fpc/compiler/ncnv.pas
florian 3c5793d8c6 * some Delphi incompatibilities fixed:
- out, dispose and new can be used as idenfiers now
     - const p = apointerype(nil); is supported now
  + support for const p = apointertype(pointer(1234)); added
2001-05-04 15:52:03 +00:00

1393 lines
47 KiB
ObjectPascal

{
$Id$
Copyright (c) 2000 by Florian Klaempfl
Type checking and register allocation for type converting nodes
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit ncnv;
{$i defines.inc}
interface
uses
node,
symtype,types,
nld;
type
ttypeconvnode = class(tunarynode)
totype : ttype;
convtype : tconverttype;
constructor create(node : tnode;const t : ttype);virtual;
function getcopy : tnode;override;
function pass_1 : tnode;override;
function det_resulttype:tnode;override;
function docompare(p: tnode) : boolean; override;
private
function resulttype_cord_to_pointer : tnode;
function resulttype_string_to_string : tnode;
function resulttype_char_to_string : tnode;
function resulttype_int_to_real : tnode;
function resulttype_real_to_real : tnode;
function resulttype_cchar_to_pchar : tnode;
function resulttype_arrayconstructor_to_set : tnode;
function resulttype_call_helper(c : tconverttype) : tnode;
protected
function first_int_to_int : tnode;virtual;
function first_cstring_to_pchar : tnode;virtual;
function first_string_to_chararray : tnode;virtual;
function first_string_to_string : tnode;virtual;
function first_char_to_string : tnode;virtual;
function first_nothing : tnode;virtual;
function first_array_to_pointer : tnode;virtual;
function first_int_to_real : tnode;virtual;
function first_real_to_real : tnode;virtual;
function first_pointer_to_array : tnode;virtual;
function first_chararray_to_string : tnode;virtual;
function first_cchar_to_pchar : tnode;virtual;
function first_bool_to_int : tnode;virtual;
function first_int_to_bool : tnode;virtual;
function first_bool_to_bool : tnode;virtual;
function first_proc_to_procvar : tnode;virtual;
function first_load_smallset : tnode;virtual;
function first_cord_to_pointer : tnode;virtual;
function first_pchar_to_string : tnode;virtual;
function first_ansistring_to_pchar : tnode;virtual;
function first_arrayconstructor_to_set : tnode;virtual;
function first_class_to_intf : tnode;virtual;
function first_call_helper(c : tconverttype) : tnode;
end;
tasnode = class(tbinarynode)
constructor create(l,r : tnode);virtual;
function pass_1 : tnode;override;
function det_resulttype:tnode;override;
end;
tisnode = class(tbinarynode)
constructor create(l,r : tnode);virtual;
function pass_1 : tnode;override;
function det_resulttype:tnode;override;
end;
var
ctypeconvnode : class of ttypeconvnode;
casnode : class of tasnode;
cisnode : class of tisnode;
procedure inserttypeconv(var p:tnode;const t:ttype);
procedure arrayconstructor_to_set(var p : tarrayconstructornode);
implementation
uses
globtype,systems,tokens,
cutils,verbose,globals,
symconst,symdef,symsym,symtable,
ncon,ncal,nset,nadd,
{$ifdef newcg}
cgbase,
{$else newcg}
hcodegen,
{$endif newcg}
htypechk,pass_1,cpubase,cpuinfo;
{*****************************************************************************
Helpers
*****************************************************************************}
procedure inserttypeconv(var p:tnode;const t:ttype);
begin
if not assigned(p.resulttype.def) then
begin
resulttypepass(p);
if codegenerror then
exit;
end;
{ don't insert obsolete type conversions }
if is_equal(p.resulttype.def,t.def) then
begin
p.resulttype:=t;
end
else
begin
p:=ctypeconvnode.create(p,t);
resulttypepass(p);
end;
end;
{*****************************************************************************
Array constructor to Set Conversion
*****************************************************************************}
procedure arrayconstructor_to_set(var p : tarrayconstructornode);
var
constp : tsetconstnode;
buildp,
p2,p3,p4 : tnode;
htype : ttype;
constset : pconstset;
constsetlo,
constsethi : longint;
procedure update_constsethi(t:ttype);
begin
if ((t.def.deftype=orddef) and
(torddef(t.def).high>=constsethi)) then
begin
constsethi:=torddef(t.def).high;
if htype.def=nil then
begin
if (constsethi>255) or
(torddef(t.def).low<0) then
htype:=u8bittype
else
htype:=t;
end;
if constsethi>255 then
constsethi:=255;
end
else if ((t.def.deftype=enumdef) and
(tenumdef(t.def).max>=constsethi)) then
begin
if htype.def=nil then
htype:=t;
constsethi:=tenumdef(t.def).max;
end;
end;
procedure do_set(pos : longint);
var
mask,l : longint;
begin
if (pos>255) or (pos<0) then
Message(parser_e_illegal_set_expr);
if pos>constsethi then
constsethi:=pos;
if pos<constsetlo then
constsetlo:=pos;
l:=pos shr 3;
mask:=1 shl (pos mod 8);
{ do we allow the same twice }
if (constset^[l] and mask)<>0 then
Message(parser_e_illegal_set_expr);
constset^[l]:=constset^[l] or mask;
end;
var
l : longint;
lr,hr : longint;
begin
new(constset);
FillChar(constset^,sizeof(constset^),0);
htype.reset;
constsetlo:=0;
constsethi:=0;
constp:=csetconstnode.create(nil,htype);
constp.value_set:=constset;
buildp:=constp;
if assigned(p.left) then
begin
while assigned(p) do
begin
p4:=nil; { will contain the tree to create the set }
{split a range into p2 and p3 }
if p.left.nodetype=arrayconstructorrangen then
begin
p2:=tarrayconstructorrangenode(p.left).left;
p3:=tarrayconstructorrangenode(p.left).right;
tarrayconstructorrangenode(p.left).left:=nil;
tarrayconstructorrangenode(p.left).right:=nil;
end
else
begin
p2:=p.left;
p.left:=nil;
p3:=nil;
end;
resulttypepass(p2);
if assigned(p3) then
resulttypepass(p3);
if codegenerror then
break;
case p2.resulttype.def.deftype of
enumdef,
orddef:
begin
getrange(p2.resulttype.def,lr,hr);
if assigned(p3) then
begin
{ this isn't good, you'll get problems with
type t010 = 0..10;
ts = set of t010;
var s : ts;b : t010
begin s:=[1,2,b]; end.
if is_integer(p3^.resulttype.def) then
begin
inserttypeconv(p3,u8bitdef);
end;
}
if assigned(htype.def) and not(is_equal(htype.def,p3.resulttype.def)) then
begin
aktfilepos:=p3.fileinfo;
CGMessage(type_e_typeconflict_in_set);
end
else
begin
if (p2.nodetype=ordconstn) and (p3.nodetype=ordconstn) then
begin
if not(is_integer(p3.resulttype.def)) then
htype:=p3.resulttype
else
begin
inserttypeconv(p3,u8bittype);
inserttypeconv(p2,u8bittype);
end;
for l:=tordconstnode(p2).value to tordconstnode(p3).value do
do_set(l);
p2.free;
p3.free;
end
else
begin
update_constsethi(p2.resulttype);
inserttypeconv(p2,htype);
update_constsethi(p3.resulttype);
inserttypeconv(p3,htype);
if assigned(htype.def) then
inserttypeconv(p3,htype)
else
inserttypeconv(p3,u8bittype);
p4:=csetelementnode.create(p2,p3);
end;
end;
end
else
begin
{ Single value }
if p2.nodetype=ordconstn then
begin
if not(is_integer(p2.resulttype.def)) then
update_constsethi(p2.resulttype)
else
inserttypeconv(p2,u8bittype);
do_set(tordconstnode(p2).value);
p2.free;
end
else
begin
update_constsethi(p2.resulttype);
if assigned(htype.def) then
inserttypeconv(p2,htype)
else
inserttypeconv(p2,u8bittype);
p4:=csetelementnode.create(p2,nil);
end;
end;
end;
stringdef :
begin
{ if we've already set elements which are constants }
{ throw an error }
if ((htype.def=nil) and assigned(buildp)) or
not(is_char(htype.def)) then
CGMessage(type_e_typeconflict_in_set)
else
for l:=1 to length(pstring(tstringconstnode(p2).value_str)^) do
do_set(ord(pstring(tstringconstnode(p2).value_str)^[l]));
if htype.def=nil then
htype:=cchartype;
p2.free;
end;
else
CGMessage(type_e_ordinal_expr_expected);
end;
{ insert the set creation tree }
if assigned(p4) then
buildp:=caddnode.create(addn,buildp,p4);
{ load next and dispose current node }
p2:=p;
p:=tarrayconstructornode(tarrayconstructornode(p2).right);
tarrayconstructornode(p2).right:=nil;
p2.free;
end;
if (htype.def=nil) then
begin
htype:=u8bittype;
constsethi:=255;
end;
end
else
begin
{ empty set [], only remove node }
p.free;
end;
{ set the initial set type }
constp.resulttype.setdef(tsetdef.create(htype,constsethi));
{ determine the resulttype for the tree }
resulttypepass(buildp);
{ set the new tree }
p:=tarrayconstructornode(buildp);
end;
{*****************************************************************************
TTYPECONVNODE
*****************************************************************************}
constructor ttypeconvnode.create(node : tnode;const t:ttype);
begin
inherited create(typeconvn,node);
convtype:=tc_not_possible;
totype:=t;
if t.def=nil then
internalerror(200103281);
set_file_line(node);
end;
function ttypeconvnode.getcopy : tnode;
var
n : ttypeconvnode;
begin
n:=ttypeconvnode(inherited getcopy);
n.convtype:=convtype;
getcopy:=n;
end;
function ttypeconvnode.resulttype_cord_to_pointer : tnode;
var
t : tnode;
begin
result:=nil;
if left.nodetype=ordconstn then
begin
{ check if we have a valid pointer constant (JM) }
if (sizeof(tordconstnode) > sizeof(tpointerord)) then
if (sizeof(tpointerord) = 4) then
begin
if (tordconstnode(left).value < low(longint)) or
(tordconstnode(left).value > high(cardinal)) then
CGMessage(parser_e_range_check_error);
end
else if (sizeof(tpointerord) = 8) then
begin
if (tordconstnode(left).value < low(int64)) or
(tordconstnode(left).value > high(qword)) then
CGMessage(parser_e_range_check_error);
end
else
internalerror(2001020801);
t:=cpointerconstnode.create(tpointerord(tordconstnode(left).value),resulttype);
resulttypepass(t);
result:=t;
end
else
internalerror(200104023);
end;
function ttypeconvnode.resulttype_string_to_string : tnode;
begin
result:=nil;
if left.nodetype=stringconstn then
begin
tstringconstnode(left).st_type:=tstringdef(resulttype.def).string_typ;
tstringconstnode(left).resulttype:=resulttype;
result:=left;
left:=nil;
end;
end;
function ttypeconvnode.resulttype_char_to_string : tnode;
var
hp : tstringconstnode;
begin
result:=nil;
if left.nodetype=ordconstn then
begin
hp:=cstringconstnode.createstr(chr(tordconstnode(left).value),st_default);
hp.st_type:=tstringdef(resulttype.def).string_typ;
resulttypepass(hp);
result:=hp;
end;
end;
function ttypeconvnode.resulttype_int_to_real : tnode;
var
t : trealconstnode;
begin
result:=nil;
if left.nodetype=ordconstn then
begin
t:=crealconstnode.create(tordconstnode(left).value,resulttype);
resulttypepass(t);
result:=t;
exit;
end;
end;
function ttypeconvnode.resulttype_real_to_real : tnode;
var
t : tnode;
begin
result:=nil;
if left.nodetype=realconstn then
begin
t:=crealconstnode.create(trealconstnode(left).value_real,resulttype);
resulttypepass(t);
result:=t;
end;
end;
function ttypeconvnode.resulttype_cchar_to_pchar : tnode;
begin
result:=nil;
inserttypeconv(left,cshortstringtype);
{ evaluate again, reset resulttype so the convert_typ
will be calculated again }
result:=det_resulttype;
end;
function ttypeconvnode.resulttype_arrayconstructor_to_set : tnode;
var
hp : tnode;
begin
result:=nil;
if left.nodetype<>arrayconstructorn then
internalerror(5546);
{ remove typeconv node }
hp:=left;
left:=nil;
{ create a set constructor tree }
arrayconstructor_to_set(tarrayconstructornode(hp));
{ now resulttypepass the set }
resulttypepass(hp);
result:=hp;
end;
function ttypeconvnode.resulttype_call_helper(c : tconverttype) : tnode;
const
resulttypeconvert : array[tconverttype] of pointer = (
{equal} nil,
{not_possible} nil,
{ string_2_string } @ttypeconvnode.resulttype_string_to_string,
{ char_2_string } @ttypeconvnode.resulttype_char_to_string,
{ pchar_2_string } nil,
{ cchar_2_pchar } @ttypeconvnode.resulttype_cchar_to_pchar,
{ cstring_2_pchar } nil,
{ ansistring_2_pchar } nil,
{ string_2_chararray } nil,
{ chararray_2_string } nil,
{ array_2_pointer } nil,
{ pointer_2_array } nil,
{ int_2_int } nil,
{ int_2_bool } nil,
{ bool_2_bool } nil,
{ bool_2_int } nil,
{ real_2_real } @ttypeconvnode.resulttype_real_to_real,
{ int_2_real } @ttypeconvnode.resulttype_int_to_real,
{ proc_2_procvar } nil,
{ arrayconstructor_2_set } @ttypeconvnode.resulttype_arrayconstructor_to_set,
{ load_smallset } nil,
{ cord_2_pointer } @ttypeconvnode.resulttype_cord_to_pointer,
{ intf_2_string } nil,
{ intf_2_guid } nil,
{ class_2_intf } nil
);
type
tprocedureofobject = function : tnode of object;
var
r : packed record
proc : pointer;
obj : pointer;
end;
begin
result:=nil;
{ this is a little bit dirty but it works }
{ and should be quite portable too }
r.proc:=resulttypeconvert[c];
r.obj:=self;
if assigned(r.proc) then
result:=tprocedureofobject(r){$ifdef FPC}();{$endif FPC}
end;
function ttypeconvnode.det_resulttype:tnode;
var
hp : tnode;
aprocdef : tprocdef;
begin
result:=nil;
resulttype:=totype;
resulttypepass(left);
if codegenerror then
exit;
{ remove obsolete type conversions }
if is_equal(left.resulttype.def,resulttype.def) then
begin
{ becuase is_equal only checks the basetype for sets we need to
check here if we are loading a smallset into a normalset }
if (resulttype.def.deftype=setdef) and
(left.resulttype.def.deftype=setdef) and
(tsetdef(resulttype.def).settype<>smallset) and
(tsetdef(left.resulttype.def).settype=smallset) then
begin
{ try to define the set as a normalset if it's a constant set }
if left.nodetype=setconstn then
begin
resulttype:=left.resulttype;
tsetdef(resulttype.def).settype:=normset
end
else
convtype:=tc_load_smallset;
exit;
end
else
begin
left.resulttype:=resulttype;
result:=left;
left:=nil;
exit;
end;
end;
aprocdef:=assignment_overloaded(left.resulttype.def,resulttype.def);
if assigned(aprocdef) then
begin
procinfo^.flags:=procinfo^.flags or pi_do_call;
hp:=ccallnode.create(ccallparanode.create(left,nil),
overloaded_operators[_assignment],nil,nil);
{ tell explicitly which def we must use !! (PM) }
tcallnode(hp).procdefinition:=aprocdef;
left:=nil;
resulttypepass(hp);
result:=hp;
exit;
end;
if isconvertable(left.resulttype.def,resulttype.def,convtype,left.nodetype,nf_explizit in flags)=0 then
begin
{Procedures have a resulttype.def of voiddef and functions of their
own resulttype.def. They will therefore always be incompatible with
a procvar. Because isconvertable cannot check for procedures we
use an extra check for them.}
if (m_tp_procvar in aktmodeswitches) then
begin
if (resulttype.def.deftype=procvardef) and
(is_procsym_load(left) or is_procsym_call(left)) then
begin
if is_procsym_call(left) then
begin
hp:=cloadnode.create(tprocsym(tcallnode(left).symtableprocentry),
tcallnode(left).symtableproc);
if (tcallnode(left).symtableprocentry.owner.symtabletype=objectsymtable) and
assigned(tcallnode(left).methodpointer) then
tloadnode(hp).set_mp(tcallnode(left).methodpointer.getcopy);
resulttypepass(hp);
left.free;
left:=hp;
aprocdef:=tprocdef(left.resulttype.def);
end
else
begin
if (left.nodetype<>addrn) then
aprocdef:=tprocsym(tloadnode(left).symtableentry).definition;
end;
convtype:=tc_proc_2_procvar;
{ Now check if the procedure we are going to assign to
the procvar, is compatible with the procvar's type }
if assigned(aprocdef) then
begin
if not proc_to_procvar_equal(aprocdef,tprocvardef(resulttype.def)) then
CGMessage2(type_e_incompatible_types,aprocdef.typename,resulttype.def.typename);
end
else
CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename);
exit;
end;
end;
if nf_explizit in flags then
begin
{ check if the result could be in a register }
if not(tstoreddef(resulttype.def).is_intregable) and
not(tstoreddef(resulttype.def).is_fpuregable) then
make_not_regable(left);
{ boolean to byte are special because the
location can be different }
if is_integer(resulttype.def) and
is_boolean(left.resulttype.def) then
begin
convtype:=tc_bool_2_int;
exit;
end;
{ ansistring to pchar }
if is_pchar(resulttype.def) and
is_ansistring(left.resulttype.def) then
begin
convtype:=tc_ansistring_2_pchar;
exit;
end;
{ do common tc_equal cast }
convtype:=tc_equal;
{ enum to ordinal will always be s32bit }
if (left.resulttype.def.deftype=enumdef) and
is_ordinal(resulttype.def) then
begin
if left.nodetype=ordconstn then
begin
hp:=cordconstnode.create(tordconstnode(left).value,resulttype);
resulttypepass(hp);
result:=hp;
exit;
end
else
begin
if isconvertable(s32bittype.def,resulttype.def,convtype,ordconstn,false)=0 then
CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename);
end;
end
{ ordinal to enumeration }
else
if (resulttype.def.deftype=enumdef) and
is_ordinal(left.resulttype.def) then
begin
if left.nodetype=ordconstn then
begin
hp:=cordconstnode.create(tordconstnode(left).value,resulttype);
resulttypepass(hp);
result:=hp;
exit;
end
else
begin
if IsConvertable(left.resulttype.def,s32bittype.def,convtype,ordconstn,false)=0 then
CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename);
end;
end
{ nil to ordinal node }
else if (left.nodetype=niln) and is_ordinal(resulttype.def) then
begin
hp:=cordconstnode.create(0,resulttype);
resulttypepass(hp);
result:=hp;
exit;
end
{ constant pointer to ordinal }
else if is_ordinal(resulttype.def) and
(left.nodetype=pointerconstn) then
begin
hp:=cordconstnode.create(tpointerconstnode(left).value,resulttype);
resulttypepass(hp);
result:=hp;
exit;
end
{Are we typecasting an ordconst to a char?}
else
if is_char(resulttype.def) and
is_ordinal(left.resulttype.def) then
begin
if left.nodetype=ordconstn then
begin
hp:=cordconstnode.create(tordconstnode(left).value,resulttype);
resulttypepass(hp);
result:=hp;
exit;
end
else
begin
if IsConvertable(left.resulttype.def,u8bittype.def,convtype,ordconstn,false)=0 then
CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename);
end;
end
{ char to ordinal }
else
if is_char(left.resulttype.def) and
is_ordinal(resulttype.def) then
begin
if left.nodetype=ordconstn then
begin
hp:=cordconstnode.create(tordconstnode(left).value,resulttype);
resulttypepass(hp);
result:=hp;
exit;
end
else
begin
if IsConvertable(u8bittype.def,resulttype.def,convtype,ordconstn,false)=0 then
CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename);
end;
end
{ only if the same size or formal def }
{ why do we allow typecasting of voiddef ?? (PM) }
else
begin
if not(
(left.resulttype.def.deftype=formaldef) or
(left.resulttype.def.size=resulttype.def.size) or
(is_void(left.resulttype.def) and
(left.nodetype=derefn))
) then
CGMessage(cg_e_illegal_type_conversion);
if ((left.resulttype.def.deftype=orddef) and
(resulttype.def.deftype=pointerdef)) or
((resulttype.def.deftype=orddef) and
(left.resulttype.def.deftype=pointerdef)) then
CGMessage(cg_d_pointer_to_longint_conv_not_portable);
end;
{ the conversion into a strutured type is only }
{ possible, if the source is no register }
if ((resulttype.def.deftype in [recorddef,stringdef,arraydef]) or
((resulttype.def.deftype=objectdef) and not(is_class(resulttype.def)))
) and (left.location.loc in [LOC_REGISTER,LOC_CREGISTER]) { and
it also works if the assignment is overloaded
YES but this code is not executed if assignment is overloaded (PM)
not assigned(assignment_overloaded(left.resulttype.def,resulttype.def))} then
CGMessage(cg_e_illegal_type_conversion);
end
else
CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename);
end;
{ tp7 procvar support, when right is not a procvardef and we got a
loadn of a procvar then convert to a calln, the check for the
result is already done in is_convertible, also no conflict with
@procvar is here because that has an extra addrn }
if (m_tp_procvar in aktmodeswitches) and
(resulttype.def.deftype<>procvardef) and
(left.resulttype.def.deftype=procvardef) and
(left.nodetype=loadn) then
begin
hp:=ccallnode.create(nil,nil,nil,nil);
tcallnode(hp).set_procvar(left);
resulttypepass(hp);
left:=hp;
end;
{ ordinal contants can be directly converted }
if (left.nodetype=ordconstn) and is_ordinal(resulttype.def) then
begin
{ replace the resulttype and recheck the range }
left.resulttype:=resulttype;
testrange(left.resulttype.def,tordconstnode(left).value,(nf_explizit in flags));
result:=left;
left:=nil;
exit;
end;
{ fold nil to any pointer type }
if (left.nodetype=niln) and (resulttype.def.deftype=pointerdef) then
begin
hp:=cnilnode.create;
hp.resulttype:=resulttype;
resulttypepass(hp);
result:=hp;
exit;
end;
{ further, pointerconstn to any pointer is folded too }
if (left.nodetype=pointerconstn) and (resulttype.def.deftype=pointerdef) then
begin
left.resulttype:=resulttype;
result:=left;
left:=nil;
exit;
end;
{ now call the resulttype helper to do constant folding }
result:=resulttype_call_helper(convtype);
end;
function ttypeconvnode.first_cord_to_pointer : tnode;
begin
result:=nil;
internalerror(200104043);
end;
function ttypeconvnode.first_int_to_int : tnode;
begin
first_int_to_int:=nil;
if (left.location.loc<>LOC_REGISTER) and
(resulttype.def.size>left.resulttype.def.size) then
location.loc:=LOC_REGISTER;
if is_64bitint(resulttype.def) then
registers32:=max(registers32,2)
else
registers32:=max(registers32,1);
end;
function ttypeconvnode.first_cstring_to_pchar : tnode;
begin
first_cstring_to_pchar:=nil;
registers32:=1;
location.loc:=LOC_REGISTER;
end;
function ttypeconvnode.first_string_to_chararray : tnode;
begin
first_string_to_chararray:=nil;
registers32:=1;
location.loc:=LOC_REGISTER;
end;
function ttypeconvnode.first_string_to_string : tnode;
begin
first_string_to_string:=nil;
if tstringdef(resulttype.def).string_typ<>
tstringdef(left.resulttype.def).string_typ then
begin
procinfo^.flags:=procinfo^.flags or pi_do_call;
end;
{ for simplicity lets first keep all ansistrings
as LOC_MEM, could also become LOC_REGISTER }
if tstringdef(resulttype.def).string_typ in [st_ansistring,st_widestring] then
{ we may use ansistrings so no fast exit here }
procinfo^.no_fast_exit:=true;
location.loc:=LOC_MEM;
end;
function ttypeconvnode.first_char_to_string : tnode;
begin
first_char_to_string:=nil;
location.loc:=LOC_MEM;
end;
function ttypeconvnode.first_nothing : tnode;
begin
first_nothing:=nil;
location.loc:=LOC_MEM;
end;
function ttypeconvnode.first_array_to_pointer : tnode;
begin
first_array_to_pointer:=nil;
if registers32<1 then
registers32:=1;
location.loc:=LOC_REGISTER;
end;
function ttypeconvnode.first_int_to_real : tnode;
begin
first_int_to_real:=nil;
if registersfpu<1 then
registersfpu:=1;
location.loc:=LOC_FPU;
end;
function ttypeconvnode.first_real_to_real : tnode;
begin
first_real_to_real:=nil;
{ comp isn't a floating type }
{$ifdef i386}
if (tfloatdef(resulttype.def).typ=s64comp) and
(tfloatdef(left.resulttype.def).typ<>s64comp) and
not (nf_explizit in flags) then
CGMessage(type_w_convert_real_2_comp);
{$endif}
if registersfpu<1 then
registersfpu:=1;
location.loc:=LOC_FPU;
end;
function ttypeconvnode.first_pointer_to_array : tnode;
begin
first_pointer_to_array:=nil;
if registers32<1 then
registers32:=1;
location.loc:=LOC_REFERENCE;
end;
function ttypeconvnode.first_chararray_to_string : tnode;
begin
first_chararray_to_string:=nil;
{ the only important information is the location of the }
{ result }
{ other stuff is done by firsttypeconv }
location.loc:=LOC_MEM;
end;
function ttypeconvnode.first_cchar_to_pchar : tnode;
begin
first_cchar_to_pchar:=nil;
internalerror(200104021);
end;
function ttypeconvnode.first_bool_to_int : tnode;
begin
first_bool_to_int:=nil;
{ byte(boolean) or word(wordbool) or longint(longbool) must
be accepted for var parameters }
if (nf_explizit in flags) and
(left.resulttype.def.size=resulttype.def.size) and
(left.location.loc in [LOC_REFERENCE,LOC_MEM,LOC_CREGISTER]) then
exit;
location.loc:=LOC_REGISTER;
if registers32<1 then
registers32:=1;
end;
function ttypeconvnode.first_int_to_bool : tnode;
begin
first_int_to_bool:=nil;
{ byte(boolean) or word(wordbool) or longint(longbool) must
be accepted for var parameters }
if (nf_explizit in flags) and
(left.resulttype.def.size=resulttype.def.size) and
(left.location.loc in [LOC_REFERENCE,LOC_MEM,LOC_CREGISTER]) then
exit;
location.loc:=LOC_REGISTER;
{ need if bool to bool !!
not very nice !!
insertypeconv(left,s32bittype);
left.explizit:=true;
firstpass(left); }
if registers32<1 then
registers32:=1;
end;
function ttypeconvnode.first_bool_to_bool : tnode;
begin
first_bool_to_bool:=nil;
location.loc:=LOC_REGISTER;
if registers32<1 then
registers32:=1;
end;
function ttypeconvnode.first_proc_to_procvar : tnode;
begin
first_proc_to_procvar:=nil;
if (left.location.loc<>LOC_REFERENCE) then
CGMessage(cg_e_illegal_expression);
registers32:=left.registers32;
if registers32<1 then
registers32:=1;
location.loc:=LOC_REGISTER;
end;
function ttypeconvnode.first_load_smallset : tnode;
begin
first_load_smallset:=nil;
end;
function ttypeconvnode.first_pchar_to_string : tnode;
begin
first_pchar_to_string:=nil;
location.loc:=LOC_REFERENCE;
end;
function ttypeconvnode.first_ansistring_to_pchar : tnode;
begin
first_ansistring_to_pchar:=nil;
location.loc:=LOC_REGISTER;
if registers32<1 then
registers32:=1;
end;
function ttypeconvnode.first_arrayconstructor_to_set : tnode;
begin
first_arrayconstructor_to_set:=nil;
internalerror(200104022);
end;
function ttypeconvnode.first_class_to_intf : tnode;
begin
first_class_to_intf:=nil;
location.loc:=LOC_REFERENCE;
if registers32<1 then
registers32:=1;
end;
function ttypeconvnode.first_call_helper(c : tconverttype) : tnode;
const
firstconvert : array[tconverttype] of pointer = (
@ttypeconvnode.first_nothing, {equal}
@ttypeconvnode.first_nothing, {not_possible}
@ttypeconvnode.first_string_to_string,
@ttypeconvnode.first_char_to_string,
@ttypeconvnode.first_pchar_to_string,
@ttypeconvnode.first_cchar_to_pchar,
@ttypeconvnode.first_cstring_to_pchar,
@ttypeconvnode.first_ansistring_to_pchar,
@ttypeconvnode.first_string_to_chararray,
@ttypeconvnode.first_chararray_to_string,
@ttypeconvnode.first_array_to_pointer,
@ttypeconvnode.first_pointer_to_array,
@ttypeconvnode.first_int_to_int,
@ttypeconvnode.first_int_to_bool,
@ttypeconvnode.first_bool_to_bool,
@ttypeconvnode.first_bool_to_int,
@ttypeconvnode.first_real_to_real,
@ttypeconvnode.first_int_to_real,
@ttypeconvnode.first_proc_to_procvar,
@ttypeconvnode.first_arrayconstructor_to_set,
@ttypeconvnode.first_load_smallset,
@ttypeconvnode.first_cord_to_pointer,
@ttypeconvnode.first_nothing,
@ttypeconvnode.first_nothing,
@ttypeconvnode.first_class_to_intf
);
type
tprocedureofobject = function : tnode of object;
var
r : packed record
proc : pointer;
obj : pointer;
end;
begin
{ this is a little bit dirty but it works }
{ and should be quite portable too }
r.proc:=firstconvert[c];
r.obj:=self;
first_call_helper:=tprocedureofobject(r){$ifdef FPC}();{$endif FPC}
end;
function ttypeconvnode.pass_1 : tnode;
begin
result:=nil;
firstpass(left);
if codegenerror then
exit;
{ load the value_str from the left part }
registers32:=left.registers32;
registersfpu:=left.registersfpu;
{$ifdef SUPPORT_MMX}
registersmmx:=left.registersmmx;
{$endif}
set_location(location,left.location);
if nf_explizit in flags then
begin
{ check if the result could be in a register }
if not(tstoreddef(resulttype.def).is_intregable) and
not(tstoreddef(resulttype.def).is_fpuregable) then
make_not_regable(left);
end;
if convtype=tc_equal then
begin
{ remove typeconv node if left is a const. For other nodes we can't
remove it because the secondpass can still depend on the old type (PFV) }
if is_constnode(left) then
begin
left.resulttype:=resulttype;
result:=left;
left:=nil;
end;
end
else
begin
result:=first_call_helper(convtype);
end;
end;
{*****************************************************************************
TISNODE
*****************************************************************************}
constructor tisnode.create(l,r : tnode);
begin
inherited create(isn,l,r);
end;
function tisnode.det_resulttype:tnode;
begin
result:=nil;
resulttypepass(left);
resulttypepass(right);
set_varstate(left,true);
set_varstate(right,true);
if codegenerror then
exit;
if (right.resulttype.def.deftype=classrefdef) then
begin
{ left must be a class }
if is_class(left.resulttype.def) then
begin
{ the operands must be related }
if (not(tobjectdef(left.resulttype.def).is_related(
tobjectdef(tclassrefdef(right.resulttype.def).pointertype.def)))) and
(not(tobjectdef(tclassrefdef(right.resulttype.def).pointertype.def).is_related(
tobjectdef(left.resulttype.def)))) then
CGMessage(type_e_mismatch);
end
else
CGMessage(type_e_mismatch);
end
else
CGMessage(type_e_mismatch);
resulttype:=booltype;
end;
function tisnode.pass_1 : tnode;
begin
result:=nil;
firstpass(left);
firstpass(right);
if codegenerror then
exit;
left_right_max;
location.loc:=LOC_FLAGS;
end;
{*****************************************************************************
TASNODE
*****************************************************************************}
constructor tasnode.create(l,r : tnode);
begin
inherited create(asn,l,r);
end;
function tasnode.det_resulttype:tnode;
begin
result:=nil;
resulttypepass(right);
resulttypepass(left);
set_varstate(right,true);
set_varstate(left,true);
if codegenerror then
exit;
if (right.resulttype.def.deftype=classrefdef) then
begin
{ left must be a class }
if is_class(left.resulttype.def) then
begin
{ the operands must be related }
if (not(tobjectdef(left.resulttype.def).is_related(
tobjectdef(tclassrefdef(right.resulttype.def).pointertype.def)))) and
(not(tobjectdef(tclassrefdef(right.resulttype.def).pointertype.def).is_related(
tobjectdef(left.resulttype.def)))) then
CGMessage(type_e_mismatch);
end
else
CGMessage(type_e_mismatch);
resulttype:=tclassrefdef(right.resulttype.def).pointertype;
end
else
CGMessage(type_e_mismatch);
end;
function tasnode.pass_1 : tnode;
begin
result:=nil;
firstpass(right);
firstpass(left);
if codegenerror then
exit;
left_right_max;
set_location(location,left.location);
end;
function ttypeconvnode.docompare(p: tnode) : boolean;
begin
docompare :=
inherited docompare(p) and
(convtype = ttypeconvnode(p).convtype);
end;
begin
ctypeconvnode:=ttypeconvnode;
casnode:=tasnode;
cisnode:=tisnode;
end.
{
$Log$
Revision 1.26 2001-05-04 15:52:03 florian
* some Delphi incompatibilities fixed:
- out, dispose and new can be used as idenfiers now
- const p = apointerype(nil); is supported now
+ support for const p = apointertype(pointer(1234)); added
Revision 1.25 2001/04/13 22:20:58 peter
* remove wrongly placed first_call_helper
Revision 1.24 2001/04/13 01:22:08 peter
* symtable change to classes
* range check generation and errors fixed, make cycle DEBUG=1 works
* memory leaks fixed
Revision 1.23 2001/04/04 22:42:39 peter
* move constant folding into det_resulttype
Revision 1.22 2001/04/02 21:20:30 peter
* resulttype rewrite
Revision 1.21 2001/03/08 17:44:47 jonas
* fixed web bug 1430
Revision 1.20 2001/02/21 11:49:50 jonas
* evaluate typecasts of const pointers to ordinals inline ('merged')
Revision 1.19 2001/02/20 18:37:10 peter
* removed unused code
Revision 1.18 2001/02/20 13:14:18 marco
* Fix from Peter for passing a procedure of method to a other method in a method
Revision 1.17 2001/02/08 13:09:03 jonas
* fixed web bug 1396: tpointerord is now a cardinal instead of a longint,
but added a hack in ncnv so that pointer(-1) still works
Revision 1.16 2000/12/31 11:14:10 jonas
+ implemented/fixed docompare() mathods for all nodes (not tested)
+ nopt.pas, nadd.pas, i386/n386opt.pas: optimized nodes for adding strings
and constant strings/chars together
* n386add.pas: don't copy temp strings (of size 256) to another temp string
when adding
Revision 1.15 2000/12/08 12:41:01 jonas
* fixed bug in sign extension patch
Revision 1.14 2000/12/07 17:19:42 jonas
* new constant handling: from now on, hex constants >$7fffffff are
parsed as unsigned constants (otherwise, $80000000 got sign extended
and became $ffffffff80000000), all constants in the longint range
become longints, all constants >$7fffffff and <=cardinal($ffffffff)
are cardinals and the rest are int64's.
* added lots of longint typecast to prevent range check errors in the
compiler and rtl
* type casts of symbolic ordinal constants are now preserved
* fixed bug where the original resulttype.def wasn't restored correctly
after doing a 64bit rangecheck
Revision 1.13 2000/11/29 00:30:32 florian
* unused units removed from uses clause
* some changes for widestrings
Revision 1.12 2000/11/20 16:06:04 jonas
+ allow evaluation of 64bit constant expressions at compile time
* disable range checking for explicit typecasts of constant expressions
Revision 1.11 2000/11/12 23:24:11 florian
* interfaces are basically running
Revision 1.10 2000/11/04 14:25:20 florian
+ merged Attila's changes for interfaces, not tested yet
Revision 1.9 2000/10/31 22:02:48 peter
* symtable splitted, no real code changes
Revision 1.8 2000/10/14 21:52:55 peter
* fixed memory leaks
Revision 1.7 2000/10/14 10:14:50 peter
* moehrendorf oct 2000 rewrite
Revision 1.6 2000/10/01 19:48:24 peter
* lot of compile updates for cg11
Revision 1.5 2000/09/28 19:49:52 florian
*** empty log message ***
Revision 1.4 2000/09/27 18:14:31 florian
* fixed a lot of syntax errors in the n*.pas stuff
Revision 1.3 2000/09/26 20:06:13 florian
* hmm, still a lot of work to get things compilable
Revision 1.2 2000/09/26 14:59:34 florian
* more conversion work done
Revision 1.1 2000/09/25 15:37:14 florian
* more fixes
}