fpc/compiler/i386/cpubase.pas
2003-03-18 18:15:53 +00:00

1002 lines
36 KiB
ObjectPascal

{
$Id$
Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
Contains the base types for the i386
* This code was inspired by the NASM sources
The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
Julian Hall. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
{# Base unit for processor information. This unit contains
enumerations of registers, opcodes, sizes, and other
such things which are processor specific.
}
unit cpubase;
{$i fpcdefs.inc}
interface
uses
cutils,cclasses,
globals,
cpuinfo,
aasmbase,
cginfo
{$ifdef delphi}
,dmisc
{$endif}
;
{*****************************************************************************
Assembler Opcodes
*****************************************************************************}
type
TAsmOp={$i i386op.inc}
{# This should define the array of instructions as string }
op2strtable=array[tasmop] of string[11];
Const
{# First value of opcode enumeration }
firstop = low(tasmop);
{# Last value of opcode enumeration }
lastop = high(tasmop);
{*****************************************************************************
Operand Sizes
*****************************************************************************}
type
topsize = (S_NO,
S_B,S_W,S_L,S_BW,S_BL,S_WL,
S_IS,S_IL,S_IQ,
S_FS,S_FL,S_FX,S_D,S_Q,S_FV,S_FXX,
S_NEAR,S_FAR,S_SHORT
);
{*****************************************************************************
Registers
*****************************************************************************}
{The new register coding:
For now we'll use this, when the old register coding is away, we
can change this into a cardinal or something so the amount of
possible registers increases.
High byte: Register number
Low byte: Subregister
Example:
$0100 AL
$0101 AH
$0102 AX
$0103 EAX
$0104 RAX
$0201 BL
$0203 EBX}
{Super register numbers:}
const RS_SPECIAL = $00; {Special register}
RS_EAX = $01; {EAX}
RS_EBX = $02; {EBX}
RS_ECX = $03; {ECX}
RS_EDX = $04; {EDX}
RS_ESI = $05; {ESI}
RS_EDI = $06; {EDI}
RS_EBP = $07; {EBP}
RS_ESP = $08; {ESP}
RS_R8 = $09; {R8}
RS_R9 = $0a; {R9}
RS_R10 = $0b; {R10}
RS_R11 = $0c; {R11}
RS_R12 = $0d; {R12}
RS_R13 = $0e; {R13}
RS_R14 = $0f; {R14}
RS_R15 = $10; {R15}
{Number of first and last superregister.}
first_supreg = $01;
last_supreg = $10;
{Number of first and last imaginary register.}
first_imreg = $12;
last_imreg = $ff;
{Sub register numbers:}
R_SUBL = $00; {Like AL}
R_SUBH = $01; {Like AH}
R_SUBW = $02; {Like AX}
R_SUBD = $03; {Like EAX}
R_SUBQ = $04; {Like RAX}
{The subregister that specifies the entire register.}
R_SUBWHOLE = R_SUBD; {i386}
{R_SUBWHOLE = R_SUBQ;} {Hammer}
{Special registers:}
const NR_NO = $0000; {Invalid register}
NR_CS = $0001; {CS}
NR_DS = $0002; {DS}
NR_ES = $0003; {ES}
NR_SS = $0004; {SS}
NR_FS = $0005; {FS}
NR_GS = $0006; {GS}
NR_RIP = $000F; {RIP}
NR_DR0 = $0010; {DR0}
NR_DR1 = $0011; {DR1}
NR_DR2 = $0012; {DR2}
NR_DR3 = $0013; {DR3}
NR_DR6 = $0016; {DR6}
NR_DR7 = $0017; {DR7}
NR_CR0 = $0020; {CR0}
NR_CR2 = $0021; {CR1}
NR_CR3 = $0022; {CR2}
NR_CR4 = $0023; {CR3}
NR_TR3 = $0030; {R_TR3}
NR_TR4 = $0031; {R_TR4}
NR_TR5 = $0032; {R_TR5}
NR_TR6 = $0033; {R_TR6}
NR_TR7 = $0034; {R_TR7}
{Normal registers.}
const NR_AL = $0100; {AL}
NR_AH = $0101; {AH}
NR_AX = $0102; {AX}
NR_EAX = $0103; {EAX}
NR_RAX = $0104; {RAX}
NR_BL = $0200; {BL}
NR_BH = $0201; {BH}
NR_BX = $0202; {BX}
NR_EBX = $0203; {EBX}
NR_RBX = $0204; {RBX}
NR_CL = $0300; {CL}
NR_CH = $0301; {CH}
NR_CX = $0302; {CX}
NR_ECX = $0303; {ECX}
NR_RCX = $0304; {RCX}
NR_DL = $0400; {DL}
NR_DH = $0401; {DH}
NR_DX = $0402; {DX}
NR_EDX = $0403; {EDX}
NR_RDX = $0404; {RDX}
NR_SIL = $0500; {SIL}
NR_SI = $0502; {SI}
NR_ESI = $0503; {ESI}
NR_RSI = $0504; {RSI}
NR_DIL = $0600; {DIL}
NR_DI = $0602; {DI}
NR_EDI = $0603; {EDI}
NR_RDI = $0604; {RDI}
NR_BPL = $0700; {BPL}
NR_BP = $0702; {BP}
NR_EBP = $0703; {EBP}
NR_RBP = $0704; {RBP}
NR_SPL = $0800; {SPL}
NR_SP = $0802; {SP}
NR_ESP = $0803; {ESP}
NR_RSP = $0804; {RSP}
NR_R8L = $0900; {R8L}
NR_R8W = $0902; {R8W}
NR_R8D = $0903; {R8D}
NR_R9L = $0a00; {R9D}
NR_R9W = $0a02; {R9W}
NR_R9D = $0a03; {R9D}
NR_R10L = $0b00; {R10L}
NR_R10W = $0b02; {R10W}
NR_R10D = $0b03; {R10D}
NR_R11L = $0c00; {R11L}
NR_R11W = $0c02; {R11W}
NR_R11D = $0c03; {R11D}
NR_R12L = $0d00; {R12L}
NR_R12W = $0d02; {R12W}
NR_R12D = $0d03; {R12D}
NR_R13L = $0e00; {R13L}
NR_R13W = $0e02; {R13W}
NR_R13D = $0e03; {R13D}
NR_R14L = $0f00; {R14L}
NR_R14W = $0f02; {R14W}
NR_R14D = $0f03; {R14D}
NR_R15L = $1000; {R15L}
NR_R15W = $1002; {R15W}
NR_R15D = $1003; {R15D}
type
{# Enumeration for all possible registers for cpu. It
is to note that all registers of the same type
(for example all FPU registers), should be grouped
together.
}
{ don't change the order }
{ it's used by the register size conversions }
{$packenum 1}
Toldregister = (R_NO,
R_EAX,R_ECX,R_EDX,R_EBX,R_ESP,R_EBP,R_ESI,R_EDI,
R_AX,R_CX,R_DX,R_BX,R_SP,R_BP,R_SI,R_DI,
R_AL,R_CL,R_DL,R_BL,R_AH,R_CH,R_BH,R_DH,
R_CS,R_DS,R_ES,R_SS,R_FS,R_GS,
R_ST,R_ST0,R_ST1,R_ST2,R_ST3,R_ST4,R_ST5,R_ST6,R_ST7,
R_DR0,R_DR1,R_DR2,R_DR3,R_DR6,R_DR7,
R_CR0,R_CR2,R_CR3,R_CR4,
R_TR3,R_TR4,R_TR5,R_TR6,R_TR7,
R_MM0,R_MM1,R_MM2,R_MM3,R_MM4,R_MM5,R_MM6,R_MM7,
R_XMM0,R_XMM1,R_XMM2,R_XMM3,R_XMM4,R_XMM5,R_XMM6,R_XMM7,
R_INTREGISTER,R_FLOATREGISTER,R_MMXREGISTER,R_KNIREGISTER
);
type Tnewregister=word;
Tregister = packed record
enum:Toldregister;
number:Tnewregister; {This is a word for now, change to cardinal
when the old register coding is away.}
end;
Tsuperregister=byte;
Tsubregister=byte;
{$packenum normal}
{ A type to store register locations for 64 Bit values. }
tregister64 = packed record
reglo,reghi : tregister;
end;
{ alias for compact code }
treg64 = tregister64;
{# Set type definition for registers }
tregisterset = set of Toldregister;
Tsupregset = set of Tsuperregister;
const
{# First register in the tregister enumeration }
firstreg = low(Toldregister);
{# Last register in the tregister enumeration }
lastreg = R_XMM7;
firstsreg = R_CS;
lastsreg = R_GS;
nfirstsreg = NR_CS;
nlastsreg = NR_GS;
regset8bit : tregisterset = [R_AL..R_DH];
regset16bit : tregisterset = [R_AX..R_DI,R_CS..R_SS];
regset32bit : tregisterset = [R_EAX..R_EDI];
{# Standard opcode string table (for each tasmop enumeration). The
opcode strings should conform to the names as defined by the
processor manufacturer.
}
std_op2str:op2strtable={$i i386int.inc}
type
{# Type definition for the array of string of register names }
reg2strtable = array[firstreg..lastreg] of string[6];
regname2regnumrec = record
name:string[6];
number:Tnewregister;
end;
const
{# Standard register table (for each tregister enumeration). The
register strings should conform to the the names as defined
by the processor manufacturer
}
std_reg2str : reg2strtable = ('',
'eax','ecx','edx','ebx','esp','ebp','esi','edi',
'ax','cx','dx','bx','sp','bp','si','di',
'al','cl','dl','bl','ah','ch','bh','dh',
'cs','ds','es','ss','fs','gs',
'st','st(0)','st(1)','st(2)','st(3)','st(4)','st(5)','st(6)','st(7)',
'dr0','dr1','dr2','dr3','dr6','dr7',
'cr0','cr2','cr3','cr4',
'tr3','tr4','tr5','tr6','tr7',
'mm0','mm1','mm2','mm3','mm4','mm5','mm6','mm7',
'xmm0','xmm1','xmm2','xmm3','xmm4','xmm5','xmm6','xmm7'
);
{*****************************************************************************
Conditions
*****************************************************************************}
type
TAsmCond=(C_None,
C_A,C_AE,C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_NA,C_NAE,
C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_NO,C_NP,
C_NS,C_NZ,C_O,C_P,C_PE,C_PO,C_S,C_Z
);
const
cond2str:array[TAsmCond] of string[3]=('',
'a','ae','b','be','c','e','g','ge','l','le','na','nae',
'nb','nbe','nc','ne','ng','nge','nl','nle','no','np',
'ns','nz','o','p','pe','po','s','z'
);
inverse_cond:array[TAsmCond] of TAsmCond=(C_None,
C_NA,C_NAE,C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_A,C_AE,
C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_O,C_P,
C_S,C_Z,C_NO,C_NP,C_NP,C_P,C_NS,C_NZ
);
{*****************************************************************************
Flags
*****************************************************************************}
type
TResFlags = (F_E,F_NE,F_G,F_L,F_GE,F_LE,F_C,F_NC,F_A,F_AE,F_B,F_BE);
{*****************************************************************************
Reference
*****************************************************************************}
type
trefoptions=(ref_none,ref_parafixup,ref_localfixup,ref_selffixup);
{ reference record }
preference = ^treference;
treference = packed record
segment,
base,
index : tregister;
scalefactor : byte;
offset : longint;
symbol : tasmsymbol;
offsetfixup : longint;
options : trefoptions;
end;
{ reference record }
pparareference = ^tparareference;
tparareference = packed record
index : tregister;
offset : longint;
end;
{*****************************************************************************
Operands
*****************************************************************************}
{ Types of operand }
toptype=(top_none,top_reg,top_ref,top_const,top_symbol);
toper=record
ot : longint;
case typ : toptype of
top_none : ();
top_reg : (reg:tregister);
top_ref : (ref:preference);
top_const : (val:aword);
top_symbol : (sym:tasmsymbol;symofs:longint);
end;
{*****************************************************************************
Generic Location
*****************************************************************************}
type
TLoc=(
LOC_INVALID, { added for tracking problems}
LOC_CONSTANT, { constant value }
LOC_JUMP, { boolean results only, jump to false or true label }
LOC_FLAGS, { boolean results only, flags are set }
LOC_CREFERENCE, { in memory constant value reference (cannot change) }
LOC_REFERENCE, { in memory value }
LOC_REGISTER, { in a processor register }
LOC_CREGISTER, { Constant register which shouldn't be modified }
LOC_FPUREGISTER, { FPU stack }
LOC_CFPUREGISTER, { if it is a FPU register variable on the fpu stack }
LOC_MMXREGISTER, { MMX register }
LOC_CMMXREGISTER, { MMX register variable }
LOC_SSEREGISTER,
LOC_CSSEREGISTER
);
{ tparamlocation describes where a parameter for a procedure is stored.
References are given from the caller's point of view. The usual
TLocation isn't used, because contains a lot of unnessary fields.
}
tparalocation = packed record
size : TCGSize;
loc : TLoc;
sp_fixup : longint;
case TLoc of
LOC_REFERENCE : (reference : tparareference);
{ segment in reference at the same place as in loc_register }
LOC_REGISTER,LOC_CREGISTER : (
case longint of
1 : (register,registerhigh : tregister);
{ overlay a registerlow }
2 : (registerlow : tregister);
{ overlay a 64 Bit register type }
3 : (reg64 : tregister64);
4 : (register64 : tregister64);
);
{ it's only for better handling }
LOC_MMXREGISTER,LOC_CMMXREGISTER : (mmxreg : tregister);
end;
tlocation = packed record
loc : TLoc;
size : TCGSize;
case TLoc of
LOC_FLAGS : (resflags : tresflags);
LOC_CONSTANT : (
case longint of
1 : (value : AWord);
{ can't do this, this layout depends on the host cpu. Use }
{ lo(valueqword)/hi(valueqword) instead (JM) }
{ 2 : (valuelow, valuehigh:AWord); }
{ overlay a complete 64 Bit value }
3 : (valueqword : qword);
);
LOC_CREFERENCE,
LOC_REFERENCE : (reference : treference);
{ segment in reference at the same place as in loc_register }
LOC_REGISTER,LOC_CREGISTER : (
case longint of
1 : (register,registerhigh,segment : tregister);
{ overlay a registerlow }
2 : (registerlow : tregister);
{ overlay a 64 Bit register type }
3 : (reg64 : tregister64);
4 : (register64 : tregister64);
);
{ it's only for better handling }
LOC_MMXREGISTER,LOC_CMMXREGISTER : (mmxreg : tregister);
end;
{*****************************************************************************
Constants
*****************************************************************************}
const
{ declare aliases }
LOC_MMREGISTER = LOC_SSEREGISTER;
LOC_CMMREGISTER = LOC_CSSEREGISTER;
max_operands = 3;
lvaluelocations = [LOC_REFERENCE,LOC_CFPUREGISTER,
LOC_CREGISTER,LOC_MMXREGISTER,LOC_CMMXREGISTER];
{# Constant defining possibly all registers which might require saving }
ALL_REGISTERS = [firstreg..lastreg];
ALL_INTREGISTERS = [1..255];
general_registers = [R_EAX,R_EBX,R_ECX,R_EDX];
general_superregisters = [RS_EAX,RS_EBX,RS_ECX,RS_EDX];
{# low and high of the available maximum width integer general purpose }
{ registers }
LoGPReg = R_EAX;
HiGPReg = R_EDX;
{# low and high of every possible width general purpose register (same as }
{ above on most architctures apart from the 80x86) }
LoReg = R_EAX;
HiReg = R_DH;
{# Table of registers which can be allocated by the code generator
internally, when generating the code.
}
{ legend: }
{ xxxregs = set of all possibly used registers of that type in the code }
{ generator }
{ usableregsxxx = set of all 32bit components of registers that can be }
{ possible allocated to a regvar or using getregisterxxx (this }
{ excludes registers which can be only used for parameter }
{ passing on ABI's that define this) }
{ c_countusableregsxxx = amount of registers in the usableregsxxx set }
maxintregs = 4;
intregs = [R_EAX..R_BL];
{$ifdef newra}
usableregsint = [first_imreg..last_imreg];
{$else}
usableregsint = [RS_EAX,RS_EBX,RS_ECX,RS_EDX];
{$endif}
c_countusableregsint = 4;
maxfpuregs = 8;
fpuregs = [R_ST0..R_ST7];
usableregsfpu = [];
c_countusableregsfpu = 0;
mmregs = [R_MM0..R_MM7];
usableregsmm = [R_MM0..R_MM7];
c_countusableregsmm = 8;
maxaddrregs = 0;
addrregs = [];
usableregsaddr = [];
c_countusableregsaddr = 0;
firstsaveintreg = RS_EAX;
lastsaveintreg = RS_EDX;
firstsavefpureg = R_NO;
lastsavefpureg = R_NO;
firstsavemmreg = R_MM0;
lastsavemmreg = R_MM7;
maxvarregs = 4;
varregs : array[1..maxvarregs] of Toldregister =
(R_EBX,R_EDX,R_ECX,R_EAX);
maxfpuvarregs = 8;
{# Registers which are defined as scratch and no need to save across
routine calls or in assembler blocks.
}
max_scratch_regs = 1;
scratch_regs : array[1..max_scratch_regs] of Tsuperregister = (RS_EDI);
{*****************************************************************************
GDB Information
*****************************************************************************}
{# Register indexes for stabs information, when some
parameters or variables are stored in registers.
Taken from i386.c (dbx_register_map) and i386.h
(FIXED_REGISTERS) from GCC 3.x source code
}
stab_regindex : array[firstreg..lastreg] of shortint =
(-1,
0,1,2,3,4,5,6,7,
0,1,2,3,4,5,6,7,
0,1,2,3,0,1,2,3,
-1,-1,-1,-1,-1,-1,
12,12,13,14,15,16,17,18,19,
-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,
-1,-1,-1,-1,-1,
29,30,31,32,33,34,35,36,
21,22,23,24,25,26,27,28
);
{*****************************************************************************
Default generic sizes
*****************************************************************************}
{# Defines the default address size for a processor, }
OS_ADDR = OS_32;
{# the natural int size for a processor, }
OS_INT = OS_32;
{# the maximum float size for a processor, }
OS_FLOAT = OS_F80;
{# the size of a vector register for a processor }
OS_VECTOR = OS_M64;
{*****************************************************************************
Generic Register names
*****************************************************************************}
{# Stack pointer register }
stack_pointer_reg = R_ESP;
NR_STACK_POINTER_REG = NR_ESP;
{# Frame pointer register }
frame_pointer_reg = R_EBP;
NR_FRAME_POINTER_REG = NR_EBP;
{# Self pointer register : contains the instance address of an
object or class. }
self_pointer_reg = R_ESI;
{$ifdef newra}
RS_SELF_POINTER_REG = $11;
NR_SELF_POINTER_REG = $1103;
{$else}
RS_SELF_POINTER_REG = RS_ESI;
NR_SELF_POINTER_REG = NR_ESI;
{$endif}
{# Register for addressing absolute data in a position independant way,
such as in PIC code. The exact meaning is ABI specific. For
further information look at GCC source : PIC_OFFSET_TABLE_REGNUM
}
pic_offset_reg = R_EBX;
{# Results are returned in this register (32-bit values) }
accumulator = R_EAX;
RS_ACCUMULATOR = RS_EAX;
NR_ACCUMULATOR = NR_EAX;
{the return_result_reg, is used inside the called function to store its return
value when that is a scalar value otherwise a pointer to the address of the
result is placed inside it}
return_result_reg = accumulator;
RS_RETURN_RESULT_REG = RS_ACCUMULATOR;
NR_RETURN_RESULT_REG = NR_ACCUMULATOR;
{the function_result_reg contains the function result after a call to a scalar
function othewise it contains a pointer to the returned result}
function_result_reg = accumulator;
{# Hi-Results are returned in this register (64-bit value high register) }
accumulatorhigh = R_EDX;
RS_ACCUMULATORHIGH = RS_EDX;
NR_ACCUMULATORHIGH = NR_EDX;
{ WARNING: don't change to R_ST0!! See comments above implementation of }
{ a_loadfpu* methods in rgcpu (JM) }
fpu_result_reg = R_ST;
mmresultreg = R_MM0;
{*****************************************************************************
GCC /ABI linking information
*****************************************************************************}
const
{# Registers which must be saved when calling a routine declared as
cppdecl, cdecl, stdcall, safecall, palmossyscall. The registers
saved should be the ones as defined in the target ABI and / or GCC.
This value can be deduced from the CALLED_USED_REGISTERS array in the
GCC source.
}
std_saved_registers = [R_ESI,R_EDI,R_EBX];
{# Required parameter alignment when calling a routine declared as
stdcall and cdecl. The alignment value should be the one defined
by GCC or the target ABI.
The value of this constant is equal to the constant
PARM_BOUNDARY / BITS_PER_UNIT in the GCC source.
}
std_param_align = 4;
{*****************************************************************************
CPU Dependent Constants
*****************************************************************************}
{*****************************************************************************
Helpers
*****************************************************************************}
procedure convert_register_to_enum(var r:Tregister);
function cgsize2subreg(s:Tcgsize):Tsubregister;
function reg2opsize(r:Tregister):topsize;
function is_calljmp(o:tasmop):boolean;
function flags_to_cond(const f: TResFlags) : TAsmCond;
implementation
uses verbose;
{*****************************************************************************
Helpers
*****************************************************************************}
procedure convert_register_to_enum(var r:Tregister);
begin
if r.enum=R_INTREGISTER then
case r.number of
NR_NO: r.enum:=R_NO;
NR_EAX: r.enum:=R_EAX; NR_EBX: r.enum:=R_EBX;
NR_ECX: r.enum:=R_ECX; NR_EDX: r.enum:=R_EDX;
NR_ESI: r.enum:=R_ESI; NR_EDI: r.enum:=R_EDI;
NR_ESP: r.enum:=R_ESP; NR_EBP: r.enum:=R_EBP;
NR_AX: r.enum:=R_AX; NR_BX: r.enum:=R_BX;
NR_CX: r.enum:=R_CX; NR_DX: r.enum:=R_DX;
NR_SI: r.enum:=R_SI; NR_DI: r.enum:=R_DI;
NR_SP: r.enum:=R_SP; NR_BP: r.enum:=R_BP;
NR_AL: r.enum:=R_AL; NR_BL: r.enum:=R_BL;
NR_CL: r.enum:=R_CL; NR_DL: r.enum:=R_DL;
NR_AH: r.enum:=R_AH; NR_BH: r.enum:=R_BH;
NR_CH: r.enum:=R_CH; NR_DH: r.enum:=R_DH;
NR_CS: r.enum:=R_CS; NR_DS: r.enum:=R_DS;
NR_ES: r.enum:=R_ES; NR_FS: r.enum:=R_FS;
NR_GS: r.enum:=R_GS; NR_SS: r.enum:=R_SS;
else
internalerror(200301082);
end;
end;
function cgsize2subreg(s:Tcgsize):Tsubregister;
begin
case s of
OS_8,OS_S8:
cgsize2subreg:=R_SUBL;
OS_16,OS_S16:
cgsize2subreg:=R_SUBW;
OS_32,OS_S32:
cgsize2subreg:=R_SUBD;
OS_64,OS_S64:
cgsize2subreg:=R_SUBQ;
else
internalerror(200301231);
end;
end;
function reg2opsize(r:Tregister):topsize;
const
subreg2opsize : array[0..4] of Topsize = (S_B,S_B,S_W,S_L,S_D);
enum2opsize : array[firstreg..lastreg] of topsize = (S_NO,
S_L,S_L,S_L,S_L,S_L,S_L,S_L,S_L,
S_W,S_W,S_W,S_W,S_W,S_W,S_W,S_W,
S_B,S_B,S_B,S_B,S_B,S_B,S_B,S_B,
S_W,S_W,S_W,S_W,S_W,S_W,
S_FL,S_FL,S_FL,S_FL,S_FL,S_FL,S_FL,S_FL,S_FL,
S_L,S_L,S_L,S_L,S_L,S_L,
S_L,S_L,S_L,S_L,
S_L,S_L,S_L,S_L,S_L,
S_D,S_D,S_D,S_D,S_D,S_D,S_D,S_D,
S_D,S_D,S_D,S_D,S_D,S_D,S_D,S_D
);
begin
reg2opsize:=S_L;
if (r.enum=R_INTREGISTER) then
begin
if (r.number shr 8)=0 then
begin
case r.number of
NR_CS,NR_DS,NR_ES,
NR_SS,NR_FS,NR_GS :
reg2opsize:=S_W;
end;
end
else
begin
if (r.number and $ff)>4 then
internalerror(200303181);
reg2opsize:=subreg2opsize[r.number and $ff];
end;
end
else
begin
reg2opsize:=enum2opsize[r.enum];
end;
end;
function supreg_name(r:Tsuperregister):string;
var s:string[4];
const supreg_names:array[0..last_supreg] of string[4]=
('INV',
'eax','ebx','ecx','edx','esi','edi','ebp','esp',
'r8' ,'r9', 'r10','r11','r12','r13','r14','r15');
begin
if r in [0..last_supreg] then
supreg_name:=supreg_names[r]
else
begin
str(r,s);
supreg_name:='reg'+s;
end;
end;
function is_calljmp(o:tasmop):boolean;
begin
case o of
A_CALL,
A_JCXZ,
A_JECXZ,
A_JMP,
A_LOOP,
A_LOOPE,
A_LOOPNE,
A_LOOPNZ,
A_LOOPZ,
A_Jcc :
is_calljmp:=true;
else
is_calljmp:=false;
end;
end;
function flags_to_cond(const f: TResFlags) : TAsmCond;
const
flags_2_cond : array[TResFlags] of TAsmCond =
(C_E,C_NE,C_G,C_L,C_GE,C_LE,C_C,C_NC,C_A,C_AE,C_B,C_BE);
begin
result := flags_2_cond[f];
end;
end.
{
$Log$
Revision 1.44 2003-03-18 18:15:53 peter
* changed reg2opsize to function
Revision 1.43 2003/03/08 08:59:07 daniel
+ $define newra will enable new register allocator
+ getregisterint will return imaginary registers with $newra
+ -sr switch added, will skip register allocation so you can see
the direct output of the code generator before register allocation
Revision 1.42 2003/02/19 22:00:15 daniel
* Code generator converted to new register notation
- Horribily outdated todo.txt removed
Revision 1.41 2003/02/02 19:25:54 carl
* Several bugfixes for m68k target (register alloc., opcode emission)
+ VIS target
+ Generic add more complete (still not verified)
Revision 1.40 2003/01/13 18:37:44 daniel
* Work on register conversion
Revision 1.39 2003/01/09 20:41:00 daniel
* Converted some code in cgx86.pas to new register numbering
Revision 1.38 2003/01/09 15:49:56 daniel
* Added register conversion
Revision 1.37 2003/01/08 22:32:36 daniel
* Added register convesrion procedure
Revision 1.36 2003/01/08 18:43:57 daniel
* Tregister changed into a record
Revision 1.35 2003/01/05 13:36:53 florian
* x86-64 compiles
+ very basic support for float128 type (x86-64 only)
Revision 1.34 2002/11/17 18:26:16 mazen
* fixed a compilation bug accmulator-->accumulator, in definition of return_result_reg
Revision 1.33 2002/11/17 17:49:08 mazen
+ return_result_reg and function_result_reg are now used, in all plateforms, to pass functions result between called function and its caller. See the explanation of each one
Revision 1.32 2002/10/05 12:43:29 carl
* fixes for Delphi 6 compilation
(warning : Some features do not work under Delphi)
Revision 1.31 2002/08/14 18:41:48 jonas
- remove valuelow/valuehigh fields from tlocation, because they depend
on the endianess of the host operating system -> difficult to get
right. Use lo/hi(location.valueqword) instead (remember to use
valueqword and not value!!)
Revision 1.30 2002/08/13 21:40:58 florian
* more fixes for ppc calling conventions
Revision 1.29 2002/08/12 15:08:41 carl
+ stab register indexes for powerpc (moved from gdb to cpubase)
+ tprocessor enumeration moved to cpuinfo
+ linker in target_info is now a class
* many many updates for m68k (will soon start to compile)
- removed some ifdef or correct them for correct cpu
Revision 1.28 2002/08/06 20:55:23 florian
* first part of ppc calling conventions fix
Revision 1.27 2002/07/25 18:01:29 carl
+ FPURESULTREG -> FPU_RESULT_REG
Revision 1.26 2002/07/07 09:52:33 florian
* powerpc target fixed, very simple units can be compiled
* some basic stuff for better callparanode handling, far from being finished
Revision 1.25 2002/07/01 18:46:30 peter
* internal linker
* reorganized aasm layer
Revision 1.24 2002/07/01 16:23:55 peter
* cg64 patch
* basics for currency
* asnode updates for class and interface (not finished)
Revision 1.23 2002/05/18 13:34:22 peter
* readded missing revisions
Revision 1.22 2002/05/16 19:46:50 carl
+ defines.inc -> fpcdefs.inc to avoid conflicts if compiling by hand
+ try to fix temp allocation (still in ifdef)
+ generic constructor calls
+ start of tassembler / tmodulebase class cleanup
Revision 1.19 2002/05/12 16:53:16 peter
* moved entry and exitcode to ncgutil and cgobj
* foreach gets extra argument for passing local data to the
iterator function
* -CR checks also class typecasts at runtime by changing them
into as
* fixed compiler to cycle with the -CR option
* fixed stabs with elf writer, finally the global variables can
be watched
* removed a lot of routines from cga unit and replaced them by
calls to cgobj
* u32bit-s32bit updates for and,or,xor nodes. When one element is
u32bit then the other is typecasted also to u32bit without giving
a rangecheck warning/error.
* fixed pascal calling method with reversing also the high tree in
the parast, detected by tcalcst3 test
Revision 1.18 2002/04/21 15:31:40 carl
- removed some other stuff to their units
Revision 1.17 2002/04/20 21:37:07 carl
+ generic FPC_CHECKPOINTER
+ first parameter offset in stack now portable
* rename some constants
+ move some cpu stuff to other units
- remove unused constents
* fix stacksize for some targets
* fix generic size problems which depend now on EXTEND_SIZE constant
* removing frame pointer in routines is only available for : i386,m68k and vis targets
Revision 1.16 2002/04/15 19:53:54 peter
* fixed conflicts between the last 2 commits
Revision 1.15 2002/04/15 19:44:20 peter
* fixed stackcheck that would be called recursively when a stack
error was found
* generic changeregsize(reg,size) for i386 register resizing
* removed some more routines from cga unit
* fixed returnvalue handling
* fixed default stacksize of linux and go32v2, 8kb was a bit small :-)
Revision 1.14 2002/04/15 19:12:09 carl
+ target_info.size_of_pointer -> pointer_size
+ some cleanup of unused types/variables
* move several constants from cpubase to their specific units
(where they are used)
+ att_Reg2str -> gas_reg2str
+ int_reg2str -> std_reg2str
Revision 1.13 2002/04/14 16:59:41 carl
+ att_reg2str -> gas_reg2str
Revision 1.12 2002/04/02 17:11:34 peter
* tlocation,treference update
* LOC_CONSTANT added for better constant handling
* secondadd splitted in multiple routines
* location_force_reg added for loading a location to a register
of a specified size
* secondassignment parses now first the right and then the left node
(this is compatible with Kylix). This saves a lot of push/pop especially
with string operations
* adapted some routines to use the new cg methods
Revision 1.11 2002/03/31 20:26:37 jonas
+ a_loadfpu_* and a_loadmm_* methods in tcg
* register allocation is now handled by a class and is mostly processor
independent (+rgobj.pas and i386/rgcpu.pas)
* temp allocation is now handled by a class (+tgobj.pas, -i386\tgcpu.pas)
* some small improvements and fixes to the optimizer
* some register allocation fixes
* some fpuvaroffset fixes in the unary minus node
* push/popusedregisters is now called rg.save/restoreusedregisters and
(for i386) uses temps instead of push/pop's when using -Op3 (that code is
also better optimizable)
* fixed and optimized register saving/restoring for new/dispose nodes
* LOC_FPU locations now also require their "register" field to be set to
R_ST, not R_ST0 (the latter is used for LOC_CFPUREGISTER locations only)
- list field removed of the tnode class because it's not used currently
and can cause hard-to-find bugs
Revision 1.10 2002/03/04 19:10:12 peter
* removed compiler warnings
}