fpc/compiler/pgenutil.pas
svenbarth 6a83ebc4a5 Fix introduced regressions.
pgenutil.pas, generate_specialization:
* If we are parsing the result type of a function or operator that belongs to a generic (parse_generic is true) we need to accept also "_LT" and "_GT" as for this the "block_type" is NOT set to one of "bt_type", "bt_var_type", "bt_const_type" and only there "_LSHARPBRACKET" and "_RSHARPBRACKET" are returned by the scanner. This is part of the fix for webtbs\tw18567.pp.
* In non—Delphi modes if we encounter a specialization of the currently parsed class/record (using "specialization"!) the given "tt" will be an errordef (because the def of the generic's symbol was not yet set to "current_structdef"). To solve this we check in this case whether the calculated generic name is equal to that of the "current_structdef" and simply return that as specialized def. This fixes test\tgeneric11.pp.
* When searching for the generic symbol search if the generic belongs to a class or record then we need to search for it in the class or record. This fixes webtbs\tw16090.pp.

ptype.pas
* parse_nested_types: We now return the generic defs for specializations inside generics instead of an undefined def, so we must also parse nested type usages correctly, so that type checks don't fail (undefined defs circumvent them mostly). This fixes webtbs\tw10247.pp.
* single_type: We need to allow _LT as an indication for a Delphi specialization as return types are parsed with block_type not in "bt_type", "bt_var_type", "bt_const_type". This is also a fix a part of the fix for webtbs\tw18567.pp.
* read_named_type, expr_type:
Fixes for test\tgeneric17.pp and test\tgeneric22.pp:
(a) In non-Delphi modes we might encounter usages of the generic dummy symbol inside the generic class belonging to it. This is basically a specialization, but as the reference from the dummy symbol to the "current_structdef" is not yet established (this is done after "read_named_type" in "types_dec" returns) we need to use other ways to check for the valid use of the dummy symbol (basically we check whether the name of the dummy symbol and the name of the current_structdef without the type count match)
(b) For specializations we can check whether the genericdef of the currently parsed structdef (the specialization) is the same as the typedef of the encountered dummy symbol.

pexpr.pas, factor, factor_read_id:
Fixes for test\tgeneric17.pp and test\tgeneric22.pp:
To allow the mentioned fixes in ptype for the same tests to be usable at all we must not return an "identifier not found" error if we encounter such a valid use of a generic dummy symbol.

git-svn-id: branches/svenbarth/generics@19719 -
2011-12-02 14:10:06 +00:00

541 lines
20 KiB
ObjectPascal

{
Copyright (c) 2011
Contains different functions that are used in the context of
parsing generics.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit pgenutil;
{$i fpcdefs.inc}
interface
uses
{ common }
cclasses,
{ symtable }
symtype,symdef;
procedure generate_specialization(var tt:tdef;parse_class_parent:boolean;_prettyname:string;parsedtype:tdef;symname:string);
function parse_generic_parameters:TFPObjectList;
procedure insert_generic_parameter_types(def:tstoreddef;genericdef:tstoreddef;genericlist:TFPObjectList);
implementation
uses
{ common }
cutils,
{ global }
globals,globtype,tokens,verbose,
{ symtable }
symconst,symbase,symsym,symtable,
{ modules }
fmodule,
{ pass 1 }
htypechk,
node,nobj,nmem,
{ parser }
scanner,
pbase,pexpr,pdecsub,ptype;
procedure generate_specialization(var tt:tdef;parse_class_parent:boolean;_prettyname:string;parsedtype:tdef;symname:string);
var
st : TSymtable;
srsym : tsym;
pt2 : tnode;
found,
first,
err : boolean;
i,
gencount : longint;
genericdef : tstoreddef;
generictype : ttypesym;
genericdeflist : TFPObjectList;
generictypelist : TFPObjectList;
oldsymtablestack : tsymtablestack;
oldextendeddefs : TFPHashObjectList;
hmodule : tmodule;
pu : tused_unit;
prettyname : ansistring;
uspecializename,
countstr,genname,ugenname,specializename : string;
vmtbuilder : TVMTBuilder;
specializest : tsymtable;
item : tobject;
old_current_structdef : tabstractrecorddef;
old_current_genericdef,old_current_specializedef : tstoreddef;
tempst : tglobalsymtable;
old_block_type: tblock_type;
begin
{ retrieve generic def that we are going to replace }
genericdef:=tstoreddef(tt);
tt:=nil;
{ either symname must be given or genericdef needs to be valid }
if (symname='') and
(not assigned(genericdef) or
not assigned(genericdef.typesym) or
(genericdef.typesym.typ<>typesym)) then
internalerror(2011042701);
{ Only parse the parameters for recovery or
for recording in genericbuf }
if parse_generic then
begin
if not try_to_consume(_LT) then
consume(_LSHARPBRACKET);
gencount:=0;
repeat
pt2:=factor(false,true);
pt2.free;
inc(gencount);
until not try_to_consume(_COMMA);
if not try_to_consume(_GT) then
consume(_RSHARPBRACKET);
{ we need to return a def that can later pass some checks like
whether it's an interface or not }
if parse_generic and (not assigned(tt) or (tt.typ=undefineddef)) then
begin
if (symname='') and (df_generic in genericdef.defoptions) then
{ this happens in non-Delphi modes }
tt:=genericdef
else
begin
{ find the corresponding generic symbol so that any checks
done on the returned def will be handled correctly }
str(gencount,countstr);
if symname='' then
genname:=ttypesym(genericdef.typesym).realname
else
genname:=symname;
genname:=genname+'$'+countstr;
ugenname:=upper(genname);
if not searchsym(ugenname,srsym,st) or
(srsym.typ<>typesym) then
begin
identifier_not_found(genname);
exit;
end;
tt:=ttypesym(srsym).typedef;
{ this happens in non-Delphi modes if we encounter a
specialization of the generic class or record we're
currently parsing }
if (tt.typ=errordef) and assigned(current_structdef) and
(current_structdef.objname^=ugenname) then
tt:=current_structdef;
end;
end;
exit;
end;
if not assigned(parsedtype) and not try_to_consume(_LT) then
consume(_LSHARPBRACKET);
generictypelist:=TFPObjectList.create(false);
genericdeflist:=TFPObjectList.Create(false);
{ Parse type parameters }
err:=false;
{ set the block type to type, so that the parsed type are returned as
ttypenode (e.g. classes are in non type-compatible blocks returned as
tloadvmtaddrnode) }
old_block_type:=block_type;
{ if parsedtype is set, then the first type identifer was already parsed
(happens in inline specializations) and thus we only need to parse
the remaining types and do as if the first one was already given }
first:=not assigned(parsedtype);
if assigned(parsedtype) then
begin
genericdeflist.Add(parsedtype);
specializename:='$'+parsedtype.typesym.realname;
prettyname:=parsedtype.typesym.prettyname;
end
else
begin
specializename:='';
prettyname:='';
end;
while not (token in [_GT,_RSHARPBRACKET]) do
begin
{ "first" is set to false at the end of the loop! }
if not first then
consume(_COMMA);
block_type:=bt_type;
pt2:=factor(false,true);
if pt2.nodetype=typen then
begin
if df_generic in pt2.resultdef.defoptions then
Message(parser_e_no_generics_as_params);
genericdeflist.Add(pt2.resultdef);
if not assigned(pt2.resultdef.typesym) then
message(type_e_generics_cannot_reference_itself)
else
begin
specializename:=specializename+'$'+pt2.resultdef.typesym.realname;
if first then
prettyname:=prettyname+pt2.resultdef.typesym.prettyname
else
prettyname:=prettyname+','+pt2.resultdef.typesym.prettyname;
end;
end
else
begin
Message(type_e_type_id_expected);
err:=true;
end;
pt2.free;
first:=false;
end;
block_type:=old_block_type;
if err then
begin
try_to_consume(_RSHARPBRACKET);
exit;
end;
{ search a generic with the given count of params }
countstr:='';
str(genericdeflist.Count,countstr);
{ use the name of the symbol as procvars return a user friendly version
of the name }
if symname='' then
genname:=ttypesym(genericdef.typesym).realname
else
genname:=symname;
{ in case of non-Delphi mode the type name could already be a generic
def (but maybe the wrong one) }
if assigned(genericdef) and (df_generic in genericdef.defoptions) then
begin
{ remove the type count suffix from the generic's name }
for i:=Length(genname) downto 1 do
if genname[i]='$' then
begin
genname:=copy(genname,1,i-1);
break;
end;
end;
genname:=genname+'$'+countstr;
ugenname:=upper(genname);
if assigned(genericdef) and (genericdef.owner.symtabletype in [objectsymtable,recordsymtable]) then
begin
if genericdef.owner.symtabletype = objectsymtable then
found:=searchsym_in_class(tobjectdef(genericdef.owner.defowner),tobjectdef(genericdef.owner.defowner),ugenname,srsym,st,false)
else
found:=searchsym_in_record(tabstractrecorddef(genericdef.owner.defowner),ugenname,srsym,st);
end
else
found:=searchsym(ugenname,srsym,st);
if not found or (srsym.typ<>typesym) then
begin
identifier_not_found(genname);
genericdeflist.Free;
generictypelist.Free;
exit;
end;
{ we've found the correct def }
genericdef:=tstoreddef(ttypesym(srsym).typedef);
{ build the new type's name }
specializename:=genname+specializename;
uspecializename:=upper(specializename);
prettyname:=genericdef.typesym.prettyname+'<'+prettyname+'>';
{ select the symtable containing the params }
case genericdef.typ of
procdef:
st:=genericdef.GetSymtable(gs_para);
objectdef,
recorddef:
st:=genericdef.GetSymtable(gs_record);
arraydef:
st:=tarraydef(genericdef).symtable;
procvardef:
st:=genericdef.GetSymtable(gs_para);
else
internalerror(200511182);
end;
{ build the list containing the types for the generic params }
gencount:=0;
for i:=0 to st.SymList.Count-1 do
begin
srsym:=tsym(st.SymList[i]);
if sp_generic_para in srsym.symoptions then
begin
if gencount=genericdeflist.Count then
internalerror(2011042702);
generictype:=ttypesym.create(srsym.realname,tdef(genericdeflist[gencount]));
generictypelist.add(generictype);
inc(gencount);
end;
end;
{ Special case if we are referencing the current defined object }
if assigned(current_structdef) and
(current_structdef.objname^=uspecializename) then
tt:=current_structdef;
{ decide in which symtable to put the specialization }
if current_module.is_unit and current_module.in_interface then
specializest:=current_module.globalsymtable
else
specializest:=current_module.localsymtable;
{ Can we reuse an already specialized type? }
if not assigned(tt) then
begin
srsym:=tsym(specializest.find(uspecializename));
if assigned(srsym) then
begin
if srsym.typ<>typesym then
internalerror(200710171);
tt:=ttypesym(srsym).typedef;
end;
end;
if not assigned(tt) then
begin
{ Setup symtablestack at definition time
to get types right, however this is not perfect, we should probably record
the resolved symbols }
oldsymtablestack:=symtablestack;
oldextendeddefs:=current_module.extendeddefs;
current_module.extendeddefs:=TFPHashObjectList.create(true);
symtablestack:=tdefawaresymtablestack.create;
if not assigned(genericdef) then
internalerror(200705151);
hmodule:=find_module_from_symtable(genericdef.owner);
if hmodule=nil then
internalerror(200705152);
pu:=tused_unit(hmodule.used_units.first);
while assigned(pu) do
begin
if not assigned(pu.u.globalsymtable) then
internalerror(200705153);
symtablestack.push(pu.u.globalsymtable);
pu:=tused_unit(pu.next);
end;
if assigned(hmodule.globalsymtable) then
symtablestack.push(hmodule.globalsymtable);
{ push the localsymtable if needed }
if (hmodule<>current_module) or not current_module.in_interface then
symtablestack.push(current_module.localsymtable);
{ push a temporary global symtable so that the specialization is
added to the correct symtable; this symtable does not contain
any other symbols, so that the type resolution can not be
influenced by symbols in the current unit }
tempst:=tspecializesymtable.create(current_module.modulename^,current_module.moduleid);
symtablestack.push(tempst);
{ Reparse the original type definition }
if not err then
begin
if parse_class_parent then
begin
old_current_structdef:=current_structdef;
old_current_genericdef:=current_genericdef;
old_current_specializedef:=current_specializedef;
if genericdef.owner.symtabletype in [recordsymtable,objectsymtable] then
current_structdef:=tabstractrecorddef(genericdef.owner.defowner)
else
current_structdef:=nil;
current_genericdef:=nil;
current_specializedef:=nil;
end;
{ First a new typesym so we can reuse this specialization and
references to this specialization can be handled }
srsym:=ttypesym.create(specializename,generrordef);
specializest.insert(srsym);
{ specializations are declarations as such it is the wisest to
declare set the blocktype to "type"; otherwise we'll
experience unexpected side effects like the addition of
classrefdefs if we have a generic that's derived from another
generic }
old_block_type:=block_type;
block_type:=bt_type;
if not assigned(genericdef.generictokenbuf) then
internalerror(200511171);
current_scanner.startreplaytokens(genericdef.generictokenbuf,
genericdef.change_endian);
read_named_type(tt,specializename,genericdef,generictypelist,false);
ttypesym(srsym).typedef:=tt;
tt.typesym:=srsym;
if _prettyname<>'' then
ttypesym(tt.typesym).fprettyname:=_prettyname
else
ttypesym(tt.typesym).fprettyname:=prettyname;
{ Note regarding hint directives:
There is no need to remove the flags for them from the
specialized generic symbol, because hint directives that
follow the specialization are handled by the code in
pdecl.types_dec and added to the type symbol.
E.g.: TFoo = TBar<Blubb> deprecated;
Here the symbol TBar$1$Blubb will contain the
"sp_hint_deprecated" flag while the TFoo symbol won't.}
case tt.typ of
{ Build VMT indexes for classes and read hint directives }
objectdef:
begin
try_consume_hintdirective(srsym.symoptions,srsym.deprecatedmsg);
consume(_SEMICOLON);
vmtbuilder:=TVMTBuilder.Create(tobjectdef(tt));
vmtbuilder.generate_vmt;
vmtbuilder.free;
end;
{ handle params, calling convention, etc }
procvardef:
begin
if not check_proc_directive(true) then
begin
try_consume_hintdirective(ttypesym(srsym).symoptions,ttypesym(srsym).deprecatedmsg);
consume(_SEMICOLON);
end;
parse_var_proc_directives(ttypesym(srsym));
handle_calling_convention(tprocvardef(tt));
if try_consume_hintdirective(ttypesym(srsym).symoptions,ttypesym(srsym).deprecatedmsg) then
consume(_SEMICOLON);
end;
else
{ parse hint directives for records and arrays }
begin
try_consume_hintdirective(srsym.symoptions,srsym.deprecatedmsg);
consume(_SEMICOLON);
end;
end;
{ Consume the semicolon if it is also recorded }
try_to_consume(_SEMICOLON);
block_type:=old_block_type;
if parse_class_parent then
begin
current_structdef:=old_current_structdef;
current_genericdef:=old_current_genericdef;
current_specializedef:=old_current_specializedef;
end;
end;
{ extract all created symbols and defs from the temporary symtable
and add them to the specializest }
for i:=0 to tempst.SymList.Count-1 do begin
item:=tempst.SymList.Items[i];
specializest.SymList.Add(tempst.SymList.NameOfIndex(i),item);
tsym(item).Owner:=specializest;
tempst.SymList.Extract(item);
end;
for i:=0 to tempst.DefList.Count-1 do begin
item:=tempst.DefList.Items[i];
specializest.DefList.Add(item);
tdef(item).owner:=specializest;
tempst.DefList.Extract(item);
end;
tempst.free;
{ Restore symtablestack }
current_module.extendeddefs.free;
current_module.extendeddefs:=oldextendeddefs;
symtablestack.free;
symtablestack:=oldsymtablestack;
end;
if not (token in [_GT, _RSHARPBRACKET]) then
begin
consume(_RSHARPBRACKET);
exit;
end
else
consume(token);
genericdeflist.free;
generictypelist.free;
if assigned(genericdef) then
begin
{ check the hints of the found generic symbol }
srsym:=genericdef.typesym;
check_hints(srsym,srsym.symoptions,srsym.deprecatedmsg);
end;
end;
function parse_generic_parameters:TFPObjectList;
var
generictype : ttypesym;
begin
result:=TFPObjectList.Create(false);
repeat
if token=_ID then
begin
generictype:=ttypesym.create(orgpattern,cundefinedtype);
include(generictype.symoptions,sp_generic_para);
result.add(generictype);
end;
consume(_ID);
until not try_to_consume(_COMMA) ;
end;
procedure insert_generic_parameter_types(def:tstoreddef;genericdef:tstoreddef;genericlist:TFPObjectList);
var
i: longint;
generictype: ttypesym;
st: tsymtable;
begin
def.genericdef:=genericdef;
if not assigned(genericlist) then
exit;
case def.typ of
recorddef,objectdef: st:=tabstractrecorddef(def).symtable;
arraydef: st:=tarraydef(def).symtable;
procvardef,procdef: st:=tabstractprocdef(def).parast;
else
internalerror(201101020);
end;
for i:=0 to genericlist.count-1 do
begin
generictype:=ttypesym(genericlist[i]);
if generictype.typedef.typ=undefineddef then
include(def.defoptions,df_generic)
else
include(def.defoptions,df_specialization);
st.insert(generictype);
end;
end;
end.