fpc/rtl/objpas/math.pp
1998-03-25 11:18:12 +00:00

638 lines
13 KiB
ObjectPascal

{
$Id$
This file is part of the Free Pascal run time library.
Copyright (c) 1998 by Florian Klaempfl
member of the Free Pascal development team
See the file COPYING.FPC, included in this distribution,
for details about the copyright.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
**********************************************************************}
{
This unit is an equivalent to the Delphi math unit
(with some improvements)
About assembler usage:
----------------------
I used as few as possible assembler to allow an easy port
to other processors. Today, I think it's wasted time to write
assembler because different versions of a family of processors
need different implementations.
To improve performance, I changed all integer arguments and
functions results to longint, because 16 bit instructions are
lethal for a modern intel processor.
(FK)
What's to do:
o a lot of function :), search for !!!!
o some statistical functions
o all financial functions
o optimizations
}
unit math;
interface
{$ifdef USE_EXCEPIONS}
uses
sysutils;
{$endif}
type
{ the original delphi functions use extended as argument, }
{ but I would prefer double, because 8 bytes is a very }
{ natural size for the processor }
float = extended;
tpaymenttime = (ptendofperiod,ptstartofperiod);
{$ifdef USE_EXCEPTIONS}
einvalidargument = class(ematherror);
{$endif}
{ angle conversion }
function degtorad(deg : float) : float;
function radtodeg(rad : float) : float;
function gradtorad(grad : float) : float;
function radtograd(rad : float) : float;
function degtograd(deg : float) : float;
function gradtodeg(grad : float) : float;
{ one cycle are 2*Pi rad }
function cycletorad(cycle : float) : float;
function radtocycle(rad : float) : float;
{ trigoniometric functions }
function tan(x : float) : float;
function cotan(x : float) : float;
procedure sincos(theta : float;var sinus,cosinus : float);
{ inverse functions }
function arccos(x : float) : float;
function arcsin(x : float) : float;
{ calculates arctan(x/y) and returns an angle in the correct quadrant }
function arctan2(x,y : float) : float;
{ hyperbolic functions }
function cosh(x : float) : float;
function sinh(x : float) : float;
function tanh(x : float) : float;
{ area functions }
{ delphi names: }
function arccosh(x : float) : float;
function arcsinh(x : float) : float;
function arctanh(x : float) : float;
{ IMHO the function should be called as follows (FK) }
function arcosh(x : float) : float;
function arsinh(x : float) : float;
function artanh(x : float) : float;
{ triangle functions }
{ returns the length of the hypotenuse of a right triangle }
{ if x and y are the other sides }
function hypot(x,y : float) : float;
{ logarithm functions }
function log10(x : float) : float;
function log2(x : float) : float;
function logn(n,x : float) : float;
{ returns natural logarithm of x+1 }
function lnxpi(x : float) : float;
{ exponential functions }
function power(base,exponent : float) : float;
{ base^exponent }
function intpower(base : float;exponent : longint) : float;
{ number converting }
{ rounds x towards positive infinity }
function ceil(x : float) : longint;
{ rounds x towards negative infinity }
function floor(x : float) : longint;
{ misc. functions }
{ splits x into mantissa and exponent (to base 2) }
procedure frexp(x : float;var mantissa,exponent : float);
{ returns x*(2^p) }
function ldexp(x : float;p : longint) : float;
{ statistical functions }
function mean(const data : array of float) : float;
function sum(const data : array of float) : float;
function sumofsquares(const data : array of float) : float;
{ calculates the sum and the sum of squares of data }
procedure sumsandsquares(const data : array of float;
var sum,sumofsquares : float);
function minvalue(const data : array of float) : float;
function maxvalue(const data : array of float) : float;
{ calculates the standard deviation }
function stddev(const data : array of float) : float;
{ calculates the mean and stddev }
procedure meanandstddev(const data : array of float;
var mean,stddev : float);
function variance(const data : array of float) : float;
function totalvariance(const data : array of float) : float;
{ returns random values with gaussian distribution }
function randg(mean,stddev : float) : float;
{ I don't know what the following functions do: }
function popnstddev(const data : array of float) : float;
function popnvariance(const data : array of float) : float;
procedure momentskewkurtosis(const data : array of float;
var m1,m2,m3,m4,skew,kurtois : float);
{ geometrical function }
{ returns the euclidean L2 norm }
function norm(const data : array of float) : float;
implementation
Procedure DoMathError(Const S : String);
begin
writeln (StdErr,'Math Error : ',S);
end;
Procedure InvalidArgument;
begin
DoMathError ('Invalid argument');
end;
function degtorad(deg : float) : float;
begin
degtorad:=deg*(pi/180.0);
end;
function radtodeg(rad : float) : float;
begin
radtodeg:=rad*(180.0/pi);
end;
function gradtorad(grad : float) : float;
begin
gradtorad:=grad*(pi/200.0);
end;
function radtograd(rad : float) : float;
begin
radtograd:=rad*(200.0/pi);
end;
function degtograd(deg : float) : float;
begin
degtograd:=deg*(200.0/180.0);
end;
function gradtodeg(grad : float) : float;
begin
gradtodeg:=grad*(180.0/200.0);
end;
function cycletorad(cycle : float) : float;
begin
cycletorad:=(2*pi)*cycle;
end;
function radtocycle(rad : float) : float;
begin
{ avoid division }
radtocycle:=rad*(1/(2*pi));
end;
function tan(x : float) : float;
begin
Tan:=Sin(x)/Cos(x)
end;
function cotan(x : float) : float;
begin
cotan:=Cos(X)/Sin(X);
end;
procedure sincos(theta : float;var sinus,cosinus : float);
begin
{$ifndef i386}
sinus:=sin(theta);
cosinus:=cos(theta);
{$else}
asm
fldl 8(%ebp)
fsincos
fwait
movl 20(%ebp),%eax
fstpl (%eax)
movl 16(%ebp),%eax
fstpl (%eax)
end;
{$endif}
end;
function arccos(x : float) : float;
{ There is some discussion as to what the correct formula is
for arccos and arcsin is, but I take the one from my book...}
begin
ArcCos:=ArcTan2(Sqrt(1-x*x),x);
end;
function arcsin(x : float) : float;
begin
ArcSin:=ArcTan2(x,Sqrt(1-x*x))
end;
function arctan2( x,y : float) : float;
begin
{$ifndef i386}
ArcTan2:=ArcTan(x/y);
{$else}
asm
fldt 8(%ebp)
fldt 18(%ebp)
fpatan
leave
ret $20
end;
{$endif}
end;
function cosh(x : float) : float;
var
temp : float;
begin
temp:=exp(x);
cosh:=0.5*(temp+1.0/temp);
end;
function sinh(x : float) : float;
var
temp : float;
begin
temp:=exp(x);
sinh:=0.5*(temp-1.0/temp);
end;
Const MaxTanh=5000; { rather arbitrary, but more or less correct }
function tanh(x : float) : float;
var Temp : float;
begin
if x>MaxTanh then exit(1.0)
else if x<-MaxTanh then exit (-1.0);
temp:=exp(-2*x);
tanh:=(1-temp)/(1+temp)
end;
function arccosh(x : float) : float;
begin
arccosh:=arcosh(x);
end;
function arcsinh(x : float) : float;
begin
arcsinh:=arsinh(x);
end;
function arctanh(x : float) : float;
begin
if x>1 then InvalidArgument;
arctanh:=artanh(x);
end;
function arcosh(x : float) : float;
begin
if x<1 then InvalidArgument;
arcosh:=Ln(x+Sqrt(x*x-1));
end;
function arsinh(x : float) : float;
begin
arsinh:=Ln(x-Sqrt(1+x*x));
end;
function artanh(x : float) : float;
var temp : Float;
begin
If abs(x)>1 then InvalidArgument;
artanh:=(Ln((1+x)/(1-x)))*0.5;
end;
function hypot(x,y : float) : float;
begin
hypot:=Sqrt(x*x+y*y)
end;
function log10(x : float) : float;
begin
log10:=ln(x)/ln(10);
end;
function log2(x : float) : float;
begin
log2:=ln(x)/ln(2)
end;
function logn(n,x : float) : float;
begin
if n<0 then InvalidArgument;
logn:=ln(x)/ln(n);
end;
function lnxpi(x : float) : float;
begin
lnxpi:=ln(1+x);
end;
function power(base,exponent : float) : float;
begin
Power:=exp(exponent * ln (base));
end;
function intpower(base : float;exponent : longint) : float;
var
i : longint;
begin
i:=abs(exponent);
intpower:=1.0;
while i>0 do
begin
while (i and 1)=0 do
begin
i:=i shr 1;
base:=sqr(base);
end;
i:=i-1;
intpower:=intpower*base;
end;
if exponent<0 then
intpower:=1.0/intpower;
end;
function ceil(x : float) : longint;
begin
Ceil:=Trunc(x);
If Frac(x)>0 then Ceil:=Ceil+1;
end;
function floor(x : float) : longint;
begin
Floor:=Trunc(x);
If frac(x)<0 then Floor:=Floor-1;
end;
procedure frexp(x : float;var mantissa,exponent : float);
begin
{ !!!!!!! }
end;
function ldexp(x : float;p : longint) : float;
begin
ldexp:=x*intpower(2.0,p);
end;
function mean(const data : array of float) : float;
begin
mean:=sum(data);
mean:=mean/(high(data)-low(data)+1);
end;
function sum(const data : array of float) : float;
var
i : longint;
begin
sum:=0.0;
for i:=low(data) to high(data) do
sum:=sum+data[i];
end;
function sumofsquares(const data : array of float) : float;
var
i : longint;
begin
sumofsquares:=0.0;
for i:=low(data) to high(data) do
sumofsquares:=sumofsquares+sqr(data[i]);
end;
procedure sumsandsquares(const data : array of float;
var sum,sumofsquares : float);
var
i : longint;
temp : float;
begin
sumofsquares:=0.0;
sum:=0.0;
for i:=low(data) to high(data) do
begin
temp:=data[i];
sumofsquares:=sumofsquares+sqr(temp);
sum:=sum+temp;
end;
end;
function minvalue(const data : array of float) : float;
var
i : longint
begin
{ get an initial value }
minvalue:=data[low(data)];
for i:=low(data) to high(data) do
if data[i]<minvalue then
minvalue:=data[i];
end;
function maxvalue(const data : array of float) : float;
var
i : longint;
begin
{ get an initial value }
maxvalue:=data[low(data)];
for i:=low(data) to high(data) do
if data[i]>maxvalue then
maxvalue:=data[i];
end;
function stddev(const data : array of float) : float;
begin
StdDev:=Sqrt(Variance(Data));
end;
procedure meanandstddev(const data : array of float;
var mean,stddev : float);
begin
end;
function variance(const data : array of float) : float;
begin
Variance:=TotalVariance(Data)/(High(Data)-Low(Data));
end;
function totalvariance(const data : array of float) : float;
var S,SS : Float
begin
SumsAndSquares(Data,S,SS);
TotalVariance := SS-Sqr(S)/(High(Data)-Low(Data));
end;
function randg(mean,stddev : float) : float;
Var U1,S2 : Float;
begin
repeat
u1:= 2*random-1;
S2:=Sqr(U1)+sqr(2*random-1);
until s2<1;
randg:=Sqrt(-2*ln(S2)/S2)*u1*stddev+Mean;
end;
function popnstddev(const data : array of float) : float;
begin
PopnStdDev:=Sqrt(PopnVariance(Data));
end;
function popnvariance(const data : array of float) : float;
begin
PopnVariance:=TotalVariance(Data)/(High(Data)-Low(Data)+1);
end;
procedure momentskewkurtosis(const data : array of float;
var m1,m2,m3,m4,skew,kurtosis : float);
Var S,SS,SC,SQ,invN,Acc,M1S,S2N,S3N,temp : Float;
I : Longint;
begin
invN:=1/(High(Data)-Low(Data)+1);
s:=0;
ss:=0;
sq:=0;
sc:=0;
for i:=Low(Data) to High(Data) do
begin
temp:=Data[i]; { faster }
S:=S+temp;
acc:=temp*temp;
ss:=ss+acc;
Acc:=acc*temp;
Sc:=sc+acc;
acc:=acc*temp;
sq:=sq+acc;
end;
M1:=s*invN;
M1S:=M1*M1;
S2N:=SS*invN;
S3N:=SC*invN;
M2:=S2N-M1S;
M3:=S3N-(M1*3*S2N) + 2*M1S*M1;
M4:=SQ*invN - (M1 * 4 * S3N) + (M1S*6*S2N-3*Sqr(M1S));
Skew:=M3*power(M2,-3/2);
Kurtosis:=M4 / Sqr(M2);
end;
function norm(const data : array of float) : float;
begin
norm:=sqrt(sumofsquares(data));
end;
end.
{
$Log$
Revision 1.1 1998-03-25 11:18:49 root
Initial revision
Revision 1.2 1998/02/12 22:23:14 michael
+ All functions implemented, but untested
Revision 1.1 1998/02/05 11:11:31 michael
+ moved to objpas directory
Revision 1.3 1998/02/03 15:27:06 florian
*** empty log message ***
Revision 1.2 1998/02/01 23:32:37 florian
+ some basic statistical functions
Revision 1.1 1998/02/01 22:38:31 florian
+ initial revision
}