fpc/compiler/sparc/cpubase.pas
Jonas Maebe 4f8c390198 * fixed regvars so they work with newra (at least for ppc)
* fixed some volatile register bugs
  + -dnotranslation option for -dnewra, which causes the registers not to
    be translated from virtual to normal registers. Requires support in
    the assembler writer as well, which is only implemented in aggas/
    agppcgas currently
2003-08-17 16:59:20 +00:00

1111 lines
34 KiB
ObjectPascal

{
$Id$
Copyright (c) 1998-2002 by Florian Klaempfl
Contains the base types for the SPARC
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
{ This Unit contains the base types for the PowerPC
}
unit cpubase;
{$i fpcdefs.inc}
interface
uses
strings,cutils,cclasses,aasmbase,cpuinfo,cginfo;
{*****************************************************************************
Assembler Opcodes
*****************************************************************************}
type
{$WARNING CPU32 opcodes do not fully include the Ultra SPRAC instruction set.}
{ don't change the order of these opcodes! }
TAsmOp=({$INCLUDE opcode.inc});
{# This should define the array of instructions as string }
op2strtable=array[tasmop] of string[11];
Const
{# First value of opcode enumeration }
firstop = low(tasmop);
{# Last value of opcode enumeration }
lastop = high(tasmop);
std_op2str:op2strtable=({$INCLUDE strinst.inc});
{*****************************************************************************
Registers
*****************************************************************************}
type
TCpuRegister=(
R_NO
{General purpose global registers}
,R_G0{This register is usually set to zero and used as a scratch register}
,R_G1,R_G2,R_G3,R_G4,R_G5,R_G6,R_G7
{General purpose out registers}
,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_O6
,R_O7{This register is used to save the address of the last CALL instruction}
{General purpose local registers}
,R_L0
,R_L1{This register is used to save the Program Counter (PC) after a Trap}
,R_L2{This register is used to save the Program Counter (nPC) after a Trap}
,R_L3,R_L4,R_L5,R_L6,R_L7
{General purpose in registers}
,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_I6,R_I7
{Floating point registers}
,R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7
,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15
,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23
,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31
{Floating point status/"front of queue" registers}
,R_FSR,R_FQ
{Coprocessor registers}
,R_C0,R_C1,R_C2,R_C3,R_C4,R_C5,R_C6,R_C7
,R_C8,R_C9,R_C10,R_C11,R_C12,R_C13,R_C14,R_C15
,R_C16,R_C17,R_C18,R_C19,R_C20,R_C21,R_C22,R_C23
,R_C24,R_C25,R_C26,R_C27,R_C28,R_C29,R_C30,R_C31
{Coprocessor status/queue registers}
,R_CSR
,R_CQ
{Integer Unit control & status registers}
,R_PSR{Processor Status Register : informs upon the program status}
,R_TBR{Trap Base Register : saves the Trap vactor base address}
,R_WIM{Window Invalid Mask : }
,R_Y{Multiply/Devide Register : }
{Ancillary State Registers : these are implementation dependent registers and
thus, are not specified by the SPARC Reference Manual. I did choose the SUN's
implementation according to the Assembler Refernce Manual.(MN)}
,R_ASR0,R_ASR1,R_ASR2,R_ASR3,R_ASR4,R_ASR5,R_ASR6,R_ASR7
,R_ASR8,R_ASR9,R_ASR10,R_ASR11,R_ASR12,R_ASR13,R_ASR14,R_ASR15
,R_ASR16,R_ASR17,R_ASR18,R_ASR19,R_ASR20,R_ASR21,R_ASR22,R_ASR23
,R_ASR24,R_ASR25,R_ASR26,R_ASR27,R_ASR28,R_ASR29,R_ASR30,R_ASR31
{The following registers are just used with the new register allocator}
,R_INTREGISTER,R_FLOATREGISTER,R_MMXREGISTER,R_KNIREGISTER
);
TOldRegister=TCpuRegister;
Tnewregister=word;
Tsuperregister=byte;
Tsubregister=byte;
Tregister=record
enum:TCpuRegister;
number:Tnewregister;
end;
{# Set type definition for registers }
tregisterset = set of TCpuRegister;
Tsupregset=set of Tsuperregister;
{ A type to store register locations for 64 Bit values. }
tregister64 = packed record
reglo,reghi : tregister;
end;
{ alias for compact code }
treg64 = tregister64;
Const
{# First register in the tregister enumeration }
firstreg = low(TCpuRegister);
{# Last register in the tregister enumeration }
lastreg = R_ASR31;
type
{# Type definition for the array of string of register nnames }
treg2strtable = array[firstreg..lastreg] of string[7];
const
std_reg2str:treg2strtable=(
'',
{general purpose global registers}
'%g0','%g1','%g2','%g3','%g4','%g5','%g6','%g7',
{general purpose out registers}
'%o0','%o1','%o2','%o3','%o4','%o5','%o6','%o7',
{general purpose local registers}
'%l0','%l1','%l2','%l3','%l4','%l5','%l6','%l7',
{general purpose in registers}
'%i0','%i1','%i2','%i3','%i4','%i5','%i6','%i7',
{floating point registers}
'%f0','%f1','%f2','%f3','%f4','%f5','%f6','%f7',
'%f8','%f9','%f10','%f11','%f12','%f13','%f14','%f15',
'%f16','%f17','%f18','%f19','%f20','%f21','%f22','%f23',
'%f24','%f25','%f26','%f27','%f28','%f29','%f30','%f31',
{floating point status/"front of queue" registers}
'%fSR','%fQ',
{coprocessor registers}
'%c0','%c1','%c2','%c3','%c4','%c5','%c6','%c7',
'%c8','%c9','%c10','%c11','%c12','%c13','%c14','%c15',
'%c16','%c17','%c18','%c19','%c20','%c21','%c22','%c23',
'%c24','%c25','%c26','%c27','%c28','%c29','%c30','%c31',
{coprocessor status/queue registers}
'%csr','%cq',
{"Program status"/"Trap vactor base address register"/"Window invalid mask"/Y registers}
'%psr','%tbr','%wim','%y',
{Ancillary state registers}
'%asr0','%asr1','%asr2','%asr3','%asr4','%asr5','%asr6','%asr7',
'%asr8','%asr9','%asr10','%asr11','%asr12','%asr13','%asr14','%asr15',
'%asr16','%asr17','%asr18','%asr19','%asr20','%asr21','%asr22','%asr23',
'%asr24','%asr25','%asr26','%asr27','%asr28','%asr29','%asr30','%asr31'
);
{New register coding:}
{Special registers:}
const
NR_NO=$0000; {Invalid register}
{Normal registers:}
{General purpose registers:}
NR_G0=$0100;
NR_G1=$0200;
NR_G2=$0300;
NR_G3=$0400;
NR_G4=$0500;
NR_G5=$0600;
NR_G6=$0700;
NR_G7=$0800;
NR_O0=$0900;
NR_O1=$0a00;
NR_O2=$0b00;
NR_O3=$0c00;
NR_O4=$0d00;
NR_O5=$0e00;
NR_O6=$0f00;
NR_O7=$1000;
NR_L0=$1100;
NR_L1=$1200;
NR_L2=$1300;
NR_L3=$1400;
NR_L4=$1500;
NR_L5=$1600;
NR_L6=$1700;
NR_L7=$1800;
NR_I0=$1900;
NR_I1=$1A00;
NR_I2=$1B00;
NR_I3=$1C00;
NR_I4=$1D00;
NR_I5=$1E00;
NR_I6=$1F00;
NR_I7=$2000;
{$ifdef dummy}
{ Floating point }
NR_F0=$2000;
NR_F1=$2000;
NR_F2=$2000;
NR_F3=$2000;
NR_F4=$2000;
NR_F5=$2000;
NR_F6=$2000;
NR_F7=$2000;
NR_F8=$2000;
NR_F9=$2000;
NR_F10=$2000;
NR_F11=$2000;
NR_F12=$2000;
NR_F13=$2000;
NR_F14=$2000;
NR_F15=$2000;
NR_F16=$2000;
NR_F17=$2000;
NR_F18=$2000;
NR_F19=$2000;
NR_F20=$2000;
NR_F21=$2000;
NR_F22=$2000;
NR_F23=$2000;
NR_F24=$2000;
NR_F25=$2000;
NR_F26=$2000;
NR_F27=$2000;
NR_F28=$2000;
NR_F29=$2000;
NR_F30=$2000;
NR_F31=$2000;
{ Coprocessor point }
NR_C0=$3000;
NR_C1=$3000;
NR_C2=$3000;
NR_C3=$3000;
NR_C4=$3000;
NR_C5=$3000;
NR_C6=$3000;
NR_C7=$3000;
NR_C8=$3000;
NR_C9=$3000;
NR_C10=$3000;
NR_C11=$3000;
NR_C12=$3000;
NR_C13=$3000;
NR_C14=$3000;
NR_C15=$3000;
NR_C16=$3000;
NR_C17=$3000;
NR_C18=$3000;
NR_C19=$3000;
NR_C20=$3000;
NR_C21=$3000;
NR_C22=$3000;
NR_C23=$3000;
NR_C24=$3000;
NR_C25=$3000;
NR_C26=$3000;
NR_C27=$3000;
NR_C28=$3000;
NR_C29=$3000;
NR_C30=$3000;
NR_C31=$3000;
{ ASR }
NR_ASR0=$4000;
NR_ASR1=$4000;
NR_ASR2=$4000;
NR_ASR3=$4000;
NR_ASR4=$4000;
NR_ASR5=$4000;
NR_ASR6=$4000;
NR_ASR7=$4000;
NR_ASR8=$4000;
NR_ASR9=$4000;
NR_ASR10=$4000;
NR_ASR11=$4000;
NR_ASR12=$4000;
NR_ASR13=$4000;
NR_ASR14=$4000;
NR_ASR15=$4000;
NR_ASR16=$4000;
NR_ASR17=$4000;
NR_ASR18=$4000;
NR_ASR19=$4000;
NR_ASR20=$4000;
NR_ASR21=$4000;
NR_ASR22=$4000;
NR_ASR23=$4000;
NR_ASR24=$4000;
NR_ASR25=$4000;
NR_ASR26=$4000;
NR_ASR27=$4000;
NR_ASR28=$4000;
NR_ASR29=$4000;
NR_ASR30=$4000;
NR_ASR31=$4000;
{ Floating point status/"front of queue" registers }
NR_FSR=$5000;
NR_FQ=$5000;
NR_CSR=$5000;
NR_CQ=$5000;
NR_PSR=$5000;
NR_TBR=$5000;
NR_WIM=$5000;
NR_Y=$5000;
{$endif dummy}
{Super registers:}
RS_NO=$00;
RS_G0=$01;
RS_G1=$02;
RS_G2=$03;
RS_G3=$04;
RS_G4=$05;
RS_G5=$06;
RS_G6=$07;
RS_G7=$08;
RS_O0=$09;
RS_O1=$0a;
RS_O2=$0b;
RS_O3=$0c;
RS_O4=$0d;
RS_O5=$0e;
RS_O6=$0f;
RS_O7=$10;
RS_L0=$11;
RS_L1=$12;
RS_L2=$13;
RS_L3=$14;
RS_L4=$15;
RS_L5=$16;
RS_L6=$17;
RS_L7=$18;
RS_I0=$19;
RS_I1=$1a;
RS_I2=$1b;
RS_I3=$1c;
RS_I4=$1d;
RS_I5=$1e;
RS_I6=$1f;
RS_I7=$20;
first_supreg = $01;
last_supreg = $20;
{$warning FIXME!!}
{ registers which may be destroyed by calls }
VOLATILE_INTREGISTERS = [first_supreg..last_supreg];
{$warning FIXME!!}
VOLATILE_FPUREGISTERS = [];
first_imreg = $21;
last_imreg = $ff;
{ Subregisters, situation unknown!! }
R_SUBWHOLE=$00;
R_SUBL=$00;
{Conversion between TCpuRegister and NewRegisters}
RegEnum2Number:array[TCpuRegister]of cardinal=(
NR_NO,
NR_G0,
NR_G1,
NR_G2,
NR_G3,
NR_G4,
NR_G5,
NR_G6,
NR_G7,
NR_O0,
NR_O1,
NR_O2,
NR_O3,
NR_O4,
NR_O5,
NR_O6,
NR_O7,
NR_L0,
NR_L1,
NR_L2,
NR_L3,
NR_L4,
NR_L5,
NR_L6,
NR_L7,
NR_I0,
NR_I1,
NR_I2,
NR_I3,
NR_I4,
NR_I5,
NR_I6,
NR_I7,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO,
NR_NO
);
{*****************************************************************************
Conditions
*****************************************************************************}
type
TAsmCond=(C_None,
C_A,C_AE,C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_NA,C_NAE,
C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_NO,C_NP,
C_NS,C_NZ,C_O,C_P,C_PE,C_PO,C_S,C_Z
);
const
cond2str:array[TAsmCond] of string[3]=('',
'gu','cc','cs','leu','cs','e','g','ge','l','le','leu','cs',
'cc','gu','cc','ne','le','l','ge','g','vc','XX',
'pos','ne','vs','XX','XX','XX','vs','e'
);
inverse_cond:array[TAsmCond] of TAsmCond=(C_None,
C_NA,C_NAE,C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_A,C_AE,
C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_O,C_P,
C_S,C_Z,C_NO,C_NP,C_NP,C_P,C_NS,C_NZ
);
const
CondAsmOps=1;
CondAsmOp:array[0..CondAsmOps-1] of TAsmOp=(
A_Bxx
);
CondAsmOpStr:array[0..CondAsmOps-1] of string[7]=(
'B'
);
{*****************************************************************************
Flags
*****************************************************************************}
type
TResFlags=(
F_E, {Equal}
F_NE, {Not Equal}
F_G, {Greater}
F_L, {Less}
F_GE, {Greater or Equal}
F_LE, {Less or Equal}
F_C, {Carry}
F_NC, {Not Carry}
F_A, {Above}
F_AE, {Above or Equal}
F_B, {Below}
F_BE {Below or Equal}
);
{*****************************************************************************
Reference
*****************************************************************************}
type
TRefOptions=(ref_none,ref_parafixup,ref_localfixup,ref_selffixup);
{ since we have no full 32 bit offsets, we need to be able to specify the high
and low bits of the address of a symbol }
trefsymaddr = (refs_no,refs_full,refs_hi,refs_lo);
{ reference record }
preference = ^treference;
treference = packed record
{ base register, R_NO if none }
base,
{ index register, R_NO if none }
index : tregister;
{ offset, 0 if none }
offset : longint;
{ symbol this reference refers to, nil if none }
symbol : tasmsymbol;
{ used in conjunction with symbols and offsets: refs_full means }
{ means a full 32bit reference, refs_hi means the upper 16 bits }
{ and refs_lo the lower 16 bits of the address }
symaddr : trefsymaddr;
{ changed when inlining and possibly in other cases, don't }
{ set manually }
offsetfixup : longint;
{ used in conjunction with the previous field }
options : trefoptions;
{ alignment this reference is guaranteed to have }
alignment : byte;
end;
{ reference record }
pparareference = ^tparareference;
tparareference = packed record
index : tregister;
offset : aword;
end;
const
symaddr2str: array[trefsymaddr] of string[3] = ('','','%hi','%lo');
{*****************************************************************************
Operand
*****************************************************************************}
type
toptype=(top_none,top_reg,top_ref,top_const,top_symbol);
toper=record
ot:LongInt;
case typ:toptype of
top_none:();
top_reg:(reg:tregister);
top_ref:(ref:preference);
top_const:(val:aword);
top_symbol:(sym:tasmsymbol;symofs:LongInt);
end;
{*****************************************************************************
Operand Sizes
*****************************************************************************}
{$ifdef dummy}
{*****************************************************************************
Argument Classification
*****************************************************************************}
type
TArgClass = (
{ the following classes should be defined by all processor implemnations }
AC_NOCLASS,
AC_MEMORY,
AC_INTEGER,
AC_FPU,
{ the following argument classes are i386 specific }
AC_FPUUP,
AC_SSE,
AC_SSEUP);
{$endif dummy}
{*****************************************************************************
Generic Location
*****************************************************************************}
type
{ tparamlocation describes where a parameter for a procedure is stored.
References are given from the caller's point of view. The usual
TLocation isn't used, because contains a lot of unnessary fields.
}
tparalocation = packed record
size : TCGSize;
{ The location type where the parameter is passed, usually
LOC_REFERENCE,LOC_REGISTER or LOC_FPUREGISTER
}
loc : TCGLoc;
{ The stack pointer must be decreased by this value before
the parameter is copied to the given destination.
This allows to "encode" pushes with tparalocation.
On the PowerPC, this field is unsed but it is there
because several generic code accesses it.
}
sp_fixup : longint;
case TCGLoc of
LOC_REFERENCE : (reference : tparareference; low_in_reg: boolean; lowreg : tregister);
LOC_FPUREGISTER, LOC_CFPUREGISTER, LOC_MMREGISTER, LOC_CMMREGISTER,
LOC_REGISTER,LOC_CREGISTER : (
case longint of
1 : (register,registerhigh : tregister);
{ overlay a registerlow }
2 : (registerlow : tregister);
{ overlay a 64 Bit register type }
3 : (reg64 : tregister64);
4 : (register64 : tregister64);
);
end;
treglocation = packed record
case longint of
1 : (register,registerhigh : tregister);
{ overlay a registerlow }
2 : (registerlow : tregister);
{ overlay a 64 Bit register type }
3 : (reg64 : tregister64);
4 : (register64 : tregister64);
end;
tlocation = packed record
size : TCGSize;
loc : tcgloc;
case tcgloc of
LOC_CREFERENCE,LOC_REFERENCE : (reference : treference);
LOC_CONSTANT : (
case longint of
{$ifdef FPC_BIG_ENDIAN}
1 : (_valuedummy,value : AWord);
{$else FPC_BIG_ENDIAN}
1 : (value : AWord);
{$endif FPC_BIG_ENDIAN}
{ can't do this, this layout depends on the host cpu. Use }
{ lo(valueqword)/hi(valueqword) instead (JM) }
{ 2 : (valuelow, valuehigh:AWord); }
{ overlay a complete 64 Bit value }
3 : (valueqword : qword);
);
LOC_FPUREGISTER, LOC_CFPUREGISTER, LOC_MMREGISTER, LOC_CMMREGISTER,
LOC_REGISTER,LOC_CREGISTER : (
case longint of
1 : (registerlow,registerhigh : tregister);
2 : (register : tregister);
{ overlay a 64 Bit register type }
3 : (reg64 : tregister64);
4 : (register64 : tregister64);
);
LOC_FLAGS : (resflags : tresflags);
end;
{*****************************************************************************
Constants
*****************************************************************************}
const
max_operands = 3;
{# Constant defining possibly all registers which might require saving }
ALL_REGISTERS = [R_G0..R_I7];
general_registers = [R_G0..R_I7];
general_superregisters = [RS_O0..RS_I7];
{# low and high of the available maximum width integer general purpose }
{ registers }
LoGPReg = R_G0;
HiGPReg = R_I7;
{# low and high of every possible width general purpose register (same as }
{ above on most architctures apart from the 80x86) }
LoReg = R_G0;
HiReg = R_I7;
{# Table of registers which can be allocated by the code generator
internally, when generating the code.
}
{ legend: }
{ xxxregs = set of all possibly used registers of that type in the code }
{ generator }
{ usableregsxxx = set of all 32bit components of registers that can be }
{ possible allocated to a regvar or using getregisterxxx (this }
{ excludes registers which can be only used for parameter }
{ passing on ABI's that define this) }
{ c_countusableregsxxx = amount of registers in the usableregsxxx set }
maxintregs = 8;
{ to determine how many registers to use for regvars }
maxintscratchregs = 3;
intregs = [R_G0..R_I7];
usableregsint = [RS_L0..RS_L7];
c_countusableregsint = 8;
maxfpuregs = 8;
fpuregs=[R_F0..R_F31];
usableregsfpu=[R_F0..R_F31];
c_countusableregsfpu=32;
mmregs = [];
usableregsmm = [];
c_countusableregsmm = 0;
{ no distinction on this platform }
maxaddrregs = 0;
addrregs = [];
usableregsaddr = [];
c_countusableregsaddr = 0;
{$warning firstsaveintreg shall be RS_NO}
firstsaveintreg = RS_L0; { Temporary, having RS_NO is broken }
lastsaveintreg = RS_L0; { L0..L7 are already saved, I0..O7 are parameter }
firstsavefpureg = R_F2; { F0..F1 is used for return value }
lastsavefpureg = R_F31;
firstsavemmreg = R_NO;
lastsavemmreg = R_NO;
maxvarregs = 8;
varregs : Array [1..maxvarregs] of Tnewregister =
(RS_L0,RS_L1,RS_L2,RS_L3,RS_L4,RS_L5,RS_L6,RS_L7);
maxfpuvarregs = 1;
fpuvarregs : Array [1..maxfpuvarregs] of TCpuRegister =
(R_F2);
{
max_param_regs_int = 6;
param_regs_int: Array[1..max_param_regs_int] of TCpuRegister =
(R_3,R_4,R_5,R_6,R_7,R_8,R_9,R_10);
max_param_regs_fpu = 13;
param_regs_fpu: Array[1..max_param_regs_fpu] of TCpuRegister =
(R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13);
max_param_regs_mm = 13;
param_regs_mm: Array[1..max_param_regs_mm] of TCpuRegister =
(R_M1,R_M2,R_M3,R_M4,R_M5,R_M6,R_M7,R_M8,R_M9,R_M10,R_M11,R_M12,R_M13);
}
{# Registers which are defined as scratch and no need to save across
routine calls or in assembler blocks.
}
max_scratch_regs = 3;
scratch_regs: Array[1..max_scratch_regs] of Tsuperregister = (RS_O7,RS_G2,RS_G3);
{*****************************************************************************
Default generic sizes
*****************************************************************************}
{# Defines the default address size for a processor, }
OS_ADDR = OS_32;
{# the natural int size for a processor, }
OS_INT = OS_32;
{# the maximum float size for a processor, }
OS_FLOAT = OS_F64;
{# the size of a vector register for a processor }
OS_VECTOR = OS_M64;
{*****************************************************************************
GDB Information
*****************************************************************************}
{# Register indexes for stabs information, when some
parameters or variables are stored in registers.
Taken from rs6000.h (DBX_REGISTER_NUMBER)
from GCC 3.x source code.
}
stab_regindex : array[firstreg..lastreg] of shortint =
(
0{R_NO}
{General purpose global registers}
,1{R_G0}{This register is usually set to zero and used as a scratch register}
,2{R_G1},3{R_G2},4{R_G3},5{R_G4},6{R_G5},7{R_G6},8{R_G7}
{General purpose out registers}
,9{R_O0},10{R_O1},11{R_O2},12{R_O3},13{R_O4},14{R_O5},15{R_O6}
,16{R_O7}{This register is used to save the address of the last CALL instruction}
{General purpose local registers}
,16{R_L0}
,17{R_L1}{This register is used to save the Program Counter (PC) after a Trap}
,18{R_L2}{This register is used to save the Program Counter (nPC) after a Trap}
,19{R_L3},20{R_L4},21{R_L5},22{R_L6},23{R_L7}
{General purpose in registers}
,24{R_I0},25{R_I1},26{R_I2},27{R_I3},28{R_I4},29{R_I5},30{R_I6},31{R_I7}
{Floating point registers}
,32{R_F0},33{R_F1},34{R_F2},35{R_F3},36{R_F4},37{R_F5},38{R_F6},39{R_F7}
,40{R_F8},41{R_F9},42{R_F10},43{R_F11},44{R_F12},45{R_F13},46{R_F14},47{R_F15}
,48{R_F16},49{R_F17},50{R_F18},51{R_F19},52{R_F20},53{R_F21},54{R_F22},55{R_F23}
,56{R_F24},57{R_F25},58{R_F26},59{R_F27},60{R_F28},61{R_F29},62{R_F30},63{R_F31}
{Floating point status/"front of queue" registers}
,64{R_FSR},65{R_FQ}
{Coprocessor registers}
,66{R_C0},67{R_C1},68{R_C2},69{R_C3},70{R_C4},71{R_C5},72{R_C6},73{R_C7}
,74{R_C8},75{R_C9},76{R_C10},77{R_C11},78{R_C12},79{R_C13},80{R_C14},81{R_C15}
,82{R_C16},83{R_C17},84{R_C18},85{R_C19},86{R_C20},87{R_C21},88{R_C22},89{R_C23}
,90{R_C24},91{R_C25},92{R_C26},93{R_C27},94{R_C28},95{R_C29},96{R_C30},98{R_C31}
{Coprocessor status/queue registers}
,99{R_CSR}
,100{R_CQ}
{Integer Unit control & status registers}
,101{R_PSR}{Processor Status Register : informs upon the program status}
,102{R_TBR}{Trap Base Register : saves the Trap vactor base address}
,103{R_WIM}{Window Invalid Mask : }
,104{R_Y}{Multiply/Devide Register : }
{Ancillary State Registers : these are implementation dependent registers and
thus, are not specified by the SPARC Reference Manual. I did choose the SUN's
implementation according to the Assembler Refernce Manual.(MN)}
,105{R_ASR0},106{R_ASR1},107{R_ASR2},108{R_ASR3},109{R_ASR4},110{R_ASR5},111{R_ASR6},112{R_ASR7}
,113{R_ASR8},114{R_ASR9},115{R_ASR10},116{R_ASR11},117{R_ASR12},118{R_ASR13},119{R_ASR14},120{R_ASR15}
,121{R_ASR16},122{R_ASR17},123{R_ASR18},124{R_ASR19},125{R_ASR20},126{R_ASR21},127{R_ASR22},127{R_ASR23}
,127{R_ASR24},127{R_ASR25},127{R_ASR26},127{R_ASR27},127{R_ASR28},127{R_ASR29},127{R_ASR30},127{R_ASR31}
);
{*****************************************************************************
Generic Register names
*****************************************************************************}
{# Stack pointer register }
NR_STACK_POINTER_REG = NR_O6;
RS_STACK_POINTER_REG = RS_O6;
{# Frame pointer register }
NR_FRAME_POINTER_REG = NR_I6;
RS_FRAME_POINTER_REG = RS_I6;
{# Register for addressing absolute data in a position independant way,
such as in PIC code. The exact meaning is ABI specific. For
further information look at GCC source : PIC_OFFSET_TABLE_REGNUM
Taken from GCC rs6000.h
}
{$warning As indicated in rs6000.h, but can't find it anywhere else!}
{PIC_OFFSET_REG = R_30;}
{ the return_result_reg, is used inside the called function to store its return
value when that is a scalar value otherwise a pointer to the address of the
result is placed inside it }
{ Results are returned in this register (32-bit values) }
NR_FUNCTION_RETURN_REG = NR_I0;
RS_FUNCTION_RETURN_REG = RS_I0;
{ Low part of 64bit return value }
NR_FUNCTION_RETURN64_LOW_REG = NR_I1;
RS_FUNCTION_RETURN64_LOW_REG = RS_I1;
{ High part of 64bit return value }
NR_FUNCTION_RETURN64_HIGH_REG = NR_I0;
RS_FUNCTION_RETURN64_HIGH_REG = RS_I0;
{ The value returned from a function is available in this register }
NR_FUNCTION_RESULT_REG = NR_O0;
RS_FUNCTION_RESULT_REG = RS_O0;
{ The lowh part of 64bit value returned from a function }
NR_FUNCTION_RESULT64_LOW_REG = NR_O1;
RS_FUNCTION_RESULT64_LOW_REG = RS_O1;
{ The high part of 64bit value returned from a function }
NR_FUNCTION_RESULT64_HIGH_REG = NR_O0;
RS_FUNCTION_RESULT64_HIGH_REG = RS_O0;
FPU_RESULT_REG = R_F0;
mmresultreg = R_NO;
PARENT_FRAMEPOINTER_OFFSET = 68; { o0 }
{*****************************************************************************
GCC /ABI linking information
*****************************************************************************}
{# Registers which must be saved when calling a routine declared as
cppdecl, cdecl, stdcall, safecall, palmossyscall. The registers
saved should be the ones as defined in the target ABI and / or GCC.
This value can be deduced from CALLED_USED_REGISTERS array in the
GCC source.
}
std_saved_registers = [];
{# Required parameter alignment when calling a routine declared as
stdcall and cdecl. The alignment value should be the one defined
by GCC or the target ABI.
The value of this constant is equal to the constant
PARM_BOUNDARY / BITS_PER_UNIT in the GCC source.
}
std_param_align = 4; { for 32-bit version only }
{*****************************************************************************
CPU Dependent Constants
*****************************************************************************}
const
simm13lo=-4096;
simm13hi=4095;
{*****************************************************************************
Helpers
*****************************************************************************}
function is_calljmp(o:tasmop):boolean;
procedure inverse_flags(var f: TResFlags);
function flags_to_cond(const f: TResFlags) : TAsmCond;
procedure convert_register_to_enum(var r:Tregister);
function cgsize2subreg(s:Tcgsize):Tsubregister;
function supreg_name(r:Tsuperregister):string;
implementation
uses
verbose;
{*****************************************************************************
Helpers
*****************************************************************************}
function is_calljmp(o:tasmop):boolean;
const
CallJmpOp=[A_JMPL..A_CBccc];
begin
is_calljmp:=(o in CallJmpOp);
end;
procedure inverse_flags(var f: TResFlags);
const
inv_flags: array[TResFlags] of TResFlags =
(F_NE,F_E,F_LE,F_GE,F_L,F_G,F_NC,F_C,F_BE,F_B,F_AE,F_A);
begin
f:=inv_flags[f];
end;
function flags_to_cond(const f:TResFlags):TAsmCond;
const
flags_2_cond:array[TResFlags] of TAsmCond=
(C_E,C_NE,C_G,C_L,C_GE,C_LE,C_C,C_NC,C_A,C_AE,C_B,C_BE);
begin
result:=flags_2_cond[f];
end;
procedure convert_register_to_enum(var r:Tregister);
begin
if (r.enum=R_INTREGISTER) then
begin
if r.number>NR_I7 then
internalerror(200301082);
r.enum:=TCpuRegister(r.number shr 8);
end;
end;
function cgsize2subreg(s:Tcgsize):Tsubregister;
begin
cgsize2subreg:=R_SUBWHOLE;
end;
function supreg_name(r:Tsuperregister):string;
const
supreg_names:array[0..last_supreg] of string[4]=
('INV',
'g0','g1','g2','g3','g4','g5','g6','g7',
'o0','o1','o2','o3','o4','o5','o6','o7',
'l0','l1','l2','l3','l4','l5','l6','l7',
'i0','i1','i2','i3','i4','i5','i6','i7');
var
s : string[4];
begin
if r in [0..last_supreg] then
supreg_name:=supreg_names[r]
else
begin
str(r,s);
supreg_name:='reg'+s;
end;
end;
end.
{
$Log$
Revision 1.46 2003-08-17 16:59:20 jonas
* fixed regvars so they work with newra (at least for ppc)
* fixed some volatile register bugs
+ -dnotranslation option for -dnewra, which causes the registers not to
be translated from virtual to normal registers. Requires support in
the assembler writer as well, which is only implemented in aggas/
agppcgas currently
Revision 1.45 2003/07/06 17:58:22 peter
* framepointer fixes for sparc
* parent framepointer code more generic
Revision 1.44 2003/07/02 22:18:04 peter
* paraloc splitted in callerparaloc,calleeparaloc
* sparc calling convention updates
Revision 1.43 2003/06/17 16:34:44 jonas
* lots of newra fixes (need getfuncretparaloc implementation for i386)!
* renamed all_intregisters to volatile_intregisters and made it
processor dependent
Revision 1.42 2003/06/13 21:08:30 peter
* supreg_name added
Revision 1.41 2003/06/12 19:11:34 jonas
- removed ALL_INTREGISTERS (only the one in rgobj is valid)
Revision 1.40 2003/06/04 21:00:54 mazen
- making TOldRegister only declared for compatibility and
no more used in cpubase
Revision 1.39 2003/06/01 21:38:06 peter
* getregisterfpu size parameter added
* op_const_reg size parameter added
* sparc updates
Revision 1.38 2003/06/01 01:04:35 peter
* reference fixes
Revision 1.37 2003/05/31 15:05:28 peter
* FUNCTION_RESULT64_LOW/HIGH_REG added for int64 results
Revision 1.36 2003/05/31 01:00:51 peter
* register fixes
Revision 1.35 2003/05/30 23:57:08 peter
* more sparc cleanup
* accumulator removed, splitted in function_return_reg (called) and
function_result_reg (caller)
}