fpc/compiler/nadd.pas
2004-02-05 01:24:08 +00:00

2222 lines
85 KiB
ObjectPascal

{
$Id$
Copyright (c) 1998-2002 by Florian Klaempfl
Type checking and register allocation for add nodes
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit nadd;
{$i fpcdefs.inc}
{ define addstringopt}
interface
uses
node;
type
taddnode = class(tbinopnode)
constructor create(tt : tnodetype;l,r : tnode);override;
function pass_1 : tnode;override;
function det_resulttype:tnode;override;
{$ifdef state_tracking}
function track_state_pass(exec_known:boolean):boolean;override;
{$endif}
protected
{ override the following if you want to implement }
{ parts explicitely in the code generator (JM) }
function first_addstring: tnode; virtual;
function first_addset: tnode; virtual;
{ only implements "muln" nodes, the rest always has to be done in }
{ the code generator for performance reasons (JM) }
function first_add64bitint: tnode; virtual;
{$ifdef cpufpemu}
{ This routine calls internal runtime library helpers
for all floating point arithmetic in the case
where the emulation switches is on. Otherwise
returns nil, and everything must be done in
the code generation phase.
}
function first_addfloat : tnode; virtual;
{$endif cpufpemu}
end;
taddnodeclass = class of taddnode;
var
{ caddnode is used to create nodes of the add type }
{ the virtual constructor allows to assign }
{ another class type to caddnode => processor }
{ specific node types can be created }
caddnode : taddnodeclass;
implementation
uses
globtype,systems,
cutils,verbose,globals,widestr,
symconst,symtype,symdef,symsym,symtable,defutil,defcmp,
cgbase,
htypechk,pass_1,
nbas,nmat,ncnv,ncon,nset,nopt,ncal,ninl,nmem,
{$ifdef state_tracking}
nstate,
{$endif}
cpuinfo,procinfo;
{*****************************************************************************
TADDNODE
*****************************************************************************}
{$ifdef fpc}
{$maxfpuregisters 0}
{$endif fpc}
constructor taddnode.create(tt : tnodetype;l,r : tnode);
begin
inherited create(tt,l,r);
end;
function taddnode.det_resulttype:tnode;
var
hp,t : tnode;
lt,rt : tnodetype;
rd,ld : tdef;
htype : ttype;
ot : tnodetype;
concatstrings : boolean;
resultset : Tconstset;
i : longint;
b : boolean;
s1,s2 : pchar;
ws1,ws2 : pcompilerwidestring;
l1,l2 : longint;
rv,lv : tconstexprint;
rvd,lvd : bestreal;
resultrealtype : ttype;
{$ifdef state_tracking}
factval : Tnode;
change : boolean;
{$endif}
begin
result:=nil;
{ first do the two subtrees }
resulttypepass(left);
resulttypepass(right);
{ both left and right need to be valid }
set_varstate(left,vs_used,true);
set_varstate(right,vs_used,true);
if codegenerror then
exit;
{ convert array constructors to sets, because there is no other operator
possible for array constructors }
if is_array_constructor(left.resulttype.def) then
begin
arrayconstructor_to_set(left);
resulttypepass(left);
end;
if is_array_constructor(right.resulttype.def) then
begin
arrayconstructor_to_set(right);
resulttypepass(right);
end;
{ allow operator overloading }
hp:=self;
if isbinaryoverloaded(hp) then
begin
result:=hp;
exit;
end;
{ Stop checking when an error was found in the operator checking }
if codegenerror then
begin
result:=cerrornode.create;
exit;
end;
{ Kylix allows enum+ordconstn in an enum declaration (blocktype
is bt_type), we need to do the conversion here before the
constant folding }
if (m_delphi in aktmodeswitches) and
(blocktype=bt_type) then
begin
if (left.resulttype.def.deftype=enumdef) and
(right.resulttype.def.deftype=orddef) then
begin
{ insert explicit typecast to default signed int }
left:=ctypeconvnode.create_explicit(left,sinttype);
resulttypepass(left);
end
else
if (left.resulttype.def.deftype=orddef) and
(right.resulttype.def.deftype=enumdef) then
begin
{ insert explicit typecast to default signed int }
right:=ctypeconvnode.create_explicit(right,sinttype);
resulttypepass(right);
end;
end;
{ is one a real float, then both need to be floats, this
need to be done before the constant folding so constant
operation on a float and int are also handled }
resultrealtype:=pbestrealtype^;
if (right.resulttype.def.deftype=floatdef) or (left.resulttype.def.deftype=floatdef) then
begin
{ when both floattypes are already equal then use that
floattype for results }
if (right.resulttype.def.deftype=floatdef) and
(left.resulttype.def.deftype=floatdef) and
(tfloatdef(left.resulttype.def).typ=tfloatdef(right.resulttype.def).typ) then
resultrealtype:=left.resulttype
{ when there is a currency type then use currency, but
only when currency is defined as float }
else
if (is_currency(right.resulttype.def) or
is_currency(left.resulttype.def)) and
((s64currencytype.def.deftype = floatdef) or
(nodetype <> slashn)) then
begin
resultrealtype:=s64currencytype;
inserttypeconv(right,resultrealtype);
inserttypeconv(left,resultrealtype);
end
else
begin
inserttypeconv(right,resultrealtype);
inserttypeconv(left,resultrealtype);
end;
end;
{ if one operand is a widechar or a widestring, both operands }
{ are converted to widestring. This must be done before constant }
{ folding to allow char+widechar etc. }
if is_widestring(right.resulttype.def) or
is_widestring(left.resulttype.def) or
is_widechar(right.resulttype.def) or
is_widechar(left.resulttype.def) then
begin
inserttypeconv(right,cwidestringtype);
inserttypeconv(left,cwidestringtype);
end;
{ load easier access variables }
rd:=right.resulttype.def;
ld:=left.resulttype.def;
rt:=right.nodetype;
lt:=left.nodetype;
if (nodetype = slashn) and
(((rt = ordconstn) and
(tordconstnode(right).value = 0)) or
((rt = realconstn) and
(trealconstnode(right).value_real = 0.0))) then
begin
if (cs_check_range in aktlocalswitches) or
(cs_check_overflow in aktlocalswitches) then
begin
result:=crealconstnode.create(1,pbestrealtype^);
Message(parser_e_division_by_zero);
exit;
end;
end;
{ both are int constants }
if ((is_constintnode(left) and is_constintnode(right)) or
(is_constboolnode(left) and is_constboolnode(right) and
(nodetype in [slashn,ltn,lten,gtn,gten,equaln,unequaln,andn,xorn,orn])) or
(is_constenumnode(left) and is_constenumnode(right) and
(nodetype in [equaln,unequaln,ltn,lten,gtn,gten]))) or
{ support pointer arithmetics on constants (JM) }
((lt = pointerconstn) and is_constintnode(right) and
(nodetype in [addn,subn])) or
(((lt = pointerconstn) or (lt = niln)) and
((rt = pointerconstn) or (rt = niln)) and
(nodetype in [ltn,lten,gtn,gten,equaln,unequaln,subn])) then
begin
{ when comparing/substracting pointers, make sure they are }
{ of the same type (JM) }
if (lt = pointerconstn) and (rt = pointerconstn) then
begin
if not(cs_extsyntax in aktmoduleswitches) and
not(nodetype in [equaln,unequaln]) then
CGMessage(type_e_mismatch)
else
if (nodetype <> subn) and
is_voidpointer(rd) then
inserttypeconv(right,left.resulttype)
else if (nodetype <> subn) and
is_voidpointer(ld) then
inserttypeconv(left,right.resulttype)
else if not(equal_defs(ld,rd)) then
IncompatibleTypes(ld,rd);
end
else if (ld.deftype=enumdef) and (rd.deftype=enumdef) then
begin
if not(equal_defs(ld,rd)) then
inserttypeconv(right,left.resulttype);
end
else if (lt=ordconstn) and (rt=ordconstn) then
begin
{ make left const type the biggest (u32bit is bigger than
s32bit for or,and,xor) }
if (rd.size>ld.size) or
((torddef(rd).typ=torddef(uinttype.def).typ) and
(torddef(ld).typ=torddef(sinttype.def).typ) and
(nodetype in [orn,andn,xorn])) then
inserttypeconv(left,right.resulttype);
end;
{ load values }
case lt of
ordconstn:
lv:=tordconstnode(left).value;
pointerconstn:
lv:=tpointerconstnode(left).value;
niln:
lv:=0;
else
internalerror(2002080202);
end;
case rt of
ordconstn:
rv:=tordconstnode(right).value;
pointerconstn:
rv:=tpointerconstnode(right).value;
niln:
rv:=0;
else
internalerror(2002080203);
end;
if (lt = pointerconstn) and
(rt <> pointerconstn) then
rv := rv * tpointerdef(left.resulttype.def).pointertype.def.size;
if (rt = pointerconstn) and
(lt <> pointerconstn) then
lv := lv * tpointerdef(right.resulttype.def).pointertype.def.size;
case nodetype of
addn :
if (lt <> pointerconstn) then
t := genintconstnode(lv+rv)
else
t := cpointerconstnode.create(lv+rv,left.resulttype);
subn :
if (lt <> pointerconstn) or (rt = pointerconstn) then
t := genintconstnode(lv-rv)
else
t := cpointerconstnode.create(lv-rv,left.resulttype);
muln :
if (torddef(ld).typ <> u64bit) or
(torddef(rd).typ <> u64bit) then
t:=genintconstnode(lv*rv)
else
t:=genintconstnode(int64(qword(lv)*qword(rv)));
xorn :
t:=cordconstnode.create(lv xor rv,left.resulttype,true);
orn :
t:=cordconstnode.create(lv or rv,left.resulttype,true);
andn :
t:=cordconstnode.create(lv and rv,left.resulttype,true);
ltn :
t:=cordconstnode.create(ord(lv<rv),booltype,true);
lten :
t:=cordconstnode.create(ord(lv<=rv),booltype,true);
gtn :
t:=cordconstnode.create(ord(lv>rv),booltype,true);
gten :
t:=cordconstnode.create(ord(lv>=rv),booltype,true);
equaln :
t:=cordconstnode.create(ord(lv=rv),booltype,true);
unequaln :
t:=cordconstnode.create(ord(lv<>rv),booltype,true);
slashn :
begin
{ int/int becomes a real }
rvd:=rv;
lvd:=lv;
t:=crealconstnode.create(lvd/rvd,resultrealtype);
end;
else
begin
CGMessage(type_e_mismatch);
t:=cnothingnode.create;
end;
end;
result:=t;
exit;
end;
{ both real constants ? }
if (lt=realconstn) and (rt=realconstn) then
begin
lvd:=trealconstnode(left).value_real;
rvd:=trealconstnode(right).value_real;
case nodetype of
addn :
t:=crealconstnode.create(lvd+rvd,resultrealtype);
subn :
t:=crealconstnode.create(lvd-rvd,resultrealtype);
muln :
t:=crealconstnode.create(lvd*rvd,resultrealtype);
starstarn,
caretn :
begin
if lvd<0 then
begin
Message(parser_e_invalid_float_operation);
t:=crealconstnode.create(0,resultrealtype);
end
else if lvd=0 then
t:=crealconstnode.create(1.0,resultrealtype)
else
t:=crealconstnode.create(exp(ln(lvd)*rvd),resultrealtype);
end;
slashn :
t:=crealconstnode.create(lvd/rvd,resultrealtype);
ltn :
t:=cordconstnode.create(ord(lvd<rvd),booltype,true);
lten :
t:=cordconstnode.create(ord(lvd<=rvd),booltype,true);
gtn :
t:=cordconstnode.create(ord(lvd>rvd),booltype,true);
gten :
t:=cordconstnode.create(ord(lvd>=rvd),booltype,true);
equaln :
t:=cordconstnode.create(ord(lvd=rvd),booltype,true);
unequaln :
t:=cordconstnode.create(ord(lvd<>rvd),booltype,true);
else
begin
CGMessage(type_e_mismatch);
t:=cnothingnode.create;
end;
end;
result:=t;
exit;
end;
{ first, we handle widestrings, so we can check later for }
{ stringconstn only }
{ widechars are converted above to widestrings too }
{ this isn't veryy efficient, but I don't think }
{ that it does matter that much (FK) }
if (lt=stringconstn) and (rt=stringconstn) and
(tstringconstnode(left).st_type=st_widestring) and
(tstringconstnode(right).st_type=st_widestring) then
begin
initwidestring(ws1);
initwidestring(ws2);
copywidestring(pcompilerwidestring(tstringconstnode(left).value_str),ws1);
copywidestring(pcompilerwidestring(tstringconstnode(right).value_str),ws2);
case nodetype of
addn :
begin
concatwidestrings(ws1,ws2);
t:=cstringconstnode.createwstr(ws1);
end;
ltn :
t:=cordconstnode.create(byte(comparewidestrings(ws1,ws2)<0),booltype,true);
lten :
t:=cordconstnode.create(byte(comparewidestrings(ws1,ws2)<=0),booltype,true);
gtn :
t:=cordconstnode.create(byte(comparewidestrings(ws1,ws2)>0),booltype,true);
gten :
t:=cordconstnode.create(byte(comparewidestrings(ws1,ws2)>=0),booltype,true);
equaln :
t:=cordconstnode.create(byte(comparewidestrings(ws1,ws2)=0),booltype,true);
unequaln :
t:=cordconstnode.create(byte(comparewidestrings(ws1,ws2)<>0),booltype,true);
else
begin
CGMessage(type_e_mismatch);
t:=cnothingnode.create;
end;
end;
donewidestring(ws1);
donewidestring(ws2);
result:=t;
exit;
end;
{ concating strings ? }
concatstrings:=false;
s1:=nil;
s2:=nil;
if (lt=ordconstn) and (rt=ordconstn) and
is_char(ld) and is_char(rd) then
begin
s1:=strpnew(char(byte(tordconstnode(left).value)));
s2:=strpnew(char(byte(tordconstnode(right).value)));
l1:=1;
l2:=1;
concatstrings:=true;
end
else
if (lt=stringconstn) and (rt=ordconstn) and is_char(rd) then
begin
s1:=tstringconstnode(left).getpcharcopy;
l1:=tstringconstnode(left).len;
s2:=strpnew(char(byte(tordconstnode(right).value)));
l2:=1;
concatstrings:=true;
end
else
if (lt=ordconstn) and (rt=stringconstn) and is_char(ld) then
begin
s1:=strpnew(char(byte(tordconstnode(left).value)));
l1:=1;
s2:=tstringconstnode(right).getpcharcopy;
l2:=tstringconstnode(right).len;
concatstrings:=true;
end
else if (lt=stringconstn) and (rt=stringconstn) then
begin
s1:=tstringconstnode(left).getpcharcopy;
l1:=tstringconstnode(left).len;
s2:=tstringconstnode(right).getpcharcopy;
l2:=tstringconstnode(right).len;
concatstrings:=true;
end;
if concatstrings then
begin
case nodetype of
addn :
t:=cstringconstnode.createpchar(concatansistrings(s1,s2,l1,l2),l1+l2);
ltn :
t:=cordconstnode.create(byte(compareansistrings(s1,s2,l1,l2)<0),booltype,true);
lten :
t:=cordconstnode.create(byte(compareansistrings(s1,s2,l1,l2)<=0),booltype,true);
gtn :
t:=cordconstnode.create(byte(compareansistrings(s1,s2,l1,l2)>0),booltype,true);
gten :
t:=cordconstnode.create(byte(compareansistrings(s1,s2,l1,l2)>=0),booltype,true);
equaln :
t:=cordconstnode.create(byte(compareansistrings(s1,s2,l1,l2)=0),booltype,true);
unequaln :
t:=cordconstnode.create(byte(compareansistrings(s1,s2,l1,l2)<>0),booltype,true);
end;
ansistringdispose(s1,l1);
ansistringdispose(s2,l2);
result:=t;
exit;
end;
{ set constant evaluation }
if (right.nodetype=setconstn) and
not assigned(tsetconstnode(right).left) and
(left.nodetype=setconstn) and
not assigned(tsetconstnode(left).left) then
begin
{ check if size adjusting is needed, only for left
to right as the other way is checked in the typeconv }
if (tsetdef(right.resulttype.def).settype=smallset) and
(tsetdef(left.resulttype.def).settype<>smallset) then
right.resulttype.setdef(tsetdef.create(tsetdef(right.resulttype.def).elementtype,255));
{ check base types }
inserttypeconv(left,right.resulttype);
if codegenerror then
begin
{ recover by only returning the left part }
result:=left;
left:=nil;
exit;
end;
case nodetype of
addn :
begin
resultset:=tsetconstnode(right).value_set^ + tsetconstnode(left).value_set^;
t:=csetconstnode.create(@resultset,left.resulttype);
end;
muln :
begin
resultset:=tsetconstnode(right).value_set^ * tsetconstnode(left).value_set^;
t:=csetconstnode.create(@resultset,left.resulttype);
end;
subn :
begin
resultset:=tsetconstnode(left).value_set^ - tsetconstnode(right).value_set^;
t:=csetconstnode.create(@resultset,left.resulttype);
end;
symdifn :
begin
resultset:=tsetconstnode(right).value_set^ >< tsetconstnode(left).value_set^;
t:=csetconstnode.create(@resultset,left.resulttype);
end;
unequaln :
begin
b:=tsetconstnode(right).value_set^ <> tsetconstnode(left).value_set^;
t:=cordconstnode.create(byte(b),booltype,true);
end;
equaln :
begin
b:=tsetconstnode(right).value_set^ = tsetconstnode(left).value_set^;
t:=cordconstnode.create(byte(b),booltype,true);
end;
lten :
begin
b:=tsetconstnode(left).value_set^ <= tsetconstnode(right).value_set^;
t:=cordconstnode.create(byte(b),booltype,true);
end;
gten :
begin
b:=tsetconstnode(left).value_set^ >= tsetconstnode(right).value_set^;
t:=cordconstnode.create(byte(b),booltype,true);
end;
end;
result:=t;
exit;
end;
{ but an int/int gives real/real! }
if nodetype=slashn then
begin
if is_currency(left.resulttype.def) and
is_currency(right.resulttype.def) then
{ In case of currency, converting to float means dividing by 10000 }
{ However, since this is already a division, both divisions by }
{ 10000 are eliminated when we divide the results -> we can skip }
{ them. }
if s64currencytype.def.deftype = floatdef then
begin
{ there's no s64comptype or so, how do we avoid the type conversion?
left.resulttype := s64comptype;
right.resulttype := s64comptype; }
end
else
begin
left.resulttype := s64inttype;
right.resulttype := s64inttype;
end
else if (left.resulttype.def.deftype <> floatdef) and
(right.resulttype.def.deftype <> floatdef) then
CGMessage(type_h_use_div_for_int);
inserttypeconv(right,resultrealtype);
inserttypeconv(left,resultrealtype);
end
{ if both are orddefs then check sub types }
else if (ld.deftype=orddef) and (rd.deftype=orddef) then
begin
{ optimize multiplacation by a power of 2 }
if not(cs_check_overflow in aktlocalswitches) and
(nodetype = muln) and
(((left.nodetype = ordconstn) and
ispowerof2(tordconstnode(left).value,i)) or
((right.nodetype = ordconstn) and
ispowerof2(tordconstnode(right).value,i))) then
begin
if left.nodetype = ordconstn then
begin
tordconstnode(left).value := i;
result := cshlshrnode.create(shln,right,left);
end
else
begin
tordconstnode(right).value := i;
result := cshlshrnode.create(shln,left,right);
end;
left := nil;
right := nil;
exit;
end;
{ 2 booleans? Make them equal to the largest boolean }
if is_boolean(ld) and is_boolean(rd) then
begin
if torddef(left.resulttype.def).size>torddef(right.resulttype.def).size then
begin
right:=ctypeconvnode.create_explicit(right,left.resulttype);
ttypeconvnode(right).convtype:=tc_bool_2_int;
resulttypepass(right);
end
else if torddef(left.resulttype.def).size<torddef(right.resulttype.def).size then
begin
left:=ctypeconvnode.create_explicit(left,right.resulttype);
ttypeconvnode(left).convtype:=tc_bool_2_int;
resulttypepass(left);
end;
case nodetype of
xorn,
ltn,
lten,
gtn,
gten,
andn,
orn:
begin
end;
unequaln,
equaln:
begin
if not(cs_full_boolean_eval in aktlocalswitches) then
begin
{ Remove any compares with constants }
if (left.nodetype=ordconstn) then
begin
hp:=right;
b:=(tordconstnode(left).value<>0);
ot:=nodetype;
left.free;
left:=nil;
right:=nil;
if (not(b) and (ot=equaln)) or
(b and (ot=unequaln)) then
begin
hp:=cnotnode.create(hp);
end;
result:=hp;
exit;
end;
if (right.nodetype=ordconstn) then
begin
hp:=left;
b:=(tordconstnode(right).value<>0);
ot:=nodetype;
right.free;
right:=nil;
left:=nil;
if (not(b) and (ot=equaln)) or
(b and (ot=unequaln)) then
begin
hp:=cnotnode.create(hp);
end;
result:=hp;
exit;
end;
end;
end;
else
CGMessage(type_e_mismatch);
end;
end
{ Both are chars? }
else if is_char(rd) and is_char(ld) then
begin
if nodetype=addn then
begin
resulttype:=cshortstringtype;
if not(is_constcharnode(left) and is_constcharnode(right)) then
begin
inserttypeconv(left,cshortstringtype);
{$ifdef addstringopt}
hp := genaddsstringcharoptnode(self);
result := hp;
exit;
{$endif addstringopt}
end;
end;
end
{ is there a currency type ? }
else if ((torddef(rd).typ=scurrency) or (torddef(ld).typ=scurrency)) then
begin
if (torddef(ld).typ<>scurrency) then
inserttypeconv(left,s64currencytype);
if (torddef(rd).typ<>scurrency) then
inserttypeconv(right,s64currencytype);
end
{ is there a signed 64 bit type ? }
else if ((torddef(rd).typ=s64bit) or (torddef(ld).typ=s64bit)) then
begin
if (torddef(ld).typ<>s64bit) then
inserttypeconv(left,s64inttype);
if (torddef(rd).typ<>s64bit) then
inserttypeconv(right,s64inttype);
end
{ is there a unsigned 64 bit type ? }
else if ((torddef(rd).typ=u64bit) or (torddef(ld).typ=u64bit)) then
begin
if (torddef(ld).typ<>u64bit) then
inserttypeconv(left,u64inttype);
if (torddef(rd).typ<>u64bit) then
inserttypeconv(right,u64inttype);
end
{ 64 bit cpus do calculations always in 64 bit }
{$ifndef cpu64bit}
{ is there a cardinal? }
else if ((torddef(rd).typ=u32bit) or (torddef(ld).typ=u32bit)) then
begin
{ and,or,xor work on bit patterns and don't care
about the sign }
if nodetype in [andn,orn,xorn] then
begin
inserttypeconv_explicit(left,u32inttype);
inserttypeconv_explicit(right,u32inttype);
end
else
begin
if is_signed(ld) and
{ then rd = u32bit }
{ convert positive constants to u32bit }
not(is_constintnode(left) and
(tordconstnode(left).value >= 0)) then
begin
{ perform the operation in 64bit }
CGMessage(type_w_mixed_signed_unsigned);
inserttypeconv(left,s64inttype);
inserttypeconv(right,s64inttype);
end
else
begin
if is_signed(ld) and
not(is_constintnode(left) and
(tordconstnode(left).value >= 0)) then
CGMessage(type_w_mixed_signed_unsigned2);
inserttypeconv(left,u32inttype);
if is_signed(rd) and
{ then ld = u32bit }
{ convert positive constants to u32bit }
not(is_constintnode(right) and
(tordconstnode(right).value >= 0)) then
begin
{ perform the operation in 64bit }
CGMessage(type_w_mixed_signed_unsigned);
inserttypeconv(left,s64inttype);
inserttypeconv(right,s64inttype);
end
else
begin
if is_signed(rd) and
not(is_constintnode(right) and
(tordconstnode(right).value >= 0)) then
CGMessage(type_w_mixed_signed_unsigned2);
inserttypeconv(right,u32inttype);
end;
end;
end;
end
{$endif cpu64bit}
{ generic ord conversion is sinttype }
else
begin
{ if the left or right value is smaller than the normal
type s32inttype and is unsigned, and the other value
is a constant < 0, the result will always be false/true
for equal / unequal nodes.
}
if (
{ left : unsigned ordinal var, right : < 0 constant }
(
((is_signed(ld)=false) and (is_constintnode(left) =false)) and
((is_constintnode(right)) and (tordconstnode(right).value < 0))
) or
{ right : unsigned ordinal var, left : < 0 constant }
(
((is_signed(rd)=false) and (is_constintnode(right) =false)) and
((is_constintnode(left)) and (tordconstnode(left).value < 0))
)
) then
begin
if nodetype = equaln then
CGMessage(type_w_signed_unsigned_always_false)
else
if nodetype = unequaln then
CGMessage(type_w_signed_unsigned_always_true)
else
if (is_constintnode(left) and (nodetype in [ltn,lten])) or
(is_constintnode(right) and (nodetype in [gtn,gten])) then
CGMessage(type_w_signed_unsigned_always_true)
else
if (is_constintnode(right) and (nodetype in [ltn,lten])) or
(is_constintnode(left) and (nodetype in [gtn,gten])) then
CGMessage(type_w_signed_unsigned_always_false);
end;
inserttypeconv(right,sinttype);
inserttypeconv(left,sinttype);
end;
end
{ if both are floatdefs, conversion is already done before constant folding }
else if (ld.deftype=floatdef) then
begin
{ already converted }
end
{ left side a setdef, must be before string processing,
else array constructor can be seen as array of char (PFV) }
else if (ld.deftype=setdef) then
begin
{ trying to add a set element? }
if (nodetype=addn) and (rd.deftype<>setdef) then
begin
if (rt=setelementn) then
begin
if not(equal_defs(tsetdef(ld).elementtype.def,rd)) then
CGMessage(type_e_set_element_are_not_comp);
end
else
CGMessage(type_e_mismatch)
end
else
begin
if not(nodetype in [addn,subn,symdifn,muln,equaln,unequaln,lten,gten]) then
CGMessage(type_e_set_operation_unknown);
{ right def must be a also be set }
if (rd.deftype<>setdef) or not(equal_defs(rd,ld)) then
CGMessage(type_e_set_element_are_not_comp);
end;
{ ranges require normsets }
if (tsetdef(ld).settype=smallset) and
(rt=setelementn) and
assigned(tsetelementnode(right).right) then
begin
{ generate a temporary normset def, it'll be destroyed
when the symtable is unloaded }
htype.setdef(tsetdef.create(tsetdef(ld).elementtype,255));
inserttypeconv(left,htype);
end;
{ if the right side is also a setdef then the settype must
be the same as the left setdef }
if (rd.deftype=setdef) and
(tsetdef(ld).settype<>tsetdef(rd).settype) then
begin
{ when right is a normset we need to typecast both
to normsets }
if (tsetdef(rd).settype=normset) then
inserttypeconv(left,right.resulttype)
else
inserttypeconv(right,left.resulttype);
end;
end
{ compare pchar to char arrays by addresses like BP/Delphi }
else if ((is_pchar(ld) or (lt=niln)) and is_chararray(rd)) or
((is_pchar(rd) or (rt=niln)) and is_chararray(ld)) then
begin
if is_chararray(rd) then
inserttypeconv(right,charpointertype)
else
inserttypeconv(left,charpointertype);
end
{ pointer comparision and subtraction }
else if (rd.deftype=pointerdef) and (ld.deftype=pointerdef) then
begin
case nodetype of
equaln,unequaln :
begin
if is_voidpointer(right.resulttype.def) then
inserttypeconv(right,left.resulttype)
else if is_voidpointer(left.resulttype.def) then
inserttypeconv(left,right.resulttype)
else if not(equal_defs(ld,rd)) then
IncompatibleTypes(ld,rd);
end;
ltn,lten,gtn,gten:
begin
if (cs_extsyntax in aktmoduleswitches) then
begin
if is_voidpointer(right.resulttype.def) then
inserttypeconv(right,left.resulttype)
else if is_voidpointer(left.resulttype.def) then
inserttypeconv(left,right.resulttype)
else if not(equal_defs(ld,rd)) then
IncompatibleTypes(ld,rd);
end
else
CGMessage(type_e_mismatch);
end;
subn:
begin
if (cs_extsyntax in aktmoduleswitches) then
begin
if is_voidpointer(right.resulttype.def) then
inserttypeconv(right,left.resulttype)
else if is_voidpointer(left.resulttype.def) then
inserttypeconv(left,right.resulttype)
else if not(equal_defs(ld,rd)) then
IncompatibleTypes(ld,rd);
end
else
CGMessage(type_e_mismatch);
resulttype:=sinttype;
exit;
end;
addn:
begin
if (cs_extsyntax in aktmoduleswitches) then
begin
if is_voidpointer(right.resulttype.def) then
inserttypeconv(right,left.resulttype)
else if is_voidpointer(left.resulttype.def) then
inserttypeconv(left,right.resulttype)
else if not(equal_defs(ld,rd)) then
IncompatibleTypes(ld,rd);
end
else
CGMessage(type_e_mismatch);
resulttype:=sinttype;
exit;
end;
else
CGMessage(type_e_mismatch);
end;
end
{ is one of the operands a string?,
chararrays are also handled as strings (after conversion), also take
care of chararray+chararray and chararray+char.
Note: Must be done after pointerdef+pointerdef has been checked, else
pchar is converted to string }
else if (rd.deftype=stringdef) or (ld.deftype=stringdef) or
((is_pchar(rd) or is_chararray(rd) or is_char(rd)) and
(is_pchar(ld) or is_chararray(ld) or is_char(ld))) then
begin
if is_widestring(rd) or is_widestring(ld) then
begin
if not(is_widestring(rd)) then
inserttypeconv(right,cwidestringtype);
if not(is_widestring(ld)) then
inserttypeconv(left,cwidestringtype);
end
else if is_ansistring(rd) or is_ansistring(ld) then
begin
if not(is_ansistring(rd)) then
inserttypeconv(right,cansistringtype);
if not(is_ansistring(ld)) then
inserttypeconv(left,cansistringtype);
end
else if is_longstring(rd) or is_longstring(ld) then
begin
if not(is_longstring(rd)) then
inserttypeconv(right,clongstringtype);
if not(is_longstring(ld)) then
inserttypeconv(left,clongstringtype);
end
else
begin
if not(is_shortstring(ld)) then
inserttypeconv(left,cshortstringtype);
{ don't convert char, that can be handled by the optimized node }
if not(is_shortstring(rd) or is_char(rd)) then
inserttypeconv(right,cshortstringtype);
end;
end
{ class or interface equation }
else if is_class_or_interface(rd) or is_class_or_interface(ld) then
begin
if is_class_or_interface(rd) and is_class_or_interface(ld) then
begin
if tobjectdef(rd).is_related(tobjectdef(ld)) then
inserttypeconv(right,left.resulttype)
else
inserttypeconv(left,right.resulttype);
end
else if is_class_or_interface(rd) then
inserttypeconv(left,right.resulttype)
else
inserttypeconv(right,left.resulttype);
if not(nodetype in [equaln,unequaln]) then
CGMessage(type_e_mismatch);
end
else if (rd.deftype=classrefdef) and (ld.deftype=classrefdef) then
begin
if tobjectdef(tclassrefdef(rd).pointertype.def).is_related(
tobjectdef(tclassrefdef(ld).pointertype.def)) then
inserttypeconv(right,left.resulttype)
else
inserttypeconv(left,right.resulttype);
if not(nodetype in [equaln,unequaln]) then
CGMessage(type_e_mismatch);
end
{ allows comperasion with nil pointer }
else if is_class_or_interface(rd) or (rd.deftype=classrefdef) then
begin
inserttypeconv(left,right.resulttype);
if not(nodetype in [equaln,unequaln]) then
CGMessage(type_e_mismatch);
end
else if is_class_or_interface(ld) or (ld.deftype=classrefdef) then
begin
inserttypeconv(right,left.resulttype);
if not(nodetype in [equaln,unequaln]) then
CGMessage(type_e_mismatch);
end
{ support procvar=nil,procvar<>nil }
else if ((ld.deftype=procvardef) and (rt=niln)) or
((rd.deftype=procvardef) and (lt=niln)) then
begin
if not(nodetype in [equaln,unequaln]) then
CGMessage(type_e_mismatch);
end
{ support dynamicarray=nil,dynamicarray<>nil }
else if (is_dynamic_array(ld) and (rt=niln)) or
(is_dynamic_array(rd) and (lt=niln)) then
begin
if not(nodetype in [equaln,unequaln]) then
CGMessage(type_e_mismatch);
end
{$ifdef SUPPORT_MMX}
{ mmx support, this must be before the zero based array
check }
else if (cs_mmx in aktlocalswitches) and
is_mmx_able_array(ld) and
is_mmx_able_array(rd) and
equal_defs(ld,rd) then
begin
case nodetype of
addn,subn,xorn,orn,andn:
;
{ mul is a little bit restricted }
muln:
if not(mmx_type(ld) in [mmxu16bit,mmxs16bit,mmxfixed16]) then
CGMessage(type_e_mismatch);
else
CGMessage(type_e_mismatch);
end;
end
{$endif SUPPORT_MMX}
{ this is a little bit dangerous, also the left type }
{ pointer to should be checked! This broke the mmx support }
else if (rd.deftype=pointerdef) or is_zero_based_array(rd) then
begin
if is_zero_based_array(rd) then
begin
resulttype.setdef(tpointerdef.create(tarraydef(rd).elementtype));
inserttypeconv(right,resulttype);
end;
inserttypeconv(left,sinttype);
if nodetype=addn then
begin
if not(cs_extsyntax in aktmoduleswitches) or
(not(is_pchar(ld)) and not(m_add_pointer in aktmodeswitches)) then
CGMessage(type_e_mismatch);
if (rd.deftype=pointerdef) and
(tpointerdef(rd).pointertype.def.size>1) then
left:=caddnode.create(muln,left,
cordconstnode.create(tpointerdef(rd).pointertype.def.size,sinttype,true));
end
else
CGMessage(type_e_mismatch);
end
else if (ld.deftype=pointerdef) or is_zero_based_array(ld) then
begin
if is_zero_based_array(ld) then
begin
resulttype.setdef(tpointerdef.create(tarraydef(ld).elementtype));
inserttypeconv(left,resulttype);
end;
inserttypeconv(right,sinttype);
if nodetype in [addn,subn] then
begin
if not(cs_extsyntax in aktmoduleswitches) or
(not(is_pchar(ld)) and not(m_add_pointer in aktmodeswitches)) then
CGMessage(type_e_mismatch);
if (ld.deftype=pointerdef) and
(tpointerdef(ld).pointertype.def.size>1) then
right:=caddnode.create(muln,right,
cordconstnode.create(tpointerdef(ld).pointertype.def.size,sinttype,true));
end
else
CGMessage(type_e_mismatch);
end
else if (rd.deftype=procvardef) and
(ld.deftype=procvardef) and
equal_defs(rd,ld) then
begin
if not (nodetype in [equaln,unequaln]) then
CGMessage(type_e_mismatch);
{ convert both to voidpointer, because methodpointers are 8 bytes }
{ even though only the first 4 bytes must be compared (JM) }
inserttypeconv_explicit(left,voidpointertype);
inserttypeconv_explicit(right,voidpointertype);
end
{ enums }
else if (ld.deftype=enumdef) and (rd.deftype=enumdef) then
begin
if not(equal_defs(ld,rd)) then
inserttypeconv(right,left.resulttype);
if not(nodetype in [equaln,unequaln,ltn,lten,gtn,gten]) then
CGMessage(type_e_mismatch);
end
{ generic conversion, this is for error recovery }
else
begin
inserttypeconv(left,sinttype);
inserttypeconv(right,sinttype);
end;
{ set resulttype if not already done }
if not assigned(resulttype.def) then
begin
case nodetype of
ltn,lten,gtn,gten,equaln,unequaln :
resulttype:=booltype;
slashn :
resulttype:=resultrealtype;
addn:
begin
{ for strings, return is always a 255 char string }
if is_shortstring(left.resulttype.def) then
resulttype:=cshortstringtype
else
resulttype:=left.resulttype;
end;
else
resulttype:=left.resulttype;
end;
end;
{ when the result is currency we need some extra code for
multiplication and division. this should not be done when
the muln or slashn node is created internally }
if not(nf_is_currency in flags) and
is_currency(resulttype.def) then
begin
case nodetype of
slashn :
begin
{ slashn will only work with floats }
hp:=caddnode.create(muln,getcopy,crealconstnode.create(10000.0,s64currencytype));
include(hp.flags,nf_is_currency);
result:=hp;
end;
muln :
begin
if s64currencytype.def.deftype=floatdef then
hp:=caddnode.create(slashn,getcopy,crealconstnode.create(10000.0,s64currencytype))
else
hp:=cmoddivnode.create(divn,getcopy,cordconstnode.create(10000,s64currencytype,false));
include(hp.flags,nf_is_currency);
result:=hp
end;
end;
end;
end;
function taddnode.first_addstring: tnode;
var
p: tnode;
begin
{ when we get here, we are sure that both the left and the right }
{ node are both strings of the same stringtype (JM) }
case nodetype of
addn:
begin
{ create the call to the concat routine both strings as arguments }
result := ccallnode.createintern('fpc_'+
tstringdef(resulttype.def).stringtypname+'_concat',
ccallparanode.create(right,ccallparanode.create(left,nil)));
{ we reused the arguments }
left := nil;
right := nil;
end;
ltn,lten,gtn,gten,equaln,unequaln :
begin
{ generate better code for s='' and s<>'' }
if (nodetype in [equaln,unequaln]) and
(((left.nodetype=stringconstn) and (str_length(left)=0)) or
((right.nodetype=stringconstn) and (str_length(right)=0))) then
begin
{ switch so that the constant is always on the right }
if left.nodetype = stringconstn then
begin
p := left;
left := right;
right := p;
end;
if is_shortstring(left.resulttype.def) then
{ compare the length with 0 }
result := caddnode.create(nodetype,
cinlinenode.create(in_length_x,false,left),
cordconstnode.create(0,s32inttype,false))
else
begin
{ compare the pointer with nil (for ansistrings etc), }
{ faster than getting the length (JM) }
result:= caddnode.create(nodetype,
ctypeconvnode.create_explicit(left,voidpointertype),
cpointerconstnode.create(0,voidpointertype));
end;
{ left is reused }
left := nil;
{ right isn't }
right.free;
right := nil;
exit;
end;
{ no string constant -> call compare routine }
result := ccallnode.createintern('fpc_'+
tstringdef(left.resulttype.def).stringtypname+'_compare',
ccallparanode.create(right,ccallparanode.create(left,nil)));
{ and compare its result with 0 according to the original operator }
result := caddnode.create(nodetype,result,
cordconstnode.create(0,s32inttype,false));
left := nil;
right := nil;
end;
end;
end;
function taddnode.first_addset: tnode;
var
procname: string[31];
tempn: tnode;
paras: tcallparanode;
srsym: ttypesym;
begin
{ get the sym that represents the fpc_normal_set type }
if not searchsystype('FPC_NORMAL_SET',srsym) then
internalerror(200108313);
case nodetype of
equaln,unequaln,lten,gten:
begin
case nodetype of
equaln,unequaln:
procname := 'fpc_set_comp_sets';
lten,gten:
begin
procname := 'fpc_set_contains_sets';
{ (left >= right) = (right <= left) }
if nodetype = gten then
begin
tempn := left;
left := right;
right := tempn;
end;
end;
end;
{ convert the arguments (explicitely) to fpc_normal_set's }
left := ctypeconvnode.create_explicit(left,srsym.restype);
right := ctypeconvnode.create_explicit(right,srsym.restype);
result := ccallnode.createintern(procname,ccallparanode.create(right,
ccallparanode.create(left,nil)));
{ left and right are reused as parameters }
left := nil;
right := nil;
{ for an unequaln, we have to negate the result of comp_sets }
if nodetype = unequaln then
result := cnotnode.create(result);
end;
addn:
begin
{ optimize first loading of a set }
if (right.nodetype=setelementn) and
not(assigned(tsetelementnode(right).right)) and
is_emptyset(left) then
begin
{ type cast the value to pass as argument to a byte, }
{ since that's what the helper expects }
tsetelementnode(right).left :=
ctypeconvnode.create_explicit(tsetelementnode(right).left,u8inttype);
{ set the resulttype to the actual one (otherwise it's }
{ "fpc_normal_set") }
result := ccallnode.createinternres('fpc_set_create_element',
ccallparanode.create(tsetelementnode(right).left,nil),
resulttype);
{ reused }
tsetelementnode(right).left := nil;
end
else
begin
if right.nodetype=setelementn then
begin
{ convert the arguments to bytes, since that's what }
{ the helper expects }
tsetelementnode(right).left :=
ctypeconvnode.create_explicit(tsetelementnode(right).left,
u8inttype);
{ convert the original set (explicitely) to an }
{ fpc_normal_set so we can pass it to the helper }
left := ctypeconvnode.create_explicit(left,srsym.restype);
{ add a range or a single element? }
if assigned(tsetelementnode(right).right) then
begin
tsetelementnode(right).right :=
ctypeconvnode.create_explicit(tsetelementnode(right).right,
u8inttype);
{ create the call }
result := ccallnode.createinternres('fpc_set_set_range',
ccallparanode.create(tsetelementnode(right).right,
ccallparanode.create(tsetelementnode(right).left,
ccallparanode.create(left,nil))),resulttype);
end
else
begin
result := ccallnode.createinternres('fpc_set_set_byte',
ccallparanode.create(tsetelementnode(right).left,
ccallparanode.create(left,nil)),resulttype);
end;
{ remove reused parts from original node }
tsetelementnode(right).right := nil;
tsetelementnode(right).left := nil;
left := nil;
end
else
begin
{ add two sets }
{ convert the sets to fpc_normal_set's }
result := ccallnode.createinternres('fpc_set_add_sets',
ccallparanode.create(
ctypeconvnode.create_explicit(right,srsym.restype),
ccallparanode.create(
ctypeconvnode.create_explicit(left,srsym.restype),nil)),resulttype);
{ remove reused parts from original node }
left := nil;
right := nil;
end;
end
end;
subn,symdifn,muln:
begin
{ convert the sets to fpc_normal_set's }
paras := ccallparanode.create(ctypeconvnode.create_explicit(right,srsym.restype),
ccallparanode.create(ctypeconvnode.create_explicit(left,srsym.restype),nil));
case nodetype of
subn:
result := ccallnode.createinternres('fpc_set_sub_sets',
paras,resulttype);
symdifn:
result := ccallnode.createinternres('fpc_set_symdif_sets',
paras,resulttype);
muln:
result := ccallnode.createinternres('fpc_set_mul_sets',
paras,resulttype);
end;
{ remove reused parts from original node }
left := nil;
right := nil;
end;
else
internalerror(200108311);
end;
end;
function taddnode.first_add64bitint: tnode;
var
procname: string[31];
temp: tnode;
power: longint;
begin
result := nil;
{ create helper calls mul }
if nodetype <> muln then
exit;
{ make sure that if there is a constant, that it's on the right }
if left.nodetype = ordconstn then
begin
temp := right;
right := left;
left := temp;
end;
{ can we use a shift instead of a mul? }
if not (cs_check_overflow in aktlocalswitches) and
(right.nodetype = ordconstn) and
ispowerof2(tordconstnode(right).value,power) then
begin
tordconstnode(right).value := power;
result := cshlshrnode.create(shln,left,right);
{ left and right are reused }
left := nil;
right := nil;
{ return firstpassed new node }
exit;
end;
{ when currency is used set the result of the
parameters to s64bit, so they are not converted }
if is_currency(resulttype.def) then
begin
left.resulttype:=s64inttype;
right.resulttype:=s64inttype;
end;
{ otherwise, create the parameters for the helper }
right := ccallparanode.create(
cordconstnode.create(ord(cs_check_overflow in aktlocalswitches),booltype,true),
ccallparanode.create(right,ccallparanode.create(left,nil)));
left := nil;
{ only qword needs the unsigned code, the
signed code is also used for currency }
if is_signed(resulttype.def) then
procname := 'fpc_mul_int64'
else
procname := 'fpc_mul_qword';
result := ccallnode.createintern(procname,right);
right := nil;
end;
{$ifdef cpufpemu}
function taddnode.first_addfloat: tnode;
var
procname: string[31];
temp: tnode;
power: longint;
{ do we need to reverse the result ? }
notnode : boolean;
begin
result := nil;
notnode := false;
{ In non-emulation mode, real opcodes are
emitted for floating point values.
}
if not (cs_fp_emulation in aktmoduleswitches) then
exit;
case nodetype of
addn : procname := 'fpc_single_add';
muln : procname := 'fpc_single_mul';
subn : procname := 'fpc_single_sub';
slashn : procname := 'fpc_single_div';
ltn : procname := 'fpc_single_lt';
lten: procname := 'fpc_single_le';
gtn:
begin
procname := 'fpc_single_le';
notnode := true;
end;
gten:
begin
procname := 'fpc_single_lt';
notnode := true;
end;
equaln: procname := 'fpc_single_eq';
unequaln :
begin
procname := 'fpc_single_eq';
notnode := true;
end;
else
CGMessage(type_e_mismatch);
end;
{ convert the arguments (explicitely) to fpc_normal_set's }
result := ccallnode.createintern(procname,ccallparanode.create(right,
ccallparanode.create(left,nil)));
left:=nil;
right:=nil;
{ do we need to reverse the result }
if notnode then
result := cnotnode.create(result);
end;
{$endif cpufpemu}
function taddnode.pass_1 : tnode;
var
{$ifdef addstringopt}
hp : tnode;
{$endif addstringopt}
lt,rt : tnodetype;
rd,ld : tdef;
begin
result:=nil;
{ first do the two subtrees }
firstpass(left);
firstpass(right);
if codegenerror then
exit;
{ load easier access variables }
rd:=right.resulttype.def;
ld:=left.resulttype.def;
rt:=right.nodetype;
lt:=left.nodetype;
{ int/int gives real/real! }
if nodetype=slashn then
begin
{$ifdef cpufpemu}
result := first_addfloat;
if assigned(result) then
exit;
{$endif cpufpemu}
expectloc:=LOC_FPUREGISTER;
{ maybe we need an integer register to save }
{ a reference }
if ((left.expectloc<>LOC_FPUREGISTER) or
(right.expectloc<>LOC_FPUREGISTER)) and
(left.registersint=right.registersint) then
calcregisters(self,1,1,0)
else
calcregisters(self,0,1,0);
{ an add node always first loads both the left and the }
{ right in the fpu before doing the calculation. However, }
{ calcregisters(0,2,0) will overestimate the number of }
{ necessary registers (it will make it 3 in case one of }
{ the operands is already in the fpu) (JM) }
if ((left.expectloc<>LOC_FPUREGISTER) or
(right.expectloc<>LOC_FPUREGISTER)) and
(registersfpu < 2) then
inc(registersfpu);
end
{ if both are orddefs then check sub types }
else if (ld.deftype=orddef) and (rd.deftype=orddef) then
begin
{ 2 booleans ? }
if is_boolean(ld) and is_boolean(rd) then
begin
if not(cs_full_boolean_eval in aktlocalswitches) and
(nodetype in [andn,orn]) then
begin
expectloc:=LOC_JUMP;
calcregisters(self,0,0,0);
end
else
begin
expectloc:=LOC_FLAGS;
if (left.expectloc in [LOC_JUMP,LOC_FLAGS]) and
(left.expectloc in [LOC_JUMP,LOC_FLAGS]) then
calcregisters(self,2,0,0)
else
calcregisters(self,1,0,0);
end;
end
else
{ Both are chars? only convert to shortstrings for addn }
if is_char(ld) then
begin
if nodetype=addn then
internalerror(200103291);
expectloc:=LOC_FLAGS;
calcregisters(self,1,0,0);
end
{$ifndef cpu64bit}
{ is there a 64 bit type ? }
else if (torddef(ld).typ in [s64bit,u64bit,scurrency]) then
begin
result := first_add64bitint;
if assigned(result) then
exit;
if nodetype in [addn,subn,muln,andn,orn,xorn] then
expectloc:=LOC_REGISTER
else
expectloc:=LOC_JUMP;
calcregisters(self,2,0,0)
end
{$endif cpu64bit}
{ is there a cardinal? }
else if (torddef(ld).typ=u32bit) then
begin
if nodetype in [addn,subn,muln,andn,orn,xorn] then
expectloc:=LOC_REGISTER
else
expectloc:=LOC_FLAGS;
calcregisters(self,1,0,0);
{ for unsigned mul we need an extra register }
if nodetype=muln then
inc(registersint);
end
{ generic s32bit conversion }
else
begin
if nodetype in [addn,subn,muln,andn,orn,xorn] then
expectloc:=LOC_REGISTER
else
expectloc:=LOC_FLAGS;
calcregisters(self,1,0,0);
end;
end
{ left side a setdef, must be before string processing,
else array constructor can be seen as array of char (PFV) }
else if (ld.deftype=setdef) then
begin
if tsetdef(ld).settype=smallset then
begin
if nodetype in [ltn,lten,gtn,gten,equaln,unequaln] then
expectloc:=LOC_FLAGS
else
expectloc:=LOC_REGISTER;
{ are we adding set elements ? }
if right.nodetype=setelementn then
calcregisters(self,2,0,0)
else
calcregisters(self,1,0,0);
end
else
{$ifdef MMXSET}
{$ifdef i386}
if cs_mmx in aktlocalswitches then
begin
expectloc:=LOC_MMXREGISTER;
calcregisters(self,0,0,4);
end
else
{$endif}
{$endif MMXSET}
begin
result := first_addset;
if assigned(result) then
exit;
expectloc:=LOC_CREFERENCE;
calcregisters(self,0,0,0);
{ here we call SET... }
include(current_procinfo.flags,pi_do_call);
end;
end
{ compare pchar by addresses like BP/Delphi }
else if is_pchar(ld) then
begin
if nodetype in [addn,subn,muln,andn,orn,xorn] then
expectloc:=LOC_REGISTER
else
expectloc:=LOC_FLAGS;
calcregisters(self,1,0,0);
end
{ is one of the operands a string }
else if (ld.deftype=stringdef) then
begin
if is_widestring(ld) then
begin
{ this is only for add, the comparisaion is handled later }
expectloc:=LOC_REGISTER;
end
else if is_ansistring(ld) then
begin
{ this is only for add, the comparisaion is handled later }
expectloc:=LOC_REGISTER;
end
else if is_longstring(ld) then
begin
{ this is only for add, the comparisaion is handled later }
expectloc:=LOC_REFERENCE;
end
else
begin
{$ifdef addstringopt}
{ can create a call which isn't handled by callparatemp }
if canbeaddsstringcharoptnode(self) then
begin
hp := genaddsstringcharoptnode(self);
pass_1 := hp;
exit;
end
else
{$endif addstringopt}
begin
{ Fix right to be shortstring }
if is_char(right.resulttype.def) then
begin
inserttypeconv(right,cshortstringtype);
firstpass(right);
end;
end;
{$ifdef addstringopt}
{ can create a call which isn't handled by callparatemp }
if canbeaddsstringcsstringoptnode(self) then
begin
hp := genaddsstringcsstringoptnode(self);
pass_1 := hp;
exit;
end;
{$endif addstringopt}
end;
{ otherwise, let addstring convert everything }
result := first_addstring;
exit;
end
{ is one a real float ? }
else if (rd.deftype=floatdef) or (ld.deftype=floatdef) then
begin
{$ifdef cpufpemu}
result := first_addfloat;
if assigned(result) then
exit;
{$endif cpufpemu}
if nodetype in [addn,subn,muln,andn,orn,xorn] then
expectloc:=LOC_FPUREGISTER
else
expectloc:=LOC_FLAGS;
calcregisters(self,0,1,0);
{ an add node always first loads both the left and the }
{ right in the fpu before doing the calculation. However, }
{ calcregisters(0,2,0) will overestimate the number of }
{ necessary registers (it will make it 3 in case one of }
{ the operands is already in the fpu) (JM) }
if ((left.expectloc<>LOC_FPUREGISTER) or
(right.expectloc<>LOC_FPUREGISTER)) and
(registersfpu < 2) then
inc(registersfpu);
end
{ pointer comperation and subtraction }
else if (ld.deftype=pointerdef) then
begin
if nodetype in [addn,subn,muln,andn,orn,xorn] then
expectloc:=LOC_REGISTER
else
expectloc:=LOC_FLAGS;
calcregisters(self,1,0,0);
end
else if is_class_or_interface(ld) then
begin
expectloc:=LOC_FLAGS;
calcregisters(self,1,0,0);
end
else if (ld.deftype=classrefdef) then
begin
expectloc:=LOC_FLAGS;
calcregisters(self,1,0,0);
end
{ support procvar=nil,procvar<>nil }
else if ((ld.deftype=procvardef) and (rt=niln)) or
((rd.deftype=procvardef) and (lt=niln)) then
begin
expectloc:=LOC_FLAGS;
calcregisters(self,1,0,0);
end
{$ifdef SUPPORT_MMX}
{ mmx support, this must be before the zero based array
check }
else if (cs_mmx in aktlocalswitches) and is_mmx_able_array(ld) and
is_mmx_able_array(rd) then
begin
expectloc:=LOC_MMXREGISTER;
calcregisters(self,0,0,1);
end
{$endif SUPPORT_MMX}
else if (rd.deftype=pointerdef) or (ld.deftype=pointerdef) then
begin
expectloc:=LOC_REGISTER;
calcregisters(self,1,0,0);
end
else if (rd.deftype=procvardef) and
(ld.deftype=procvardef) and
equal_defs(rd,ld) then
begin
expectloc:=LOC_FLAGS;
calcregisters(self,1,0,0);
end
else if (ld.deftype=enumdef) then
begin
expectloc:=LOC_FLAGS;
calcregisters(self,1,0,0);
end
{$ifdef SUPPORT_MMX}
else if (cs_mmx in aktlocalswitches) and
is_mmx_able_array(ld) and
is_mmx_able_array(rd) then
begin
expectloc:=LOC_MMXREGISTER;
calcregisters(self,0,0,1);
end
{$endif SUPPORT_MMX}
{ the general solution is to convert to 32 bit int }
else
begin
expectloc:=LOC_REGISTER;
calcregisters(self,1,0,0);
end;
end;
{$ifdef state_tracking}
function Taddnode.track_state_pass(exec_known:boolean):boolean;
var factval:Tnode;
begin
track_state_pass:=false;
if left.track_state_pass(exec_known) then
begin
track_state_pass:=true;
left.resulttype.def:=nil;
do_resulttypepass(left);
end;
factval:=aktstate.find_fact(left);
if factval<>nil then
begin
track_state_pass:=true;
left.destroy;
left:=factval.getcopy;
end;
if right.track_state_pass(exec_known) then
begin
track_state_pass:=true;
right.resulttype.def:=nil;
do_resulttypepass(right);
end;
factval:=aktstate.find_fact(right);
if factval<>nil then
begin
track_state_pass:=true;
right.destroy;
right:=factval.getcopy;
end;
end;
{$endif}
begin
caddnode:=taddnode;
end.
{
$Log$
Revision 1.110 2004-02-05 01:24:08 florian
* several fixes to compile x86-64 system
Revision 1.109 2004/02/03 22:32:54 peter
* renamed xNNbittype to xNNinttype
* renamed registers32 to registersint
* replace some s32bit,u32bit with torddef([su]inttype).def.typ
Revision 1.108 2004/02/02 20:41:59 florian
+ added prefetch(const mem) support
Revision 1.107 2004/01/20 12:59:36 florian
* common addnode code for x86-64 and i386
Revision 1.106 2004/01/14 17:19:04 peter
* disable addmmxset
Revision 1.105 2004/01/02 17:19:04 jonas
* if currency = int64, FPC_CURRENCY_IS_INT64 is defined
+ round and trunc for currency and comp if FPC_CURRENCY_IS_INT64 is
defined
* if currency = orddef, prefer currency -> int64/qword conversion over
currency -> float conversions
* optimized currency/currency if currency = orddef
* TODO: write FPC_DIV_CURRENCY and FPC_MUL_CURRENCY routines to prevent
precision loss if currency=int64 and bestreal = double
Revision 1.104 2003/12/31 20:47:02 jonas
* properly fixed assigned() mess (by handling it separately in ncginl)
-> all assigned()-related tests in the test suite work again
Revision 1.103 2003/12/30 16:30:50 jonas
* fixed previous commit for tp and delphi modes
Revision 1.102 2003/12/29 22:33:08 jonas
* fixed methodpointer comparing in a generic way (typecast both left and
right explicitly to voidpointer), instead of relying on strange
behvaiour or n386addnode.pass_2 (if size of def = 8, only use the first
4 bytes instead of internalerror-ing or so)
Revision 1.101 2003/12/21 11:28:41 daniel
* Some work to allow mmx instructions to be used for 32 byte sets
Revision 1.100 2003/12/09 21:17:04 jonas
+ support for evaluating qword constant expressions (both arguments have
to be a qword, constants have to be explicitly typecasted to qword)
Revision 1.99 2003/10/28 15:35:18 peter
* compare longint-cardinal also makes types wider
Revision 1.98 2003/10/21 18:16:13 peter
* IncompatibleTypes() added that will include unit names when
the typenames are the same
Revision 1.97 2003/10/08 19:19:45 peter
* set_varstate cleanup
Revision 1.96 2003/10/01 20:34:48 peter
* procinfo unit contains tprocinfo
* cginfo renamed to cgbase
* moved cgmessage to verbose
* fixed ppc and sparc compiles
Revision 1.95 2003/09/06 16:47:24 florian
+ support of NaN and Inf in the compiler as values of real constants
Revision 1.94 2003/09/03 15:55:00 peter
* NEWRA branch merged
Revision 1.93.2.1 2003/08/31 21:07:44 daniel
* callparatemp ripped
Revision 1.93 2003/06/05 20:05:55 peter
* removed changesettype because that will change the definition
of the setdef forever and can result in a different between
original interface and current implementation definition
Revision 1.92 2003/06/03 21:04:43 peter
* widen cardinal+signed operations
Revision 1.91 2003/05/26 21:15:18 peter
* disable string node optimizations for the moment
Revision 1.90 2003/05/26 19:38:28 peter
* generic fpc_shorstr_concat
+ fpc_shortstr_append_shortstr optimization
Revision 1.89 2003/05/24 21:12:57 florian
* if something doesn't work with callparatemp, the define callparatemp
should be used because other processors with reigster calling conventions
depend on this as well
Revision 1.88 2003/05/23 22:57:38 jonas
- disable addoptnodes for powerpc, because they can generate calls in
pass_2, so -dcallparatemp can't detect them as nested calls
Revision 1.87 2003/04/27 11:21:32 peter
* aktprocdef renamed to current_procdef
* procinfo renamed to current_procinfo
* procinfo will now be stored in current_module so it can be
cleaned up properly
* gen_main_procsym changed to create_main_proc and release_main_proc
to also generate a tprocinfo structure
* fixed unit implicit initfinal
Revision 1.86 2003/04/26 09:12:55 peter
* add string returns in LOC_REFERENCE
Revision 1.85 2003/04/24 22:29:57 florian
* fixed a lot of PowerPC related stuff
Revision 1.84 2003/04/23 20:16:04 peter
+ added currency support based on int64
+ is_64bit for use in cg units instead of is_64bitint
* removed cgmessage from n386add, replace with internalerrors
Revision 1.83 2003/04/23 10:10:07 peter
* expectloc fixes
Revision 1.82 2003/04/22 23:50:22 peter
* firstpass uses expectloc
* checks if there are differences between the expectloc and
location.loc from secondpass in EXTDEBUG
Revision 1.81 2003/02/15 22:20:14 carl
* bugfix for generic calls to FPU emulation code
Revision 1.80 2003/02/12 22:10:07 carl
* load_frame_pointer is now generic
* change fpu emulation routine names
Revision 1.79 2003/01/02 22:19:54 peter
* support pchar-char operations converting to string first
* support chararray-nil
Revision 1.78 2002/12/11 22:41:03 peter
* stop processing assignment node when the binaryoverload generates
a codegenerror
Revision 1.77 2002/12/06 16:56:57 peter
* only compile cs_fp_emulation support when cpufpuemu is defined
* define cpufpuemu for m68k only
Revision 1.76 2002/11/30 21:32:24 carl
+ Add loading of softfpu in emulation mode
+ Correct routine call for softfpu
* Extended type must also be defined even with softfpu
Revision 1.75 2002/11/27 13:11:38 peter
* more currency fixes, taddcurr runs now successfull
Revision 1.74 2002/11/27 11:28:40 peter
* when both flaottypes are the same then handle the addnode using
that floattype instead of bestrealtype
Revision 1.73 2002/11/25 18:43:32 carl
- removed the invalid if <> checking (Delphi is strange on this)
+ implemented abstract warning on instance creation of class with
abstract methods.
* some error message cleanups
Revision 1.72 2002/11/25 17:43:17 peter
* splitted defbase in defutil,symutil,defcmp
* merged isconvertable and is_equal into compare_defs(_ext)
* made operator search faster by walking the list only once
Revision 1.71 2002/11/23 22:50:06 carl
* some small speed optimizations
+ added several new warnings/hints
Revision 1.70 2002/11/16 14:20:22 peter
* fix tbs0417
Revision 1.69 2002/11/15 01:58:50 peter
* merged changes from 1.0.7 up to 04-11
- -V option for generating bug report tracing
- more tracing for option parsing
- errors for cdecl and high()
- win32 import stabs
- win32 records<=8 are returned in eax:edx (turned off by default)
- heaptrc update
- more info for temp management in .s file with EXTDEBUG
Revision 1.68 2002/10/08 16:50:43 jonas
* fixed web bug 2136
Revision 1.67 2002/10/05 00:47:03 peter
* support dynamicarray<>nil
Revision 1.66 2002/10/04 21:19:28 jonas
* fixed web bug 2139: checking for division by zero fixed
Revision 1.65 2002/09/07 15:25:02 peter
* old logs removed and tabs fixed
Revision 1.64 2002/09/07 12:16:05 carl
* second part bug report 1996 fix, testrange in cordconstnode
only called if option is set (also make parsing a tiny faster)
Revision 1.63 2002/09/04 19:32:56 jonas
* changed some ctypeconvnode/toggleflag(nf_explizit) combo's to
ctypeconvnode.create_explicit() statements
Revision 1.62 2002/08/17 09:23:34 florian
* first part of current_procinfo rewrite
Revision 1.61 2002/08/15 15:15:55 carl
* jmpbuf size allocation for exceptions is now cpu specific (as it should)
* more generic nodes for maths
* several fixes for better m68k support
Revision 1.60 2002/08/12 15:08:39 carl
+ stab register indexes for powerpc (moved from gdb to cpubase)
+ tprocessor enumeration moved to cpuinfo
+ linker in target_info is now a class
* many many updates for m68k (will soon start to compile)
- removed some ifdef or correct them for correct cpu
Revision 1.59 2002/08/02 07:44:30 jonas
* made assigned() handling generic
* add nodes now can also evaluate constant expressions at compile time
that contain nil nodes
Revision 1.58 2002/07/26 11:17:52 jonas
* the optimization of converting a multiplication with a power of two to
a shl is moved from n386add/secondpass to nadd/resulttypepass
Revision 1.57 2002/07/23 13:08:16 jonas
* fixed constant set evaluation of new set handling for non-commutative
operators
Revision 1.56 2002/07/23 12:34:29 daniel
* Readded old set code. To use it define 'oldset'. Activated by default
for ppc.
Revision 1.55 2002/07/22 11:48:04 daniel
* Sets are now internally sets.
Revision 1.54 2002/07/20 11:57:53 florian
* types.pas renamed to defbase.pas because D6 contains a types
unit so this would conflicts if D6 programms are compiled
+ Willamette/SSE2 instructions to assembler added
Revision 1.53 2002/07/19 11:41:34 daniel
* State tracker work
* The whilen and repeatn are now completely unified into whilerepeatn. This
allows the state tracker to change while nodes automatically into
repeat nodes.
* Resulttypepass improvements to the notn. 'not not a' is optimized away and
'not(a>b)' is optimized into 'a<=b'.
* Resulttypepass improvements to the whilerepeatn. 'while not a' is optimized
by removing the notn and later switchting the true and falselabels. The
same is done with 'repeat until not a'.
Revision 1.52 2002/07/14 18:00:43 daniel
+ Added the beginning of a state tracker. This will track the values of
variables through procedures and optimize things away.
Revision 1.51 2002/05/18 13:34:08 peter
* readded missing revisions
Revision 1.50 2002/05/16 19:46:37 carl
+ defines.inc -> fpcdefs.inc to avoid conflicts if compiling by hand
+ try to fix temp allocation (still in ifdef)
+ generic constructor calls
+ start of tassembler / tmodulebase class cleanup
Revision 1.48 2002/05/13 19:54:36 peter
* removed n386ld and n386util units
* maybe_save/maybe_restore added instead of the old maybe_push
Revision 1.47 2002/05/12 16:53:06 peter
* moved entry and exitcode to ncgutil and cgobj
* foreach gets extra argument for passing local data to the
iterator function
* -CR checks also class typecasts at runtime by changing them
into as
* fixed compiler to cycle with the -CR option
* fixed stabs with elf writer, finally the global variables can
be watched
* removed a lot of routines from cga unit and replaced them by
calls to cgobj
* u32bit-s32bit updates for and,or,xor nodes. When one element is
u32bit then the other is typecasted also to u32bit without giving
a rangecheck warning/error.
* fixed pascal calling method with reversing also the high tree in
the parast, detected by tcalcst3 test
Revision 1.46 2002/04/23 19:16:34 peter
* add pinline unit that inserts compiler supported functions using
one or more statements
* moved finalize and setlength from ninl to pinline
Revision 1.45 2002/04/04 19:05:56 peter
* removed unused units
* use tlocation.size in cg.a_*loc*() routines
Revision 1.44 2002/04/02 17:11:28 peter
* tlocation,treference update
* LOC_CONSTANT added for better constant handling
* secondadd splitted in multiple routines
* location_force_reg added for loading a location to a register
of a specified size
* secondassignment parses now first the right and then the left node
(this is compatible with Kylix). This saves a lot of push/pop especially
with string operations
* adapted some routines to use the new cg methods
}