fpc/compiler/defutil.pas
nickysn 657685a8b6 * use sizesinttype instead of ptrsinttype for the index and high parameter of
open arrays/dynarrays/string-like char arrays, etc.

git-svn-id: trunk@34665 -
2016-10-08 13:56:24 +00:00

1443 lines
46 KiB
ObjectPascal

{
Copyright (c) 1998-2006 by Florian Klaempfl
This unit provides some help routines for type handling
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit defutil;
{$i fpcdefs.inc}
interface
uses
globtype,globals,constexp,
symconst,symtype,symdef,
cgbase,cpubase;
type
tmmxtype = (mmxno,mmxu8bit,mmxs8bit,mmxu16bit,mmxs16bit,
mmxu32bit,mmxs32bit,mmxfixed16,mmxsingle);
{*****************************************************************************
Basic type functions
*****************************************************************************}
{# Returns true, if definition defines an ordinal type }
function is_ordinal(def : tdef) : boolean;
{# Returns true, if definition defines a string type }
function is_string(def : tdef): boolean;
{# Returns True, if definition defines a type that behaves like a string,
namely that can be joined and compared with another string-like type }
function is_stringlike(def : tdef) : boolean;
{# Returns True, if definition defines an enumeration type }
function is_enum(def : tdef) : boolean;
{# Returns True, if definition defines a set type }
function is_set(def : tdef) : boolean;
{# Returns the minimal integer value of the type }
function get_min_value(def : tdef) : TConstExprInt;
{# Returns the maximal integer value of the type }
function get_max_value(def : tdef) : TConstExprInt;
{# Returns basetype of the specified integer range }
function range_to_basetype(l,h:TConstExprInt):tordtype;
procedure range_to_type(l,h:TConstExprInt;var def:tdef);
procedure int_to_type(v:TConstExprInt;var def:tdef);
{# Returns true, if definition defines an integer type }
function is_integer(def : tdef) : boolean;
{# Returns true if definition is a boolean }
function is_boolean(def : tdef) : boolean;
{# Returns true if definition is a Pascal-style boolean (1 = true, zero = false) }
function is_pasbool(def : tdef) : boolean;
{# Returns true if definition is a C-style boolean (non-zero value = true, zero = false) }
function is_cbool(def : tdef) : boolean;
{# Returns true if definition is a char
This excludes the unicode char.
}
function is_char(def : tdef) : boolean;
{# Returns true if definition is a widechar }
function is_widechar(def : tdef) : boolean;
{# Returns true if definition is either an AnsiChar or a WideChar }
function is_anychar(def : tdef) : boolean;
{# Returns true if definition is a void}
function is_void(def : tdef) : boolean;
{# Returns true if definition is a smallset}
function is_smallset(p : tdef) : boolean;
{# Returns true, if def defines a signed data type
(only for ordinal types)
}
function is_signed(def : tdef) : boolean;
{# Returns an unsigned integer type of the same size as def; def must be
an ordinal or enum }
function get_unsigned_inttype(def: tdef): torddef;
{# Returns whether def_from's range is comprised in def_to's if both are
orddefs, false otherwise }
function is_in_limit(def_from,def_to : tdef) : boolean;
{# Returns whether def is reference counted }
function is_managed_type(def: tdef) : boolean;{$ifdef USEINLINE}inline;{$endif}
{ # Returns whether def is needs to load RTTI for reference counting }
function is_rtti_managed_type(def: tdef) : boolean;
{ function is_in_limit_value(val_from:TConstExprInt;def_from,def_to : tdef) : boolean;}
{*****************************************************************************
Array helper functions
*****************************************************************************}
{# Returns true, if p points to a zero based (non special like open or
dynamic array def).
This is mainly used to see if the array
is convertable to a pointer
}
function is_zero_based_array(p : tdef) : boolean;
{# Returns true if p points to an open array definition }
function is_open_array(p : tdef) : boolean;
{# Returns true if p points to a dynamic array definition }
function is_dynamic_array(p : tdef) : boolean;
{# Returns true, if p points to an array of const definition }
function is_array_constructor(p : tdef) : boolean;
{# Returns true, if p points to a variant array }
function is_variant_array(p : tdef) : boolean;
{# Returns true, if p points to an array of const }
function is_array_of_const(p : tdef) : boolean;
{# Returns true, if p points any kind of special array
That is if the array is an open array, a variant
array, an array constants constructor, or an
array of const.
Bitpacked arrays aren't special in this regard though.
}
function is_special_array(p : tdef) : boolean;
{# Returns true if p is a bitpacked array }
function is_packed_array(p: tdef) : boolean;
{# Returns true if p is a bitpacked record }
function is_packed_record_or_object(p: tdef) : boolean;
{# Returns true if p is a char array def }
function is_chararray(p : tdef) : boolean;
{# Returns true if p is a wide char array def }
function is_widechararray(p : tdef) : boolean;
{# Returns true if p is a open char array def }
function is_open_chararray(p : tdef) : boolean;
{# Returns true if p is a open wide char array def }
function is_open_widechararray(p : tdef) : boolean;
{*****************************************************************************
String helper functions
*****************************************************************************}
{# Returns true if p points to an open string type }
function is_open_string(p : tdef) : boolean;
{# Returns true if p is an ansi string type }
function is_ansistring(p : tdef) : boolean;
{# Returns true if p is an ansi string type with codepage 0 }
function is_rawbytestring(p : tdef) : boolean;
{# Returns true if p is a long string type }
function is_longstring(p : tdef) : boolean;
{# returns true if p is a wide string type }
function is_widestring(p : tdef) : boolean;
{# true if p is an unicode string def }
function is_unicodestring(p : tdef) : boolean;
{# true if p is an unicode/wide/ansistring string def }
function is_dynamicstring(p : tdef) : boolean;
{# returns true if p is a wide or unicode string type }
function is_wide_or_unicode_string(p : tdef) : boolean;
{# Returns true if p is a short string type }
function is_shortstring(p : tdef) : boolean;
{# Returns true if p is a pchar def }
function is_pchar(p : tdef) : boolean;
{# Returns true if p is a pwidechar def }
function is_pwidechar(p : tdef) : boolean;
{# Returns true if p is a voidpointer def }
function is_voidpointer(p : tdef) : boolean;
{# Returns true, if definition is a float }
function is_fpu(def : tdef) : boolean;
{# Returns true, if def is a currency type }
function is_currency(def : tdef) : boolean;
{# Returns true, if def is a single type }
function is_single(def : tdef) : boolean;
{# Returns true, if def is a double type }
function is_double(def : tdef) : boolean;
{# Returns true, if def is an extended type }
function is_extended(def : tdef) : boolean;
{# Returns true, if definition is a "real" real (i.e. single/double/extended) }
function is_real(def : tdef) : boolean;
{# Returns true for single,double,extended and cextended }
function is_real_or_cextended(def : tdef) : boolean;
{ true, if def is a 8 bit int type }
function is_8bitint(def : tdef) : boolean;
{ true, if def is a 8 bit ordinal type }
function is_8bit(def : tdef) : boolean;
{ true, if def is a 16 bit int type }
function is_16bitint(def : tdef) : boolean;
{ true, if def is a 16 bit ordinal type }
function is_16bit(def : tdef) : boolean;
{# Returns true, if def is a 32 bit integer type }
function is_32bitint(def : tdef) : boolean;
{# Returns true, if def is a 32 bit ordinal type }
function is_32bit(def : tdef) : boolean;
{# Returns true, if def is a 64 bit integer type }
function is_64bitint(def : tdef) : boolean;
{# Returns true, if def is a 64 bit type }
function is_64bit(def : tdef) : boolean;
{ true, if def is an int type, larger than the processor's native int size }
function is_oversizedint(def : tdef) : boolean;
{ true, if def is an ordinal type, larger than the processor's native int size }
function is_oversizedord(def : tdef) : boolean;
{ true, if def is an int type, equal in size to the processor's native int size }
function is_nativeint(def : tdef) : boolean;
{ true, if def is an ordinal type, equal in size to the processor's native int size }
function is_nativeord(def : tdef) : boolean;
{ true, if def is an unsigned int type, equal in size to the processor's native int size }
function is_nativeuint(def : tdef) : boolean;
{ true, if def is a signed int type, equal in size to the processor's native int size }
function is_nativesint(def : tdef) : boolean;
{# If @var(l) isn't in the range of todef a range check error (if not explicit) is generated and
the value is placed within the range
}
procedure testrange(todef : tdef;var l : tconstexprint;explicit,forcerangecheck:boolean);
{# Returns the range of def, where @var(l) is the low-range and @var(h) is
the high-range.
}
procedure getrange(def : tdef;out l, h : TConstExprInt);
{ type being a vector? }
function is_vector(p : tdef) : boolean;
{ some type helper routines for MMX support }
function is_mmx_able_array(p : tdef) : boolean;
{# returns the mmx type }
function mmx_type(p : tdef) : tmmxtype;
{ returns if the passed type (array) fits into an mm register }
function fits_in_mm_register(p : tdef) : boolean;
{# From a definition return the abstract code generator size enum. It is
to note that the value returned can be @var(OS_NO) }
function def_cgsize(def: tdef): tcgsize;
{ #Return an orddef (integer) correspondig to a tcgsize }
function cgsize_orddef(size: tcgsize): torddef;
{# Same as def_cgsize, except that it will interpret certain arrays as
vectors and return OS_M* sizes for them }
function def_cgmmsize(def: tdef): tcgsize;
{# returns true, if the type passed is can be used with windows automation }
function is_automatable(p : tdef) : boolean;
{ # returns true if the procdef has no parameters and no specified return type }
function is_bareprocdef(pd : tprocdef): boolean;
{ # returns the smallest base integer type whose range encompasses that of
both ld and rd; if keep_sign_if_equal, then if ld and rd have the same
signdness, the result will also get that signdness }
function get_common_intdef(ld, rd: torddef; keep_sign_if_equal: boolean): torddef;
{ # returns whether the type is potentially a valid type of/for an "univ" parameter
(basically: it must have a compile-time size) }
function is_valid_univ_para_type(def: tdef): boolean;
{ # returns whether the procdef/procvardef represents a nested procedure
or not }
function is_nested_pd(def: tabstractprocdef): boolean;{$ifdef USEINLINE}inline;{$endif}
{ # returns whether def is a type parameter of a generic }
function is_typeparam(def : tdef) : boolean;{$ifdef USEINLINE}inline;{$endif}
{ returns true of def is a methodpointer }
function is_methodpointer(def : tdef) : boolean;
{ returns true if def is a C "block" }
function is_block(def: tdef): boolean;
implementation
uses
verbose,cutils;
{ returns true, if def uses FPU }
function is_fpu(def : tdef) : boolean;
begin
is_fpu:=(def.typ=floatdef);
end;
{ returns true, if def is a currency type }
function is_currency(def : tdef) : boolean;
begin
case s64currencytype.typ of
orddef :
result:=(def.typ=orddef) and
(torddef(s64currencytype).ordtype=torddef(def).ordtype);
floatdef :
result:=(def.typ=floatdef) and
(tfloatdef(s64currencytype).floattype=tfloatdef(def).floattype);
else
internalerror(200304222);
end;
end;
{ returns true, if def is a single type }
function is_single(def : tdef) : boolean;
begin
result:=(def.typ=floatdef) and
(tfloatdef(def).floattype=s32real);
end;
{ returns true, if def is a double type }
function is_double(def : tdef) : boolean;
begin
result:=(def.typ=floatdef) and
(tfloatdef(def).floattype=s64real);
end;
function is_extended(def : tdef) : boolean;
begin
result:=(def.typ=floatdef) and
(tfloatdef(def).floattype in [s80real,sc80real]);
end;
{ returns true, if definition is a "real" real (i.e. single/double/extended) }
function is_real(def : tdef) : boolean;
begin
result:=(def.typ=floatdef) and
(tfloatdef(def).floattype in [s32real,s64real,s80real]);
end;
function is_real_or_cextended(def: tdef): boolean;
begin
result:=(def.typ=floatdef) and
(tfloatdef(def).floattype in [s32real,s64real,s80real,sc80real]);
end;
function range_to_basetype(l,h:TConstExprInt):tordtype;
begin
{ prefer signed over unsigned }
if (l>=int64(-128)) and (h<=127) then
range_to_basetype:=s8bit
else if (l>=0) and (h<=255) then
range_to_basetype:=u8bit
else if (l>=int64(-32768)) and (h<=32767) then
range_to_basetype:=s16bit
else if (l>=0) and (h<=65535) then
range_to_basetype:=u16bit
else if (l>=int64(low(longint))) and (h<=high(longint)) then
range_to_basetype:=s32bit
else if (l>=low(cardinal)) and (h<=high(cardinal)) then
range_to_basetype:=u32bit
else if (l>=low(int64)) and (h<=high(int64)) then
range_to_basetype:=s64bit
else
range_to_basetype:=u64bit;
end;
procedure range_to_type(l,h:TConstExprInt;var def:tdef);
begin
{ prefer signed over unsigned }
if (l>=int64(-128)) and (h<=127) then
def:=s8inttype
else if (l>=0) and (h<=255) then
def:=u8inttype
else if (l>=int64(-32768)) and (h<=32767) then
def:=s16inttype
else if (l>=0) and (h<=65535) then
def:=u16inttype
else if (l>=int64(low(longint))) and (h<=high(longint)) then
def:=s32inttype
else if (l>=low(cardinal)) and (h<=high(cardinal)) then
def:=u32inttype
else if (l>=low(int64)) and (h<=high(int64)) then
def:=s64inttype
else
def:=u64inttype;
end;
procedure int_to_type(v:TConstExprInt;var def:tdef);
begin
range_to_type(v,v,def);
end;
{ true if p is an ordinal }
function is_ordinal(def : tdef) : boolean;
var
dt : tordtype;
begin
case def.typ of
orddef :
begin
dt:=torddef(def).ordtype;
is_ordinal:=dt in [uchar,uwidechar,
u8bit,u16bit,u32bit,u64bit,
s8bit,s16bit,s32bit,s64bit,
pasbool8,pasbool16,pasbool32,pasbool64,
bool8bit,bool16bit,bool32bit,bool64bit];
end;
enumdef :
is_ordinal:=true;
else
is_ordinal:=false;
end;
end;
{ true if p is a string }
function is_string(def : tdef) : boolean;
begin
is_string := (assigned(def) and (def.typ = stringdef));
end;
function is_stringlike(def : tdef) : boolean;
begin
result := is_string(def) or
is_anychar(def) or
is_pchar(def) or
is_pwidechar(def) or
is_chararray(def) or
is_widechararray(def) or
is_open_chararray(def) or
is_open_widechararray(def) or
(def=java_jlstring);
end;
function is_enum(def : tdef) : boolean;
begin
result:=def.typ=enumdef;
end;
function is_set(def : tdef) : boolean;
begin
result:=def.typ=setdef;
end;
{ returns the min. value of the type }
function get_min_value(def : tdef) : TConstExprInt;
begin
case def.typ of
orddef:
result:=torddef(def).low;
enumdef:
result:=int64(tenumdef(def).min);
else
result:=0;
end;
end;
{ returns the max. value of the type }
function get_max_value(def : tdef) : TConstExprInt;
begin
case def.typ of
orddef:
result:=torddef(def).high;
enumdef:
result:=tenumdef(def).max;
else
result:=0;
end;
end;
{ true if p is an integer }
function is_integer(def : tdef) : boolean;
begin
result:=(def.typ=orddef) and
(torddef(def).ordtype in [u8bit,u16bit,u32bit,u64bit,
s8bit,s16bit,s32bit,s64bit]);
end;
{ true if p is a boolean }
function is_boolean(def : tdef) : boolean;
begin
result:=(def.typ=orddef) and
(torddef(def).ordtype in [pasbool8,pasbool16,pasbool32,pasbool64,bool8bit,bool16bit,bool32bit,bool64bit]);
end;
function is_pasbool(def : tdef) : boolean;
begin
result:=(def.typ=orddef) and
(torddef(def).ordtype in [pasbool8,pasbool16,pasbool32,pasbool64]);
end;
{ true if def is a C-style boolean (non-zero value = true, zero = false) }
function is_cbool(def : tdef) : boolean;
begin
result:=(def.typ=orddef) and
(torddef(def).ordtype in [bool8bit,bool16bit,bool32bit,bool64bit]);
end;
{ true if p is a void }
function is_void(def : tdef) : boolean;
begin
result:=(def.typ=orddef) and
(torddef(def).ordtype=uvoid);
end;
{ true if p is a char }
function is_char(def : tdef) : boolean;
begin
result:=(def.typ=orddef) and
(torddef(def).ordtype=uchar);
end;
{ true if p is a wchar }
function is_widechar(def : tdef) : boolean;
begin
result:=(def.typ=orddef) and
(torddef(def).ordtype=uwidechar);
end;
{ true if p is a char or wchar }
function is_anychar(def : tdef) : boolean;
begin
result:=(def.typ=orddef) and
(torddef(def).ordtype in [uchar,uwidechar])
end;
{ true if p is signed (integer) }
function is_signed(def : tdef) : boolean;
begin
case def.typ of
orddef :
result:=torddef(def).low < 0;
enumdef :
result:=tenumdef(def).min < 0;
arraydef :
result:=is_signed(tarraydef(def).rangedef);
else
result:=false;
end;
end;
function get_unsigned_inttype(def: tdef): torddef;
begin
case def.typ of
orddef,
enumdef:
result:=cgsize_orddef(tcgsize2unsigned[def_cgsize(def)]);
else
internalerror(2016062001);
end;
end;
function is_in_limit(def_from,def_to : tdef) : boolean;
begin
if (def_from.typ<>def_to.typ) or
not(def_from.typ in [orddef,enumdef,setdef]) then
begin
is_in_limit := false;
exit;
end;
case def_from.typ of
orddef:
is_in_limit:=(torddef(def_from).low>=torddef(def_to).low) and
(torddef(def_from).high<=torddef(def_to).high);
enumdef:
is_in_limit:=(tenumdef(def_from).min>=tenumdef(def_to).min) and
(tenumdef(def_from).max<=tenumdef(def_to).max);
setdef:
is_in_limit:=(tsetdef(def_from).setbase>=tsetdef(def_to).setbase) and
(tsetdef(def_from).setmax<=tsetdef(def_to).setmax);
else
is_in_limit:=false;
end;
end;
function is_managed_type(def: tdef): boolean;{$ifdef USEINLINE}inline;{$endif}
begin
result:=def.needs_inittable;
end;
function is_rtti_managed_type(def: tdef): boolean;
begin
result:=def.needs_inittable and not (
is_interfacecom_or_dispinterface(def) or
(def.typ=variantdef) or
(
(def.typ=stringdef) and
(tstringdef(def).stringtype in [st_ansistring,st_widestring,st_unicodestring])
)
);
end;
{ true, if p points to an open array def }
function is_open_string(p : tdef) : boolean;
begin
is_open_string:=(p.typ=stringdef) and
(tstringdef(p).stringtype=st_shortstring) and
(tstringdef(p).len=0);
end;
{ true, if p points to a zero based array def }
function is_zero_based_array(p : tdef) : boolean;
begin
result:=(p.typ=arraydef) and
(tarraydef(p).lowrange=0) and
not(is_special_array(p));
end;
{ true if p points to a dynamic array def }
function is_dynamic_array(p : tdef) : boolean;
begin
result:=(p.typ=arraydef) and
(ado_IsDynamicArray in tarraydef(p).arrayoptions);
end;
{ true, if p points to an open array def }
function is_open_array(p : tdef) : boolean;
begin
{ check for sizesinttype is needed, because for unsigned the high
range is also -1 ! (PFV) }
result:=(p.typ=arraydef) and
(tarraydef(p).rangedef=sizesinttype) and
(tarraydef(p).lowrange=0) and
(tarraydef(p).highrange=-1) and
((tarraydef(p).arrayoptions * [ado_IsVariant,ado_IsArrayOfConst,ado_IsConstructor,ado_IsDynamicArray])=[]);
end;
{ true, if p points to an array of const def }
function is_array_constructor(p : tdef) : boolean;
begin
result:=(p.typ=arraydef) and
(ado_IsConstructor in tarraydef(p).arrayoptions);
end;
{ true, if p points to a variant array }
function is_variant_array(p : tdef) : boolean;
begin
result:=(p.typ=arraydef) and
(ado_IsVariant in tarraydef(p).arrayoptions);
end;
{ true, if p points to an array of const }
function is_array_of_const(p : tdef) : boolean;
begin
result:=(p.typ=arraydef) and
(ado_IsArrayOfConst in tarraydef(p).arrayoptions);
end;
{ true, if p points to a special array, bitpacked arrays aren't special in this regard though }
function is_special_array(p : tdef) : boolean;
begin
result:=(p.typ=arraydef) and
(
((tarraydef(p).arrayoptions * [ado_IsVariant,ado_IsArrayOfConst,ado_IsConstructor,ado_IsDynamicArray])<>[]) or
is_open_array(p)
);
end;
{ true if p is an ansi string def }
function is_ansistring(p : tdef) : boolean;
begin
is_ansistring:=(p.typ=stringdef) and
(tstringdef(p).stringtype=st_ansistring);
end;
{ true if p is an ansi string def with codepage CP_NONE }
function is_rawbytestring(p : tdef) : boolean;
begin
is_rawbytestring:=(p.typ=stringdef) and
(tstringdef(p).stringtype=st_ansistring) and
(tstringdef(p).encoding=globals.CP_NONE);
end;
{ true if p is an long string def }
function is_longstring(p : tdef) : boolean;
begin
is_longstring:=(p.typ=stringdef) and
(tstringdef(p).stringtype=st_longstring);
end;
{ true if p is an wide string def }
function is_widestring(p : tdef) : boolean;
begin
is_widestring:=(p.typ=stringdef) and
(tstringdef(p).stringtype=st_widestring);
end;
function is_dynamicstring(p: tdef): boolean;
begin
is_dynamicstring:=(p.typ=stringdef) and
(tstringdef(p).stringtype in [st_ansistring,st_widestring,st_unicodestring]);
end;
{ true if p is an wide string def }
function is_wide_or_unicode_string(p : tdef) : boolean;
begin
is_wide_or_unicode_string:=(p.typ=stringdef) and
(tstringdef(p).stringtype in [st_widestring,st_unicodestring]);
end;
{ true if p is an unicode string def }
function is_unicodestring(p : tdef) : boolean;
begin
is_unicodestring:=(p.typ=stringdef) and
(tstringdef(p).stringtype=st_unicodestring);
end;
{ true if p is an short string def }
function is_shortstring(p : tdef) : boolean;
begin
is_shortstring:=(p.typ=stringdef) and
(tstringdef(p).stringtype=st_shortstring);
end;
{ true if p is bit packed array def }
function is_packed_array(p: tdef) : boolean;
begin
is_packed_array :=
(p.typ = arraydef) and
(ado_IsBitPacked in tarraydef(p).arrayoptions);
end;
{ true if p is bit packed record def }
function is_packed_record_or_object(p: tdef) : boolean;
begin
is_packed_record_or_object :=
(p.typ in [recorddef,objectdef]) and
(tabstractrecorddef(p).is_packed);
end;
{ true if p is a char array def }
function is_chararray(p : tdef) : boolean;
begin
is_chararray:=(p.typ=arraydef) and
is_char(tarraydef(p).elementdef) and
not(is_special_array(p));
end;
{ true if p is a widechar array def }
function is_widechararray(p : tdef) : boolean;
begin
is_widechararray:=(p.typ=arraydef) and
is_widechar(tarraydef(p).elementdef) and
not(is_special_array(p));
end;
{ true if p is a open char array def }
function is_open_chararray(p : tdef) : boolean;
begin
is_open_chararray:= is_open_array(p) and
is_char(tarraydef(p).elementdef);
end;
{ true if p is a open wide char array def }
function is_open_widechararray(p : tdef) : boolean;
begin
is_open_widechararray:= is_open_array(p) and
is_widechar(tarraydef(p).elementdef);
end;
{ true if p is a pchar def }
function is_pchar(p : tdef) : boolean;
begin
is_pchar:=(p.typ=pointerdef) and
(is_char(tpointerdef(p).pointeddef) or
(is_zero_based_array(tpointerdef(p).pointeddef) and
is_chararray(tpointerdef(p).pointeddef)));
end;
{ true if p is a pchar def }
function is_pwidechar(p : tdef) : boolean;
begin
is_pwidechar:=(p.typ=pointerdef) and
(is_widechar(tpointerdef(p).pointeddef) or
(is_zero_based_array(tpointerdef(p).pointeddef) and
is_widechararray(tpointerdef(p).pointeddef)));
end;
{ true if p is a voidpointer def }
function is_voidpointer(p : tdef) : boolean;
begin
is_voidpointer:=(p.typ=pointerdef) and
(tpointerdef(p).pointeddef.typ=orddef) and
(torddef(tpointerdef(p).pointeddef).ordtype=uvoid);
end;
{ true, if def is a 8 bit int type }
function is_8bitint(def : tdef) : boolean;
begin
result:=(def.typ=orddef) and (torddef(def).ordtype in [u8bit,s8bit])
end;
{ true, if def is a 8 bit ordinal type }
function is_8bit(def : tdef) : boolean;
begin
result:=(def.typ=orddef) and (torddef(def).ordtype in [u8bit,s8bit,pasbool8,bool8bit,uchar])
end;
{ true, if def is a 16 bit int type }
function is_16bitint(def : tdef) : boolean;
begin
result:=(def.typ=orddef) and (torddef(def).ordtype in [u16bit,s16bit])
end;
{ true, if def is a 16 bit ordinal type }
function is_16bit(def : tdef) : boolean;
begin
result:=(def.typ=orddef) and (torddef(def).ordtype in [u16bit,s16bit,pasbool16,bool16bit,uwidechar])
end;
{ true, if def is a 32 bit int type }
function is_32bitint(def : tdef) : boolean;
begin
result:=(def.typ=orddef) and (torddef(def).ordtype in [u32bit,s32bit])
end;
{ true, if def is a 32 bit ordinal type }
function is_32bit(def: tdef): boolean;
begin
result:=(def.typ=orddef) and (torddef(def).ordtype in [u32bit,s32bit,pasbool32,bool32bit])
end;
{ true, if def is a 64 bit int type }
function is_64bitint(def : tdef) : boolean;
begin
is_64bitint:=(def.typ=orddef) and (torddef(def).ordtype in [u64bit,s64bit])
end;
{ true, if def is a 64 bit type }
function is_64bit(def : tdef) : boolean;
begin
is_64bit:=(def.typ=orddef) and (torddef(def).ordtype in [u64bit,s64bit,scurrency,pasbool64,bool64bit])
end;
{ true, if def is an int type, larger than the processor's native int size }
function is_oversizedint(def : tdef) : boolean;
begin
{$if defined(cpu8bitalu)}
result:=is_64bitint(def) or is_32bitint(def) or is_16bitint(def);
{$elseif defined(cpu16bitalu)}
result:=is_64bitint(def) or is_32bitint(def);
{$elseif defined(cpu32bitaddr)}
result:=is_64bitint(def);
{$elseif defined(cpu64bitaddr)}
result:=false;
{$endif}
end;
{ true, if def is an ordinal type, larger than the processor's native int size }
function is_oversizedord(def : tdef) : boolean;
begin
{$if defined(cpu8bitalu)}
result:=is_64bit(def) or is_32bit(def) or is_16bit(def);
{$elseif defined(cpu16bitalu)}
result:=is_64bit(def) or is_32bit(def);
{$elseif defined(cpu32bitaddr)}
result:=is_64bit(def);
{$elseif defined(cpu64bitaddr)}
result:=false;
{$endif}
end;
{ true, if def is an int type, equal in size to the processor's native int size }
function is_nativeint(def: tdef): boolean;
begin
{$if defined(cpu8bitalu)}
result:=is_8bitint(def);
{$elseif defined(cpu16bitalu)}
result:=is_16bitint(def);
{$elseif defined(cpu32bitaddr)}
result:=is_32bitint(def);
{$elseif defined(cpu64bitaddr)}
result:=is_64bitint(def);
{$endif}
end;
{ true, if def is an ordinal type, equal in size to the processor's native int size }
function is_nativeord(def: tdef): boolean;
begin
{$if defined(cpu8bitalu)}
result:=is_8bit(def);
{$elseif defined(cpu16bitalu)}
result:=is_16bit(def);
{$elseif defined(cpu32bitaddr)}
result:=is_32bit(def);
{$elseif defined(cpu64bitaddr)}
result:=is_64bit(def);
{$endif}
end;
{ true, if def is an unsigned int type, equal in size to the processor's native int size }
function is_nativeuint(def: tdef): boolean;
begin
result:=is_nativeint(def) and (def.typ=orddef) and (torddef(def).ordtype in [u64bit,u32bit,u16bit,u8bit]);
end;
{ true, if def is a signed int type, equal in size to the processor's native int size }
function is_nativesint(def: tdef): boolean;
begin
result:=is_nativeint(def) and (def.typ=orddef) and (torddef(def).ordtype in [s64bit,s32bit,s16bit,s8bit]);
end;
{ if l isn't in the range of todef a range check error (if not explicit) is generated and
the value is placed within the range }
procedure testrange(todef : tdef;var l : tconstexprint;explicit,forcerangecheck:boolean);
var
lv,hv: TConstExprInt;
begin
{ for 64 bit types we need only to check if it is less than }
{ zero, if def is a qword node }
getrange(todef,lv,hv);
if (l<lv) or (l>hv) then
begin
if not explicit then
begin
if ((todef.typ=enumdef) and
{ delphi allows range check errors in
enumeration type casts FK }
not(m_delphi in current_settings.modeswitches)) or
(cs_check_range in current_settings.localswitches) or
forcerangecheck then
Message3(type_e_range_check_error_bounds,tostr(l),tostr(lv),tostr(hv))
else
Message3(type_w_range_check_error_bounds,tostr(l),tostr(lv),tostr(hv));
end;
{ Fix the value to fit in the allocated space for this type of variable }
case longint(todef.size) of
1: l := l and $ff;
2: l := l and $ffff;
4: l := l and $ffffffff;
end;
{reset sign, i.e. converting -1 to qword changes the value to high(qword)}
l.signed:=false;
{ do sign extension if necessary (JM) }
if is_signed(todef) then
begin
case longint(todef.size) of
1: l.svalue := shortint(l.svalue);
2: l.svalue := smallint(l.svalue);
4: l.svalue := longint(l.svalue);
end;
l.signed:=true;
end;
end;
end;
{ return the range from def in l and h }
procedure getrange(def : tdef;out l, h : TConstExprInt);
begin
case def.typ of
orddef :
begin
l:=torddef(def).low;
h:=torddef(def).high;
end;
enumdef :
begin
l:=int64(tenumdef(def).min);
h:=int64(tenumdef(def).max);
end;
arraydef :
begin
l:=int64(tarraydef(def).lowrange);
h:=int64(tarraydef(def).highrange);
end;
else
internalerror(200611054);
end;
end;
function mmx_type(p : tdef) : tmmxtype;
begin
mmx_type:=mmxno;
if is_mmx_able_array(p) then
begin
if tarraydef(p).elementdef.typ=floatdef then
case tfloatdef(tarraydef(p).elementdef).floattype of
s32real:
mmx_type:=mmxsingle;
end
else
case torddef(tarraydef(p).elementdef).ordtype of
u8bit:
mmx_type:=mmxu8bit;
s8bit:
mmx_type:=mmxs8bit;
u16bit:
mmx_type:=mmxu16bit;
s16bit:
mmx_type:=mmxs16bit;
u32bit:
mmx_type:=mmxu32bit;
s32bit:
mmx_type:=mmxs32bit;
end;
end;
end;
function is_vector(p : tdef) : boolean;
begin
result:=(p.typ=arraydef) and
not(is_special_array(p)) and
(tarraydef(p).elementdef.typ=floatdef) and
(tfloatdef(tarraydef(p).elementdef).floattype in [s32real,s64real]);
end;
{ returns if the passed type (array) fits into an mm register }
function fits_in_mm_register(p : tdef) : boolean;
begin
{$ifdef x86}
result:= is_vector(p) and
(
(tarraydef(p).elementdef.typ=floatdef) and
(
(tarraydef(p).lowrange=0) and
(tarraydef(p).highrange=3) and
(tfloatdef(tarraydef(p).elementdef).floattype=s32real)
)
) or
(
(tarraydef(p).elementdef.typ=floatdef) and
(
(tarraydef(p).lowrange=0) and
(tarraydef(p).highrange=1) and
(tfloatdef(tarraydef(p).elementdef).floattype=s64real)
)
);
{$else x86}
result:=false;
{$endif x86}
end;
function is_mmx_able_array(p : tdef) : boolean;
begin
{$ifdef SUPPORT_MMX}
if (cs_mmx_saturation in current_settings.localswitches) then
begin
is_mmx_able_array:=(p.typ=arraydef) and
not(is_special_array(p)) and
(
(
(tarraydef(p).elementdef.typ=orddef) and
(
(
(tarraydef(p).lowrange=0) and
(tarraydef(p).highrange=1) and
(torddef(tarraydef(p).elementdef).ordtype in [u32bit,s32bit])
)
or
(
(tarraydef(p).lowrange=0) and
(tarraydef(p).highrange=3) and
(torddef(tarraydef(p).elementdef).ordtype in [u16bit,s16bit])
)
)
)
or
(
(
(tarraydef(p).elementdef.typ=floatdef) and
(
(tarraydef(p).lowrange=0) and
(tarraydef(p).highrange=1) and
(tfloatdef(tarraydef(p).elementdef).floattype=s32real)
)
)
)
);
end
else
begin
is_mmx_able_array:=(p.typ=arraydef) and
(
(
(tarraydef(p).elementdef.typ=orddef) and
(
(
(tarraydef(p).lowrange=0) and
(tarraydef(p).highrange=1) and
(torddef(tarraydef(p).elementdef).ordtype in [u32bit,s32bit])
)
or
(
(tarraydef(p).lowrange=0) and
(tarraydef(p).highrange=3) and
(torddef(tarraydef(p).elementdef).ordtype in [u16bit,s16bit])
)
or
(
(tarraydef(p).lowrange=0) and
(tarraydef(p).highrange=7) and
(torddef(tarraydef(p).elementdef).ordtype in [u8bit,s8bit])
)
)
)
or
(
(tarraydef(p).elementdef.typ=floatdef) and
(
(tarraydef(p).lowrange=0) and
(tarraydef(p).highrange=1) and
(tfloatdef(tarraydef(p).elementdef).floattype=s32real)
)
)
);
end;
{$else SUPPORT_MMX}
is_mmx_able_array:=false;
{$endif SUPPORT_MMX}
end;
function def_cgsize(def: tdef): tcgsize;
begin
case def.typ of
orddef,
enumdef,
setdef:
begin
result:=int_cgsize(def.size);
if is_signed(def) then
result:=tcgsize(ord(result)+(ord(OS_S8)-ord(OS_8)));
end;
classrefdef,
pointerdef:
begin
result:=int_cgsize(def.size);
{ can happen for far/huge pointers on non-i8086 }
if result=OS_NO then
internalerror(2013052201);
end;
formaldef:
result := int_cgsize(voidpointertype.size);
procvardef:
result:=int_cgsize(def.size);
stringdef :
result:=int_cgsize(def.size);
objectdef :
result:=int_cgsize(def.size);
floatdef:
if cs_fp_emulation in current_settings.moduleswitches then
result:=int_cgsize(def.size)
else
result:=tfloat2tcgsize[tfloatdef(def).floattype];
recorddef :
result:=int_cgsize(def.size);
arraydef :
begin
if is_dynamic_array(def) or not is_special_array(def) then
result := int_cgsize(def.size)
else
result := OS_NO;
end;
else
begin
{ undefined size }
result:=OS_NO;
end;
end;
end;
function cgsize_orddef(size: tcgsize): torddef;
begin
case size of
OS_8:
result:=torddef(u8inttype);
OS_S8:
result:=torddef(s8inttype);
OS_16:
result:=torddef(u16inttype);
OS_S16:
result:=torddef(s16inttype);
OS_32:
result:=torddef(u32inttype);
OS_S32:
result:=torddef(s32inttype);
OS_64:
result:=torddef(u64inttype);
OS_S64:
result:=torddef(s64inttype);
else
internalerror(2012050401);
end;
end;
function def_cgmmsize(def: tdef): tcgsize;
begin
case def.typ of
arraydef:
begin
if tarraydef(def).elementdef.typ in [orddef,floatdef] then
begin
{ this is not correct, OS_MX normally mean that the vector
contains elements of size X. However, vectors themselves
can also have different sizes (e.g. a vector of 2 singles on
SSE) and the total size is currently more important }
case def.size of
1: result:=OS_M8;
2: result:=OS_M16;
4: result:=OS_M32;
8: result:=OS_M64;
16: result:=OS_M128;
32: result:=OS_M256;
else
internalerror(2013060103);
end;
end
else
result:=def_cgsize(def);
end
else
result:=def_cgsize(def);
end;
end;
{ In Windows 95 era, ordinals were restricted to [u8bit,s32bit,s16bit,bool16bit]
As of today, both signed and unsigned types from 8 to 64 bits are supported. }
function is_automatable(p : tdef) : boolean;
begin
result:=false;
case p.typ of
orddef:
result:=torddef(p).ordtype in [u8bit,s8bit,u16bit,s16bit,u32bit,s32bit,
u64bit,s64bit,bool16bit,scurrency];
floatdef:
result:=tfloatdef(p).floattype in [s64currency,s64real,s32real];
stringdef:
result:=tstringdef(p).stringtype in [st_ansistring,st_widestring,st_unicodestring];
variantdef:
result:=true;
objectdef:
result:=tobjectdef(p).objecttype in [odt_interfacecom,odt_dispinterface,odt_interfacecorba];
end;
end;
{# returns true, if the type passed is a varset }
function is_smallset(p : tdef) : boolean;
begin
{$if defined(cpu8bitalu)}
result:=(p.typ=setdef) and (p.size = 1)
{$elseif defined(cpu16bitalu)}
result:=(p.typ=setdef) and (p.size in [1,2])
{$else}
result:=(p.typ=setdef) and (p.size in [1,2,4])
{$endif}
end;
function is_bareprocdef(pd : tprocdef): boolean;
begin
result:=(pd.maxparacount=0) and
(is_void(pd.returndef) or
(pd.proctypeoption = potype_constructor));
end;
function get_common_intdef(ld, rd: torddef; keep_sign_if_equal: boolean): torddef;
var
llow, lhigh: tconstexprint;
begin
llow:=min(ld.low,rd.low);
lhigh:=max(ld.high,rd.high);
case range_to_basetype(llow,lhigh) of
s8bit:
result:=torddef(s8inttype);
u8bit:
result:=torddef(u8inttype);
s16bit:
result:=torddef(s16inttype);
u16bit:
result:=torddef(u16inttype);
s32bit:
result:=torddef(s32inttype);
u32bit:
result:=torddef(u32inttype);
s64bit:
result:=torddef(s64inttype);
u64bit:
result:=torddef(u64inttype);
else
begin
{ avoid warning }
result:=nil;
internalerror(200802291);
end;
end;
if keep_sign_if_equal and
(is_signed(ld)=is_signed(rd)) and
(is_signed(result)<>is_signed(ld)) then
case result.ordtype of
s8bit:
result:=torddef(u8inttype);
u8bit:
result:=torddef(s16inttype);
s16bit:
result:=torddef(u16inttype);
u16bit:
result:=torddef(s32inttype);
s32bit:
result:=torddef(u32inttype);
u32bit:
result:=torddef(s64inttype);
s64bit:
result:=torddef(u64inttype);
end;
end;
function is_valid_univ_para_type(def: tdef): boolean;
begin
result:=
not is_open_array(def) and
not is_void(def) and
(def.typ<>formaldef);
end;
function is_nested_pd(def: tabstractprocdef): boolean;{$ifdef USEINLINE}inline;{$endif}
begin
result:=def.parast.symtablelevel>normal_function_level;
end;
function is_typeparam(def : tdef) : boolean;{$ifdef USEINLINE}inline;{$endif}
begin
result:=(def.typ=undefineddef);
end;
function is_methodpointer(def: tdef): boolean;
begin
result:=(def.typ=procvardef) and (po_methodpointer in tprocvardef(def).procoptions);
end;
function is_block(def: tdef): boolean;
begin
result:=(def.typ=procvardef) and (po_is_block in tprocvardef(def).procoptions)
end;
end.