fpc/compiler/ncal.pas
2007-01-19 18:05:58 +00:00

3003 lines
117 KiB
ObjectPascal

{
This file implements the node for sub procedure calling.
Copyright (c) 1998-2002 by Florian Klaempfl
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit ncal;
{$i fpcdefs.inc}
interface
uses
cutils,cclasses,
globtype,
paramgr,parabase,
node,nbas,nutils,
{$ifdef state_tracking}
nstate,
{$endif state_tracking}
symbase,symtype,symsym,symdef,symtable;
type
tcallnodeflag = (
cnf_typedefset,
cnf_return_value_used,
cnf_inherited,
cnf_anon_inherited,
cnf_new_call,
cnf_dispose_call,
cnf_member_call, { called with implicit methodpointer tree }
cnf_uses_varargs { varargs are used in the declaration }
);
tcallnodeflags = set of tcallnodeflag;
tcallnode = class(tbinarynode)
private
{ info for inlining }
inlinelocals: TFPObjectList;
{ number of parameters passed from the source, this does not include the hidden parameters }
paralength : smallint;
function gen_self_tree_methodpointer:tnode;
function gen_self_tree:tnode;
function gen_vmt_tree:tnode;
procedure bind_parasym;
{ function return node, this is used to pass the data for a
ret_in_param return value }
_funcretnode : tnode;
procedure setfuncretnode(const returnnode: tnode);
procedure convert_carg_array_of_const;
procedure order_parameters;
procedure createinlineparas(var createstatement, deletestatement: tstatementnode);
function replaceparaload(var n: tnode; arg: pointer): foreachnoderesult;
procedure createlocaltemps(p:TObject;arg:pointer);
function pass1_inline:tnode;
protected
pushedparasize : longint;
public
{ the symbol containing the definition of the procedure }
{ to call }
symtableprocentry : tprocsym;
symtableprocentryderef : tderef;
{ symtable where the entry was found, needed for with support }
symtableproc : TSymtable;
{ the definition of the procedure to call }
procdefinition : tabstractprocdef;
procdefinitionderef : tderef;
methodpointerinit,
methodpointerdone : tblocknode;
{ tree that contains the pointer to the object for this method }
methodpointer : tnode;
{ varargs parasyms }
varargsparas : tvarargsparalist;
{ node that specifies where the result should be put for calls }
{ that return their result in a parameter }
property funcretnode: tnode read _funcretnode write setfuncretnode;
{ separately specified resultdef for some compilerprocs (e.g. }
{ you can't have a function with an "array of char" resultdef }
{ the RTL) (JM) }
typedef: tdef;
callnodeflags : tcallnodeflags;
{ only the processor specific nodes need to override this }
{ constructor }
constructor create(l:tnode; v : tprocsym;st : TSymtable; mp: tnode; callflags:tcallnodeflags);virtual;
constructor create_procvar(l,r:tnode);
constructor createintern(const name: string; params: tnode);
constructor createinternres(const name: string; params: tnode; res:tdef);
constructor createinternreturn(const name: string; params: tnode; returnnode : tnode);
destructor destroy;override;
constructor ppuload(t:tnodetype;ppufile:tcompilerppufile);override;
procedure ppuwrite(ppufile:tcompilerppufile);override;
procedure derefnode;override;
procedure buildderefimpl;override;
procedure derefimpl;override;
function dogetcopy : tnode;override;
{ Goes through all symbols in a class and subclasses and calls
verify abstract for each .
}
procedure verifyabstractcalls;
{ called for each definition in a class and verifies if a method
is abstract or not, if it is abstract, give out a warning
}
procedure verifyabstract(sym:TObject;arg:pointer);
procedure insertintolist(l : tnodelist);override;
function pass_1 : tnode;override;
function pass_typecheck:tnode;override;
{$ifdef state_tracking}
function track_state_pass(exec_known:boolean):boolean;override;
{$endif state_tracking}
function docompare(p: tnode): boolean; override;
procedure printnodedata(var t:text);override;
function para_count:longint;
function get_load_methodpointer:tnode;
{ checks if there are any parameters which end up at the stack, i.e.
which have LOC_REFERENCE and set pi_has_stackparameter if this applies }
procedure check_stack_parameters;
property parameters : tnode read left write left;
private
AbstractMethodsList : TFPHashList;
end;
tcallnodeclass = class of tcallnode;
tcallparaflag = (
cpf_is_colon_para,
cpf_varargs_para { belongs this para to varargs }
);
tcallparaflags = set of tcallparaflag;
tcallparanode = class(ttertiarynode)
public
callparaflags : tcallparaflags;
parasym : tparavarsym;
used_by_callnode : boolean;
{ only the processor specific nodes need to override this }
{ constructor }
constructor create(expr,next : tnode);virtual;
destructor destroy;override;
constructor ppuload(t:tnodetype;ppufile:tcompilerppufile);override;
procedure ppuwrite(ppufile:tcompilerppufile);override;
function dogetcopy : tnode;override;
procedure insertintolist(l : tnodelist);override;
procedure get_paratype;
procedure insert_typeconv(do_count : boolean);
procedure det_registers;
procedure firstcallparan;
procedure secondcallparan;virtual;abstract;
function docompare(p: tnode): boolean; override;
procedure printnodetree(var t:text);override;
property value : tnode read left write left;
property nextpara : tnode read right write right;
property parametername : tnode read third write third;
end;
tcallparanodeclass = class of tcallparanode;
function reverseparameters(p: tcallparanode): tcallparanode;
function translate_disp_call(selfnode,parametersnode : tnode;methodname : ansistring = '';dispid : longint = 0) : tnode;
var
ccallnode : tcallnodeclass;
ccallparanode : tcallparanodeclass;
{ Current callnode, this is needed for having a link
between the callparanodes and the callnode they belong to }
aktcallnode : tcallnode;
implementation
uses
systems,
verbose,globals,
symconst,defutil,defcmp,
htypechk,pass_1,
ncnv,nld,ninl,nadd,ncon,nmem,nset,
procinfo,
cgbase
;
type
tobjectinfoitem = class(tlinkedlistitem)
objinfo : tobjectdef;
constructor create(def : tobjectdef);
end;
{****************************************************************************
HELPERS
****************************************************************************}
function reverseparameters(p: tcallparanode): tcallparanode;
var
hp1, hp2: tcallparanode;
begin
hp1:=nil;
while assigned(p) do
begin
{ pull out }
hp2:=p;
p:=tcallparanode(p.right);
{ pull in }
hp2.right:=hp1;
hp1:=hp2;
end;
reverseparameters:=hp1;
end;
function translate_disp_call(selfnode,parametersnode : tnode;methodname : ansistring = '';dispid : longint = 0) : tnode;
const
DISPATCH_METHOD = $1;
DISPATCH_PROPERTYGET = $2;
DISPATCH_PROPERTYPUT = $4;
DISPATCH_PROPERTYPUTREF = $8;
DISPATCH_CONSTRUCT = $4000;
var
statements : tstatementnode;
result_data,
params : ttempcreatenode;
paramssize : longint;
calldescnode : tdataconstnode;
para : tcallparanode;
currargpos,
namedparacount,
paracount : longint;
vardatadef,
pvardatadef : tdef;
dispatchbyref : boolean;
calldesc : packed record
calltype,argcount,namedargcount : byte;
{ size of argtypes is unknown at compile time
so this is basically a dummy }
argtypes : array[0..255] of byte;
{ argtypes is followed by method name
names of named parameters, each being
a zero terminated string
}
end;
names : ansistring;
dispintfinvoke,
variantdispatch : boolean;
procedure increase_paramssize;
begin
{ for now we pass everything by reference
case para.value.resultdef.typ of
variantdef:
inc(paramssize,para.value.resultdef.size);
else
}
inc(paramssize,sizeof(voidpointertype.size ));
{
end;
}
end;
begin
variantdispatch:=selfnode.resultdef.typ=variantdef;
dispintfinvoke:=not(variantdispatch);
result:=internalstatements(statements);
fillchar(calldesc,sizeof(calldesc),0);
{ get temp for the result }
result_data:=ctempcreatenode.create(colevarianttype,colevarianttype.size,tt_persistent,true);
addstatement(statements,result_data);
{ build parameters }
{ first, count and check parameters }
// p2:=reverseparameters(tcallparanode(p2));
para:=tcallparanode(parametersnode);
paracount:=0;
namedparacount:=0;
paramssize:=0;
while assigned(para) do
begin
inc(paracount);
typecheckpass(para.value);
{ insert some extra casts }
if is_constintnode(para.value) and not(is_64bitint(para.value.resultdef)) then
begin
para.value:=ctypeconvnode.create_internal(para.value,s32inttype);
typecheckpass(para.value);
end
else if para.value.nodetype=stringconstn then
begin
para.value:=ctypeconvnode.create_internal(para.value,cwidestringtype);
typecheckpass(para.value);
end
{ force automatable boolean type }
else if is_boolean(para.value.resultdef) then
begin
para.value:=ctypeconvnode.create_internal(para.value,bool16type);
typecheckpass(para.value);
end;
if assigned(para.parametername) then
begin
typecheckpass(para.value);
inc(namedparacount);
end;
if para.value.nodetype<>nothingn then
if not is_automatable(para.value.resultdef) then
CGMessagePos1(para.value.fileinfo,type_e_not_automatable,para.value.resultdef.typename);
{ we've to know the parameter size to allocate the temp. space }
increase_paramssize;
para:=tcallparanode(para.nextpara);
end;
calldesc.calltype:=DISPATCH_METHOD;
calldesc.argcount:=paracount;
{ allocate space }
params:=ctempcreatenode.create(voidtype,paramssize,tt_persistent,true);
addstatement(statements,params);
calldescnode:=cdataconstnode.create;
if dispintfinvoke then
calldescnode.append(dispid,sizeof(dispid));
{ build up parameters and description }
para:=tcallparanode(parametersnode);
currargpos:=0;
paramssize:=0;
names := '';
while assigned(para) do
begin
if assigned(para.parametername) then
begin
if para.parametername.nodetype=stringconstn then
names:=names+tstringconstnode(para.parametername).value_str+#0
else
internalerror(200611041);
end;
dispatchbyref:=para.value.resultdef.typ in [variantdef];
{ assign the argument/parameter to the temporary location }
if para.value.nodetype<>nothingn then
if dispatchbyref then
addstatement(statements,cassignmentnode.create(
ctypeconvnode.create_internal(cderefnode.create(caddnode.create(addn,
caddrnode.create(ctemprefnode.create(params)),
cordconstnode.create(paramssize,ptrinttype,false)
)),voidpointertype),
ctypeconvnode.create_internal(caddrnode.create_internal(para.value),voidpointertype)))
else
addstatement(statements,cassignmentnode.create(
ctypeconvnode.create_internal(cderefnode.create(caddnode.create(addn,
caddrnode.create(ctemprefnode.create(params)),
cordconstnode.create(paramssize,ptrinttype,false)
)),voidpointertype),
ctypeconvnode.create_internal(para.value,voidpointertype)));
if is_ansistring(para.value.resultdef) then
calldesc.argtypes[currargpos]:=varStrArg
else
calldesc.argtypes[currargpos]:=para.value.resultdef.getvardef;
if dispatchbyref then
calldesc.argtypes[currargpos]:=calldesc.argtypes[currargpos] or $80;
increase_paramssize;
para.value:=nil;
inc(currargpos);
para:=tcallparanode(para.nextpara);
end;
// typecheckpass(statements);
// printnode(output,statements);
{ old argument list skeleton isn't needed anymore }
parametersnode.free;
calldescnode.append(calldesc,3+calldesc.argcount);
pvardatadef:=tpointerdef(search_system_type('PVARDATA').typedef);
if variantdispatch then
begin
methodname:=methodname+#0;
calldescnode.append(pointer(methodname)^,length(methodname));
calldescnode.append(pointer(names)^,length(names));
{ actual call }
vardatadef:=trecorddef(search_system_type('TVARDATA').typedef);
addstatement(statements,ccallnode.createintern('fpc_dispinvoke_variant',
{ parameters are passed always reverted, i.e. the last comes first }
ccallparanode.create(caddrnode.create(ctemprefnode.create(params)),
ccallparanode.create(caddrnode.create(calldescnode),
ccallparanode.create(ctypeconvnode.create_internal(selfnode,vardatadef),
ccallparanode.create(ctypeconvnode.create_internal(caddrnode.create(
ctemprefnode.create(result_data)
),pvardatadef),nil)))))
);
end
else
begin
addstatement(statements,ccallnode.createintern('fpc_dispatch_by_id',
{ parameters are passed always reverted, i.e. the last comes first }
ccallparanode.create(caddrnode.create(ctemprefnode.create(params)),
ccallparanode.create(caddrnode.create(calldescnode),
ccallparanode.create(ctypeconvnode.create_internal(selfnode,voidpointertype),
ccallparanode.create(ctypeconvnode.create_internal(caddrnode.create(
ctemprefnode.create(result_data)
),pvardatadef),nil)))))
);
end;
{ clean up }
addstatement(statements,ctempdeletenode.create_normal_temp(result_data));
addstatement(statements,ctemprefnode.create(result_data));
end;
procedure maybe_load_para_in_temp(var p:tnode);
function is_simple_node(hp:tnode):boolean;
begin
is_simple_node:=(hp.nodetype in [typen,loadvmtaddrn,loadn,arrayconstructorn]);
end;
var
hp,
loadp,
refp : tnode;
hdef : tdef;
ptemp : ttempcreatenode;
usederef : boolean;
usevoidpointer : boolean;
newinitstatement,
newdonestatement : tstatementnode;
begin
if not assigned(aktcallnode) then
internalerror(200410121);
{ Load all complex loads into a temp to prevent
double calls to a function. We can't simply check for a hp.nodetype=calln
}
hp:=p;
while assigned(hp) and
(hp.nodetype=typeconvn) and
(ttypeconvnode(hp).convtype=tc_equal) do
hp:=tunarynode(hp).left;
if assigned(hp) and
not is_simple_node(hp) then
begin
if not assigned(aktcallnode.methodpointerinit) then
begin
aktcallnode.methodpointerinit:=internalstatements(newinitstatement);
aktcallnode.methodpointerdone:=internalstatements(newdonestatement);
end
else
begin
newinitstatement:=laststatement(aktcallnode.methodpointerinit);
newdonestatement:=laststatement(aktcallnode.methodpointerdone);
end;
{ temp create }
usederef:=(p.resultdef.typ in [arraydef,recorddef]) or
is_shortstring(p.resultdef) or
is_object(p.resultdef);
{ avoid refcount increase }
usevoidpointer:=is_interface(p.resultdef);
if usederef then
hdef:=tpointerdef.create(p.resultdef)
else
hdef:=p.resultdef;
if usevoidpointer then
begin
ptemp:=ctempcreatenode.create(voidpointertype,voidpointertype.size,tt_persistent,true);
loadp := ctypeconvnode.create_internal(p,voidpointertype);
refp:=ctypeconvnode.create_internal(ctemprefnode.create(ptemp),hdef);
end
else
begin
ptemp:=ctempcreatenode.create(hdef,hdef.size,tt_persistent,true);
if usederef then
begin
loadp:=caddrnode.create_internal(p);
refp:=cderefnode.create(ctemprefnode.create(ptemp));
end
else
begin
loadp:=p;
refp:=ctemprefnode.create(ptemp)
end
end;
addstatement(newinitstatement,ptemp);
addstatement(newinitstatement,cassignmentnode.create(
ctemprefnode.create(ptemp),
loadp));
{ new tree is only a temp reference }
p:=refp;
{ temp release. We need to return a reference to the methodpointer
otherwise the conversion from callnode to loadnode can't be done
for the methodpointer unless the loadnode will also get a methodpointerinit and
methodpointerdone node. For the moment we use register as temp and therefor
don't create a temp-leak in the stackframe (PFV) }
{ the last statement should return the value as
location and type, this is done be referencing the
temp and converting it first from a persistent temp to
normal temp }
addstatement(newdonestatement,ctempdeletenode.create_normal_temp(ptemp));
if usevoidpointer then
addstatement(newdonestatement,ctypeconvnode.create_internal(
ctemprefnode.create(ptemp),hdef))
else
addstatement(newdonestatement,ctemprefnode.create(ptemp));
{ call typecheckpass for new nodes }
typecheckpass(p);
typecheckpass(aktcallnode.methodpointerinit);
typecheckpass(aktcallnode.methodpointerdone);
end;
end;
function gen_high_tree(var p:tnode;paradef:tdef):tnode;
{When passing an array to an open array, or a string to an open string,
some code is needed that generates the high bound of the array. This
function returns a tree containing the nodes for it.}
var
temp: tnode;
len : integer;
loadconst : boolean;
hightree,l,r : tnode;
begin
len:=-1;
loadconst:=true;
hightree:=nil;
case p.resultdef.typ of
arraydef :
begin
if (paradef.typ<>arraydef) then
internalerror(200405241);
{ passing a string to an array of char }
if (p.nodetype=stringconstn) then
begin
len:=tstringconstnode(p).len;
if len>0 then
dec(len);
end
else
{ handle special case of passing an single array to an array of array }
if compare_defs(tarraydef(paradef).elementdef,p.resultdef,nothingn)>=te_equal then
len:=0
else
begin
{ handle via a normal inline in_high_x node }
loadconst:=false;
{ slice? }
if (p.nodetype=inlinen) and (tinlinenode(p).inlinenumber=in_slice_x) then
with Tcallparanode(Tinlinenode(p).left) do
begin
{Array slice using slice builtin function.}
l:=Tcallparanode(right).left;
hightree:=caddnode.create(subn,l,genintconstnode(1));
Tcallparanode(right).left:=nil;
{Remove the inline node.}
temp:=p;
p:=left;
Tcallparanode(tinlinenode(temp).left).left:=nil;
temp.free;
typecheckpass(hightree);
end
else if (p.nodetype=vecn) and (Tvecnode(p).right.nodetype=rangen) then
begin
{Array slice using .. operator.}
with Trangenode(Tvecnode(p).right) do
begin
l:=left; {Get lower bound.}
r:=right; {Get upper bound.}
end;
{In the procedure the array range is 0..(upper_bound-lower_bound).}
hightree:=caddnode.create(subn,r,l);
typecheckpass(hightree);
{Replace the rangnode in the tree by its lower_bound, and
dispose the rangenode.}
temp:=Tvecnode(p).right;
Tvecnode(p).right:=l.getcopy;
with Trangenode(temp) do
begin
left:=nil;
right:=nil;
end;
temp.free;
{Tree changed from p[l..h] to p[l], recalculate resultdef.}
p.resultdef:=nil;
typecheckpass(p);
end
else
begin
maybe_load_para_in_temp(p);
hightree:=geninlinenode(in_high_x,false,p.getcopy);
typecheckpass(hightree);
{ only substract low(array) if it's <> 0 }
temp:=geninlinenode(in_low_x,false,p.getcopy);
typecheckpass(temp);
if (temp.nodetype <> ordconstn) or
(tordconstnode(temp).value <> 0) then
hightree := caddnode.create(subn,hightree,temp)
else
temp.free;
end;
end;
end;
stringdef :
begin
if is_open_string(paradef) then
begin
maybe_load_para_in_temp(p);
{ handle via a normal inline in_high_x node }
loadconst := false;
hightree := geninlinenode(in_high_x,false,p.getcopy);
end
else
begin
{ passing a string to an array of char }
if (p.nodetype=stringconstn) then
begin
len:=tstringconstnode(p).len;
if len>0 then
dec(len);
end
else
begin
maybe_load_para_in_temp(p);
hightree:=caddnode.create(subn,geninlinenode(in_length_x,false,p.getcopy),
cordconstnode.create(1,sinttype,false));
loadconst:=false;
end;
end;
end;
else
len:=0;
end;
if loadconst then
hightree:=cordconstnode.create(len,sinttype,true)
else
begin
if not assigned(hightree) then
internalerror(200304071);
{ Need to use explicit, because it can also be a enum }
hightree:=ctypeconvnode.create_internal(hightree,sinttype);
end;
result:=hightree;
end;
{****************************************************************************
TOBJECTINFOITEM
****************************************************************************}
constructor tobjectinfoitem.create(def : tobjectdef);
begin
inherited create;
objinfo := def;
end;
{****************************************************************************
TCALLPARANODE
****************************************************************************}
constructor tcallparanode.create(expr,next : tnode);
begin
inherited create(callparan,expr,next,nil);
if not assigned(expr) then
internalerror(200305091);
expr.fileinfo:=fileinfo;
callparaflags:=[];
end;
destructor tcallparanode.destroy;
begin
{ When the node is used by callnode then
we don't destroy left, the callnode takes care of it }
if used_by_callnode then
left:=nil;
inherited destroy;
end;
constructor tcallparanode.ppuload(t:tnodetype;ppufile:tcompilerppufile);
begin
inherited ppuload(t,ppufile);
ppufile.getsmallset(callparaflags);
end;
procedure tcallparanode.ppuwrite(ppufile:tcompilerppufile);
begin
inherited ppuwrite(ppufile);
ppufile.putsmallset(callparaflags);
end;
function tcallparanode.dogetcopy : tnode;
var
n : tcallparanode;
begin
n:=tcallparanode(inherited dogetcopy);
n.callparaflags:=callparaflags;
n.parasym:=parasym;
result:=n;
end;
procedure tcallparanode.insertintolist(l : tnodelist);
begin
end;
procedure tcallparanode.get_paratype;
var
old_array_constructor : boolean;
begin
inc(parsing_para_level);
if assigned(right) then
tcallparanode(right).get_paratype;
old_array_constructor:=allow_array_constructor;
allow_array_constructor:=true;
typecheckpass(left);
allow_array_constructor:=old_array_constructor;
if codegenerror then
resultdef:=generrordef
else
resultdef:=left.resultdef;
dec(parsing_para_level);
end;
procedure tcallparanode.insert_typeconv(do_count : boolean);
var
olddef : tdef;
hp : tnode;
{$ifdef extdebug}
store_count_ref : boolean;
{$endif def extdebug}
begin
inc(parsing_para_level);
{$ifdef extdebug}
if do_count then
begin
store_count_ref:=count_ref;
count_ref:=true;
end;
{$endif def extdebug}
{ Be sure to have the resultdef }
if not assigned(left.resultdef) then
typecheckpass(left);
if (left.nodetype<>nothingn) then
begin
{ Convert tp procvars, this is needs to be done
here to make the change permanent. in the overload
choosing the changes are only made temporary }
if (left.resultdef.typ=procvardef) and
(parasym.vardef.typ<>procvardef) then
begin
if maybe_call_procvar(left,true) then
resultdef:=left.resultdef;
end;
{ Remove implicitly inserted typecast to pointer for
@procvar in macpas }
if (m_mac_procvar in current_settings.modeswitches) and
(parasym.vardef.typ=procvardef) and
(left.nodetype=typeconvn) and
is_voidpointer(left.resultdef) and
(ttypeconvnode(left).left.nodetype=typeconvn) and
(ttypeconvnode(ttypeconvnode(left).left).convtype=tc_proc_2_procvar) then
begin
hp:=left;
left:=ttypeconvnode(left).left;
ttypeconvnode(hp).left:=nil;
hp.free;
end;
{ Handle varargs and hidden paras directly, no typeconvs or }
{ pass_typechecking needed }
if (cpf_varargs_para in callparaflags) then
begin
{ this should only happen vor C varargs }
{ the necessary conversions have already been performed in }
{ tarrayconstructornode.insert_typeconvs }
set_varstate(left,vs_read,[vsf_must_be_valid]);
insert_varargstypeconv(left,true);
resultdef:=left.resultdef;
{ also update parasym type to get the correct parameter location
for the new types }
parasym.vardef:=left.resultdef;
end
else
if (vo_is_hidden_para in parasym.varoptions) then
begin
set_varstate(left,vs_read,[vsf_must_be_valid]);
resultdef:=left.resultdef;
end
else
begin
{ Do we need arrayconstructor -> set conversion, then insert
it here before the arrayconstructor node breaks the tree
with its conversions of enum->ord }
if (left.nodetype=arrayconstructorn) and
(parasym.vardef.typ=setdef) then
inserttypeconv(left,parasym.vardef);
{ set some settings needed for arrayconstructor }
if is_array_constructor(left.resultdef) then
begin
if left.nodetype<>arrayconstructorn then
internalerror(200504041);
if is_array_of_const(parasym.vardef) then
begin
{ force variant array }
include(left.flags,nf_forcevaria);
end
else
begin
include(left.flags,nf_novariaallowed);
{ now that the resultting type is know we can insert the required
typeconvs for the array constructor }
if parasym.vardef.typ=arraydef then
tarrayconstructornode(left).force_type(tarraydef(parasym.vardef).elementdef);
end;
end;
{ check if local proc/func is assigned to procvar }
if left.resultdef.typ=procvardef then
test_local_to_procvar(tprocvardef(left.resultdef),parasym.vardef);
{ test conversions }
if not(is_shortstring(left.resultdef) and
is_shortstring(parasym.vardef)) and
(parasym.vardef.typ<>formaldef) then
begin
{ Process open parameters }
if paramanager.push_high_param(parasym.varspez,parasym.vardef,aktcallnode.procdefinition.proccalloption) then
begin
{ insert type conv but hold the ranges of the array }
olddef:=left.resultdef;
inserttypeconv(left,parasym.vardef);
left.resultdef:=olddef;
end
else
begin
check_ranges(left.fileinfo,left,parasym.vardef);
inserttypeconv(left,parasym.vardef);
end;
if codegenerror then
begin
dec(parsing_para_level);
exit;
end;
end;
{ check var strings }
if (cs_strict_var_strings in current_settings.localswitches) and
is_shortstring(left.resultdef) and
is_shortstring(parasym.vardef) and
(parasym.varspez in [vs_out,vs_var]) and
not(is_open_string(parasym.vardef)) and
not(equal_defs(left.resultdef,parasym.vardef)) then
begin
current_filepos:=left.fileinfo;
CGMessage(type_e_strict_var_string_violation);
end;
{ Handle formal parameters separate }
if (parasym.vardef.typ=formaldef) then
begin
{ load procvar if a procedure is passed }
if ((m_tp_procvar in current_settings.modeswitches) or
(m_mac_procvar in current_settings.modeswitches)) and
(left.nodetype=calln) and
(is_void(left.resultdef)) then
load_procvar_from_calln(left);
case parasym.varspez of
vs_var,
vs_out :
begin
if not valid_for_formal_var(left,true) then
CGMessagePos(left.fileinfo,parser_e_illegal_parameter_list);
end;
vs_const :
begin
if not valid_for_formal_const(left,true) then
CGMessagePos(left.fileinfo,parser_e_illegal_parameter_list);
end;
end;
end
else
begin
{ check if the argument is allowed }
if (parasym.varspez in [vs_out,vs_var]) then
valid_for_var(left,true);
end;
if parasym.varspez in [vs_var,vs_out] then
set_unique(left);
{ When the address needs to be pushed then the register is
not regable. Exception is when the location is also a var
parameter and we can pass the address transparently }
if (
not(
(vo_is_hidden_para in parasym.varoptions) and
(left.resultdef.typ in [pointerdef,classrefdef])
) and
paramanager.push_addr_param(parasym.varspez,parasym.vardef,
aktcallnode.procdefinition.proccalloption) and
not(
(left.nodetype=loadn) and
(tloadnode(left).is_addr_param_load)
)
) then
make_not_regable(left,vr_addr);
if do_count then
begin
case parasym.varspez of
vs_out :
set_varstate(left,vs_readwritten,[]);
vs_var :
set_varstate(left,vs_readwritten,[vsf_must_be_valid,vsf_use_hints]);
else
set_varstate(left,vs_read,[vsf_must_be_valid]);
end;
end;
{ must only be done after typeconv PM }
resultdef:=parasym.vardef;
end;
end;
{ process next node }
if assigned(right) then
tcallparanode(right).insert_typeconv(do_count);
dec(parsing_para_level);
{$ifdef extdebug}
if do_count then
count_ref:=store_count_ref;
{$endif def extdebug}
end;
procedure tcallparanode.det_registers;
begin
if assigned(right) then
begin
tcallparanode(right).det_registers;
registersint:=right.registersint;
registersfpu:=right.registersfpu;
{$ifdef SUPPORT_MMX}
registersmmx:=right.registersmmx;
{$endif}
end;
firstpass(left);
if left.registersint>registersint then
registersint:=left.registersint;
if left.registersfpu>registersfpu then
registersfpu:=left.registersfpu;
{$ifdef SUPPORT_MMX}
if left.registersmmx>registersmmx then
registersmmx:=left.registersmmx;
{$endif SUPPORT_MMX}
end;
procedure tcallparanode.firstcallparan;
begin
if not assigned(left.resultdef) then
get_paratype;
det_registers;
end;
function tcallparanode.docompare(p: tnode): boolean;
begin
docompare :=
inherited docompare(p) and
(callparaflags = tcallparanode(p).callparaflags)
;
end;
procedure tcallparanode.printnodetree(var t:text);
begin
printnodelist(t);
end;
{****************************************************************************
TCALLNODE
****************************************************************************}
constructor tcallnode.create(l:tnode;v : tprocsym;st : TSymtable; mp: tnode; callflags:tcallnodeflags);
begin
inherited create(calln,l,nil);
symtableprocentry:=v;
symtableproc:=st;
callnodeflags:=callflags+[cnf_return_value_used];
methodpointer:=mp;
methodpointerinit:=nil;
methodpointerdone:=nil;
procdefinition:=nil;
_funcretnode:=nil;
paralength:=-1;
varargsparas:=nil;
end;
constructor tcallnode.create_procvar(l,r:tnode);
begin
inherited create(calln,l,r);
symtableprocentry:=nil;
symtableproc:=nil;
methodpointer:=nil;
methodpointerinit:=nil;
methodpointerdone:=nil;
procdefinition:=nil;
callnodeflags:=[cnf_return_value_used];
_funcretnode:=nil;
paralength:=-1;
varargsparas:=nil;
end;
constructor tcallnode.createintern(const name: string; params: tnode);
var
srsym: tsym;
begin
srsym := tsym(systemunit.Find(name));
if not assigned(srsym) and
(cs_compilesystem in current_settings.moduleswitches) then
srsym := tsym(systemunit.Find(upper(name)));
if not assigned(srsym) or
(srsym.typ<>procsym) then
Message1(cg_f_unknown_compilerproc,name);
create(params,tprocsym(srsym),srsym.owner,nil,[]);
end;
constructor tcallnode.createinternres(const name: string; params: tnode; res:tdef);
var
pd : tprocdef;
begin
createintern(name,params);
typedef := res;
include(callnodeflags,cnf_typedefset);
pd:=tprocdef(symtableprocentry.ProcdefList[0]);
{ both the normal and specified resultdef either have to be returned via a }
{ parameter or not, but no mixing (JM) }
if paramanager.ret_in_param(typedef,pd.proccalloption) xor
paramanager.ret_in_param(pd.returndef,pd.proccalloption) then
internalerror(200108291);
end;
constructor tcallnode.createinternreturn(const name: string; params: tnode; returnnode : tnode);
var
pd : tprocdef;
begin
createintern(name,params);
_funcretnode:=returnnode;
pd:=tprocdef(symtableprocentry.ProcdefList[0]);
if not paramanager.ret_in_param(pd.returndef,pd.proccalloption) then
internalerror(200204247);
end;
procedure tcallnode.setfuncretnode(const returnnode: tnode);
var
para: tcallparanode;
begin
if assigned(_funcretnode) then
_funcretnode.free;
_funcretnode := returnnode;
{ if the resultdef pass hasn't occurred yet, that one will do }
{ everything }
if assigned(resultdef) then
begin
{ these are returned as values, but we can optimize their loading }
{ as well }
if is_ansistring(resultdef) or
is_widestring(resultdef) then
exit;
para := tcallparanode(left);
while assigned(para) do
begin
if (vo_is_hidden_para in para.parasym.varoptions) and
(vo_is_funcret in tparavarsym(para.parasym).varoptions) then
begin
para.left.free;
para.left := _funcretnode.getcopy;
exit;
end;
para := tcallparanode(para.right);
end;
{ no hidden resultpara found, error! }
if not(po_inline in procdefinition.procoptions) then
internalerror(200306087);
end;
end;
destructor tcallnode.destroy;
begin
methodpointer.free;
methodpointerinit.free;
methodpointerdone.free;
_funcretnode.free;
if assigned(varargsparas) then
varargsparas.free;
inherited destroy;
end;
constructor tcallnode.ppuload(t:tnodetype;ppufile:tcompilerppufile);
begin
methodpointerinit:=tblocknode(ppuloadnode(ppufile));
methodpointer:=ppuloadnode(ppufile);
methodpointerdone:=tblocknode(ppuloadnode(ppufile));
_funcretnode:=ppuloadnode(ppufile);
inherited ppuload(t,ppufile);
ppufile.getderef(symtableprocentryderef);
{$warning FIXME: No withsymtable support}
symtableproc:=nil;
ppufile.getderef(procdefinitionderef);
ppufile.getsmallset(callnodeflags);
end;
procedure tcallnode.ppuwrite(ppufile:tcompilerppufile);
begin
ppuwritenode(ppufile,methodpointerinit);
ppuwritenode(ppufile,methodpointer);
ppuwritenode(ppufile,methodpointerdone);
ppuwritenode(ppufile,_funcretnode);
inherited ppuwrite(ppufile);
ppufile.putderef(symtableprocentryderef);
ppufile.putderef(procdefinitionderef);
ppufile.putsmallset(callnodeflags);
end;
procedure tcallnode.derefnode;
begin
if assigned(methodpointerinit) then
methodpointerinit.derefnode;
if assigned(methodpointer) then
methodpointer.derefnode;
if assigned(methodpointerdone) then
methodpointerdone.derefnode;
if assigned(_funcretnode) then
_funcretnode.derefnode;
inherited derefnode;
end;
procedure tcallnode.buildderefimpl;
begin
inherited buildderefimpl;
symtableprocentryderef.build(symtableprocentry);
procdefinitionderef.build(procdefinition);
if assigned(methodpointer) then
methodpointer.buildderefimpl;
if assigned(methodpointerinit) then
methodpointerinit.buildderefimpl;
if assigned(methodpointerdone) then
methodpointerdone.buildderefimpl;
if assigned(_funcretnode) then
_funcretnode.buildderefimpl;
end;
procedure tcallnode.derefimpl;
var
pt : tcallparanode;
i : integer;
begin
inherited derefimpl;
symtableprocentry:=tprocsym(symtableprocentryderef.resolve);
if assigned(symtableprocentry) then
symtableproc:=symtableprocentry.owner;
procdefinition:=tabstractprocdef(procdefinitionderef.resolve);
if assigned(methodpointer) then
methodpointer.derefimpl;
if assigned(methodpointerinit) then
methodpointerinit.derefimpl;
if assigned(methodpointerdone) then
methodpointerdone.derefimpl;
if assigned(_funcretnode) then
_funcretnode.derefimpl;
{ Connect parasyms }
pt:=tcallparanode(left);
while assigned(pt) and
(cpf_varargs_para in pt.callparaflags) do
pt:=tcallparanode(pt.right);
for i:=procdefinition.paras.count-1 downto 0 do
begin
if not assigned(pt) then
internalerror(200311077);
pt.parasym:=tparavarsym(procdefinition.paras[i]);
pt:=tcallparanode(pt.right);
end;
if assigned(pt) then
internalerror(200311078);
end;
function tcallnode.dogetcopy : tnode;
var
n : tcallnode;
i : integer;
hp,hpn : tparavarsym;
oldleft : tnode;
begin
{ Need to use a hack here to prevent the parameters from being copied.
The parameters must be copied between methodpointerinit/methodpointerdone because
the can reference methodpointer }
oldleft:=left;
left:=nil;
n:=tcallnode(inherited dogetcopy);
left:=oldleft;
n.symtableprocentry:=symtableprocentry;
n.symtableproc:=symtableproc;
n.procdefinition:=procdefinition;
n.typedef := typedef;
n.callnodeflags := callnodeflags;
if assigned(methodpointerinit) then
n.methodpointerinit:=tblocknode(methodpointerinit.dogetcopy)
else
n.methodpointerinit:=nil;
{ methodpointerinit is copied, now references to the temp will also be copied
correctly. We can now copy the parameters and methodpointer }
if assigned(left) then
n.left:=left.dogetcopy
else
n.left:=nil;
if assigned(methodpointer) then
n.methodpointer:=methodpointer.dogetcopy
else
n.methodpointer:=nil;
if assigned(methodpointerdone) then
n.methodpointerdone:=tblocknode(methodpointerdone.dogetcopy)
else
n.methodpointerdone:=nil;
if assigned(_funcretnode) then
n._funcretnode:=_funcretnode.dogetcopy
else
n._funcretnode:=nil;
if assigned(varargsparas) then
begin
n.varargsparas:=tvarargsparalist.create(true);
for i:=0 to varargsparas.count-1 do
begin
hp:=tparavarsym(varargsparas[i]);
hpn:=tparavarsym.create(hp.realname,hp.paranr,hp.varspez,hp.vardef,[]);
n.varargsparas.add(hpn);
end;
end
else
n.varargsparas:=nil;
result:=n;
end;
procedure tcallnode.insertintolist(l : tnodelist);
begin
end;
procedure tcallnode.convert_carg_array_of_const;
var
hp : tarrayconstructornode;
oldleft : tcallparanode;
begin
oldleft:=tcallparanode(left);
if oldleft.left.nodetype<>arrayconstructorn then
begin
CGMessage1(type_e_wrong_type_in_array_constructor,oldleft.left.resultdef.typename);
exit;
end;
include(callnodeflags,cnf_uses_varargs);
{ Get arrayconstructor node and insert typeconvs }
hp:=tarrayconstructornode(oldleft.left);
{ Add c args parameters }
{ It could be an empty set }
if assigned(hp) and
assigned(hp.left) then
begin
while assigned(hp) do
begin
left:=ccallparanode.create(hp.left,left);
{ set callparanode resultdef and flags }
left.resultdef:=hp.left.resultdef;
include(tcallparanode(left).callparaflags,cpf_varargs_para);
hp.left:=nil;
hp:=tarrayconstructornode(hp.right);
end;
end;
{ Remove value of old array of const parameter, but keep it
in the list because it is required for bind_parasym.
Generate a nothign to keep callparanoed.left valid }
oldleft.left.free;
oldleft.left:=cnothingnode.create;
end;
procedure tcallnode.verifyabstract(sym:TObject;arg:pointer);
var
pd : tprocdef;
i : longint;
j : integer;
hs : string;
begin
if (tsym(sym).typ<>procsym) then
exit;
for i:=0 to tprocsym(sym).ProcdefList.Count-1 do
begin
pd:=tprocdef(tprocsym(sym).ProcdefList[i]);
hs:=pd.procsym.name+pd.typename_paras(false);
j:=AbstractMethodsList.FindIndexOf(hs);
if j<>-1 then
AbstractMethodsList[j]:=pd
else
AbstractMethodsList.Add(hs,pd);
end;
end;
procedure tcallnode.verifyabstractcalls;
var
objectdf : tobjectdef;
parents : tlinkedlist;
objectinfo : tobjectinfoitem;
stritem : tstringlistitem;
pd : tprocdef;
i : integer;
first : boolean;
begin
objectdf := nil;
{ verify if trying to create an instance of a class which contains
non-implemented abstract methods }
{ first verify this class type, no class than exit }
{ also, this checking can only be done if the constructor is directly
called, indirect constructor calls cannot be checked.
}
if assigned(methodpointer) and
not (nf_is_self in methodpointer.flags) then
begin
if (methodpointer.resultdef.typ = objectdef) then
objectdf:=tobjectdef(methodpointer.resultdef)
else
if (methodpointer.resultdef.typ = classrefdef) and
(tclassrefdef(methodpointer.resultdef).pointeddef.typ = objectdef) and
(methodpointer.nodetype in [typen,loadvmtaddrn]) then
objectdf:=tobjectdef(tclassrefdef(methodpointer.resultdef).pointeddef);
end;
if not assigned(objectdf) then
exit;
parents := tlinkedlist.create;
AbstractMethodsList := TFPHashList.create;
{ insert all parents in this class : the first item in the
list will be the base parent of the class .
}
while assigned(objectdf) do
begin
objectinfo:=tobjectinfoitem.create(objectdf);
parents.insert(objectinfo);
objectdf := objectdf.childof;
end;
{ now all parents are in the correct order
insert all abstract methods in the list, and remove
those which are overriden by parent classes.
}
objectinfo:=tobjectinfoitem(parents.first);
while assigned(objectinfo) do
begin
objectdf := objectinfo.objinfo;
if assigned(objectdf.symtable) then
objectdf.symtable.SymList.ForEachCall(@verifyabstract,nil);
objectinfo:=tobjectinfoitem(objectinfo.next);
end;
if assigned(parents) then
parents.free;
{ Finally give out a warning for each abstract method still in the list }
first:=true;
for i:=0 to AbstractMethodsList.Count-1 do
begin
pd:=tprocdef(AbstractMethodsList[i]);
if po_abstractmethod in pd.procoptions then
begin
if first then
begin
Message1(type_w_instance_with_abstract,objectdf.objrealname^);
first:=false;
end;
MessagePos1(pd.fileinfo,sym_h_abstract_method_list,pd.fullprocname(true));
end;
end;
if assigned(AbstractMethodsList) then
AbstractMethodsList.Free;
end;
function tcallnode.gen_self_tree_methodpointer:tnode;
var
hsym : tfieldvarsym;
begin
{ find self field in methodpointer record }
hsym:=tfieldvarsym(trecorddef(methodpointertype).symtable.Find('self'));
if not assigned(hsym) then
internalerror(200305251);
{ Load tmehodpointer(right).self }
result:=csubscriptnode.create(
hsym,
ctypeconvnode.create_internal(right.getcopy,methodpointertype));
end;
function tcallnode.gen_self_tree:tnode;
var
selftree : tnode;
begin
selftree:=nil;
{ inherited }
if (cnf_inherited in callnodeflags) then
selftree:=load_self_node
else
{ constructors }
if (procdefinition.proctypeoption=potype_constructor) then
begin
{ push 0 as self when allocation is needed }
if (methodpointer.resultdef.typ=classrefdef) or
(cnf_new_call in callnodeflags) then
selftree:=cpointerconstnode.create(0,voidpointertype)
else
begin
if methodpointer.nodetype=typen then
selftree:=load_self_node
else
selftree:=methodpointer.getcopy;
end;
end
else
{ Calling a static/class method }
if (po_classmethod in procdefinition.procoptions) or
(po_staticmethod in procdefinition.procoptions) then
begin
if (procdefinition.typ<>procdef) then
internalerror(200305062);
if (oo_has_vmt in tprocdef(procdefinition)._class.objectoptions) then
begin
{ we only need the vmt, loading self is not required and there is no
need to check for typen, because that will always get the
loadvmtaddrnode added }
selftree:=methodpointer.getcopy;
if (methodpointer.resultdef.typ<>classrefdef) or
(methodpointer.nodetype = typen) then
selftree:=cloadvmtaddrnode.create(selftree);
end
else
selftree:=cpointerconstnode.create(0,voidpointertype);
end
else
begin
if methodpointer.nodetype=typen then
selftree:=load_self_node
else
selftree:=methodpointer.getcopy;
end;
result:=selftree;
end;
function tcallnode.gen_vmt_tree:tnode;
var
vmttree : tnode;
begin
vmttree:=nil;
if not(procdefinition.proctypeoption in [potype_constructor,potype_destructor]) then
internalerror(200305051);
{ Handle classes and legacy objects separate to make it
more maintainable }
if (methodpointer.resultdef.typ=classrefdef) then
begin
if not is_class(tclassrefdef(methodpointer.resultdef).pointeddef) then
internalerror(200501041);
{ constructor call via classreference => allocate memory }
if (procdefinition.proctypeoption=potype_constructor) then
begin
vmttree:=methodpointer.getcopy;
{ Only a typenode can be passed when it is called with <class of xx>.create }
if vmttree.nodetype=typen then
vmttree:=cloadvmtaddrnode.create(vmttree);
end
else
begin
{ Call afterconstruction }
vmttree:=cpointerconstnode.create(1,voidpointertype);
end;
end
else
{ Class style objects }
if is_class(methodpointer.resultdef) then
begin
{ inherited call, no create/destroy }
if (cnf_inherited in callnodeflags) then
vmttree:=cpointerconstnode.create(0,voidpointertype)
else
{ do not create/destroy when called from member function
without specifying self explicit }
if (cnf_member_call in callnodeflags) then
begin
{ destructor: don't release instance, vmt=0
constructor:
if called from a constructor in the same class then
don't call afterconstruction, vmt=0
else
call afterconstrution, vmt=1 }
if (procdefinition.proctypeoption=potype_destructor) then
vmttree:=cpointerconstnode.create(0,voidpointertype)
else
begin
if (current_procinfo.procdef.proctypeoption=potype_constructor) and
(procdefinition.proctypeoption=potype_constructor) then
vmttree:=cpointerconstnode.create(0,voidpointertype)
else
vmttree:=cpointerconstnode.create(1,voidpointertype);
end;
end
else
{ normal call to method like cl1.proc }
begin
{ destructor: release instance, vmt=1
constructor:
if called from a constructor in the same class using self.create then
don't call afterconstruction, vmt=0
else
call afterconstrution, vmt=1 }
if (procdefinition.proctypeoption=potype_destructor) then
vmttree:=cpointerconstnode.create(1,voidpointertype)
else
begin
if (current_procinfo.procdef.proctypeoption=potype_constructor) and
(procdefinition.proctypeoption=potype_constructor) and
(nf_is_self in methodpointer.flags) then
vmttree:=cpointerconstnode.create(0,voidpointertype)
else
vmttree:=cpointerconstnode.create(1,voidpointertype);
end;
end;
end
else
{ Old style object }
begin
{ constructor with extended syntax called from new }
if (cnf_new_call in callnodeflags) then
vmttree:=cloadvmtaddrnode.create(ctypenode.create(methodpointer.resultdef))
else
{ destructor with extended syntax called from dispose }
if (cnf_dispose_call in callnodeflags) then
vmttree:=cloadvmtaddrnode.create(methodpointer.getcopy)
else
{ inherited call, no create/destroy }
if (cnf_inherited in callnodeflags) then
vmttree:=cpointerconstnode.create(0,voidpointertype)
else
{ do not create/destroy when called from member function
without specifying self explicit }
if (cnf_member_call in callnodeflags) then
begin
{ destructor: don't release instance, vmt=0
constructor: don't initialize instance, vmt=0 }
vmttree:=cpointerconstnode.create(0,voidpointertype)
end
else
{ normal object call like obj.proc }
begin
{ destructor: direct call, no dispose, vmt=0
constructor: initialize object, load vmt }
if (procdefinition.proctypeoption=potype_constructor) then
begin
{ old styled inherited call? }
if (methodpointer.nodetype=typen) then
vmttree:=cpointerconstnode.create(0,voidpointertype)
else
vmttree:=cloadvmtaddrnode.create(ctypenode.create(methodpointer.resultdef))
end
else
vmttree:=cpointerconstnode.create(0,voidpointertype);
end;
end;
result:=vmttree;
end;
type
pcallparanode = ^tcallparanode;
procedure tcallnode.bind_parasym;
var
i : integer;
pt : tcallparanode;
oldppt : pcallparanode;
varargspara,
currpara : tparavarsym;
used_by_callnode : boolean;
hiddentree : tnode;
newstatement : tstatementnode;
temp : ttempcreatenode;
begin
pt:=tcallparanode(left);
oldppt:=pcallparanode(@left);
{ flag all callparanodes that belong to the varargs }
i:=paralength;
while (i>procdefinition.maxparacount) do
begin
include(pt.callparaflags,cpf_varargs_para);
oldppt:=pcallparanode(@pt.right);
pt:=tcallparanode(pt.right);
dec(i);
end;
{ skip varargs that are inserted by array of const }
while assigned(pt) and
(cpf_varargs_para in pt.callparaflags) do
pt:=tcallparanode(pt.right);
{ process normal parameters and insert hidden parameters }
for i:=procdefinition.paras.count-1 downto 0 do
begin
currpara:=tparavarsym(procdefinition.paras[i]);
if vo_is_hidden_para in currpara.varoptions then
begin
{ generate hidden tree }
used_by_callnode:=false;
hiddentree:=nil;
if (vo_is_funcret in currpara.varoptions) then
begin
{ Generate funcretnode if not specified }
if assigned(funcretnode) then
begin
hiddentree:=funcretnode.getcopy;
end
else
begin
hiddentree:=internalstatements(newstatement);
{ need to use resultdef instead of procdefinition.returndef,
because they can be different }
temp:=ctempcreatenode.create(resultdef,resultdef.size,tt_persistent,false);
addstatement(newstatement,temp);
addstatement(newstatement,ctempdeletenode.create_normal_temp(temp));
addstatement(newstatement,ctemprefnode.create(temp));
end;
end
else
if vo_is_high_para in currpara.varoptions then
begin
if not assigned(pt) or
(i=0) then
internalerror(200304082);
{ we need the information of the previous parameter }
hiddentree:=gen_high_tree(pt.left,tparavarsym(procdefinition.paras[i-1]).vardef);
end
else
if vo_is_self in currpara.varoptions then
begin
if assigned(right) then
hiddentree:=gen_self_tree_methodpointer
else
hiddentree:=gen_self_tree;
end
else
if vo_is_vmt in currpara.varoptions then
begin
hiddentree:=gen_vmt_tree;
end
{$if defined(powerpc) or defined(m68k)}
else
if vo_is_syscall_lib in currpara.varoptions then
begin
{ lib parameter has no special type but proccalloptions must be a syscall }
hiddentree:=cloadnode.create(tprocdef(procdefinition).libsym,tprocdef(procdefinition).libsym.owner);
end
{$endif powerpc or m68k}
else
if vo_is_parentfp in currpara.varoptions then
begin
if not(assigned(procdefinition.owner.defowner)) then
internalerror(200309287);
hiddentree:=cloadparentfpnode.create(tprocdef(procdefinition.owner.defowner));
end;
{ add the hidden parameter }
if not assigned(hiddentree) then
internalerror(200304073);
{ Already insert para and let the previous node point to
this new node }
pt:=ccallparanode.create(hiddentree,oldppt^);
pt.used_by_callnode:=used_by_callnode;
oldppt^:=pt;
end;
if not assigned(pt) then
internalerror(200310052);
pt.parasym:=currpara;
oldppt:=pcallparanode(@pt.right);
pt:=tcallparanode(pt.right);
end;
{ Create parasyms for varargs, first count the number of varargs paras,
then insert the parameters with numbering in reverse order. The SortParas
will set the correct order at the end}
pt:=tcallparanode(left);
i:=0;
while assigned(pt) do
begin
if cpf_varargs_para in pt.callparaflags then
inc(i);
pt:=tcallparanode(pt.right);
end;
if (i>0) then
begin
varargsparas:=tvarargsparalist.create;
pt:=tcallparanode(left);
while assigned(pt) do
begin
if cpf_varargs_para in pt.callparaflags then
begin
varargspara:=tparavarsym.create('va'+tostr(i),i,vs_value,pt.resultdef,[]);
dec(i);
{ varargspara is left-right, use insert
instead of concat }
varargsparas.add(varargspara);
pt.parasym:=varargspara;
end;
pt:=tcallparanode(pt.right);
end;
varargsparas.sortparas;
end;
end;
function tcallnode.pass_typecheck:tnode;
var
candidates : tcallcandidates;
oldcallnode : tcallnode;
hpt : tnode;
pt : tcallparanode;
lastpara : longint;
paraidx,
cand_cnt : integer;
i : longint;
is_const : boolean;
statements : tstatementnode;
converted_result_data : ttempcreatenode;
label
errorexit;
begin
result:=nil;
candidates:=nil;
oldcallnode:=aktcallnode;
aktcallnode:=self;
{ determine length of parameter list }
pt:=tcallparanode(left);
paralength:=0;
while assigned(pt) do
begin
inc(paralength);
pt:=tcallparanode(pt.right);
end;
{ determine the type of the parameters }
if assigned(left) then
begin
tcallparanode(left).get_paratype;
if codegenerror then
goto errorexit;
end;
if assigned(methodpointer) then
begin
typecheckpass(methodpointer);
maybe_load_para_in_temp(methodpointer);
end;
{ procedure variable ? }
if assigned(right) then
begin
set_varstate(right,vs_read,[vsf_must_be_valid]);
typecheckpass(right);
if codegenerror then
exit;
procdefinition:=tabstractprocdef(right.resultdef);
{ Compare parameters from right to left }
paraidx:=procdefinition.Paras.count-1;
{ Skip default parameters }
if not(po_varargs in procdefinition.procoptions) then
begin
{ ignore hidden parameters }
while (paraidx>=0) and (vo_is_hidden_para in tparavarsym(procdefinition.paras[paraidx]).varoptions) do
dec(paraidx);
for i:=1 to procdefinition.maxparacount-paralength do
begin
if paraidx<0 then
internalerror(200402261);
if not assigned(tparavarsym(procdefinition.paras[paraidx]).defaultconstsym) then
begin
CGMessage1(parser_e_wrong_parameter_size,'<Procedure Variable>');
goto errorexit;
end;
dec(paraidx);
end;
end;
while (paraidx>=0) and (vo_is_hidden_para in tparavarsym(procdefinition.paras[paraidx]).varoptions) do
dec(paraidx);
pt:=tcallparanode(left);
lastpara:=paralength;
while (paraidx>=0) and assigned(pt) do
begin
{ only goto next para if we're out of the varargs }
if not(po_varargs in procdefinition.procoptions) or
(lastpara<=procdefinition.maxparacount) then
begin
repeat
dec(paraidx);
until (paraidx<0) or not(vo_is_hidden_para in tparavarsym(procdefinition.paras[paraidx]).varoptions);
end;
pt:=tcallparanode(pt.right);
dec(lastpara);
end;
if assigned(pt) or
((paraidx>=0) and
not assigned(tparavarsym(procdefinition.paras[paraidx]).defaultconstsym)) then
begin
if assigned(pt) then
current_filepos:=pt.fileinfo;
CGMessage1(parser_e_wrong_parameter_size,'<Procedure Variable>');
goto errorexit;
end;
end
else
{ not a procedure variable }
begin
{ do we know the procedure to call ? }
if not(assigned(procdefinition)) then
begin
candidates:=tcallcandidates.create(symtableprocentry,symtableproc,left,(nf_isproperty in flags),
{ ignore possible private in delphi mode for anon. inherited (FK) }
(m_delphi in current_settings.modeswitches) and (cnf_anon_inherited in callnodeflags));
{ no procedures found? then there is something wrong
with the parameter size or the procedures are
not accessible }
if candidates.count=0 then
begin
{ when it's an auto inherited call and there
is no procedure found, but the procedures
were defined with overload directive and at
least two procedures are defined then we ignore
this inherited by inserting a nothingn. Only
do this ugly hack in Delphi mode as it looks more
like a bug. It's also not documented }
if (m_delphi in current_settings.modeswitches) and
(cnf_anon_inherited in callnodeflags) and
(symtableprocentry.owner.symtabletype=ObjectSymtable) and
(po_overload in tprocdef(symtableprocentry.ProcdefList[0]).procoptions) and
(symtableprocentry.ProcdefList.Count>=2) then
result:=cnothingnode.create
else
begin
{ in tp mode we can try to convert to procvar if
there are no parameters specified }
if not(assigned(left)) and
not(cnf_inherited in callnodeflags) and
((m_tp_procvar in current_settings.modeswitches) or
(m_mac_procvar in current_settings.modeswitches)) and
(not assigned(methodpointer) or
(methodpointer.nodetype <> typen)) then
begin
hpt:=cloadnode.create(tprocsym(symtableprocentry),symtableproc);
if assigned(methodpointer) then
tloadnode(hpt).set_mp(get_load_methodpointer);
typecheckpass(hpt);
result:=hpt;
end
else
begin
if assigned(left) then
current_filepos:=left.fileinfo;
CGMessage1(parser_e_wrong_parameter_size,symtableprocentry.realname);
symtableprocentry.write_parameter_lists(nil);
end;
end;
goto errorexit;
end;
{ Retrieve information about the candidates }
candidates.get_information;
{$ifdef EXTDEBUG}
{ Display info when multiple candidates are found }
if candidates.count>1 then
candidates.dump_info(V_Debug);
{$endif EXTDEBUG}
{ Choose the best candidate and count the number of
candidates left }
cand_cnt:=candidates.choose_best(procdefinition,
assigned(left) and
not assigned(tcallparanode(left).right) and
(tcallparanode(left).left.resultdef.typ=variantdef));
{ All parameters are checked, check if there are any
procedures left }
if cand_cnt>0 then
begin
{ Multiple candidates left? }
if cand_cnt>1 then
begin
CGMessage(type_e_cant_choose_overload_function);
{$ifdef EXTDEBUG}
candidates.dump_info(V_Hint);
{$else EXTDEBUG}
candidates.list(false);
{$endif EXTDEBUG}
{ we'll just use the first candidate to make the
call }
end;
{ assign procdefinition }
if symtableproc=nil then
symtableproc:=procdefinition.owner;
end
else
begin
{ No candidates left, this must be a type error,
because wrong size is already checked. procdefinition
is filled with the first (random) definition that is
found. We use this definition to display a nice error
message that the wrong type is passed }
candidates.find_wrong_para;
candidates.list(true);
{$ifdef EXTDEBUG}
candidates.dump_info(V_Hint);
{$endif EXTDEBUG}
{ We can not proceed, release all procs and exit }
candidates.free;
goto errorexit;
end;
candidates.free;
end; { end of procedure to call determination }
end;
{ check for hints (deprecated etc) }
if (procdefinition.typ = procdef) then
check_hints(tprocdef(procdefinition).procsym,tprocdef(procdefinition).symoptions);
{ add needed default parameters }
if assigned(procdefinition) and
(paralength<procdefinition.maxparacount) then
begin
paraidx:=0;
i:=0;
while (i<paralength) do
begin
if paraidx>=procdefinition.Paras.count then
internalerror(200306181);
if not(vo_is_hidden_para in tparavarsym(procdefinition.paras[paraidx]).varoptions) then
inc(i);
inc(paraidx);
end;
while (paraidx<procdefinition.paras.count) and (vo_is_hidden_para in tparavarsym(procdefinition.paras[paraidx]).varoptions) do
inc(paraidx);
while (paraidx<procdefinition.paras.count) do
begin
if not assigned(tparavarsym(procdefinition.paras[paraidx]).defaultconstsym) then
internalerror(200212142);
left:=ccallparanode.create(genconstsymtree(
tconstsym(tparavarsym(procdefinition.paras[paraidx]).defaultconstsym)),left);
{ Ignore vs_hidden parameters }
repeat
inc(paraidx);
until (paraidx>=procdefinition.paras.count) or not(vo_is_hidden_para in tparavarsym(procdefinition.paras[paraidx]).varoptions);
end;
end;
{ recursive call? }
if assigned(current_procinfo) and
(procdefinition=current_procinfo.procdef) then
include(current_procinfo.flags,pi_is_recursive);
{ handle predefined procedures }
is_const:=(po_internconst in procdefinition.procoptions) and
((block_type in [bt_const,bt_type]) or
(assigned(left) and (tcallparanode(left).left.nodetype in [realconstn,ordconstn])));
if (procdefinition.proccalloption=pocall_internproc) or is_const then
begin
if assigned(left) then
begin
{ ptr and settextbuf needs two args }
if assigned(tcallparanode(left).right) then
begin
hpt:=geninlinenode(tprocdef(procdefinition).extnumber,is_const,left);
left:=nil;
end
else
begin
hpt:=geninlinenode(tprocdef(procdefinition).extnumber,is_const,tcallparanode(left).left);
tcallparanode(left).left:=nil;
end;
end
else
hpt:=geninlinenode(tprocdef(procdefinition).extnumber,is_const,nil);
result:=hpt;
goto errorexit;
end;
{ ensure that the result type is set }
if not(cnf_typedefset in callnodeflags) then
begin
{ constructors return their current class type, not the type where the
constructor is declared, this can be different because of inheritance }
if (procdefinition.proctypeoption=potype_constructor) and
assigned(methodpointer) and
assigned(methodpointer.resultdef) and
(methodpointer.resultdef.typ=classrefdef) then
resultdef:=tclassrefdef(methodpointer.resultdef).pointeddef
else
{ Member call to a (inherited) constructor from the class, the return
value is always self, so we change it to voidtype to generate an
error and to prevent users from generating non-working code
when they expect to clone the current instance, see bug 3662 (PFV) }
if (procdefinition.proctypeoption=potype_constructor) and
is_class(tprocdef(procdefinition)._class) and
assigned(methodpointer) and
(nf_is_self in methodpointer.flags) then
resultdef:=voidtype
else
resultdef:=procdefinition.returndef;
end
else
resultdef:=typedef;
{if resultdef.needs_inittable then
include(current_procinfo.flags,pi_needs_implicit_finally);}
if assigned(methodpointer) then
begin
{ when methodpointer is a callnode we must load it first into a
temp to prevent the processing callnode twice }
if (methodpointer.nodetype=calln) then
internalerror(200405121);
{ direct call to inherited abstract method, then we
can already give a error in the compiler instead
of a runtime error }
if (cnf_inherited in callnodeflags) and
(po_abstractmethod in procdefinition.procoptions) then
CGMessage(cg_e_cant_call_abstract_method);
{ if an inherited con- or destructor should be }
{ called in a con- or destructor then a warning }
{ will be made }
{ con- and destructors need a pointer to the vmt }
if (cnf_inherited in callnodeflags) and
(procdefinition.proctypeoption in [potype_constructor,potype_destructor]) and
is_object(methodpointer.resultdef) and
not(current_procinfo.procdef.proctypeoption in [potype_constructor,potype_destructor]) then
CGMessage(cg_w_member_cd_call_from_method);
if methodpointer.nodetype<>typen then
begin
{ Remove all postfix operators }
hpt:=methodpointer;
while assigned(hpt) and (hpt.nodetype in [subscriptn,vecn]) do
hpt:=tunarynode(hpt).left;
if (procdefinition.proctypeoption=potype_constructor) and
assigned(symtableproc) and
(symtableproc.symtabletype=withsymtable) and
(tnode(twithsymtable(symtableproc).withrefnode).nodetype=temprefn) then
CGmessage(cg_e_cannot_call_cons_dest_inside_with);
{ R.Init then R will be initialized by the constructor,
Also allow it for simple loads }
if (procdefinition.proctypeoption=potype_constructor) or
((hpt.nodetype=loadn) and
(methodpointer.resultdef.typ=objectdef) and
not(oo_has_virtual in tobjectdef(methodpointer.resultdef).objectoptions)
) then
{ a constructor will and a method may write something to }
{ the fields }
set_varstate(methodpointer,vs_readwritten,[])
else if ((hpt.nodetype=loadn) and
(methodpointer.resultdef.typ=classrefdef)) then
set_varstate(methodpointer,vs_read,[])
else
set_varstate(methodpointer,vs_read,[vsf_must_be_valid]);
{ The object is already used if it is called once }
if (hpt.nodetype=loadn) and
(tloadnode(hpt).symtableentry.typ in [localvarsym,paravarsym,staticvarsym]) then
set_varstate(hpt,vs_read,[]);
// tabstractvarsym(tloadnode(hpt).symtableentry).varstate:=vs_readwritten;
end;
{ if we are calling the constructor check for abstract
methods. Ignore inherited and member calls, because the
class is then already created }
if (procdefinition.proctypeoption=potype_constructor) and
not(cnf_inherited in callnodeflags) and
not(cnf_member_call in callnodeflags) then
verifyabstractcalls;
end
else
begin
{ When this is method the methodpointer must be available }
if (right=nil) and
(procdefinition.owner.symtabletype=ObjectSymtable) then
internalerror(200305061);
end;
{ Set flag that the procedure uses varargs, also if they are not passed it is still
needed for x86_64 to pass the number of SSE registers used }
if po_varargs in procdefinition.procoptions then
include(callnodeflags,cnf_uses_varargs);
{ Change loading of array of const to varargs }
if assigned(left) and
is_array_of_const(tparavarsym(procdefinition.paras[procdefinition.paras.count-1]).vardef) and
(procdefinition.proccalloption in [pocall_cppdecl,pocall_cdecl]) then
convert_carg_array_of_const;
{ bind parasyms to the callparanodes and insert hidden parameters }
bind_parasym;
{ insert type conversions for parameters }
if assigned(left) then
tcallparanode(left).insert_typeconv(true);
{ dispinterface methode invoke? }
if assigned(methodpointer) and is_dispinterface(methodpointer.resultdef) then
begin
{ if the result is used, we've to insert a call to convert the type to be on the "safe side" }
if cnf_return_value_used in callnodeflags then
begin
result:=internalstatements(statements);
converted_result_data:=ctempcreatenode.create(procdefinition.returndef,sizeof(procdefinition.returndef),tt_persistent,true);
addstatement(statements,converted_result_data);
addstatement(statements,cassignmentnode.create(ctemprefnode.create(converted_result_data),
ctypeconvnode.create_internal(translate_disp_call(methodpointer,parameters,'',tprocdef(procdefinition).dispid),
procdefinition.returndef)));
addstatement(statements,ctempdeletenode.create_normal_temp(converted_result_data));
addstatement(statements,ctemprefnode.create(converted_result_data));
end
else
result:=translate_disp_call(methodpointer,parameters,'',tprocdef(procdefinition).dispid);
{ don't free reused nodes }
methodpointer:=nil;
parameters:=nil;
end;
errorexit:
aktcallnode:=oldcallnode;
end;
procedure tcallnode.order_parameters;
var
hp,hpcurr,hpnext,hpfirst,hpprev : tcallparanode;
currloc : tcgloc;
begin
hpfirst:=nil;
hpcurr:=tcallparanode(left);
while assigned(hpcurr) do
begin
{ pull out }
hpnext:=tcallparanode(hpcurr.right);
{ pull in at the correct place.
Used order:
1. LOC_REFERENCE with smallest offset (x86 only)
2. LOC_REFERENCE with most registers
3. LOC_REGISTER with most registers
For the moment we only look at the first parameter field. Combining it
with multiple parameter fields will make things a lot complexer (PFV) }
if not assigned(hpcurr.parasym.paraloc[callerside].location) then
internalerror(200412152);
currloc:=hpcurr.parasym.paraloc[callerside].location^.loc;
hpprev:=nil;
hp:=hpfirst;
while assigned(hp) do
begin
case currloc of
LOC_REFERENCE :
begin
case hp.parasym.paraloc[callerside].location^.loc of
LOC_REFERENCE :
begin
{ Offset is calculated like:
sub esp,12
mov [esp+8],para3
mov [esp+4],para2
mov [esp],para1
call function
That means the for pushes the para with the
highest offset (see para3) needs to be pushed first
}
if (hpcurr.registersint>hp.registersint)
{$ifdef x86}
or (hpcurr.parasym.paraloc[callerside].location^.reference.offset>hp.parasym.paraloc[callerside].location^.reference.offset)
{$endif x86}
then
break;
end;
LOC_REGISTER,
LOC_FPUREGISTER :
break;
end;
end;
LOC_FPUREGISTER,
LOC_REGISTER :
begin
if (hp.parasym.paraloc[callerside].location^.loc=currloc) and
(hpcurr.registersint>hp.registersint) then
break;
end;
end;
hpprev:=hp;
hp:=tcallparanode(hp.right);
end;
hpcurr.right:=hp;
if assigned(hpprev) then
hpprev.right:=hpcurr
else
hpfirst:=hpcurr;
{ next }
hpcurr:=hpnext;
end;
left:=hpfirst;
end;
function tcallnode.replaceparaload(var n: tnode; arg: pointer): foreachnoderesult;
var
paras: tcallparanode;
temp: tnode;
indexnr : integer;
begin
result := fen_false;
n.fileinfo := pfileposinfo(arg)^;
if (n.nodetype = loadn) then
begin
case tloadnode(n).symtableentry.typ of
paravarsym :
begin
paras := tcallparanode(left);
while assigned(paras) and
(paras.parasym <> tloadnode(n).symtableentry) do
paras := tcallparanode(paras.right);
if assigned(paras) then
begin
n.free;
n := paras.left.getcopy;
typecheckpass(n);
result := fen_true;
end;
end;
localvarsym :
begin
{ local? }
if (tloadnode(n).symtableentry.owner <> tprocdef(procdefinition).localst) then
exit;
indexnr:=tloadnode(n).symtableentry.owner.SymList.IndexOf(tloadnode(n).symtableentry);
if (indexnr >= inlinelocals.count) or
not assigned(inlinelocals[indexnr]) then
internalerror(20040720);
temp := tnode(inlinelocals[indexnr]).getcopy;
n.free;
n := temp;
typecheckpass(n);
result := fen_true;
end;
end;
end;
end;
type
ptempnodes = ^ttempnodes;
ttempnodes = record
createstatement, deletestatement: tstatementnode;
end;
procedure tcallnode.createlocaltemps(p:TObject;arg:pointer);
var
tempinfo: ptempnodes absolute arg;
tempnode: ttempcreatenode;
indexnr : integer;
begin
if (TSym(p).typ <> localvarsym) then
exit;
indexnr:=TSym(p).Owner.SymList.IndexOf(p);
if (indexnr >= inlinelocals.count) then
inlinelocals.count:=indexnr+10;
if (vo_is_funcret in tabstractvarsym(p).varoptions) and
assigned(funcretnode) then
begin
if node_complexity(funcretnode) > 1 then
begin
{ can this happen? }
{ we may have to replace the funcretnode with the address of funcretnode }
{ loaded in a temp in this case, because the expression may e.g. contain }
{ a global variable that gets changed inside the function }
internalerror(2004072101);
end;
inlinelocals[indexnr] := funcretnode.getcopy
end
else
begin
tempnode := ctempcreatenode.create(tabstractvarsym(p).vardef,tabstractvarsym(p).vardef.size,tt_persistent,tabstractvarsym(p).is_regvar(false));
addstatement(tempinfo^.createstatement,tempnode);
if (vo_is_funcret in tlocalvarsym(p).varoptions) then
begin
funcretnode := ctemprefnode.create(tempnode);
addstatement(tempinfo^.deletestatement,ctempdeletenode.create_normal_temp(tempnode));
end
else
addstatement(tempinfo^.deletestatement,ctempdeletenode.create(tempnode));
inlinelocals[indexnr] := ctemprefnode.create(tempnode);
end;
end;
function nonlocalvars(var n: tnode; arg: pointer): foreachnoderesult;
begin
result := fen_false;
{ this is just to play it safe, there are more safe situations }
if (n.nodetype = derefn) or
((n.nodetype = loadn) and
{ globals and fields of (possibly global) objects could always be changed in the callee }
((tloadnode(n).symtable.symtabletype in [globalsymtable,ObjectSymtable]) or
{ statics can only be modified by functions in the same unit }
((tloadnode(n).symtable.symtabletype = staticsymtable) and
(tloadnode(n).symtable = TSymtable(arg))))) or
((n.nodetype = subscriptn) and
(tsubscriptnode(n).vs.owner.symtabletype = ObjectSymtable)) then
result := fen_norecurse_true;
end;
procedure tcallnode.createinlineparas(var createstatement, deletestatement: tstatementnode);
var
para: tcallparanode;
tempnode: ttempcreatenode;
tempnodes: ttempnodes;
n: tnode;
paracomplexity: longint;
begin
{ parameters }
para := tcallparanode(left);
while assigned(para) do
begin
if (para.parasym.typ = paravarsym) and
{ para.left will already be the same as funcretnode in the following case, so don't change }
(not(vo_is_funcret in tparavarsym(para.parasym).varoptions) or
(not assigned(funcretnode))) then
begin
{ must take copy of para.left, because if it contains a }
{ temprefn pointing to a copied temp (e.g. methodpointer), }
{ then this parameter must be changed to point to the copy of }
{ that temp (JM) }
n := para.left.getcopy;
para.left.free;
para.left := n;
firstpass(para.left);
{ create temps for value parameters, function result and also for }
{ const parameters which are passed by value instead of by reference }
{ we need to take care that we use the type of the defined parameter and not of the
passed parameter, because these can be different in case of a formaldef (PFV) }
paracomplexity := node_complexity(para.left);
{ check if we have to create a temp, assign the parameter's }
{ contents to that temp and then substitute the paramter }
{ with the temp everywhere in the function }
if
((tparavarsym(para.parasym).varregable in [vr_none,vr_addr]) and
not(para.left.expectloc in [LOC_REFERENCE,LOC_CREFERENCE])) or
{ we can't assign to formaldef temps }
((para.parasym.vardef.typ<>formaldef) and
(
{ if paracomplexity > 1, we normally take the address of }
{ the parameter expression, store it in a temp and }
{ substitute the dereferenced temp in the inlined function }
{ We can't do this if we can't take the address of the }
{ parameter expression, so in that case assign to a temp }
not(para.left.expectloc in [LOC_REFERENCE,LOC_CREFERENCE,LOC_CONSTANT]) or
((paracomplexity > 1) and
(not valid_for_addr(para.left,false) or
(para.left.nodetype = calln) or
is_constnode(para.left))) or
{ the problem is that we can't take the address of a function result :( }
(vo_is_funcret in tparavarsym(para.parasym).varoptions) or
{ we do not need to create a temp for value parameters }
{ which are not modified in the inlined function }
{ const parameters can get vs_readwritten if their }
{ address is taken }
((((para.parasym.varspez = vs_value) and
(para.parasym.varstate in [vs_initialised,vs_declared,vs_read])) or
{ in case of const, this is only necessary if the }
{ variable would be passed by value normally, or if }
{ there is such a variable somewhere in an expression }
((para.parasym.varspez = vs_const) and
(not paramanager.push_addr_param(vs_const,para.parasym.vardef,procdefinition.proccalloption) or
(paracomplexity > 1)))) and
{ however, if we pass a global variable, an object field or}
{ an expression containing a pointer dereference as }
{ parameter, this value could be modified in other ways as }
{ well and in such cases create a temp to be on the safe }
{ side }
foreachnodestatic(para.left,@nonlocalvars,pointer(symtableproc))) or
{ value parameters of which we know they are modified by }
{ definition have to be copied to a temp }
((para.parasym.varspez = vs_value) and
not(para.parasym.varstate in [vs_initialised,vs_declared,vs_read])) or
{ the compiler expects that it can take the address of parameters passed by reference in
the case of const so we can't replace the node simply by a constant node
When playing with this code, ensure that
function f(const a,b : longint) : longint;inline;
begin
result:=a*b;
end;
[...]
...:=f(10,20));
[...]
is still folded. (FK)
}
((para.parasym.varspez = vs_const) and
{ const para's can get vs_readwritten if their address }
{ is taken }
((para.parasym.varstate = vs_readwritten) or
{ call-by-reference const's may need to be passed by }
{ reference to function called in the inlined code }
(paramanager.push_addr_param(vs_const,para.parasym.vardef,procdefinition.proccalloption) and
(not valid_for_addr(para.left,false) or
is_constnode(para.left)))))
)
) then
begin
tempnode:=nil;
{$ifdef reuse_existing_para_temp}
{ Try to reuse existing result tempnode from a parameter }
if para.left.nodetype=blockn then
begin
n:=tstatementnode(tblocknode(para.left).left);
while assigned(n) and assigned(tstatementnode(n).right) do
begin
if tstatementnode(n).left.nodetype=tempdeleten then
break;
n:=tstatementnode(tstatementnode(n).right);
end;
{ We expect to find the following statements
tempdeletenode
tempref
nil }
if assigned(n) and
assigned(tstatementnode(n).right) and
(tstatementnode(tstatementnode(n).right).right=nil) and
(tstatementnode(tstatementnode(n).right).left.nodetype=temprefn) then
begin
tempnode:=ttempdeletenode(tstatementnode(n).left).tempinfo^.owner;
para.left:=tstatementnode(tstatementnode(n).right).left;
addstatement(deletestatement,tstatementnode(n).left);
{ Replace tempdelete,tempref with dummy statement }
tstatementnode(n).left:=cnothingnode.create;
tstatementnode(tstatementnode(n).right).left:=cnothingnode.create;
end;
end;
{$endif reuse_existing_para_temp}
tempnode := ctempcreatenode.create(para.parasym.vardef,para.parasym.vardef.size,tt_persistent,tparavarsym(para.parasym).is_regvar(false));
addstatement(createstatement,tempnode);
{ assign the value of the parameter to the temp, except in case of the function result }
{ (in that case, para.left is a block containing the creation of a new temp, while we }
{ only need a temprefnode, so delete the old stuff) }
if not(vo_is_funcret in tparavarsym(para.parasym).varoptions) then
begin
addstatement(createstatement,cassignmentnode.create(ctemprefnode.create(tempnode),
para.left));
para.left := ctemprefnode.create(tempnode);
addstatement(deletestatement,ctempdeletenode.create(tempnode));
end
else
begin
if not(assigned(funcretnode)) then
funcretnode := ctemprefnode.create(tempnode);
para.left.free;
para.left := ctemprefnode.create(tempnode);
addstatement(deletestatement,ctempdeletenode.create_normal_temp(tempnode));
end;
end
{ otherwise if the parameter is "complex", take the address }
{ of the parameter expression, store it in a temp and replace }
{ occurrences of the parameter with dereferencings of this }
{ temp }
else if (paracomplexity > 1) then
begin
tempnode := ctempcreatenode.create(voidpointertype,voidpointertype.size,tt_persistent,tparavarsym(para.parasym).is_regvar(true));
addstatement(createstatement,tempnode);
addstatement(createstatement,cassignmentnode.create(ctemprefnode.create(tempnode),
caddrnode.create_internal(para.left)));
para.left := ctypeconvnode.create_internal(cderefnode.create(ctemprefnode.create(tempnode)),para.left.resultdef);
addstatement(deletestatement,ctempdeletenode.create(tempnode));
end;
end;
para := tcallparanode(para.right);
end;
{ local variables }
if not assigned(tprocdef(procdefinition).localst) or
(tprocdef(procdefinition).localst.SymList.count = 0) then
exit;
tempnodes.createstatement := createstatement;
tempnodes.deletestatement := deletestatement;
inlinelocals.count:=tprocdef(procdefinition).localst.SymList.count;
tprocdef(procdefinition).localst.SymList.ForEachCall(@createlocaltemps,@tempnodes);
createstatement := tempnodes.createstatement;
deletestatement := tempnodes.deletestatement;
end;
function tcallnode.pass1_inline:tnode;
var
createstatement,deletestatement: tstatementnode;
createblock,deleteblock: tblocknode;
body : tnode;
begin
if not(assigned(tprocdef(procdefinition).inlininginfo) and
assigned(tprocdef(procdefinition).inlininginfo^.code)) then
internalerror(200412021);
{ inherit flags }
current_procinfo.flags := current_procinfo.flags + ((procdefinition as tprocdef).inlininginfo^.flags*inherited_inlining_flags);
{ create blocks for loading/deleting of local data }
createblock:=internalstatements(createstatement);
deleteblock:=internalstatements(deletestatement);
{ add methodpointer init code to init statement }
{ (fini must be done later, as it will delete the hookoncopy info) }
if assigned(methodpointerinit) then
addstatement(createstatement,methodpointerinit.getcopy);
inlinelocals:=TFPObjectList.create(true);
{ get copy of the procedure body }
body:=tprocdef(procdefinition).inlininginfo^.code.getcopy;
{ replace complex parameters with temps }
createinlineparas(createstatement,deletestatement);
{ replace the parameter loads with the parameter values }
foreachnode(body,@replaceparaload,@fileinfo);
{ copy methodpointer fini code }
if assigned(methodpointerdone) then
addstatement(deletestatement,methodpointerdone.getcopy);
{ free the temps for the locals }
inlinelocals.free;
inlinelocals:=nil;
addstatement(createstatement,body);
addstatement(createstatement,deleteblock);
{ set function result location if necessary }
if assigned(funcretnode) and
(cnf_return_value_used in callnodeflags) then
addstatement(createstatement,funcretnode.getcopy);
{ consider it must not be inlined if called
again inside the args or itself }
exclude(procdefinition.procoptions,po_inline);
dosimplify(createblock);
firstpass(createblock);
include(procdefinition.procoptions,po_inline);
{ return inlined block }
result := createblock;
{$ifdef DEBUGINLINE}
writeln;
writeln('**************************',tprocdef(procdefinition).mangledname);
printnode(output,result);
{$endif DEBUGINLINE}
end;
procedure tcallnode.check_stack_parameters;
var
hp : tcallparanode;
begin
hp:=tcallparanode(left);
while assigned(hp) do
begin
if assigned(hp.parasym) and
assigned(hp.parasym.paraloc[callerside].location) and
(hp.parasym.paraloc[callerside].location^.loc=LOC_REFERENCE) then
include(current_procinfo.flags,pi_has_stackparameter);
hp:=tcallparanode(hp.right);
end;
end;
function tcallnode.pass_1 : tnode;
var
st : TSymtable;
begin
result:=nil;
{ Can we inline the procedure? }
if ([po_inline,po_has_inlininginfo] <= procdefinition.procoptions) then
begin
{ Check if we can inline the procedure when it references proc/var that
are not in the globally available }
st:=procdefinition.owner;
if (st.symtabletype=ObjectSymtable) then
st:=st.defowner.owner;
if (pi_uses_static_symtable in tprocdef(procdefinition).inlininginfo^.flags) and
(st.symtabletype=globalsymtable) and
(not st.iscurrentunit) then
begin
Comment(V_lineinfo+V_Debug,'Not inlining "'+tprocdef(procdefinition).procsym.realname+'", references static symtable');
end
else
begin
result:=pass1_inline;
exit;
end;
end;
{ calculate the parameter info for the procdef }
if not procdefinition.has_paraloc_info then
begin
procdefinition.requiredargarea:=paramanager.create_paraloc_info(procdefinition,callerside);
procdefinition.has_paraloc_info:=true;
end;
{ calculate the parameter size needed for this call include varargs if they are available }
if assigned(varargsparas) then
pushedparasize:=paramanager.create_varargs_paraloc_info(procdefinition,varargsparas)
else
pushedparasize:=procdefinition.requiredargarea;
{ record maximum parameter size used in this proc }
current_procinfo.allocate_push_parasize(pushedparasize);
{ work trough all parameters to get the register requirements }
if assigned(left) then
begin
tcallparanode(left).det_registers;
if cs_opt_level1 in current_settings.optimizerswitches then
begin
{ check for stacked parameters }
check_stack_parameters;
end;
end;
{ order parameters }
order_parameters;
if assigned(methodpointerinit) then
firstpass(methodpointerinit);
if assigned(methodpointerdone) then
firstpass(methodpointerdone);
{ function result node }
if assigned(_funcretnode) then
firstpass(_funcretnode);
{ procedure variable ? }
if assigned(right) then
firstpass(right);
if not (block_type in [bt_const,bt_type]) then
include(current_procinfo.flags,pi_do_call);
{ implicit finally needed ? }
if resultdef.needs_inittable and
not paramanager.ret_in_param(resultdef,procdefinition.proccalloption) and
not assigned(funcretnode) then
include(current_procinfo.flags,pi_needs_implicit_finally);
{ get a register for the return value }
if (not is_void(resultdef)) then
begin
if paramanager.ret_in_param(resultdef,procdefinition.proccalloption) then
begin
expectloc:=LOC_REFERENCE;
end
else
{ ansi/widestrings must be registered, so we can dispose them }
if is_ansistring(resultdef) or
is_widestring(resultdef) then
begin
expectloc:=LOC_REFERENCE;
registersint:=1;
end
else
{ we have only to handle the result if it is used }
if (cnf_return_value_used in callnodeflags) then
begin
case resultdef.typ of
enumdef,
orddef :
begin
if (procdefinition.proctypeoption=potype_constructor) then
begin
expectloc:=LOC_REGISTER;
registersint:=1;
end
else
begin
expectloc:=LOC_REGISTER;
if is_64bit(resultdef) then
registersint:=2
else
registersint:=1;
end;
end;
floatdef :
begin
expectloc:=LOC_FPUREGISTER;
{$ifdef cpufpemu}
if (cs_fp_emulation in current_settings.moduleswitches) then
registersint:=1
else
{$endif cpufpemu}
{$ifdef m68k}
if (tfloatdef(resultdef).floattype=s32real) then
registersint:=1
else
{$endif m68k}
registersfpu:=1;
end;
else
begin
expectloc:=procdefinition.funcretloc[callerside].loc;
if (expectloc = LOC_REGISTER) then
{$ifndef cpu64bit}
if (resultdef.size > sizeof(aint)) then
registersint:=2
else
{$endif cpu64bit}
registersint:=1
else
registersint:=0;
end;
end;
end
else
expectloc:=LOC_VOID;
end
else
expectloc:=LOC_VOID;
{$ifdef m68k}
{ we need one more address register for virtual calls on m68k }
if (po_virtualmethod in procdefinition.procoptions) then
inc(registersint);
{$endif m68k}
{ a fpu can be used in any procedure !! }
{$ifdef i386}
registersfpu:=procdefinition.fpu_used;
{$endif i386}
{ if this is a call to a method calc the registers }
if (methodpointer<>nil) then
begin
if methodpointer.nodetype<>typen then
begin
firstpass(methodpointer);
registersfpu:=max(methodpointer.registersfpu,registersfpu);
registersint:=max(methodpointer.registersint,registersint);
{$ifdef SUPPORT_MMX }
registersmmx:=max(methodpointer.registersmmx,registersmmx);
{$endif SUPPORT_MMX}
end;
end;
{ determine the registers of the procedure variable }
{ is this OK for inlined procs also ?? (PM) }
if assigned(right) then
begin
registersfpu:=max(right.registersfpu,registersfpu);
registersint:=max(right.registersint,registersint);
{$ifdef SUPPORT_MMX}
registersmmx:=max(right.registersmmx,registersmmx);
{$endif SUPPORT_MMX}
end;
{ determine the registers of the procedure }
if assigned(left) then
begin
registersfpu:=max(left.registersfpu,registersfpu);
registersint:=max(left.registersint,registersint);
{$ifdef SUPPORT_MMX}
registersmmx:=max(left.registersmmx,registersmmx);
{$endif SUPPORT_MMX}
end;
end;
{$ifdef state_tracking}
function Tcallnode.track_state_pass(exec_known:boolean):boolean;
var hp:Tcallparanode;
value:Tnode;
begin
track_state_pass:=false;
hp:=Tcallparanode(left);
while assigned(hp) do
begin
if left.track_state_pass(exec_known) then
begin
left.resultdef:=nil;
do_typecheckpass(left);
end;
value:=aktstate.find_fact(hp.left);
if value<>nil then
begin
track_state_pass:=true;
hp.left.destroy;
hp.left:=value.getcopy;
do_typecheckpass(hp.left);
end;
hp:=Tcallparanode(hp.right);
end;
end;
{$endif}
function tcallnode.para_count:longint;
var
ppn : tcallparanode;
begin
result:=0;
ppn:=tcallparanode(left);
while assigned(ppn) do
begin
if not(assigned(ppn.parasym) and
(vo_is_hidden_para in ppn.parasym.varoptions)) then
inc(result);
ppn:=tcallparanode(ppn.right);
end;
end;
function tcallnode.get_load_methodpointer:tnode;
var
newstatement : tstatementnode;
begin
if assigned(methodpointerinit) then
begin
result:=internalstatements(newstatement);
addstatement(newstatement,methodpointerinit);
addstatement(newstatement,methodpointer);
addstatement(newstatement,methodpointerdone);
methodpointerinit:=nil;
methodpointer:=nil;
methodpointerdone:=nil;
end
else
begin
result:=methodpointer;
methodpointer:=nil;
end;
end;
function tcallnode.docompare(p: tnode): boolean;
begin
docompare :=
inherited docompare(p) and
(symtableprocentry = tcallnode(p).symtableprocentry) and
(procdefinition = tcallnode(p).procdefinition) and
(methodpointer.isequal(tcallnode(p).methodpointer)) and
(((cnf_typedefset in callnodeflags) and (cnf_typedefset in tcallnode(p).callnodeflags) and
(equal_defs(typedef,tcallnode(p).typedef))) or
(not(cnf_typedefset in callnodeflags) and not(cnf_typedefset in tcallnode(p).callnodeflags)));
end;
procedure tcallnode.printnodedata(var t:text);
begin
if assigned(procdefinition) and
(procdefinition.typ=procdef) then
writeln(t,printnodeindention,'proc = ',tprocdef(procdefinition).fullprocname(true))
else
begin
if assigned(symtableprocentry) then
writeln(t,printnodeindention,'proc = ',symtableprocentry.name)
else
writeln(t,printnodeindention,'proc = <nil>');
end;
if assigned(methodpointer) then
begin
writeln(t,printnodeindention,'methodpointer =');
printnode(t,methodpointer);
end;
if assigned(methodpointerinit) then
begin
writeln(t,printnodeindention,'methodpointerinit =');
printnode(t,methodpointerinit);
end;
if assigned(methodpointerdone) then
begin
writeln(t,printnodeindention,'methodpointerdone =');
printnode(t,methodpointerdone);
end;
if assigned(right) then
begin
writeln(t,printnodeindention,'right =');
printnode(t,right);
end;
if assigned(left) then
begin
writeln(t,printnodeindention,'left =');
printnode(t,left);
end;
end;
begin
ccallnode:=tcallnode;
ccallparanode:=tcallparanode;
end.