fpc/compiler/arm/cpubase.pas
florian ed540dc7c1 * fixed copy&paste error in rev. 10460
git-svn-id: trunk@10462 -
2008-03-08 14:05:04 +00:00

561 lines
17 KiB
ObjectPascal

{
Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
Contains the base types for the ARM
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
{# Base unit for processor information. This unit contains
enumerations of registers, opcodes, sizes, and other
such things which are processor specific.
}
unit cpubase;
{$i fpcdefs.inc}
interface
uses
cutils,cclasses,
globtype,globals,
cpuinfo,
aasmbase,
cgbase
;
{*****************************************************************************
Assembler Opcodes
*****************************************************************************}
type
TAsmOp= {$i armop.inc}
{ This should define the array of instructions as string }
op2strtable=array[tasmop] of string[11];
const
{ First value of opcode enumeration }
firstop = low(tasmop);
{ Last value of opcode enumeration }
lastop = high(tasmop);
{*****************************************************************************
Registers
*****************************************************************************}
type
{ Number of registers used for indexing in tables }
tregisterindex=0..{$i rarmnor.inc}-1;
const
{ Available Superregisters }
{$i rarmsup.inc}
RS_PC = RS_R15;
{ No Subregisters }
R_SUBWHOLE = R_SUBNONE;
{ Available Registers }
{$i rarmcon.inc}
{ aliases }
NR_PC = NR_R15;
{ Integer Super registers first and last }
first_int_supreg = RS_R0;
first_int_imreg = $10;
{ Float Super register first and last }
first_fpu_supreg = RS_F0;
first_fpu_imreg = $08;
{ MM Super register first and last }
first_mm_supreg = RS_S0;
first_mm_imreg = $20;
{$warning TODO Calculate bsstart}
regnumber_count_bsstart = 64;
regnumber_table : array[tregisterindex] of tregister = (
{$i rarmnum.inc}
);
regstabs_table : array[tregisterindex] of shortint = (
{$i rarmsta.inc}
);
regdwarf_table : array[tregisterindex] of shortint = (
{$i rarmdwa.inc}
);
{ registers which may be destroyed by calls }
VOLATILE_INTREGISTERS = [RS_R0..RS_R3,RS_R12..RS_R15];
VOLATILE_FPUREGISTERS = [RS_F0..RS_F3];
type
totherregisterset = set of tregisterindex;
{*****************************************************************************
Instruction post fixes
*****************************************************************************}
type
{ ARM instructions load/store and arithmetic instructions
can have several instruction post fixes which are collected
in this enumeration
}
TOpPostfix = (PF_None,
{ update condition flags
or floating point single }
PF_S,
{ floating point size }
PF_D,PF_E,PF_P,PF_EP,
{ load/store }
PF_B,PF_SB,PF_BT,PF_H,PF_SH,PF_T,
{ multiple load/store address modes }
PF_IA,PF_IB,PF_DA,PF_DB,PF_FD,PF_FA,PF_ED,PF_EA
);
TRoundingMode = (RM_None,RM_P,RM_M,RM_Z);
const
cgsize2fpuoppostfix : array[OS_NO..OS_F128] of toppostfix = (
PF_None,
PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,
PF_S,PF_D,PF_E,PF_None,PF_None);
oppostfix2str : array[TOpPostfix] of string[2] = ('',
's',
'd','e','p','ep',
'b','sb','bt','h','sh','t',
'ia','ib','da','db','fd','fa','ed','ea');
roundingmode2str : array[TRoundingMode] of string[1] = ('',
'p','m','z');
{*****************************************************************************
Conditions
*****************************************************************************}
type
TAsmCond=(C_None,
C_EQ,C_NE,C_CS,C_CC,C_MI,C_PL,C_VS,C_VC,C_HI,C_LS,
C_GE,C_LT,C_GT,C_LE,C_AL,C_NV
);
const
cond2str : array[TAsmCond] of string[2]=('',
'eq','ne','cs','cc','mi','pl','vs','vc','hi','ls',
'ge','lt','gt','le','al','nv'
);
uppercond2str : array[TAsmCond] of string[2]=('',
'EQ','NE','CS','CC','MI','PL','VS','VC','HI','LS',
'GE','LT','GT','LE','AL','NV'
);
{*****************************************************************************
Flags
*****************************************************************************}
type
TResFlags = (F_EQ,F_NE,F_CS,F_CC,F_MI,F_PL,F_VS,F_VC,F_HI,F_LS,
F_GE,F_LT,F_GT,F_LE);
{*****************************************************************************
Operands
*****************************************************************************}
taddressmode = (AM_OFFSET,AM_PREINDEXED,AM_POSTINDEXED);
tshiftmode = (SM_None,SM_LSL,SM_LSR,SM_ASR,SM_ROR,SM_RRX);
tupdatereg = (UR_None,UR_Update);
pshifterop = ^tshifterop;
tshifterop = record
shiftmode : tshiftmode;
rs : tregister;
shiftimm : byte;
end;
{*****************************************************************************
Constants
*****************************************************************************}
const
max_operands = 4;
{# Constant defining possibly all registers which might require saving }
ALL_OTHERREGISTERS = [];
general_superregisters = [RS_R0..RS_PC];
{# Table of registers which can be allocated by the code generator
internally, when generating the code.
}
{ legend: }
{ xxxregs = set of all possibly used registers of that type in the code }
{ generator }
{ usableregsxxx = set of all 32bit components of registers that can be }
{ possible allocated to a regvar or using getregisterxxx (this }
{ excludes registers which can be only used for parameter }
{ passing on ABI's that define this) }
{ c_countusableregsxxx = amount of registers in the usableregsxxx set }
maxintregs = 15;
{ to determine how many registers to use for regvars }
maxintscratchregs = 3;
usableregsint = [RS_R4..RS_R10];
c_countusableregsint = 7;
maxfpuregs = 8;
fpuregs = [RS_F0..RS_F7];
usableregsfpu = [RS_F4..RS_F7];
c_countusableregsfpu = 4;
mmregs = [RS_D0..RS_D15];
usableregsmm = [RS_D8..RS_D15];
c_countusableregsmm = 8;
maxaddrregs = 0;
addrregs = [];
usableregsaddr = [];
c_countusableregsaddr = 0;
{*****************************************************************************
Operand Sizes
*****************************************************************************}
type
topsize = (S_NO,
S_B,S_W,S_L,S_BW,S_BL,S_WL,
S_IS,S_IL,S_IQ,
S_FS,S_FL,S_FX,S_D,S_Q,S_FV,S_FXX
);
{*****************************************************************************
Constants
*****************************************************************************}
const
firstsaveintreg = RS_R4;
lastsaveintreg = RS_R10;
firstsavefpureg = RS_F4;
lastsavefpureg = RS_F7;
firstsavemmreg = RS_D8;
lastsavemmreg = RS_D15;
maxvarregs = 7;
varregs : Array [1..maxvarregs] of tsuperregister =
(RS_R4,RS_R5,RS_R6,RS_R7,RS_R8,RS_R9,RS_R10);
maxfpuvarregs = 4;
fpuvarregs : Array [1..maxfpuvarregs] of tsuperregister =
(RS_F4,RS_F5,RS_F6,RS_F7);
{*****************************************************************************
Default generic sizes
*****************************************************************************}
{ Defines the default address size for a processor, }
OS_ADDR = OS_32;
{ the natural int size for a processor, }
OS_INT = OS_32;
OS_SINT = OS_S32;
{ the maximum float size for a processor, }
OS_FLOAT = OS_F64;
{ the size of a vector register for a processor }
OS_VECTOR = OS_M32;
{*****************************************************************************
Generic Register names
*****************************************************************************}
{ Stack pointer register }
NR_STACK_POINTER_REG = NR_R13;
RS_STACK_POINTER_REG = RS_R13;
{ Frame pointer register }
RS_FRAME_POINTER_REG = RS_R11;
NR_FRAME_POINTER_REG = NR_R11;
{ Register for addressing absolute data in a position independant way,
such as in PIC code. The exact meaning is ABI specific. For
further information look at GCC source : PIC_OFFSET_TABLE_REGNUM
}
NR_PIC_OFFSET_REG = NR_R9;
{ Results are returned in this register (32-bit values) }
NR_FUNCTION_RETURN_REG = NR_R0;
RS_FUNCTION_RETURN_REG = RS_R0;
{ The value returned from a function is available in this register }
NR_FUNCTION_RESULT_REG = NR_FUNCTION_RETURN_REG;
RS_FUNCTION_RESULT_REG = RS_FUNCTION_RETURN_REG;
NR_FPU_RESULT_REG = NR_F0;
NR_MM_RESULT_REG = NR_NO;
NR_RETURN_ADDRESS_REG = NR_FUNCTION_RETURN_REG;
{ Offset where the parent framepointer is pushed }
PARENT_FRAMEPOINTER_OFFSET = 0;
{ Low part of 64bit return value }
function NR_FUNCTION_RESULT64_LOW_REG: tregister;
function RS_FUNCTION_RESULT64_LOW_REG: shortint;
{ High part of 64bit return value }
function NR_FUNCTION_RESULT64_HIGH_REG: tregister;
function RS_FUNCTION_RESULT64_HIGH_REG: shortint;
{*****************************************************************************
GCC /ABI linking information
*****************************************************************************}
const
{ Registers which must be saved when calling a routine declared as
cppdecl, cdecl, stdcall, safecall, palmossyscall. The registers
saved should be the ones as defined in the target ABI and / or GCC.
This value can be deduced from the CALLED_USED_REGISTERS array in the
GCC source.
}
saved_standard_registers : array[0..6] of tsuperregister =
(RS_R4,RS_R5,RS_R6,RS_R7,RS_R8,RS_R9,RS_R10);
{ this is only for the generic code which is not used for this architecture }
saved_mm_registers : array[0..0] of tsuperregister = (RS_NO);
{ Required parameter alignment when calling a routine declared as
stdcall and cdecl. The alignment value should be the one defined
by GCC or the target ABI.
The value of this constant is equal to the constant
PARM_BOUNDARY / BITS_PER_UNIT in the GCC source.
}
std_param_align = 4;
{*****************************************************************************
Helpers
*****************************************************************************}
{ Returns the tcgsize corresponding with the size of reg.}
function reg_cgsize(const reg: tregister) : tcgsize;
function cgsize2subreg(s:Tcgsize):Tsubregister;
function is_calljmp(o:tasmop):boolean;
procedure inverse_flags(var f: TResFlags);
function flags_to_cond(const f: TResFlags) : TAsmCond;
function findreg_by_number(r:Tregister):tregisterindex;
function std_regnum_search(const s:string):Tregister;
function std_regname(r:Tregister):string;
function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
procedure shifterop_reset(var so : tshifterop);
function is_pc(const r : tregister) : boolean;
function is_shifter_const(d : aint;var imm_shift : byte) : boolean;
function dwarf_reg(r:tregister):shortint;
implementation
uses
systems,rgBase,verbose;
const
std_regname_table : array[tregisterindex] of string[7] = (
{$i rarmstd.inc}
);
regnumber_index : array[tregisterindex] of tregisterindex = (
{$i rarmrni.inc}
);
std_regname_index : array[tregisterindex] of tregisterindex = (
{$i rarmsri.inc}
);
function cgsize2subreg(s:Tcgsize):Tsubregister;
begin
cgsize2subreg:=R_SUBWHOLE;
end;
function reg_cgsize(const reg: tregister): tcgsize;
begin
case getregtype(reg) of
R_INTREGISTER :
reg_cgsize:=OS_32;
R_FPUREGISTER :
reg_cgsize:=OS_F80;
else
internalerror(200303181);
end;
end;
function is_calljmp(o:tasmop):boolean;
begin
{ This isn't 100% perfect because the arm allows jumps also by writing to PC=R15.
To overcome this problem we simply forbid that FPC generates jumps by loading R15 }
is_calljmp:= o in [A_B,A_BL,A_BX,A_BLX];
end;
procedure inverse_flags(var f: TResFlags);
const
inv_flags: array[TResFlags] of TResFlags =
(F_NE,F_EQ,F_CC,F_CS,F_PL,F_MI,F_VC,F_VS,F_LS,F_HI,
F_LT,F_GE,F_LE,F_GT);
begin
f:=inv_flags[f];
end;
function flags_to_cond(const f: TResFlags) : TAsmCond;
const
flag_2_cond: array[F_EQ..F_LE] of TAsmCond =
(C_EQ,C_NE,C_CS,C_CC,C_MI,C_PL,C_VS,C_VC,C_HI,C_LS,
C_GE,C_LT,C_GT,C_LE);
begin
if f>high(flag_2_cond) then
internalerror(200112301);
result:=flag_2_cond[f];
end;
function findreg_by_number(r:Tregister):tregisterindex;
begin
result:=rgBase.findreg_by_number_table(r,regnumber_index);
end;
function std_regnum_search(const s:string):Tregister;
begin
result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)];
end;
function std_regname(r:Tregister):string;
var
p : tregisterindex;
begin
p:=findreg_by_number_table(r,regnumber_index);
if p<>0 then
result:=std_regname_table[p]
else
result:=generic_regname(r);
end;
procedure shifterop_reset(var so : tshifterop);
begin
FillChar(so,sizeof(so),0);
end;
function is_pc(const r : tregister) : boolean;
begin
is_pc:=(r=NR_R15);
end;
function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
const
inverse: array[TAsmCond] of TAsmCond=(C_None,
C_NE,C_EQ,C_CC,C_CS,C_PL,C_MI,C_VC,C_VS,C_LS,C_HI,
C_LT,C_GE,C_LE,C_GT,C_None,C_None
);
begin
result := inverse[c];
end;
function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
begin
result := c1 = c2;
end;
function rotl(d : dword;b : byte) : dword;
begin
result:=(d shr (32-b)) or (d shl b);
end;
function is_shifter_const(d : aint;var imm_shift : byte) : boolean;
var
i : longint;
begin
for i:=0 to 15 do
begin
if (dword(d) and not(rotl($ff,i*2)))=0 then
begin
imm_shift:=i*2;
result:=true;
exit;
end;
end;
result:=false;
end;
function dwarf_reg(r:tregister):shortint;
begin
result:=regdwarf_table[findreg_by_number(r)];
if result=-1 then
internalerror(200603251);
end;
{ Low part of 64bit return value }
function NR_FUNCTION_RESULT64_LOW_REG: tregister;
begin
if target_info.endian=endian_little then
result:=NR_R0
else
result:=NR_R1;
end;
function RS_FUNCTION_RESULT64_LOW_REG: shortint;
begin
if target_info.endian=endian_little then
result:=RS_R0
else
result:=RS_R1;
end;
{ High part of 64bit return value }
function NR_FUNCTION_RESULT64_HIGH_REG: tregister;
begin
if target_info.endian=endian_little then
result:=NR_R1
else
result:=NR_R0;
end;
function RS_FUNCTION_RESULT64_HIGH_REG: shortint;
begin
if target_info.endian=endian_little then
result:=RS_R1
else
result:=RS_R0;
end;
end.