopnVariance(Data,N));
|
|
end;
|
|
|
|
function popnvariance(const data : array of Double) : float; inline;
|
|
|
|
begin
|
|
popnvariance:=popnvariance(PDouble(@data[0]),high(Data)+1);
|
|
end;
|
|
|
|
function popnvariance(const data : PDouble; Const N : Integer) : float;
|
|
|
|
begin
|
|
PopnVariance:=TotalVariance(Data,N)/N;
|
|
end;
|
|
|
|
procedure momentskewkurtosis(const data : array of Double;
|
|
out m1,m2,m3,m4,skew,kurtosis : float);
|
|
begin
|
|
momentskewkurtosis(PDouble(@Data[0]),High(Data)+1,m1,m2,m3,m4,skew,kurtosis);
|
|
end;
|
|
|
|
procedure momentskewkurtosis(
|
|
const data: pdouble;
|
|
Const N: integer;
|
|
out m1: float;
|
|
out m2: float;
|
|
out m3: float;
|
|
out m4: float;
|
|
out skew: float;
|
|
out kurtosis: float
|
|
);
|
|
var
|
|
i: integer;
|
|
value : pdouble;
|
|
deviation, deviation2: double;
|
|
reciprocalN: float;
|
|
begin
|
|
m1 := 0;
|
|
reciprocalN := 1/N;
|
|
value := data;
|
|
for i := 0 to N-1 do
|
|
begin
|
|
m1 := m1 + value^;
|
|
inc(value);
|
|
end;
|
|
m1 := reciprocalN * m1;
|
|
|
|
m2 := 0;
|
|
m3 := 0;
|
|
m4 := 0;
|
|
value := data;
|
|
for i := 0 to N-1 do
|
|
begin
|
|
deviation := (value^-m1);
|
|
deviation2 := deviation * deviation;
|
|
m2 := m2 + deviation2;
|
|
m3 := m3 + deviation2 * deviation;
|
|
m4 := m4 + deviation2 * deviation2;
|
|
inc(value);
|
|
end;
|
|
m2 := reciprocalN * m2;
|
|
m3 := reciprocalN * m3;
|
|
m4 := reciprocalN * m4;
|
|
|
|
skew := m3 / (sqrt(m2)*m2);
|
|
kurtosis := m4 / (m2 * m2);
|
|
end;
|
|
|
|
|
|
function norm(const data : array of Double) : float; inline;
|
|
begin
|
|
norm:=Norm(PDouble(@data[0]),High(Data)+1);
|
|
end;
|
|
|
|
function norm(const data : PDouble; Const N : Integer) : float;
|
|
begin
|
|
norm:=sqrt(sumofsquares(data,N));
|
|
end;
|
|
{$endif FPC_HAS_TYPE_DOUBLE}
|
|
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
procedure MeanAndTotalVariance
|
|
(const data: PExtended; N: LongInt; var mu, variance: float);
|
|
var i: LongInt;
|
|
begin
|
|
mu := Mean( data, N );
|
|
variance := 0;
|
|
for i := 0 to N - 1 do
|
|
variance := variance + Sqr( data[i] - mu );
|
|
end;
|
|
|
|
function stddev(const data : array of Extended) : float; inline;
|
|
begin
|
|
Result:=Stddev(PExtended(@Data[0]),High(Data)+1)
|
|
end;
|
|
|
|
function stddev(const data : PExtended; Const N : Integer) : float;
|
|
begin
|
|
StdDev:=Sqrt(Variance(Data,N));
|
|
end;
|
|
|
|
procedure meanandstddev(const data : array of Extended;
|
|
var mean,stddev : float); inline;
|
|
begin
|
|
Meanandstddev(PExtended(@Data[0]),High(Data)+1,Mean,stddev);
|
|
end;
|
|
|
|
procedure meanandstddev
|
|
( const data: PExtended;
|
|
const N: Longint;
|
|
var mean,
|
|
stdDev: Float
|
|
);
|
|
var totalVariance: float;
|
|
begin
|
|
MeanAndTotalVariance( data, N, mean, totalVariance );
|
|
if N < 2 then stdDev := 0
|
|
else stdDev := Sqrt( totalVariance / ( N - 1 ) );
|
|
end;
|
|
|
|
function variance(const data : array of Extended) : float; inline;
|
|
begin
|
|
Variance:=Variance(PExtended(@Data[0]),High(Data)+1);
|
|
end;
|
|
|
|
function variance(const data : PExtended; Const N : Integer) : float;
|
|
|
|
begin
|
|
If N=1 then
|
|
Result:=0
|
|
else
|
|
Result:=TotalVariance(Data,N)/(N-1);
|
|
end;
|
|
|
|
function totalvariance(const data : array of Extended) : float; inline;
|
|
begin
|
|
Result:=TotalVariance(PExtended(@Data[0]),High(Data)+1);
|
|
end;
|
|
|
|
function totalvariance(const data : PExtended;Const N : Integer) : float;
|
|
var mu: float;
|
|
begin
|
|
MeanAndTotalVariance( data, N, mu, result );
|
|
end;
|
|
|
|
function popnstddev(const data : array of Extended) : float;
|
|
|
|
begin
|
|
PopnStdDev:=Sqrt(PopnVariance(PExtended(@Data[0]),High(Data)+1));
|
|
end;
|
|
|
|
function popnstddev(const data : PExtended; Const N : Integer) : float;
|
|
|
|
begin
|
|
PopnStdDev:=Sqrt(PopnVariance(Data,N));
|
|
end;
|
|
|
|
function popnvariance(const data : array of Extended) : float; inline;
|
|
begin
|
|
popnvariance:=popnvariance(PExtended(@data[0]),high(Data)+1);
|
|
end;
|
|
|
|
function popnvariance(const data : PExtended; Const N : Integer) : float;
|
|
|
|
begin
|
|
PopnVariance:=TotalVariance(Data,N)/N;
|
|
end;
|
|
|
|
procedure momentskewkurtosis(const data : array of Extended;
|
|
out m1,m2,m3,m4,skew,kurtosis : float); inline;
|
|
begin
|
|
momentskewkurtosis(PExtended(@Data[0]),High(Data)+1,m1,m2,m3,m4,skew,kurtosis);
|
|
end;
|
|
|
|
procedure momentskewkurtosis(
|
|
const data: pExtended;
|
|
Const N: integer;
|
|
out m1: float;
|
|
out m2: float;
|
|
out m3: float;
|
|
out m4: float;
|
|
out skew: float;
|
|
out kurtosis: float
|
|
);
|
|
var
|
|
i: integer;
|
|
value : pextended;
|
|
deviation, deviation2: extended;
|
|
reciprocalN: float;
|
|
begin
|
|
m1 := 0;
|
|
reciprocalN := 1/N;
|
|
value := data;
|
|
for i := 0 to N-1 do
|
|
begin
|
|
m1 := m1 + value^;
|
|
inc(value);
|
|
end;
|
|
m1 := reciprocalN * m1;
|
|
|
|
m2 := 0;
|
|
m3 := 0;
|
|
m4 := 0;
|
|
value := data;
|
|
for i := 0 to N-1 do
|
|
begin
|
|
deviation := (value^-m1);
|
|
deviation2 := deviation * deviation;
|
|
m2 := m2 + deviation2;
|
|
m3 := m3 + deviation2 * deviation;
|
|
m4 := m4 + deviation2 * deviation2;
|
|
inc(value);
|
|
end;
|
|
m2 := reciprocalN * m2;
|
|
m3 := reciprocalN * m3;
|
|
m4 := reciprocalN * m4;
|
|
|
|
skew := m3 / (sqrt(m2)*m2);
|
|
kurtosis := m4 / (m2 * m2);
|
|
end;
|
|
|
|
function norm(const data : array of Extended) : float; inline;
|
|
begin
|
|
norm:=Norm(PExtended(@data[0]),High(Data)+1);
|
|
end;
|
|
|
|
function norm(const data : PExtended; Const N : Integer) : float;
|
|
|
|
begin
|
|
norm:=sqrt(sumofsquares(data,N));
|
|
end;
|
|
{$endif FPC_HAS_TYPE_EXTENDED}
|
|
|
|
|
|
function MinIntValue(const Data: array of Integer): Integer;
|
|
var
|
|
I: Integer;
|
|
begin
|
|
Result := Data[Low(Data)];
|
|
For I := Succ(Low(Data)) To High(Data) Do
|
|
If Data[I] < Result Then Result := Data[I];
|
|
end;
|
|
|
|
function MaxIntValue(const Data: array of Integer): Integer;
|
|
var
|
|
I: Integer;
|
|
begin
|
|
Result := Data[Low(Data)];
|
|
For I := Succ(Low(Data)) To High(Data) Do
|
|
If Data[I] > Result Then Result := Data[I];
|
|
end;
|
|
|
|
function MinValue(const Data: array of Integer): Integer; inline;
|
|
begin
|
|
Result:=MinValue(Pinteger(@Data[0]),High(Data)+1)
|
|
end;
|
|
|
|
function MinValue(const Data: PInteger; Const N : Integer): Integer;
|
|
var
|
|
I: Integer;
|
|
begin
|
|
Result := Data[0];
|
|
For I := 1 To N-1 do
|
|
If Data[I] < Result Then Result := Data[I];
|
|
end;
|
|
|
|
function MaxValue(const Data: array of Integer): Integer; inline;
|
|
begin
|
|
Result:=MaxValue(PInteger(@Data[0]),High(Data)+1)
|
|
end;
|
|
|
|
function maxvalue(const data : PInteger; Const N : Integer) : Integer;
|
|
var
|
|
i : longint;
|
|
begin
|
|
{ get an initial value }
|
|
maxvalue:=data[0];
|
|
for i:=1 to N-1 do
|
|
if data[i]>maxvalue then
|
|
maxvalue:=data[i];
|
|
end;
|
|
|
|
{$ifdef FPC_HAS_TYPE_SINGLE}
|
|
function minvalue(const data : array of Single) : Single; inline;
|
|
begin
|
|
Result:=minvalue(PSingle(@data[0]),High(Data)+1);
|
|
end;
|
|
|
|
function minvalue(const data : PSingle; Const N : Integer) : Single;
|
|
var
|
|
i : longint;
|
|
begin
|
|
{ get an initial value }
|
|
minvalue:=data[0];
|
|
for i:=1 to N-1 do
|
|
if data[i]<minvalue then
|
|
minvalue:=data[i];
|
|
end;
|
|
|
|
|
|
function maxvalue(const data : array of Single) : Single; inline;
|
|
begin
|
|
Result:=maxvalue(PSingle(@data[0]),High(Data)+1);
|
|
end;
|
|
|
|
function maxvalue(const data : PSingle; Const N : Integer) : Single;
|
|
var
|
|
i : longint;
|
|
begin
|
|
{ get an initial value }
|
|
maxvalue:=data[0];
|
|
for i:=1 to N-1 do
|
|
if data[i]>maxvalue then
|
|
maxvalue:=data[i];
|
|
end;
|
|
{$endif FPC_HAS_TYPE_SINGLE}
|
|
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
function minvalue(const data : array of Double) : Double; inline;
|
|
begin
|
|
Result:=minvalue(PDouble(@data[0]),High(Data)+1);
|
|
end;
|
|
|
|
function minvalue(const data : PDouble; Const N : Integer) : Double;
|
|
var
|
|
i : longint;
|
|
begin
|
|
{ get an initial value }
|
|
minvalue:=data[0];
|
|
for i:=1 to N-1 do
|
|
if data[i]<minvalue then
|
|
minvalue:=data[i];
|
|
end;
|
|
|
|
|
|
function maxvalue(const data : array of Double) : Double; inline;
|
|
begin
|
|
Result:=maxvalue(PDouble(@data[0]),High(Data)+1);
|
|
end;
|
|
|
|
function maxvalue(const data : PDouble; Const N : Integer) : Double;
|
|
var
|
|
i : longint;
|
|
begin
|
|
{ get an initial value }
|
|
maxvalue:=data[0];
|
|
for i:=1 to N-1 do
|
|
if data[i]>maxvalue then
|
|
maxvalue:=data[i];
|
|
end;
|
|
{$endif FPC_HAS_TYPE_DOUBLE}
|
|
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
function minvalue(const data : array of Extended) : Extended; inline;
|
|
begin
|
|
Result:=minvalue(PExtended(@data[0]),High(Data)+1);
|
|
end;
|
|
|
|
function minvalue(const data : PExtended; Const N : Integer) : Extended;
|
|
var
|
|
i : longint;
|
|
begin
|
|
{ get an initial value }
|
|
minvalue:=data[0];
|
|
for i:=1 to N-1 do
|
|
if data[i]<minvalue then
|
|
minvalue:=data[i];
|
|
end;
|
|
|
|
|
|
function maxvalue(const data : array of Extended) : Extended; inline;
|
|
begin
|
|
Result:=maxvalue(PExtended(@data[0]),High(Data)+1);
|
|
end;
|
|
|
|
function maxvalue(const data : PExtended; Const N : Integer) : Extended;
|
|
var
|
|
i : longint;
|
|
begin
|
|
{ get an initial value }
|
|
maxvalue:=data[0];
|
|
for i:=1 to N-1 do
|
|
if data[i]>maxvalue then
|
|
maxvalue:=data[i];
|
|
end;
|
|
{$endif FPC_HAS_TYPE_EXTENDED}
|
|
|
|
|
|
function Min(a, b: Integer): Integer;inline;
|
|
begin
|
|
if a < b then
|
|
Result := a
|
|
else
|
|
Result := b;
|
|
end;
|
|
|
|
function Max(a, b: Integer): Integer;inline;
|
|
begin
|
|
if a > b then
|
|
Result := a
|
|
else
|
|
Result := b;
|
|
end;
|
|
|
|
{
|
|
function Min(a, b: Cardinal): Cardinal;inline;
|
|
begin
|
|
if a < b then
|
|
Result := a
|
|
else
|
|
Result := b;
|
|
end;
|
|
|
|
function Max(a, b: Cardinal): Cardinal;inline;
|
|
begin
|
|
if a > b then
|
|
Result := a
|
|
else
|
|
Result := b;
|
|
end;
|
|
}
|
|
|
|
function Min(a, b: Int64): Int64;inline;
|
|
begin
|
|
if a < b then
|
|
Result := a
|
|
else
|
|
Result := b;
|
|
end;
|
|
|
|
function Max(a, b: Int64): Int64;inline;
|
|
begin
|
|
if a > b then
|
|
Result := a
|
|
else
|
|
Result := b;
|
|
end;
|
|
|
|
function Min(a, b: QWord): QWord; inline;
|
|
begin
|
|
if a < b then
|
|
Result := a
|
|
else
|
|
Result := b;
|
|
end;
|
|
|
|
function Max(a, b: QWord): Qword;inline;
|
|
begin
|
|
if a > b then
|
|
Result := a
|
|
else
|
|
Result := b;
|
|
end;
|
|
|
|
{$ifdef FPC_HAS_TYPE_SINGLE}
|
|
function Min(a, b: Single): Single;inline;
|
|
begin
|
|
if a < b then
|
|
Result := a
|
|
else
|
|
Result := b;
|
|
end;
|
|
|
|
function Max(a, b: Single): Single;inline;
|
|
begin
|
|
if a > b then
|
|
Result := a
|
|
else
|
|
Result := b;
|
|
end;
|
|
{$endif FPC_HAS_TYPE_SINGLE}
|
|
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
function Min(a, b: Double): Double;inline;
|
|
begin
|
|
if a < b then
|
|
Result := a
|
|
else
|
|
Result := b;
|
|
end;
|
|
|
|
function Max(a, b: Double): Double;inline;
|
|
begin
|
|
if a > b then
|
|
Result := a
|
|
else
|
|
Result := b;
|
|
end;
|
|
{$endif FPC_HAS_TYPE_DOUBLE}
|
|
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
function Min(a, b: Extended): Extended;inline;
|
|
begin
|
|
if a < b then
|
|
Result := a
|
|
else
|
|
Result := b;
|
|
end;
|
|
|
|
function Max(a, b: Extended): Extended;inline;
|
|
begin
|
|
if a > b then
|
|
Result := a
|
|
else
|
|
Result := b;
|
|
end;
|
|
{$endif FPC_HAS_TYPE_EXTENDED}
|
|
|
|
function InRange(const AValue, AMin, AMax: Integer): Boolean;inline;
|
|
|
|
begin
|
|
Result:=(AValue>=AMin) and (AValue<=AMax);
|
|
end;
|
|
|
|
function InRange(const AValue, AMin, AMax: Int64): Boolean;inline;
|
|
begin
|
|
Result:=(AValue>=AMin) and (AValue<=AMax);
|
|
end;
|
|
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
function InRange(const AValue, AMin, AMax: Double): Boolean;inline;
|
|
|
|
begin
|
|
Result:=(AValue>=AMin) and (AValue<=AMax);
|
|
end;
|
|
{$endif FPC_HAS_TYPE_DOUBLE}
|
|
|
|
function EnsureRange(const AValue, AMin, AMax: Integer): Integer;inline;
|
|
|
|
begin
|
|
Result:=AValue;
|
|
If Result<AMin then
|
|
Result:=AMin;
|
|
if Result>AMax then
|
|
Result:=AMax;
|
|
end;
|
|
|
|
function EnsureRange(const AValue, AMin, AMax: Int64): Int64;inline;
|
|
|
|
begin
|
|
Result:=AValue;
|
|
If Result<AMin then
|
|
Result:=AMin;
|
|
if Result>AMax then
|
|
Result:=AMax;
|
|
end;
|
|
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
function EnsureRange(const AValue, AMin, AMax: Double): Double;inline;
|
|
|
|
begin
|
|
Result:=AValue;
|
|
If Result<AMin then
|
|
Result:=AMin;
|
|
if Result>AMax then
|
|
Result:=AMax;
|
|
end;
|
|
{$endif FPC_HAS_TYPE_DOUBLE}
|
|
|
|
Const
|
|
EZeroResolution = 1E-16;
|
|
DZeroResolution = 1E-12;
|
|
SZeroResolution = 1E-4;
|
|
|
|
|
|
function IsZero(const A: Single; Epsilon: Single): Boolean;
|
|
|
|
begin
|
|
if (Epsilon=0) then
|
|
Epsilon:=SZeroResolution;
|
|
Result:=Abs(A)<=Epsilon;
|
|
end;
|
|
|
|
function IsZero(const A: Single): Boolean;inline;
|
|
|
|
begin
|
|
Result:=IsZero(A,single(SZeroResolution));
|
|
end;
|
|
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
function IsZero(const A: Double; Epsilon: Double): Boolean;
|
|
|
|
begin
|
|
if (Epsilon=0) then
|
|
Epsilon:=DZeroResolution;
|
|
Result:=Abs(A)<=Epsilon;
|
|
end;
|
|
|
|
function IsZero(const A: Double): Boolean;inline;
|
|
|
|
begin
|
|
Result:=IsZero(A,DZeroResolution);
|
|
end;
|
|
{$endif FPC_HAS_TYPE_DOUBLE}
|
|
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
function IsZero(const A: Extended; Epsilon: Extended): Boolean;
|
|
|
|
begin
|
|
if (Epsilon=0) then
|
|
Epsilon:=EZeroResolution;
|
|
Result:=Abs(A)<=Epsilon;
|
|
end;
|
|
|
|
function IsZero(const A: Extended): Boolean;inline;
|
|
|
|
begin
|
|
Result:=IsZero(A,EZeroResolution);
|
|
end;
|
|
{$endif FPC_HAS_TYPE_EXTENDED}
|
|
|
|
|
|
type
|
|
TSplitDouble = packed record
|
|
cards: Array[0..1] of cardinal;
|
|
end;
|
|
|
|
TSplitExtended = packed record
|
|
cards: Array[0..1] of cardinal;
|
|
w: word;
|
|
end;
|
|
|
|
function IsNan(const d : Single): Boolean; overload;
|
|
begin
|
|
result:=(longword(d) and $7fffffff)>$7f800000;
|
|
end;
|
|
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
function IsNan(const d : Double): Boolean;
|
|
var
|
|
fraczero, expMaximal: boolean;
|
|
begin
|
|
{$if defined(FPC_BIG_ENDIAN) or defined(FPC_DOUBLE_HILO_SWAPPED)}
|
|
expMaximal := ((TSplitDouble(d).cards[0] shr 20) and $7ff) = 2047;
|
|
fraczero:= (TSplitDouble(d).cards[0] and $fffff = 0) and
|
|
(TSplitDouble(d).cards[1] = 0);
|
|
{$else FPC_BIG_ENDIAN}
|
|
expMaximal := ((TSplitDouble(d).cards[1] shr 20) and $7ff) = 2047;
|
|
fraczero := (TSplitDouble(d).cards[1] and $fffff = 0) and
|
|
(TSplitDouble(d).cards[0] = 0);
|
|
{$endif FPC_BIG_ENDIAN}
|
|
Result:=expMaximal and not(fraczero);
|
|
end;
|
|
{$endif FPC_HAS_TYPE_DOUBLE}
|
|
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
function IsNan(const d : Extended): Boolean; overload;
|
|
var
|
|
fraczero, expMaximal: boolean;
|
|
begin
|
|
{$ifdef FPC_BIG_ENDIAN}
|
|
{$error no support for big endian extended type yet}
|
|
{$else FPC_BIG_ENDIAN}
|
|
expMaximal := (TSplitExtended(d).w and $7fff) = 32767;
|
|
fraczero := (TSplitExtended(d).cards[0] = 0) and
|
|
((TSplitExtended(d).cards[1] and $7fffffff) = 0);
|
|
{$endif FPC_BIG_ENDIAN}
|
|
Result:=expMaximal and not(fraczero);
|
|
end;
|
|
{$endif FPC_HAS_TYPE_EXTENDED}
|
|
|
|
function IsInfinite(const d : Single): Boolean; overload;
|
|
begin
|
|
result:=(longword(d) and $7fffffff)=$7f800000;
|
|
end;
|
|
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
function IsInfinite(const d : Double): Boolean; overload;
|
|
var
|
|
fraczero, expMaximal: boolean;
|
|
begin
|
|
{$if defined(FPC_BIG_ENDIAN) or defined(FPC_DOUBLE_HILO_SWAPPED)}
|
|
expMaximal := ((TSplitDouble(d).cards[0] shr 20) and $7ff) = 2047;
|
|
fraczero:= (TSplitDouble(d).cards[0] and $fffff = 0) and
|
|
(TSplitDouble(d).cards[1] = 0);
|
|
{$else FPC_BIG_ENDIAN}
|
|
expMaximal := ((TSplitDouble(d).cards[1] shr 20) and $7ff) = 2047;
|
|
fraczero := (TSplitDouble(d).cards[1] and $fffff = 0) and
|
|
(TSplitDouble(d).cards[0] = 0);
|
|
{$endif FPC_BIG_ENDIAN}
|
|
Result:=expMaximal and fraczero;
|
|
end;
|
|
{$endif FPC_HAS_TYPE_DOUBLE}
|
|
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
function IsInfinite(const d : Extended): Boolean; overload;
|
|
var
|
|
fraczero, expMaximal: boolean;
|
|
begin
|
|
{$ifdef FPC_BIG_ENDIAN}
|
|
{$error no support for big endian extended type yet}
|
|
{$else FPC_BIG_ENDIAN}
|
|
expMaximal := (TSplitExtended(d).w and $7fff) = 32767;
|
|
fraczero := (TSplitExtended(d).cards[0] = 0) and
|
|
((TSplitExtended(d).cards[1] and $7fffffff) = 0);
|
|
{$endif FPC_BIG_ENDIAN}
|
|
Result:=expMaximal and fraczero;
|
|
end;
|
|
{$endif FPC_HAS_TYPE_EXTENDED}
|
|
|
|
function copysign(x,y: float): float;
|
|
begin
|
|
{$if defined(FPC_HAS_TYPE_FLOAT128)}
|
|
{$error copysign not yet implemented for float128}
|
|
{$elseif defined(FPC_HAS_TYPE_EXTENDED)}
|
|
TSplitExtended(x).w:=(TSplitExtended(x).w and $7fff) or (TSplitExtended(y).w and $8000);
|
|
{$elseif defined(FPC_HAS_TYPE_DOUBLE)}
|
|
{$if defined(FPC_BIG_ENDIAN) or defined(FPC_DOUBLE_HILO_SWAPPED)}
|
|
TSplitDouble(x).cards[0]:=(TSplitDouble(x).cards[0] and $7fffffff) or (TSplitDouble(y).cards[0] and longword($80000000));
|
|
{$else}
|
|
TSplitDouble(x).cards[1]:=(TSplitDouble(x).cards[1] and $7fffffff) or (TSplitDouble(y).cards[1] and longword($80000000));
|
|
{$endif}
|
|
{$else}
|
|
longword(x):=longword(x and $7fffffff) or (longword(y) and longword($80000000));
|
|
{$endif}
|
|
result:=x;
|
|
end;
|
|
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
function SameValue(const A, B: Extended; Epsilon: Extended): Boolean;
|
|
|
|
begin
|
|
if (Epsilon=0) then
|
|
Epsilon:=Max(Min(Abs(A),Abs(B))*EZeroResolution,EZeroResolution);
|
|
if (A>B) then
|
|
Result:=((A-B)<=Epsilon)
|
|
else
|
|
Result:=((B-A)<=Epsilon);
|
|
end;
|
|
|
|
function SameValue(const A, B: Extended): Boolean;inline;
|
|
|
|
begin
|
|
Result:=SameValue(A,B,0.0);
|
|
end;
|
|
{$endif FPC_HAS_TYPE_EXTENDED}
|
|
|
|
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
function SameValue(const A, B: Double): Boolean;inline;
|
|
|
|
begin
|
|
Result:=SameValue(A,B,0.0);
|
|
end;
|
|
|
|
function SameValue(const A, B: Double; Epsilon: Double): Boolean;
|
|
|
|
begin
|
|
if (Epsilon=0) then
|
|
Epsilon:=Max(Min(Abs(A),Abs(B))*DZeroResolution,DZeroResolution);
|
|
if (A>B) then
|
|
Result:=((A-B)<=Epsilon)
|
|
else
|
|
Result:=((B-A)<=Epsilon);
|
|
end;
|
|
{$endif FPC_HAS_TYPE_DOUBLE}
|
|
|
|
function SameValue(const A, B: Single): Boolean;inline;
|
|
|
|
begin
|
|
Result:=SameValue(A,B,0);
|
|
end;
|
|
|
|
function SameValue(const A, B: Single; Epsilon: Single): Boolean;
|
|
|
|
begin
|
|
if (Epsilon=0) then
|
|
Epsilon:=Max(Min(Abs(A),Abs(B))*SZeroResolution,SZeroResolution);
|
|
if (A>B) then
|
|
Result:=((A-B)<=Epsilon)
|
|
else
|
|
Result:=((B-A)<=Epsilon);
|
|
end;
|
|
|
|
// Some CPUs probably allow a faster way of doing this in a single operation...
|
|
// There weshould define FPC_MATH_HAS_CPUDIVMOD in the header mathuh.inc and implement it using asm.
|
|
{$ifndef FPC_MATH_HAS_DIVMOD}
|
|
procedure DivMod(Dividend: LongInt; Divisor: Word; var Result, Remainder: Word);
|
|
begin
|
|
if Dividend < 0 then
|
|
begin
|
|
{ Use DivMod with >=0 dividend }
|
|
Dividend:=-Dividend;
|
|
{ The documented behavior of Pascal's div/mod operators and DivMod
|
|
on negative dividends is to return Result closer to zero and
|
|
a negative Remainder. Which means that we can just negate both
|
|
Result and Remainder, and all it's Ok. }
|
|
Result:=-(Dividend Div Divisor);
|
|
Remainder:=-(Dividend+(Result*Divisor));
|
|
end
|
|
else
|
|
begin
|
|
Result:=Dividend Div Divisor;
|
|
Remainder:=Dividend-(Result*Divisor);
|
|
end;
|
|
end;
|
|
|
|
|
|
procedure DivMod(Dividend: LongInt; Divisor: Word; var Result, Remainder: SmallInt);
|
|
begin
|
|
if Dividend < 0 then
|
|
begin
|
|
{ Use DivMod with >=0 dividend }
|
|
Dividend:=-Dividend;
|
|
{ The documented behavior of Pascal's div/mod operators and DivMod
|
|
on negative dividends is to return Result closer to zero and
|
|
a negative Remainder. Which means that we can just negate both
|
|
Result and Remainder, and all it's Ok. }
|
|
Result:=-(Dividend Div Divisor);
|
|
Remainder:=-(Dividend+(Result*Divisor));
|
|
end
|
|
else
|
|
begin
|
|
Result:=Dividend Div Divisor;
|
|
Remainder:=Dividend-(Result*Divisor);
|
|
end;
|
|
end;
|
|
|
|
|
|
procedure DivMod(Dividend: DWord; Divisor: DWord; var Result, Remainder: DWord);
|
|
begin
|
|
Result:=Dividend Div Divisor;
|
|
Remainder:=Dividend-(Result*Divisor);
|
|
end;
|
|
|
|
|
|
procedure DivMod(Dividend: LongInt; Divisor: LongInt; var Result, Remainder: LongInt);
|
|
begin
|
|
if Dividend < 0 then
|
|
begin
|
|
{ Use DivMod with >=0 dividend }
|
|
Dividend:=-Dividend;
|
|
{ The documented behavior of Pascal's div/mod operators and DivMod
|
|
on negative dividends is to return Result closer to zero and
|
|
a negative Remainder. Which means that we can just negate both
|
|
Result and Remainder, and all it's Ok. }
|
|
Result:=-(Dividend Div Divisor);
|
|
Remainder:=-(Dividend+(Result*Divisor));
|
|
end
|
|
else
|
|
begin
|
|
Result:=Dividend Div Divisor;
|
|
Remainder:=Dividend-(Result*Divisor);
|
|
end;
|
|
end;
|
|
{$endif FPC_MATH_HAS_DIVMOD}
|
|
|
|
{ Floating point modulo}
|
|
{$ifdef FPC_HAS_TYPE_SINGLE}
|
|
function FMod(const a, b: Single): Single;inline;overload;
|
|
begin
|
|
result:= a-b * Int(a/b);
|
|
end;
|
|
{$endif FPC_HAS_TYPE_SINGLE}
|
|
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
function FMod(const a, b: Double): Double;inline;overload;
|
|
begin
|
|
result:= a-b * Int(a/b);
|
|
end;
|
|
{$endif FPC_HAS_TYPE_DOUBLE}
|
|
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
function FMod(const a, b: Extended): Extended;inline;overload;
|
|
begin
|
|
result:= a-b * Int(a/b);
|
|
end;
|
|
{$endif FPC_HAS_TYPE_EXTENDED}
|
|
|
|
operator mod(const a,b:float) c:float;inline;
|
|
begin
|
|
c:= a-b * Int(a/b);
|
|
if SameValue(abs(c),abs(b)) then
|
|
c:=0.0;
|
|
end;
|
|
|
|
function ifthen(val:boolean;const iftrue:integer; const iffalse:integer= 0) :integer;
|
|
begin
|
|
if val then result:=iftrue else result:=iffalse;
|
|
end;
|
|
|
|
function ifthen(val:boolean;const iftrue:int64 ; const iffalse:int64 = 0) :int64;
|
|
begin
|
|
if val then result:=iftrue else result:=iffalse;
|
|
end;
|
|
|
|
function ifthen(val:boolean;const iftrue:double ; const iffalse:double =0.0):double;
|
|
begin
|
|
if val then result:=iftrue else result:=iffalse;
|
|
end;
|
|
|
|
// dilemma here. asm can do the two comparisons in one go?
|
|
// but pascal is portable and can be inlined. Ah well, we need purepascal's anyway:
|
|
function CompareValue(const A, B : Integer): TValueRelationship;
|
|
|
|
begin
|
|
result:=GreaterThanValue;
|
|
if a=b then
|
|
result:=EqualsValue
|
|
else
|
|
if a<b then
|
|
result:=LessThanValue;
|
|
end;
|
|
|
|
function CompareValue(const A, B: Int64): TValueRelationship;
|
|
|
|
begin
|
|
result:=GreaterThanValue;
|
|
if a=b then
|
|
result:=EqualsValue
|
|
else
|
|
if a<b then
|
|
result:=LessThanValue;
|
|
end;
|
|
|
|
function CompareValue(const A, B: QWord): TValueRelationship;
|
|
|
|
begin
|
|
result:=GreaterThanValue;
|
|
if a=b then
|
|
result:=EqualsValue
|
|
else
|
|
if a<b then
|
|
result:=LessThanValue;
|
|
end;
|
|
|
|
{$ifdef FPC_HAS_TYPE_SINGLE}
|
|
function CompareValue(const A, B: Single; delta: Single = 0.0): TValueRelationship;
|
|
begin
|
|
result:=GreaterThanValue;
|
|
if abs(a-b)<=delta then
|
|
result:=EqualsValue
|
|
else
|
|
if a<b then
|
|
result:=LessThanValue;
|
|
end;
|
|
{$endif}
|
|
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
function CompareValue(const A, B: Double; delta: Double = 0.0): TValueRelationship;
|
|
begin
|
|
result:=GreaterThanValue;
|
|
if abs(a-b)<=delta then
|
|
result:=EqualsValue
|
|
else
|
|
if a<b then
|
|
result:=LessThanValue;
|
|
end;
|
|
{$endif}
|
|
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
function CompareValue (const A, B: Extended; delta: Extended = 0.0): TValueRelationship;
|
|
begin
|
|
result:=GreaterThanValue;
|
|
if abs(a-b)<=delta then
|
|
result:=EqualsValue
|
|
else
|
|
if a<b then
|
|
result:=LessThanValue;
|
|
end;
|
|
{$endif}
|
|
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
function RoundTo(const AValue: Double; const Digits: TRoundToRange): Double;
|
|
|
|
var
|
|
RV : Double;
|
|
|
|
begin
|
|
RV:=IntPower(10,Digits);
|
|
Result:=Round(AValue/RV)*RV;
|
|
end;
|
|
{$endif}
|
|
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
function RoundTo(const AVAlue: Extended; const Digits: TRoundToRange): Extended;
|
|
|
|
var
|
|
RV : Extended;
|
|
|
|
begin
|
|
RV:=IntPower(10,Digits);
|
|
Result:=Round(AValue/RV)*RV;
|
|
end;
|
|
{$endif}
|
|
|
|
{$ifdef FPC_HAS_TYPE_SINGLE}
|
|
function RoundTo(const AValue: Single; const Digits: TRoundToRange): Single;
|
|
|
|
var
|
|
RV : Single;
|
|
|
|
begin
|
|
RV:=IntPower(10,Digits);
|
|
Result:=Round(AValue/RV)*RV;
|
|
end;
|
|
{$endif}
|
|
|
|
{$ifdef FPC_HAS_TYPE_SINGLE}
|
|
function SimpleRoundTo(const AValue: Single; const Digits: TRoundToRange = -2): Single;
|
|
|
|
var
|
|
RV : Single;
|
|
|
|
begin
|
|
RV := IntPower(10, -Digits);
|
|
if AValue < 0 then
|
|
Result := Int((AValue*RV) - 0.5)/RV
|
|
else
|
|
Result := Int((AValue*RV) + 0.5)/RV;
|
|
end;
|
|
{$endif}
|
|
|
|
{$ifdef FPC_HAS_TYPE_DOUBLE}
|
|
function SimpleRoundTo(const AValue: Double; const Digits: TRoundToRange = -2): Double;
|
|
|
|
var
|
|
RV : Double;
|
|
|
|
begin
|
|
RV := IntPower(10, -Digits);
|
|
if AValue < 0 then
|
|
Result := Int((AValue*RV) - 0.5)/RV
|
|
else
|
|
Result := Int((AValue*RV) + 0.5)/RV;
|
|
end;
|
|
{$endif}
|
|
|
|
{$ifdef FPC_HAS_TYPE_EXTENDED}
|
|
function SimpleRoundTo(const AValue: Extended; const Digits: TRoundToRange = -2): Extended;
|
|
|
|
var
|
|
RV : Extended;
|
|
|
|
begin
|
|
RV := IntPower(10, -Digits);
|
|
if AValue < 0 then
|
|
Result := Int((AValue*RV) - 0.5)/RV
|
|
else
|
|
Result := Int((AValue*RV) + 0.5)/RV;
|
|
end;
|
|
{$endif}
|
|
|
|
function RandomFrom(const AValues: array of Double): Double; overload;
|
|
begin
|
|
result:=AValues[random(High(AValues)+1)];
|
|
end;
|
|
|
|
function RandomFrom(const AValues: array of Integer): Integer; overload;
|
|
begin
|
|
result:=AValues[random(High(AValues)+1)];
|
|
end;
|
|
|
|
function RandomFrom(const AValues: array of Int64): Int64; overload;
|
|
begin
|
|
result:=AValues[random(High(AValues)+1)];
|
|
end;
|
|
|
|
{$if FPC_FULLVERSION >=30101}
|
|
generic function RandomFrom<T>(const AValues:array of T):T;
|
|
begin
|
|
result:=AValues[random(High(AValues)+1)];
|
|
end;
|
|
{$endif}
|
|
|
|
function FutureValue(ARate: Float; NPeriods: Integer;
|
|
APayment, APresentValue: Float; APaymentTime: TPaymentTime): Float;
|
|
var
|
|
q, qn, factor: Float;
|
|
begin
|
|
if ARate = 0 then
|
|
Result := -APresentValue - APayment * NPeriods
|
|
else begin
|
|
q := 1.0 + ARate;
|
|
qn := power(q, NPeriods);
|
|
factor := (qn - 1) / (q - 1);
|
|
if APaymentTime = ptStartOfPeriod then
|
|
factor := factor * q;
|
|
Result := -(APresentValue * qn + APayment*factor);
|
|
end;
|
|
end;
|
|
|
|
function InterestRate(NPeriods: Integer; APayment, APresentValue, AFutureValue: Float;
|
|
APaymentTime: TPaymentTime): Float;
|
|
{ The interest rate cannot be calculated analytically. We solve the equation
|
|
numerically by means of the Newton method:
|
|
- guess value for the interest reate
|
|
- calculate at which interest rate the tangent of the curve fv(rate)
|
|
(straight line!) has the requested future vale.
|
|
- use this rate for the next iteration. }
|
|
const
|
|
DELTA = 0.001;
|
|
EPS = 1E-9; // required precision of interest rate (after typ. 6 iterations)
|
|
MAXIT = 20; // max iteration count to protect agains non-convergence
|
|
var
|
|
r1, r2, dr: Float;
|
|
fv1, fv2: Float;
|
|
iteration: Integer;
|
|
begin
|
|
iteration := 0;
|
|
r1 := 0.05; // inital guess
|
|
repeat
|
|
r2 := r1 + DELTA;
|
|
fv1 := FutureValue(r1, NPeriods, APayment, APresentValue, APaymentTime);
|
|
fv2 := FutureValue(r2, NPeriods, APayment, APresentValue, APaymentTime);
|
|
dr := (AFutureValue - fv1) / (fv2 - fv1) * delta; // tangent at fv(r)
|
|
r1 := r1 + dr; // next guess
|
|
inc(iteration);
|
|
until (abs(dr) < EPS) or (iteration >= MAXIT);
|
|
Result := r1;
|
|
end;
|
|
|
|
function NumberOfPeriods(ARate, APayment, APresentValue, AFutureValue: Float;
|
|
APaymentTime: TPaymentTime): Float;
|
|
{ Solve the cash flow equation (1) for q^n and take the logarithm }
|
|
var
|
|
q, x1, x2: Float;
|
|
begin
|
|
if ARate = 0 then
|
|
Result := -(APresentValue + AFutureValue) / APayment
|
|
else begin
|
|
q := 1.0 + ARate;
|
|
if APaymentTime = ptStartOfPeriod then
|
|
APayment := APayment * q;
|
|
x1 := APayment - AFutureValue * ARate;
|
|
x2 := APayment + APresentValue * ARate;
|
|
if (x2 = 0) // we have to divide by x2
|
|
or (sign(x1) * sign(x2) < 0) // the argument of the log is negative
|
|
then
|
|
Result := Infinity
|
|
else begin
|
|
Result := ln(x1/x2) / ln(q);
|
|
end;
|
|
end;
|
|
end;
|
|
|
|
function Payment(ARate: Float; NPeriods: Integer;
|
|
APresentValue, AFutureValue: Float; APaymentTime: TPaymentTime): Float;
|
|
var
|
|
q, qn, factor: Float;
|
|
begin
|
|
if ARate = 0 then
|
|
Result := -(AFutureValue + APresentValue) / NPeriods
|
|
else begin
|
|
q := 1.0 + ARate;
|
|
qn := power(q, NPeriods);
|
|
factor := (qn - 1) / (q - 1);
|
|
if APaymentTime = ptStartOfPeriod then
|
|
factor := factor * q;
|
|
Result := -(AFutureValue + APresentValue * qn) / factor;
|
|
end;
|
|
end;
|
|
|
|
function PresentValue(ARate: Float; NPeriods: Integer;
|
|
APayment, AFutureValue: Float; APaymentTime: TPaymentTime): Float;
|
|
var
|
|
q, qn, factor: Float;
|
|
begin
|
|
if ARate = 0.0 then
|
|
Result := -AFutureValue - APayment * NPeriods
|
|
else begin
|
|
q := 1.0 + ARate;
|
|
qn := power(q, NPeriods);
|
|
factor := (qn - 1) / (q - 1);
|
|
if APaymentTime = ptStartOfPeriod then
|
|
factor := factor * q;
|
|
Result := -(AFutureValue + APayment*factor) / qn;
|
|
end;
|
|
end;
|
|
|
|
{$else}
|
|
implementation
|
|
{$endif FPUNONE}
|
|
|
|
end.
|