fpc/compiler/ncnv.pas
daniel 4b82d30953 * Removed sets from Tcallnode.det_resulttype
+ Added read/write notifications of variables. These will be usefull
   for providing information for several optimizations. For example
   the value of the loop variable of a for loop does matter is the
   variable is read after the for loop, but if it's no longer used
   or written, it doesn't matter and this can be used to optimize
   the loop code generation.
2002-09-01 08:01:16 +00:00

2160 lines
74 KiB
ObjectPascal

{
$Id$
Copyright (c) 2000-2002 by Florian Klaempfl
Type checking and register allocation for type converting nodes
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit ncnv;
{$i fpcdefs.inc}
interface
uses
node,
symtype,symppu,defbase,
nld;
type
ttypeconvnode = class(tunarynode)
totype : ttype;
convtype : tconverttype;
constructor create(node : tnode;const t : ttype);virtual;
constructor create_explicit(node : tnode;const t : ttype);
constructor ppuload(t:tnodetype;ppufile:tcompilerppufile);override;
procedure ppuwrite(ppufile:tcompilerppufile);override;
procedure derefimpl;override;
function getcopy : tnode;override;
function pass_1 : tnode;override;
function det_resulttype:tnode;override;
{$ifdef var_notification}
procedure mark_write;override;
{$endif}
function docompare(p: tnode) : boolean; override;
private
function resulttype_cord_to_pointer : tnode;
function resulttype_chararray_to_string : tnode;
function resulttype_string_to_chararray : tnode;
function resulttype_string_to_string : tnode;
function resulttype_char_to_string : tnode;
function resulttype_char_to_chararray : tnode;
function resulttype_int_to_real : tnode;
function resulttype_real_to_real : tnode;
function resulttype_cchar_to_pchar : tnode;
function resulttype_cstring_to_pchar : tnode;
function resulttype_char_to_char : tnode;
function resulttype_arrayconstructor_to_set : tnode;
function resulttype_pchar_to_string : tnode;
function resulttype_interface_to_guid : tnode;
function resulttype_dynarray_to_openarray : tnode;
function resulttype_call_helper(c : tconverttype) : tnode;
protected
function first_int_to_int : tnode;virtual;
function first_cstring_to_pchar : tnode;virtual;
function first_string_to_chararray : tnode;virtual;
function first_char_to_string : tnode;virtual;
function first_nothing : tnode;virtual;
function first_array_to_pointer : tnode;virtual;
function first_int_to_real : tnode;virtual;
function first_real_to_real : tnode;virtual;
function first_pointer_to_array : tnode;virtual;
function first_cchar_to_pchar : tnode;virtual;
function first_bool_to_int : tnode;virtual;
function first_int_to_bool : tnode;virtual;
function first_bool_to_bool : tnode;virtual;
function first_proc_to_procvar : tnode;virtual;
function first_load_smallset : tnode;virtual;
function first_cord_to_pointer : tnode;virtual;
function first_ansistring_to_pchar : tnode;virtual;
function first_arrayconstructor_to_set : tnode;virtual;
function first_class_to_intf : tnode;virtual;
function first_char_to_char : tnode;virtual;
function first_call_helper(c : tconverttype) : tnode;
{ these wrapper are necessary, because the first_* stuff is called }
{ through a table. Without the wrappers override wouldn't have }
{ any effect }
function _first_int_to_int : tnode;
function _first_cstring_to_pchar : tnode;
function _first_string_to_chararray : tnode;
function _first_char_to_string : tnode;
function _first_nothing : tnode;
function _first_array_to_pointer : tnode;
function _first_int_to_real : tnode;
function _first_real_to_real : tnode;
function _first_pointer_to_array : tnode;
function _first_cchar_to_pchar : tnode;
function _first_bool_to_int : tnode;
function _first_int_to_bool : tnode;
function _first_bool_to_bool : tnode;
function _first_proc_to_procvar : tnode;
function _first_load_smallset : tnode;
function _first_cord_to_pointer : tnode;
function _first_ansistring_to_pchar : tnode;
function _first_arrayconstructor_to_set : tnode;
function _first_class_to_intf : tnode;
function _first_char_to_char : tnode;
procedure second_int_to_int;virtual;abstract;
procedure second_string_to_string;virtual;abstract;
procedure second_cstring_to_pchar;virtual;abstract;
procedure second_string_to_chararray;virtual;abstract;
procedure second_array_to_pointer;virtual;abstract;
procedure second_pointer_to_array;virtual;abstract;
procedure second_chararray_to_string;virtual;abstract;
procedure second_char_to_string;virtual;abstract;
procedure second_int_to_real;virtual;abstract;
procedure second_real_to_real;virtual;abstract;
procedure second_cord_to_pointer;virtual;abstract;
procedure second_proc_to_procvar;virtual;abstract;
procedure second_bool_to_int;virtual;abstract;
procedure second_int_to_bool;virtual;abstract;
procedure second_bool_to_bool;virtual;abstract;
procedure second_load_smallset;virtual;abstract;
procedure second_ansistring_to_pchar;virtual;abstract;
procedure second_pchar_to_string;virtual;abstract;
procedure second_class_to_intf;virtual;abstract;
procedure second_char_to_char;virtual;abstract;
procedure second_nothing; virtual;abstract;
end;
ttypeconvnodeclass = class of ttypeconvnode;
tasnode = class(tbinarynode)
constructor create(l,r : tnode);virtual;
function pass_1 : tnode;override;
function det_resulttype:tnode;override;
function getcopy: tnode;override;
destructor destroy; override;
protected
call: tnode;
end;
tasnodeclass = class of tasnode;
tisnode = class(tbinarynode)
constructor create(l,r : tnode);virtual;
function pass_1 : tnode;override;
function det_resulttype:tnode;override;
procedure pass_2;override;
end;
tisnodeclass = class of tisnode;
var
ctypeconvnode : ttypeconvnodeclass;
casnode : tasnodeclass;
cisnode : tisnodeclass;
procedure inserttypeconv(var p:tnode;const t:ttype);
procedure inserttypeconv_explicit(var p:tnode;const t:ttype);
procedure arrayconstructor_to_set(var p : tnode);
implementation
uses
globtype,systems,tokens,
cutils,verbose,globals,widestr,
symconst,symdef,symsym,symtable,
ncon,ncal,nset,nadd,ninl,nmem,nmat,
cgbase,
htypechk,pass_1,cpubase,cpuinfo;
{*****************************************************************************
Helpers
*****************************************************************************}
procedure inserttypeconv(var p:tnode;const t:ttype);
begin
if not assigned(p.resulttype.def) then
begin
resulttypepass(p);
if codegenerror then
exit;
end;
{ don't insert obsolete type conversions }
if is_equal(p.resulttype.def,t.def) and
not ((p.resulttype.def.deftype=setdef) and
(tsetdef(p.resulttype.def).settype <>
tsetdef(t.def).settype)) then
begin
p.resulttype:=t;
end
else
begin
p:=ctypeconvnode.create(p,t);
resulttypepass(p);
end;
end;
procedure inserttypeconv_explicit(var p:tnode;const t:ttype);
begin
if not assigned(p.resulttype.def) then
begin
resulttypepass(p);
if codegenerror then
exit;
end;
{ don't insert obsolete type conversions }
if is_equal(p.resulttype.def,t.def) and
not ((p.resulttype.def.deftype=setdef) and
(tsetdef(p.resulttype.def).settype <>
tsetdef(t.def).settype)) then
begin
p.resulttype:=t;
end
else
begin
p:=ctypeconvnode.create_explicit(p,t);
resulttypepass(p);
end;
end;
{*****************************************************************************
Array constructor to Set Conversion
*****************************************************************************}
procedure arrayconstructor_to_set(var p : tnode);
var
constp : tsetconstnode;
buildp,
p2,p3,p4 : tnode;
htype : ttype;
constset : Pconstset;
constsetlo,
constsethi : longint;
procedure update_constsethi(t:ttype);
begin
if ((t.def.deftype=orddef) and
(torddef(t.def).high>=constsethi)) then
begin
constsethi:=torddef(t.def).high;
if htype.def=nil then
begin
if (constsethi>255) or
(torddef(t.def).low<0) then
htype:=u8bittype
else
htype:=t;
end;
if constsethi>255 then
constsethi:=255;
end
else if ((t.def.deftype=enumdef) and
(tenumdef(t.def).max>=constsethi)) then
begin
if htype.def=nil then
htype:=t;
constsethi:=tenumdef(t.def).max;
end;
end;
procedure do_set(pos : longint);
{$ifdef oldset}
var
mask,l : longint;
{$endif}
begin
if (pos and not $ff)<>0 then
Message(parser_e_illegal_set_expr);
if pos>constsethi then
constsethi:=pos;
if pos<constsetlo then
constsetlo:=pos;
{$ifdef oldset}
{ to do this correctly we use the 32bit array }
l:=pos shr 5;
mask:=1 shl (pos mod 32);
{ do we allow the same twice }
if (pconst32bitset(constset)^[l] and mask)<>0 then
Message(parser_e_illegal_set_expr);
pconst32bitset(constset)^[l]:=pconst32bitset(constset)^[l] or mask;
{$else}
include(constset^,pos);
{$endif}
end;
var
l : Longint;
lr,hr : TConstExprInt;
hp : tarrayconstructornode;
begin
if p.nodetype<>arrayconstructorn then
internalerror(200205105);
new(constset);
{$ifdef oldset}
FillChar(constset^,sizeof(constset^),0);
{$else}
constset^:=[];
{$endif}
htype.reset;
constsetlo:=0;
constsethi:=0;
constp:=csetconstnode.create(nil,htype);
constp.value_set:=constset;
buildp:=constp;
hp:=tarrayconstructornode(p);
if assigned(hp.left) then
begin
while assigned(hp) do
begin
p4:=nil; { will contain the tree to create the set }
{split a range into p2 and p3 }
if hp.left.nodetype=arrayconstructorrangen then
begin
p2:=tarrayconstructorrangenode(hp.left).left;
p3:=tarrayconstructorrangenode(hp.left).right;
tarrayconstructorrangenode(hp.left).left:=nil;
tarrayconstructorrangenode(hp.left).right:=nil;
end
else
begin
p2:=hp.left;
hp.left:=nil;
p3:=nil;
end;
resulttypepass(p2);
if assigned(p3) then
resulttypepass(p3);
if codegenerror then
break;
case p2.resulttype.def.deftype of
enumdef,
orddef:
begin
getrange(p2.resulttype.def,lr,hr);
if assigned(p3) then
begin
{ this isn't good, you'll get problems with
type t010 = 0..10;
ts = set of t010;
var s : ts;b : t010
begin s:=[1,2,b]; end.
if is_integer(p3^.resulttype.def) then
begin
inserttypeconv(p3,u8bitdef);
end;
}
if assigned(htype.def) and not(is_equal(htype.def,p3.resulttype.def)) then
begin
aktfilepos:=p3.fileinfo;
CGMessage(type_e_typeconflict_in_set);
end
else
begin
if (p2.nodetype=ordconstn) and (p3.nodetype=ordconstn) then
begin
if not(is_integer(p3.resulttype.def)) then
htype:=p3.resulttype
else
begin
inserttypeconv(p3,u8bittype);
inserttypeconv(p2,u8bittype);
end;
for l:=tordconstnode(p2).value to tordconstnode(p3).value do
do_set(l);
p2.free;
p3.free;
end
else
begin
update_constsethi(p2.resulttype);
inserttypeconv(p2,htype);
update_constsethi(p3.resulttype);
inserttypeconv(p3,htype);
if assigned(htype.def) then
inserttypeconv(p3,htype)
else
inserttypeconv(p3,u8bittype);
p4:=csetelementnode.create(p2,p3);
end;
end;
end
else
begin
{ Single value }
if p2.nodetype=ordconstn then
begin
if not(is_integer(p2.resulttype.def)) then
update_constsethi(p2.resulttype)
else
inserttypeconv(p2,u8bittype);
do_set(tordconstnode(p2).value);
p2.free;
end
else
begin
update_constsethi(p2.resulttype);
if assigned(htype.def) then
inserttypeconv(p2,htype)
else
inserttypeconv(p2,u8bittype);
p4:=csetelementnode.create(p2,nil);
end;
end;
end;
stringdef :
begin
{ if we've already set elements which are constants }
{ throw an error }
if ((htype.def=nil) and assigned(buildp)) or
not(is_char(htype.def)) then
CGMessage(type_e_typeconflict_in_set)
else
for l:=1 to length(pstring(tstringconstnode(p2).value_str)^) do
do_set(ord(pstring(tstringconstnode(p2).value_str)^[l]));
if htype.def=nil then
htype:=cchartype;
p2.free;
end;
else
CGMessage(type_e_ordinal_expr_expected);
end;
{ insert the set creation tree }
if assigned(p4) then
buildp:=caddnode.create(addn,buildp,p4);
{ load next and dispose current node }
p2:=hp;
hp:=tarrayconstructornode(tarrayconstructornode(p2).right);
tarrayconstructornode(p2).right:=nil;
p2.free;
end;
if (htype.def=nil) then
htype:=u8bittype;
end
else
begin
{ empty set [], only remove node }
p.free;
end;
{ set the initial set type }
constp.resulttype.setdef(tsetdef.create(htype,constsethi));
{ determine the resulttype for the tree }
resulttypepass(buildp);
{ set the new tree }
p:=buildp;
end;
{*****************************************************************************
TTYPECONVNODE
*****************************************************************************}
constructor ttypeconvnode.create(node : tnode;const t:ttype);
begin
inherited create(typeconvn,node);
convtype:=tc_not_possible;
totype:=t;
if t.def=nil then
internalerror(200103281);
set_file_line(node);
end;
constructor ttypeconvnode.create_explicit(node : tnode;const t:ttype);
begin
self.create(node,t);
toggleflag(nf_explizit);
end;
constructor ttypeconvnode.ppuload(t:tnodetype;ppufile:tcompilerppufile);
begin
inherited ppuload(t,ppufile);
ppufile.gettype(totype);
convtype:=tconverttype(ppufile.getbyte);
end;
procedure ttypeconvnode.ppuwrite(ppufile:tcompilerppufile);
begin
inherited ppuwrite(ppufile);
ppufile.puttype(totype);
ppufile.putbyte(byte(convtype));
end;
procedure ttypeconvnode.derefimpl;
begin
inherited derefimpl;
totype.resolve;
end;
function ttypeconvnode.getcopy : tnode;
var
n : ttypeconvnode;
begin
n:=ttypeconvnode(inherited getcopy);
n.convtype:=convtype;
getcopy:=n;
end;
function ttypeconvnode.resulttype_cord_to_pointer : tnode;
var
t : tnode;
begin
result:=nil;
if left.nodetype=ordconstn then
begin
{ check if we have a valid pointer constant (JM) }
if (sizeof(pointer) > sizeof(TConstPtrUInt)) then
if (sizeof(TConstPtrUInt) = 4) then
begin
if (tordconstnode(left).value < low(longint)) or
(tordconstnode(left).value > high(cardinal)) then
CGMessage(parser_e_range_check_error);
end
else if (sizeof(TConstPtrUInt) = 8) then
begin
if (tordconstnode(left).value < low(int64)) or
(tordconstnode(left).value > high(qword)) then
CGMessage(parser_e_range_check_error);
end
else
internalerror(2001020801);
t:=cpointerconstnode.create(TConstPtrUInt(tordconstnode(left).value),resulttype);
result:=t;
end
else
internalerror(200104023);
end;
function ttypeconvnode.resulttype_chararray_to_string : tnode;
begin
result := ccallnode.createinternres(
'fpc_chararray_to_'+tstringdef(resulttype.def).stringtypname,
ccallparanode.create(left,nil),resulttype);
left := nil;
end;
function ttypeconvnode.resulttype_string_to_chararray : tnode;
var
arrsize: longint;
begin
with tarraydef(resulttype.def) do
begin
if highrange<lowrange then
internalerror(75432653);
arrsize := highrange-lowrange+1;
end;
if (left.nodetype = stringconstn) and
{ left.length+1 since there's always a terminating #0 character (JM) }
(tstringconstnode(left).len+1 >= arrsize) and
(tstringdef(left.resulttype.def).string_typ=st_shortstring) then
begin
{ handled separately }
result := nil;
exit;
end;
result := ccallnode.createinternres(
'fpc_'+tstringdef(left.resulttype.def).stringtypname+
'_to_chararray',ccallparanode.create(left,ccallparanode.create(
cordconstnode.create(arrsize,s32bittype),nil)),resulttype);
left := nil;
end;
function ttypeconvnode.resulttype_string_to_string : tnode;
var
procname: string[31];
stringpara : tcallparanode;
pw : pcompilerwidestring;
pc : pchar;
begin
result:=nil;
if left.nodetype=stringconstn then
begin
{ convert ascii 2 unicode }
if (tstringdef(resulttype.def).string_typ=st_widestring) and
(tstringconstnode(left).st_type in [st_ansistring,st_shortstring,st_longstring]) then
begin
initwidestring(pw);
ascii2unicode(tstringconstnode(left).value_str,tstringconstnode(left).len,pw);
ansistringdispose(tstringconstnode(left).value_str,tstringconstnode(left).len);
pcompilerwidestring(tstringconstnode(left).value_str):=pw;
end
else
{ convert unicode 2 ascii }
if (tstringconstnode(left).st_type=st_widestring) and
(tstringdef(resulttype.def).string_typ in [st_ansistring,st_shortstring,st_longstring]) then
begin
pw:=pcompilerwidestring(tstringconstnode(left).value_str);
getmem(pc,getlengthwidestring(pw)+1);
unicode2ascii(pw,pc);
donewidestring(pw);
tstringconstnode(left).value_str:=pc;
end;
tstringconstnode(left).st_type:=tstringdef(resulttype.def).string_typ;
tstringconstnode(left).resulttype:=resulttype;
result:=left;
left:=nil;
end
else
begin
{ get the correct procedure name }
procname := 'fpc_'+tstringdef(left.resulttype.def).stringtypname+
'_to_'+tstringdef(resulttype.def).stringtypname;
{ create parameter (and remove left node from typeconvnode }
{ since it's reused as parameter) }
stringpara := ccallparanode.create(left,nil);
left := nil;
{ when converting to shortstrings, we have to pass high(destination) too }
if (tstringdef(resulttype.def).string_typ = st_shortstring) then
stringpara.right := ccallparanode.create(cinlinenode.create(
in_high_x,false,self.getcopy),nil);
{ and create the callnode }
result := ccallnode.createinternres(procname,stringpara,resulttype);
end;
end;
function ttypeconvnode.resulttype_char_to_string : tnode;
var
procname: string[31];
para : tcallparanode;
hp : tstringconstnode;
ws : pcompilerwidestring;
begin
result:=nil;
if left.nodetype=ordconstn then
begin
if tstringdef(resulttype.def).string_typ=st_widestring then
begin
initwidestring(ws);
concatwidestringchar(ws,tcompilerwidechar(chr(tordconstnode(left).value)));
hp:=cstringconstnode.createwstr(ws);
donewidestring(ws);
end
else
hp:=cstringconstnode.createstr(chr(tordconstnode(left).value),tstringdef(resulttype.def).string_typ);
result:=hp;
end
else
{ shortstrings are handled 'inline' }
if tstringdef(resulttype.def).string_typ <> st_shortstring then
begin
{ create the parameter }
para := ccallparanode.create(left,nil);
left := nil;
{ and the procname }
procname := 'fpc_char_to_' +tstringdef(resulttype.def).stringtypname;
{ and finally the call }
result := ccallnode.createinternres(procname,para,resulttype);
end
else
begin
{ create word(byte(char) shl 8 or 1) for litte endian machines }
{ and word(byte(char) or 256) for big endian machines }
left := ctypeconvnode.create(left,u8bittype);
left.toggleflag(nf_explizit);
if (target_info.endian = endian_little) then
left := caddnode.create(orn,
cshlshrnode.create(shln,left,cordconstnode.create(8,s32bittype)),
cordconstnode.create(1,s32bittype))
else
left := caddnode.create(orn,left,
cordconstnode.create(1 shl 8,s32bittype));
left := ctypeconvnode.create(left,u16bittype);
left.toggleflag(nf_explizit);
resulttypepass(left);
end;
end;
function ttypeconvnode.resulttype_char_to_chararray : tnode;
begin
if resulttype.def.size <> 1 then
begin
{ convert first to string, then to chararray }
inserttypeconv(left,cshortstringtype);
inserttypeconv(left,resulttype);
result:=left;
left := nil;
exit;
end;
result := nil;
end;
function ttypeconvnode.resulttype_char_to_char : tnode;
var
hp : tordconstnode;
begin
result:=nil;
if left.nodetype=ordconstn then
begin
if (torddef(resulttype.def).typ=uchar) and
(torddef(left.resulttype.def).typ=uwidechar) then
begin
hp:=cordconstnode.create(
ord(unicode2asciichar(tcompilerwidechar(tordconstnode(left).value))),cchartype);
result:=hp;
end
else if (torddef(resulttype.def).typ=uwidechar) and
(torddef(left.resulttype.def).typ=uchar) then
begin
hp:=cordconstnode.create(
asciichar2unicode(chr(tordconstnode(left).value)),cwidechartype);
result:=hp;
end
else
internalerror(200105131);
exit;
end;
end;
function ttypeconvnode.resulttype_int_to_real : tnode;
var
t : trealconstnode;
begin
result:=nil;
if left.nodetype=ordconstn then
begin
t:=crealconstnode.create(tordconstnode(left).value,resulttype);
result:=t;
end;
end;
function ttypeconvnode.resulttype_real_to_real : tnode;
var
t : tnode;
begin
result:=nil;
if is_currency(left.resulttype.def) and not(is_currency(resulttype.def)) then
begin
end
else
if is_currency(resulttype.def) then
begin
end;
if left.nodetype=realconstn then
begin
t:=crealconstnode.create(trealconstnode(left).value_real,resulttype);
result:=t;
end;
end;
function ttypeconvnode.resulttype_cchar_to_pchar : tnode;
begin
result:=nil;
if is_pwidechar(resulttype.def) then
inserttypeconv(left,cwidestringtype)
else
inserttypeconv(left,cshortstringtype);
{ evaluate again, reset resulttype so the convert_typ
will be calculated again and cstring_to_pchar will
be used for futher conversion }
result:=det_resulttype;
end;
function ttypeconvnode.resulttype_cstring_to_pchar : tnode;
begin
result:=nil;
if is_pwidechar(resulttype.def) then
inserttypeconv(left,cwidestringtype);
end;
function ttypeconvnode.resulttype_arrayconstructor_to_set : tnode;
var
hp : tnode;
begin
result:=nil;
if left.nodetype<>arrayconstructorn then
internalerror(5546);
{ remove typeconv node }
hp:=left;
left:=nil;
{ create a set constructor tree }
arrayconstructor_to_set(hp);
result:=hp;
end;
function ttypeconvnode.resulttype_pchar_to_string : tnode;
begin
result := ccallnode.createinternres(
'fpc_pchar_to_'+tstringdef(resulttype.def).stringtypname,
ccallparanode.create(left,nil),resulttype);
left := nil;
end;
function ttypeconvnode.resulttype_interface_to_guid : tnode;
begin
if tobjectdef(left.resulttype.def).isiidguidvalid then
result:=cguidconstnode.create(tobjectdef(left.resulttype.def).iidguid);
end;
function ttypeconvnode.resulttype_dynarray_to_openarray : tnode;
begin
{ a dynamic array is a pointer to an array, so to convert it to }
{ an open array, we have to dereference it (JM) }
result := ctypeconvnode.create(left,voidpointertype);
{ left is reused }
left := nil;
result.toggleflag(nf_explizit);
result := cderefnode.create(result);
result.resulttype := resulttype;
end;
function ttypeconvnode.resulttype_call_helper(c : tconverttype) : tnode;
const
resulttypeconvert : array[tconverttype] of pointer = (
{equal} nil,
{not_possible} nil,
{ string_2_string } @ttypeconvnode.resulttype_string_to_string,
{ char_2_string } @ttypeconvnode.resulttype_char_to_string,
{ char_2_chararray } @ttypeconvnode.resulttype_char_to_chararray,
{ pchar_2_string } @ttypeconvnode.resulttype_pchar_to_string,
{ cchar_2_pchar } @ttypeconvnode.resulttype_cchar_to_pchar,
{ cstring_2_pchar } @ttypeconvnode.resulttype_cstring_to_pchar,
{ ansistring_2_pchar } nil,
{ string_2_chararray } @ttypeconvnode.resulttype_string_to_chararray,
{ chararray_2_string } @ttypeconvnode.resulttype_chararray_to_string,
{ array_2_pointer } nil,
{ pointer_2_array } nil,
{ int_2_int } nil,
{ int_2_bool } nil,
{ bool_2_bool } nil,
{ bool_2_int } nil,
{ real_2_real } @ttypeconvnode.resulttype_real_to_real,
{ int_2_real } @ttypeconvnode.resulttype_int_to_real,
{ proc_2_procvar } nil,
{ arrayconstructor_2_set } @ttypeconvnode.resulttype_arrayconstructor_to_set,
{ load_smallset } nil,
{ cord_2_pointer } @ttypeconvnode.resulttype_cord_to_pointer,
{ intf_2_string } nil,
{ intf_2_guid } @ttypeconvnode.resulttype_interface_to_guid,
{ class_2_intf } nil,
{ char_2_char } @ttypeconvnode.resulttype_char_to_char,
{ normal_2_smallset} nil,
{ dynarray_2_openarray} @resulttype_dynarray_to_openarray
);
type
tprocedureofobject = function : tnode of object;
var
r : packed record
proc : pointer;
obj : pointer;
end;
begin
result:=nil;
{ this is a little bit dirty but it works }
{ and should be quite portable too }
r.proc:=resulttypeconvert[c];
r.obj:=self;
if assigned(r.proc) then
result:=tprocedureofobject(r){$ifdef FPC}();{$endif FPC}
end;
function ttypeconvnode.det_resulttype:tnode;
var
hp : tnode;
currprocdef,
aprocdef : tprocdef;
begin
result:=nil;
resulttype:=totype;
resulttypepass(left);
if codegenerror then
exit;
{ remove obsolete type conversions }
if is_equal(left.resulttype.def,resulttype.def) then
begin
{ becuase is_equal only checks the basetype for sets we need to
check here if we are loading a smallset into a normalset }
if (resulttype.def.deftype=setdef) and
(left.resulttype.def.deftype=setdef) and
((tsetdef(resulttype.def).settype = smallset) xor
(tsetdef(left.resulttype.def).settype = smallset)) then
begin
{ constant sets can be converted by changing the type only }
if (left.nodetype=setconstn) then
begin
tsetdef(left.resulttype.def).changesettype(tsetdef(resulttype.def).settype);
result:=left;
left:=nil;
exit;
end;
if (tsetdef(resulttype.def).settype <> smallset) then
convtype:=tc_load_smallset
else
convtype := tc_normal_2_smallset;
exit;
end
else
begin
left.resulttype:=resulttype;
result:=left;
left:=nil;
exit;
end;
end;
aprocdef:=assignment_overloaded(left.resulttype.def,resulttype.def);
if assigned(aprocdef) then
begin
procinfo.flags:=procinfo.flags or pi_do_call;
hp:=ccallnode.create(ccallparanode.create(left,nil),
overloaded_operators[_assignment],nil,nil);
{ tell explicitly which def we must use !! (PM) }
tcallnode(hp).procdefinition:=aprocdef;
left:=nil;
result:=hp;
exit;
end;
if isconvertable(left.resulttype.def,resulttype.def,convtype,left.nodetype,nf_explizit in flags)=0 then
begin
{Procedures have a resulttype.def of voiddef and functions of their
own resulttype.def. They will therefore always be incompatible with
a procvar. Because isconvertable cannot check for procedures we
use an extra check for them.}
if (m_tp_procvar in aktmodeswitches) then
begin
if (resulttype.def.deftype=procvardef) and
(is_procsym_load(left) or is_procsym_call(left)) then
begin
if is_procsym_call(left) then
begin
currprocdef:=Tprocsym(Tcallnode(left).symtableprocentry).search_procdef_byprocvardef(Tprocvardef(resulttype.def));
hp:=cloadnode.create_procvar(tprocsym(tcallnode(left).symtableprocentry),
currprocdef,tcallnode(left).symtableproc);
if (tcallnode(left).symtableprocentry.owner.symtabletype=objectsymtable) and
assigned(tcallnode(left).methodpointer) then
tloadnode(hp).set_mp(tcallnode(left).methodpointer.getcopy);
resulttypepass(hp);
left.free;
left:=hp;
aprocdef:=tprocdef(left.resulttype.def);
end
else
begin
if (left.nodetype<>addrn) then
aprocdef:=tprocsym(tloadnode(left).symtableentry).first_procdef;
end;
convtype:=tc_proc_2_procvar;
{ Now check if the procedure we are going to assign to
the procvar, is compatible with the procvar's type }
if assigned(aprocdef) then
begin
if not proc_to_procvar_equal(aprocdef,tprocvardef(resulttype.def),false) then
CGMessage2(type_e_incompatible_types,aprocdef.typename,resulttype.def.typename);
end
else
CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename);
exit;
end;
end;
if nf_explizit in flags then
begin
{ check if the result could be in a register }
if not(tstoreddef(resulttype.def).is_intregable) and
not(tstoreddef(resulttype.def).is_fpuregable) then
make_not_regable(left);
{ boolean to byte are special because the
location can be different }
if is_integer(resulttype.def) and
is_boolean(left.resulttype.def) then
begin
convtype:=tc_bool_2_int;
exit;
end;
if is_char(resulttype.def) and
is_boolean(left.resulttype.def) then
begin
convtype:=tc_bool_2_int;
exit;
end;
{ ansistring to pchar }
if is_pchar(resulttype.def) and
is_ansistring(left.resulttype.def) then
begin
convtype:=tc_ansistring_2_pchar;
exit;
end;
{ do common tc_equal cast }
convtype:=tc_equal;
{ enum to ordinal will always be s32bit }
if (left.resulttype.def.deftype=enumdef) and
is_ordinal(resulttype.def) then
begin
if left.nodetype=ordconstn then
begin
hp:=cordconstnode.create(tordconstnode(left).value,resulttype);
result:=hp;
exit;
end
else
begin
if isconvertable(s32bittype.def,resulttype.def,convtype,ordconstn,false)=0 then
CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename);
end;
end
{ ordinal to enumeration }
else
if (resulttype.def.deftype=enumdef) and
is_ordinal(left.resulttype.def) then
begin
if left.nodetype=ordconstn then
begin
hp:=cordconstnode.create(tordconstnode(left).value,resulttype);
result:=hp;
exit;
end
else
begin
if IsConvertable(left.resulttype.def,s32bittype.def,convtype,ordconstn,false)=0 then
CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename);
end;
end
{ nil to ordinal node }
else if (left.nodetype=niln) and is_ordinal(resulttype.def) then
begin
hp:=cordconstnode.create(0,resulttype);
result:=hp;
exit;
end
{ constant pointer to ordinal }
else if is_ordinal(resulttype.def) and
(left.nodetype=pointerconstn) then
begin
hp:=cordconstnode.create(tpointerconstnode(left).value,resulttype);
result:=hp;
exit;
end
{ class to class or object to object, with checkobject support }
else if (resulttype.def.deftype=objectdef) and
(left.resulttype.def.deftype=objectdef) then
begin
if (cs_check_object in aktlocalswitches) then
begin
if is_class_or_interface(resulttype.def) then
begin
{ we can translate the typeconvnode to 'as' when
typecasting to a class or interface }
hp:=casnode.create(left,cloadvmtnode.create(ctypenode.create(resulttype)));
left:=nil;
result:=hp;
exit;
end;
end
else
begin
{ check if the types are related }
if (not(tobjectdef(left.resulttype.def).is_related(tobjectdef(resulttype.def)))) and
(not(tobjectdef(resulttype.def).is_related(tobjectdef(left.resulttype.def)))) then
CGMessage2(type_w_classes_not_related,left.resulttype.def.typename,resulttype.def.typename);
end;
end
{Are we typecasting an ordconst to a char?}
else
if is_char(resulttype.def) and
is_ordinal(left.resulttype.def) then
begin
if left.nodetype=ordconstn then
begin
hp:=cordconstnode.create(tordconstnode(left).value,resulttype);
result:=hp;
exit;
end
else
begin
if IsConvertable(left.resulttype.def,u8bittype.def,convtype,ordconstn,false)=0 then
CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename);
end;
end
{Are we typecasting an ordconst to a wchar?}
else
if is_widechar(resulttype.def) and
is_ordinal(left.resulttype.def) then
begin
if left.nodetype=ordconstn then
begin
hp:=cordconstnode.create(tordconstnode(left).value,resulttype);
result:=hp;
exit;
end
else
begin
if IsConvertable(left.resulttype.def,u16bittype.def,convtype,ordconstn,false)=0 then
CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename);
end;
end
{ char to ordinal }
else
if is_char(left.resulttype.def) and
is_ordinal(resulttype.def) then
begin
if left.nodetype=ordconstn then
begin
hp:=cordconstnode.create(tordconstnode(left).value,resulttype);
result:=hp;
exit;
end
else
begin
if IsConvertable(u8bittype.def,resulttype.def,convtype,ordconstn,false)=0 then
CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename);
end;
end
{ widechar to ordinal }
else
if is_widechar(left.resulttype.def) and
is_ordinal(resulttype.def) then
begin
if left.nodetype=ordconstn then
begin
hp:=cordconstnode.create(tordconstnode(left).value,resulttype);
result:=hp;
exit;
end
else
begin
if IsConvertable(u16bittype.def,resulttype.def,convtype,ordconstn,false)=0 then
CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename);
end;
end
{ ordinal to pointer }
else
if (m_delphi in aktmodeswitches) and
is_ordinal(left.resulttype.def) and
(resulttype.def.deftype=pointerdef) then
begin
if left.nodetype=pointerconstn then
begin
hp:=cordconstnode.create(tpointerconstnode(left).value,resulttype);
result:=hp;
exit;
end
else
begin
if IsConvertable(left.resulttype.def,ordpointertype.def,convtype,ordconstn,false)=0 then
CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename);
end;
end
{ only if the same size or formal def }
{ why do we allow typecasting of voiddef ?? (PM) }
else
begin
if not(
(left.resulttype.def.deftype=formaldef) or
(left.resulttype.def.size=resulttype.def.size) or
(is_void(left.resulttype.def) and
(left.nodetype=derefn))
) then
CGMessage(cg_e_illegal_type_conversion);
if ((left.resulttype.def.deftype=orddef) and
(resulttype.def.deftype=pointerdef)) or
((resulttype.def.deftype=orddef) and
(left.resulttype.def.deftype=pointerdef)) then
CGMessage(cg_d_pointer_to_longint_conv_not_portable);
end;
{ the conversion into a strutured type is only }
{ possible, if the source is not a register }
if ((resulttype.def.deftype in [recorddef,stringdef,arraydef]) or
((resulttype.def.deftype=objectdef) and not(is_class(resulttype.def)))
) and (left.location.loc in [LOC_REGISTER,LOC_CREGISTER]) { and
it also works if the assignment is overloaded
YES but this code is not executed if assignment is overloaded (PM)
not assigned(assignment_overloaded(left.resulttype.def,resulttype.def))} then
CGMessage(cg_e_illegal_type_conversion);
end
else
CGMessage2(type_e_incompatible_types,left.resulttype.def.typename,resulttype.def.typename);
end;
{ tp7 procvar support, when right is not a procvardef and we got a
loadn of a procvar then convert to a calln, the check for the
result is already done in is_convertible, also no conflict with
@procvar is here because that has an extra addrn }
if (m_tp_procvar in aktmodeswitches) and
(resulttype.def.deftype<>procvardef) and
(left.resulttype.def.deftype=procvardef) and
(left.nodetype=loadn) then
begin
hp:=ccallnode.create(nil,nil,nil,nil);
tcallnode(hp).set_procvar(left);
resulttypepass(hp);
left:=hp;
end;
{ remove typeconv after niln, but not when the result is a
methodpointer. The typeconv of the methodpointer will then
take care of updateing size of niln to OS_64 }
if (left.nodetype=niln) and
not((resulttype.def.deftype=procvardef) and
(po_methodpointer in tprocvardef(resulttype.def).procoptions)) then
begin
left.resulttype:=resulttype;
result:=left;
left:=nil;
exit;
end;
{ ordinal contants can be directly converted }
if (left.nodetype=ordconstn) and is_ordinal(resulttype.def) and
{ but not char to char because it is a widechar to char or via versa }
{ which needs extra code to do the code page transistion }
not(convtype=tc_char_2_char) then
begin
{ replace the resulttype and recheck the range }
left.resulttype:=resulttype;
testrange(left.resulttype.def,tordconstnode(left).value,(nf_explizit in flags));
result:=left;
left:=nil;
exit;
end;
{ fold nil to any pointer type }
if (left.nodetype=niln) and (resulttype.def.deftype=pointerdef) then
begin
hp:=cnilnode.create;
hp.resulttype:=resulttype;
result:=hp;
exit;
end;
{ further, pointerconstn to any pointer is folded too }
if (left.nodetype=pointerconstn) and (resulttype.def.deftype=pointerdef) then
begin
left.resulttype:=resulttype;
result:=left;
left:=nil;
exit;
end;
{ now call the resulttype helper to do constant folding }
result:=resulttype_call_helper(convtype);
end;
{$ifdef var_notification}
procedure Ttypeconvnode.mark_write;
begin
left.mark_write;
end;
{$endif}
function ttypeconvnode.first_cord_to_pointer : tnode;
begin
result:=nil;
internalerror(200104043);
end;
function ttypeconvnode.first_int_to_int : tnode;
begin
first_int_to_int:=nil;
if (left.location.loc<>LOC_REGISTER) and
(resulttype.def.size>left.resulttype.def.size) then
location.loc:=LOC_REGISTER;
if is_64bitint(resulttype.def) then
registers32:=max(registers32,2)
else
registers32:=max(registers32,1);
end;
function ttypeconvnode.first_cstring_to_pchar : tnode;
begin
first_cstring_to_pchar:=nil;
registers32:=1;
location.loc:=LOC_REGISTER;
end;
function ttypeconvnode.first_string_to_chararray : tnode;
begin
first_string_to_chararray:=nil;
registers32:=1;
location.loc:=LOC_REGISTER;
end;
function ttypeconvnode.first_char_to_string : tnode;
begin
first_char_to_string:=nil;
location.loc:=LOC_CREFERENCE;
end;
function ttypeconvnode.first_nothing : tnode;
begin
first_nothing:=nil;
end;
function ttypeconvnode.first_array_to_pointer : tnode;
begin
first_array_to_pointer:=nil;
if registers32<1 then
registers32:=1;
location.loc:=LOC_REGISTER;
end;
function ttypeconvnode.first_int_to_real: tnode;
var
fname: string[19];
typname : string[12];
begin
{ Get the type name }
{ Normally the typename should be one of the following:
single, double - carl
}
typname := lower(pbestrealtype^.def.gettypename);
{ converting a 64bit integer to a float requires a helper }
if is_64bitint(left.resulttype.def) then
begin
if is_signed(left.resulttype.def) then
fname := 'fpc_int64_to_'+typname
else
fname := 'fpc_qword_to_'+typname;
result := ccallnode.createintern(fname,ccallparanode.create(
left,nil));
left:=nil;
firstpass(result);
exit;
end
else
{ other integers are supposed to be 32 bit }
begin
if is_signed(left.resulttype.def) then
fname := 'fpc_longint_to_'+typname
else
fname := 'fpc_cardinal_to_'+typname;
result := ccallnode.createintern(fname,ccallparanode.create(
left,nil));
left:=nil;
firstpass(result);
exit;
end;
end;
function ttypeconvnode.first_real_to_real : tnode;
begin
first_real_to_real:=nil;
{ comp isn't a floating type }
{$ifdef i386}
if (tfloatdef(resulttype.def).typ=s64comp) and
(tfloatdef(left.resulttype.def).typ<>s64comp) and
not (nf_explizit in flags) then
CGMessage(type_w_convert_real_2_comp);
{$endif}
if registersfpu<1 then
registersfpu:=1;
location.loc:=LOC_FPUREGISTER;
end;
function ttypeconvnode.first_pointer_to_array : tnode;
begin
first_pointer_to_array:=nil;
if registers32<1 then
registers32:=1;
location.loc:=LOC_REFERENCE;
end;
function ttypeconvnode.first_cchar_to_pchar : tnode;
begin
first_cchar_to_pchar:=nil;
internalerror(200104021);
end;
function ttypeconvnode.first_bool_to_int : tnode;
begin
first_bool_to_int:=nil;
{ byte(boolean) or word(wordbool) or longint(longbool) must
be accepted for var parameters }
if (nf_explizit in flags) and
(left.resulttype.def.size=resulttype.def.size) and
(left.location.loc in [LOC_REFERENCE,LOC_CREFERENCE,LOC_CREGISTER]) then
exit;
{ when converting to 64bit, first convert to a 32bit int and then }
{ convert to a 64bit int (only necessary for 32bit processors) (JM) }
if resulttype.def.size > sizeof(aword) then
begin
result := ctypeconvnode.create(left,u32bittype);
result.toggleflag(nf_explizit);
result := ctypeconvnode.create(result,resulttype);
left := nil;
firstpass(result);
exit;
end;
location.loc:=LOC_REGISTER;
if registers32<1 then
registers32:=1;
end;
function ttypeconvnode.first_int_to_bool : tnode;
begin
first_int_to_bool:=nil;
{ byte(boolean) or word(wordbool) or longint(longbool) must
be accepted for var parameters }
if (nf_explizit in flags) and
(left.resulttype.def.size=resulttype.def.size) and
(left.location.loc in [LOC_REFERENCE,LOC_CREFERENCE,LOC_CREGISTER]) then
exit;
location.loc:=LOC_REGISTER;
{ need if bool to bool !!
not very nice !!
insertypeconv(left,s32bittype);
left.explizit:=true;
firstpass(left); }
if registers32<1 then
registers32:=1;
end;
function ttypeconvnode.first_bool_to_bool : tnode;
begin
first_bool_to_bool:=nil;
location.loc:=LOC_REGISTER;
if registers32<1 then
registers32:=1;
end;
function ttypeconvnode.first_char_to_char : tnode;
begin
first_char_to_char:=nil;
location.loc:=LOC_REGISTER;
if registers32<1 then
registers32:=1;
end;
function ttypeconvnode.first_proc_to_procvar : tnode;
begin
first_proc_to_procvar:=nil;
if (left.location.loc<>LOC_REFERENCE) then
CGMessage(cg_e_illegal_expression);
registers32:=left.registers32;
if registers32<1 then
registers32:=1;
location.loc:=LOC_REGISTER;
end;
function ttypeconvnode.first_load_smallset : tnode;
var
srsym: ttypesym;
p: tcallparanode;
begin
if not searchsystype('FPC_SMALL_SET',srsym) then
internalerror(200108313);
p := ccallparanode.create(left,nil);
{ reused }
left := nil;
{ convert parameter explicitely to fpc_small_set }
p.left := ctypeconvnode.create(p.left,srsym.restype);
p.left.toggleflag(nf_explizit);
{ create call, adjust resulttype }
result :=
ccallnode.createinternres('fpc_set_load_small',p,resulttype);
firstpass(result);
end;
function ttypeconvnode.first_ansistring_to_pchar : tnode;
begin
first_ansistring_to_pchar:=nil;
location.loc:=LOC_REGISTER;
if registers32<1 then
registers32:=1;
end;
function ttypeconvnode.first_arrayconstructor_to_set : tnode;
begin
first_arrayconstructor_to_set:=nil;
internalerror(200104022);
end;
function ttypeconvnode.first_class_to_intf : tnode;
begin
first_class_to_intf:=nil;
location.loc:=LOC_REFERENCE;
if registers32<1 then
registers32:=1;
end;
function ttypeconvnode._first_int_to_int : tnode;
begin
result:=first_int_to_int;
end;
function ttypeconvnode._first_cstring_to_pchar : tnode;
begin
result:=first_cstring_to_pchar;
end;
function ttypeconvnode._first_string_to_chararray : tnode;
begin
result:=first_string_to_chararray;
end;
function ttypeconvnode._first_char_to_string : tnode;
begin
result:=first_char_to_string;
end;
function ttypeconvnode._first_nothing : tnode;
begin
result:=first_nothing;
end;
function ttypeconvnode._first_array_to_pointer : tnode;
begin
result:=first_array_to_pointer;
end;
function ttypeconvnode._first_int_to_real : tnode;
begin
result:=first_int_to_real;
end;
function ttypeconvnode._first_real_to_real : tnode;
begin
result:=first_real_to_real;
end;
function ttypeconvnode._first_pointer_to_array : tnode;
begin
result:=first_pointer_to_array;
end;
function ttypeconvnode._first_cchar_to_pchar : tnode;
begin
result:=first_cchar_to_pchar;
end;
function ttypeconvnode._first_bool_to_int : tnode;
begin
result:=first_bool_to_int;
end;
function ttypeconvnode._first_int_to_bool : tnode;
begin
result:=first_int_to_bool;
end;
function ttypeconvnode._first_bool_to_bool : tnode;
begin
result:=first_bool_to_bool;
end;
function ttypeconvnode._first_proc_to_procvar : tnode;
begin
result:=first_proc_to_procvar;
end;
function ttypeconvnode._first_load_smallset : tnode;
begin
result:=first_load_smallset;
end;
function ttypeconvnode._first_cord_to_pointer : tnode;
begin
result:=first_cord_to_pointer;
end;
function ttypeconvnode._first_ansistring_to_pchar : tnode;
begin
result:=first_ansistring_to_pchar;
end;
function ttypeconvnode._first_arrayconstructor_to_set : tnode;
begin
result:=first_arrayconstructor_to_set;
end;
function ttypeconvnode._first_class_to_intf : tnode;
begin
result:=first_class_to_intf;
end;
function ttypeconvnode._first_char_to_char : tnode;
begin
result:=first_char_to_char;
end;
function ttypeconvnode.first_call_helper(c : tconverttype) : tnode;
const
firstconvert : array[tconverttype] of pointer = (
@ttypeconvnode._first_nothing, {equal}
@ttypeconvnode._first_nothing, {not_possible}
nil, { removed in resulttype_string_to_string }
@ttypeconvnode._first_char_to_string,
@ttypeconvnode._first_nothing, { char_2_chararray, needs nothing extra }
nil, { removed in resulttype_chararray_to_string }
@ttypeconvnode._first_cchar_to_pchar,
@ttypeconvnode._first_cstring_to_pchar,
@ttypeconvnode._first_ansistring_to_pchar,
@ttypeconvnode._first_string_to_chararray,
nil, { removed in resulttype_chararray_to_string }
@ttypeconvnode._first_array_to_pointer,
@ttypeconvnode._first_pointer_to_array,
@ttypeconvnode._first_int_to_int,
@ttypeconvnode._first_int_to_bool,
@ttypeconvnode._first_bool_to_bool,
@ttypeconvnode._first_bool_to_int,
@ttypeconvnode._first_real_to_real,
@ttypeconvnode._first_int_to_real,
@ttypeconvnode._first_proc_to_procvar,
@ttypeconvnode._first_arrayconstructor_to_set,
@ttypeconvnode._first_load_smallset,
@ttypeconvnode._first_cord_to_pointer,
@ttypeconvnode._first_nothing,
@ttypeconvnode._first_nothing,
@ttypeconvnode._first_class_to_intf,
@ttypeconvnode._first_char_to_char,
@ttypeconvnode._first_nothing,
@ttypeconvnode._first_nothing
);
type
tprocedureofobject = function : tnode of object;
var
r : packed record
proc : pointer;
obj : pointer;
end;
begin
{ this is a little bit dirty but it works }
{ and should be quite portable too }
r.proc:=firstconvert[c];
r.obj:=self;
first_call_helper:=tprocedureofobject(r){$ifdef FPC}();{$endif FPC}
end;
function ttypeconvnode.pass_1 : tnode;
begin
result:=nil;
firstpass(left);
if codegenerror then
exit;
{ load the value_str from the left part }
registers32:=left.registers32;
registersfpu:=left.registersfpu;
{$ifdef SUPPORT_MMX}
registersmmx:=left.registersmmx;
{$endif}
location.loc:=left.location.loc;
if nf_explizit in flags then
begin
{ check if the result could be in a register }
if not(tstoreddef(resulttype.def).is_intregable) and
not(tstoreddef(resulttype.def).is_fpuregable) then
make_not_regable(left);
end;
result:=first_call_helper(convtype);
end;
function ttypeconvnode.docompare(p: tnode) : boolean;
begin
docompare :=
inherited docompare(p) and
(convtype = ttypeconvnode(p).convtype);
end;
{*****************************************************************************
TISNODE
*****************************************************************************}
constructor tisnode.create(l,r : tnode);
begin
inherited create(isn,l,r);
end;
function tisnode.det_resulttype:tnode;
var
paras: tcallparanode;
begin
result:=nil;
resulttypepass(left);
resulttypepass(right);
set_varstate(left,true);
set_varstate(right,true);
if codegenerror then
exit;
if (right.resulttype.def.deftype=classrefdef) then
begin
{ left must be a class }
if is_class(left.resulttype.def) then
begin
{ the operands must be related }
if (not(tobjectdef(left.resulttype.def).is_related(
tobjectdef(tclassrefdef(right.resulttype.def).pointertype.def)))) and
(not(tobjectdef(tclassrefdef(right.resulttype.def).pointertype.def).is_related(
tobjectdef(left.resulttype.def)))) then
CGMessage2(type_e_classes_not_related,left.resulttype.def.typename,
tclassrefdef(right.resulttype.def).pointertype.def.typename);
end
else
CGMessage1(type_e_class_type_expected,left.resulttype.def.typename);
{ call fpc_do_is helper }
paras := ccallparanode.create(
left,
ccallparanode.create(
right,nil));
result := ccallnode.createintern('fpc_do_is',paras);
left := nil;
right := nil;
end
else if is_interface(right.resulttype.def) then
begin
{ left is a class }
if is_class(left.resulttype.def) then
begin
{ the operands must be related }
if not(assigned(tobjectdef(left.resulttype.def).implementedinterfaces) and
(tobjectdef(left.resulttype.def).implementedinterfaces.searchintf(right.resulttype.def)<>-1)) then
CGMessage2(type_e_classes_not_related,left.resulttype.def.typename,right.resulttype.def.typename);
end
{ left is an interface }
else if is_interface(left.resulttype.def) then
begin
{ the operands must be related }
if (not(tobjectdef(left.resulttype.def).is_related(tobjectdef(right.resulttype.def)))) and
(not(tobjectdef(right.resulttype.def).is_related(tobjectdef(left.resulttype.def)))) then
CGMessage(type_e_mismatch);
end
else
CGMessage1(type_e_class_type_expected,left.resulttype.def.typename);
{ call fpc_do_is helper }
paras := ccallparanode.create(
left,
ccallparanode.create(
right,nil));
result := ccallnode.createintern('fpc_do_is',paras);
left := nil;
right := nil;
end
else
CGMessage1(type_e_class_or_interface_type_expected,right.resulttype.def.typename);
resulttype:=booltype;
end;
function tisnode.pass_1 : tnode;
begin
internalerror(200204254);
result:=nil;
end;
{ dummy pass_2, it will never be called, but we need one since }
{ you can't instantiate an abstract class }
procedure tisnode.pass_2;
begin
end;
{*****************************************************************************
TASNODE
*****************************************************************************}
constructor tasnode.create(l,r : tnode);
begin
inherited create(asn,l,r);
call := nil;
end;
destructor tasnode.destroy;
begin
call.free;
inherited destroy;
end;
function tasnode.det_resulttype:tnode;
begin
result:=nil;
resulttypepass(right);
resulttypepass(left);
set_varstate(right,true);
set_varstate(left,true);
if codegenerror then
exit;
if (right.resulttype.def.deftype=classrefdef) then
begin
{ left must be a class }
if is_class(left.resulttype.def) then
begin
{ the operands must be related }
if (not(tobjectdef(left.resulttype.def).is_related(
tobjectdef(tclassrefdef(right.resulttype.def).pointertype.def)))) and
(not(tobjectdef(tclassrefdef(right.resulttype.def).pointertype.def).is_related(
tobjectdef(left.resulttype.def)))) then
CGMessage2(type_e_classes_not_related,left.resulttype.def.typename,
tclassrefdef(right.resulttype.def).pointertype.def.typename);
end
else
CGMessage1(type_e_class_type_expected,left.resulttype.def.typename);
resulttype:=tclassrefdef(right.resulttype.def).pointertype;
end
else if is_interface(right.resulttype.def) then
begin
{ left is a class }
if is_class(left.resulttype.def) then
begin
{ the operands must be related }
if not(assigned(tobjectdef(left.resulttype.def).implementedinterfaces) and
(tobjectdef(left.resulttype.def).implementedinterfaces.searchintf(right.resulttype.def)<>-1)) then
CGMessage2(type_e_classes_not_related,left.resulttype.def.typename,right.resulttype.def.typename);
end
{ left is an interface }
else if is_interface(left.resulttype.def) then
begin
{ the operands must be related }
if (not(tobjectdef(left.resulttype.def).is_related(tobjectdef(right.resulttype.def)))) and
(not(tobjectdef(right.resulttype.def).is_related(tobjectdef(left.resulttype.def)))) then
CGMessage2(type_e_classes_not_related,left.resulttype.def.typename,right.resulttype.def.typename);
end
else
CGMessage1(type_e_class_type_expected,left.resulttype.def.typename);
resulttype:=right.resulttype;
{ load the GUID of the interface }
if (right.nodetype=typen) then
begin
if tobjectdef(left.resulttype.def).isiidguidvalid then
right:=cguidconstnode.create(tobjectdef(left.resulttype.def).iidguid)
else
internalerror(200206282);
resulttypepass(right);
end;
end
else
CGMessage1(type_e_class_or_interface_type_expected,right.resulttype.def.typename);
end;
function tasnode.getcopy: tnode;
begin
result := inherited getcopy;
if assigned(call) then
tasnode(result).call := call.getcopy
else
tasnode(result).call := nil;
end;
function tasnode.pass_1 : tnode;
var
procname: string;
begin
result:=nil;
if not assigned(call) then
begin
if is_class(left.resulttype.def) and
(right.resulttype.def.deftype=classrefdef) then
call := ccallnode.createinternres('fpc_do_as',
ccallparanode.create(left,ccallparanode.create(right,nil)),
resulttype)
else
begin
if is_class(left.resulttype.def) then
procname := 'fpc_class_as_intf'
else
procname := 'fpc_intf_as';
call := ccallnode.createinternres(procname,
ccallparanode.create(left,ccallparanode.create(right,nil)),
resulttype);
end;
left := nil;
right := nil;
firstpass(call);
if codegenerror then
exit;
location.loc:=call.location.loc;
registers32:=call.registers32;
registersfpu:=call.registersfpu;
{$ifdef SUPPORT_MMX}
registersmmx:=call.registersmmx;
{$endif SUPPORT_MMX}
end;
end;
begin
ctypeconvnode:=ttypeconvnode;
casnode:=tasnode;
cisnode:=tisnode;
end.
{
$Log$
Revision 1.74 2002-09-01 08:01:16 daniel
* Removed sets from Tcallnode.det_resulttype
+ Added read/write notifications of variables. These will be usefull
for providing information for several optimizations. For example
the value of the loop variable of a for loop does matter is the
variable is read after the for loop, but if it's no longer used
or written, it doesn't matter and this can be used to optimize
the loop code generation.
Revision 1.73 2002/08/23 16:14:49 peter
* tempgen cleanup
* tt_noreuse temp type added that will be used in genentrycode
Revision 1.72 2002/08/20 18:23:33 jonas
* the as node again uses a compilerproc
+ (untested) support for interface "as" statements
Revision 1.71 2002/08/19 19:36:43 peter
* More fixes for cross unit inlining, all tnodes are now implemented
* Moved pocall_internconst to po_internconst because it is not a
calling type at all and it conflicted when inlining of these small
functions was requested
Revision 1.70 2002/08/17 09:23:36 florian
* first part of procinfo rewrite
Revision 1.69 2002/08/14 19:26:55 carl
+ generic int_to_real type conversion
+ generic unaryminus node
Revision 1.68 2002/08/11 16:08:55 florian
+ support of explicit type case boolean->char
Revision 1.67 2002/08/11 15:28:00 florian
+ support of explicit type case <any ordinal type>->pointer
(delphi mode only)
Revision 1.66 2002/08/09 07:33:01 florian
* a couple of interface related fixes
Revision 1.65 2002/07/29 21:23:42 florian
* more fixes for the ppc
+ wrappers for the tcnvnode.first_* stuff introduced
Revision 1.64 2002/07/23 12:34:30 daniel
* Readded old set code. To use it define 'oldset'. Activated by default
for ppc.
Revision 1.63 2002/07/23 09:51:22 daniel
* Tried to make Tprocsym.defs protected. I didn't succeed but the cleanups
are worth comitting.
Revision 1.62 2002/07/22 11:48:04 daniel
* Sets are now internally sets.
Revision 1.61 2002/07/20 17:16:02 florian
+ source code page support
Revision 1.60 2002/07/20 11:57:54 florian
* types.pas renamed to defbase.pas because D6 contains a types
unit so this would conflicts if D6 programms are compiled
+ Willamette/SSE2 instructions to assembler added
Revision 1.59 2002/07/01 16:23:53 peter
* cg64 patch
* basics for currency
* asnode updates for class and interface (not finished)
Revision 1.58 2002/05/18 13:34:09 peter
* readded missing revisions
Revision 1.57 2002/05/16 19:46:37 carl
+ defines.inc -> fpcdefs.inc to avoid conflicts if compiling by hand
+ try to fix temp allocation (still in ifdef)
+ generic constructor calls
+ start of tassembler / tmodulebase class cleanup
Revision 1.55 2002/05/12 16:53:07 peter
* moved entry and exitcode to ncgutil and cgobj
* foreach gets extra argument for passing local data to the
iterator function
* -CR checks also class typecasts at runtime by changing them
into as
* fixed compiler to cycle with the -CR option
* fixed stabs with elf writer, finally the global variables can
be watched
* removed a lot of routines from cga unit and replaced them by
calls to cgobj
* u32bit-s32bit updates for and,or,xor nodes. When one element is
u32bit then the other is typecasted also to u32bit without giving
a rangecheck warning/error.
* fixed pascal calling method with reversing also the high tree in
the parast, detected by tcalcst3 test
Revision 1.54 2002/04/25 20:16:38 peter
* moved more routines from cga/n386util
Revision 1.53 2002/04/23 19:16:34 peter
* add pinline unit that inserts compiler supported functions using
one or more statements
* moved finalize and setlength from ninl to pinline
Revision 1.52 2002/04/21 19:02:03 peter
* removed newn and disposen nodes, the code is now directly
inlined from pexpr
* -an option that will write the secondpass nodes to the .s file, this
requires EXTDEBUG define to actually write the info
* fixed various internal errors and crashes due recent code changes
Revision 1.51 2002/04/06 18:10:42 jonas
* several powerpc-related additions and fixes
Revision 1.50 2002/04/04 19:05:58 peter
* removed unused units
* use tlocation.size in cg.a_*loc*() routines
Revision 1.49 2002/04/02 17:11:28 peter
* tlocation,treference update
* LOC_CONSTANT added for better constant handling
* secondadd splitted in multiple routines
* location_force_reg added for loading a location to a register
of a specified size
* secondassignment parses now first the right and then the left node
(this is compatible with Kylix). This saves a lot of push/pop especially
with string operations
* adapted some routines to use the new cg methods
Revision 1.48 2002/02/03 09:30:03 peter
* more fixes for protected handling
}