fpc/compiler/aarch64/aasmcpu.pas
2012-11-01 20:10:31 +00:00

2179 lines
64 KiB
ObjectPascal

{
Copyright (c) 2003-2012 by Florian Klaempfl and others
Contains the assembler object for ARM64
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit aasmcpu;
{$i fpcdefs.inc}
interface
uses
cclasses,globtype,globals,verbose,
aasmbase,aasmtai,aasmdata,aasmsym,
ogbase,
symtype,
cpubase,cpuinfo,cgbase,cgutils;
const
{ "mov reg,reg" source operand number }
O_MOV_SOURCE = 1;
{ "mov reg,reg" source operand number }
O_MOV_DEST = 0;
{ Operand types }
OT_NONE = $00000000;
OT_BITS8 = $00000001; { size, and other attributes, of the operand }
OT_BITS16 = $00000002;
OT_BITS32 = $00000004;
OT_BITS64 = $00000008; { FPU only }
OT_BITS80 = $00000010;
OT_FAR = $00000020; { this means 16:16 or 16:32, like in CALL/JMP }
OT_NEAR = $00000040;
OT_SHORT = $00000080;
OT_BITSTINY = $00000100; { fpu constant }
OT_BITSSHIFTER =
$00000200;
OT_SIZE_MASK = $000003FF; { all the size attributes }
OT_NON_SIZE = longint(not OT_SIZE_MASK);
OT_SIGNED = $00000100; { the operand need to be signed -128-127 }
OT_TO = $00000200; { operand is followed by a colon }
{ reverse effect in FADD, FSUB &c }
OT_COLON = $00000400;
OT_SHIFTEROP = $00000800;
OT_REGISTER = $00001000;
OT_IMMEDIATE = $00002000;
OT_REGLIST = $00008000;
OT_IMM8 = $00002001;
OT_IMM24 = $00002002;
OT_IMM32 = $00002004;
OT_IMM64 = $00002008;
OT_IMM80 = $00002010;
OT_IMMTINY = $00002100;
OT_IMMSHIFTER= $00002200;
OT_IMMEDIATE24 = OT_IMM24;
OT_SHIFTIMM = OT_SHIFTEROP or OT_IMMSHIFTER;
OT_SHIFTIMMEDIATE = OT_SHIFTIMM;
OT_IMMEDIATESHIFTER = OT_IMMSHIFTER;
OT_IMMEDIATEFPU = OT_IMMTINY;
OT_REGMEM = $00200000; { for r/m, ie EA, operands }
OT_REGNORM = $00201000; { 'normal' reg, qualifies as EA }
OT_REG8 = $00201001;
OT_REG16 = $00201002;
OT_REG32 = $00201004;
OT_REG64 = $00201008;
OT_VREG = $00201010; { vector register }
OT_REGF = $00201020; { coproc register }
OT_MEMORY = $00204000; { register number in 'basereg' }
OT_MEM8 = $00204001;
OT_MEM16 = $00204002;
OT_MEM32 = $00204004;
OT_MEM64 = $00204008;
OT_MEM80 = $00204010;
{ word/byte load/store }
OT_AM2 = $00010000;
{ misc ld/st operations }
OT_AM3 = $00020000;
{ multiple ld/st operations }
OT_AM4 = $00040000;
{ co proc. ld/st operations }
OT_AM5 = $00080000;
OT_AMMASK = $000f0000;
{ IT instruction }
OT_CONDITION = $00100000;
OT_MEMORYAM2 = OT_MEMORY or OT_AM2;
OT_MEMORYAM3 = OT_MEMORY or OT_AM3;
OT_MEMORYAM4 = OT_MEMORY or OT_AM4;
OT_MEMORYAM5 = OT_MEMORY or OT_AM5;
OT_FPUREG = $01000000; { floating point stack registers }
OT_REG_SMASK = $00070000; { special register operands: these may be treated differently }
{ a mask for the following }
OT_MEM_OFFS = $00604000; { special type of EA }
{ simple [address] offset }
OT_ONENESS = $00800000; { special type of immediate operand }
{ so UNITY == IMMEDIATE | ONENESS }
OT_UNITY = $00802000; { for shift/rotate instructions }
instabentries = {$i a64nop.inc}
maxinfolen = 5;
IF_NONE = $00000000;
IF_ARMMASK = $000F0000;
IF_ARM7 = $00070000;
IF_FPMASK = $00F00000;
IF_FPA = $00100000;
{ if the instruction can change in a second pass }
IF_PASS2 = longint($80000000);
type
TInsTabCache=array[TasmOp] of longint;
PInsTabCache=^TInsTabCache;
tinsentry = record
opcode : tasmop;
ops : byte;
optypes : array[0..3] of longint;
code : array[0..maxinfolen] of char;
flags : longint;
end;
pinsentry=^tinsentry;
{ const
InsTab : array[0..instabentries-1] of TInsEntry={$i a64tab.inc} }
var
InsTabCache : PInsTabCache;
type
taicpu = class(tai_cpu_abstract_sym)
oppostfix : TOpPostfix;
procedure loadshifterop(opidx:longint;const so:tshifterop);
constructor op_none(op : tasmop);
constructor op_reg(op : tasmop;_op1 : tregister);
constructor op_ref(op : tasmop;const _op1 : treference);
constructor op_const(op : tasmop;_op1 : longint);
constructor op_reg_reg(op : tasmop;_op1,_op2 : tregister);
constructor op_reg_ref(op : tasmop;_op1 : tregister;const _op2 : treference);
constructor op_reg_const(op:tasmop; _op1: tregister; _op2: aint);
constructor op_reg_reg_reg(op : tasmop;_op1,_op2,_op3 : tregister);
constructor op_reg_reg_reg_reg(op : tasmop;_op1,_op2,_op3,_op4 : tregister);
constructor op_reg_reg_const(op : tasmop;_op1,_op2 : tregister; _op3: aint);
constructor op_reg_reg_sym_ofs(op : tasmop;_op1,_op2 : tregister; _op3: tasmsymbol;_op3ofs: longint);
constructor op_reg_reg_ref(op : tasmop;_op1,_op2 : tregister; const _op3: treference);
constructor op_reg_reg_shifterop(op : tasmop;_op1,_op2 : tregister;_op3 : tshifterop);
constructor op_reg_reg_reg_shifterop(op : tasmop;_op1,_op2,_op3 : tregister;_op4 : tshifterop);
{ this is for Jmp instructions }
constructor op_cond_sym(op : tasmop;cond:TAsmCond;_op1 : tasmsymbol);
constructor op_sym(op : tasmop;_op1 : tasmsymbol);
constructor op_sym_ofs(op : tasmop;_op1 : tasmsymbol;_op1ofs:longint);
constructor op_reg_sym_ofs(op : tasmop;_op1 : tregister;_op2:tasmsymbol;_op2ofs : longint);
constructor op_sym_ofs_ref(op : tasmop;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
function is_same_reg_move(regtype: Tregistertype):boolean; override;
function spilling_get_operation_type(opnr: longint): topertype;override;
{ assembler }
public
{ the next will reset all instructions that can change in pass 2 }
procedure ResetPass1;override;
procedure ResetPass2;override;
function CheckIfValid:boolean;
function GetString:string;
function Pass1(objdata:TObjData):longint;override;
procedure Pass2(objdata:TObjData);override;
protected
procedure ppuloadoper(ppufile:tcompilerppufile;var o:toper);override;
procedure ppuwriteoper(ppufile:tcompilerppufile;const o:toper);override;
procedure ppubuildderefimploper(var o:toper);override;
procedure ppuderefoper(var o:toper);override;
private
{ next fields are filled in pass1, so pass2 is faster }
inssize : shortint;
insoffset : longint;
LastInsOffset : longint; { need to be public to be reset }
insentry : PInsEntry;
function InsEnd:longint;
procedure create_ot(objdata:TObjData);
function Matches(p:PInsEntry):longint;
function calcsize(p:PInsEntry):shortint;
procedure gencode(objdata:TObjData);
function NeedAddrPrefix(opidx:byte):boolean;
procedure Swapoperands;
function FindInsentry(objdata:TObjData):boolean;
end;
tai_align = class(tai_align_abstract)
{ nothing to add }
end;
function spilling_create_load(const ref:treference;r:tregister):Taicpu;
function spilling_create_store(r:tregister; const ref:treference):Taicpu;
function setoppostfix(i : taicpu;pf : toppostfix) : taicpu;
function setcondition(i : taicpu;c : tasmcond) : taicpu;
{ inserts pc relative symbols at places where they are reachable
and transforms special instructions to valid instruction encodings }
procedure finalizearmcode(list,listtoinsert : TAsmList);
{ inserts .pdata section and dummy function prolog needed for arm-wince exception handling }
procedure InsertPData;
procedure InitAsm;
procedure DoneAsm;
implementation
uses
cutils,rgobj,itcpugas,aoptcpu;
procedure taicpu.loadshifterop(opidx:longint;const so:tshifterop);
begin
allocate_oper(opidx+1);
with oper[opidx]^ do
begin
if typ<>top_shifterop then
begin
clearop(opidx);
new(shifterop);
end;
shifterop^:=so;
typ:=top_shifterop;
end;
end;
{*****************************************************************************
taicpu Constructors
*****************************************************************************}
constructor taicpu.op_none(op : tasmop);
begin
inherited create(op);
end;
{ for pld }
constructor taicpu.op_ref(op : tasmop;const _op1 : treference);
begin
inherited create(op);
ops:=1;
loadref(0,_op1);
end;
constructor taicpu.op_reg(op : tasmop;_op1 : tregister);
begin
inherited create(op);
ops:=1;
loadreg(0,_op1);
end;
constructor taicpu.op_const(op : tasmop;_op1 : longint);
begin
inherited create(op);
ops:=1;
loadconst(0,aint(_op1));
end;
constructor taicpu.op_reg_reg(op : tasmop;_op1,_op2 : tregister);
begin
inherited create(op);
ops:=2;
loadreg(0,_op1);
loadreg(1,_op2);
end;
constructor taicpu.op_reg_const(op:tasmop; _op1: tregister; _op2: aint);
begin
inherited create(op);
ops:=2;
loadreg(0,_op1);
loadconst(1,aint(_op2));
end;
constructor taicpu.op_reg_ref(op : tasmop;_op1 : tregister;const _op2 : treference);
begin
inherited create(op);
ops:=2;
loadreg(0,_op1);
loadref(1,_op2);
end;
constructor taicpu.op_reg_reg_reg(op : tasmop;_op1,_op2,_op3 : tregister);
begin
inherited create(op);
ops:=3;
loadreg(0,_op1);
loadreg(1,_op2);
loadreg(2,_op3);
end;
constructor taicpu.op_reg_reg_reg_reg(op : tasmop;_op1,_op2,_op3,_op4 : tregister);
begin
inherited create(op);
ops:=4;
loadreg(0,_op1);
loadreg(1,_op2);
loadreg(2,_op3);
loadreg(3,_op4);
end;
constructor taicpu.op_reg_reg_const(op : tasmop;_op1,_op2 : tregister; _op3: aint);
begin
inherited create(op);
ops:=3;
loadreg(0,_op1);
loadreg(1,_op2);
loadconst(2,aint(_op3));
end;
constructor taicpu.op_reg_reg_sym_ofs(op : tasmop;_op1,_op2 : tregister; _op3: tasmsymbol;_op3ofs: longint);
begin
inherited create(op);
ops:=3;
loadreg(0,_op1);
loadreg(1,_op2);
loadsymbol(0,_op3,_op3ofs);
end;
constructor taicpu.op_reg_reg_ref(op : tasmop;_op1,_op2 : tregister; const _op3: treference);
begin
inherited create(op);
ops:=3;
loadreg(0,_op1);
loadreg(1,_op2);
loadref(2,_op3);
end;
constructor taicpu.op_reg_reg_shifterop(op : tasmop;_op1,_op2 : tregister;_op3 : tshifterop);
begin
inherited create(op);
ops:=3;
loadreg(0,_op1);
loadreg(1,_op2);
loadshifterop(2,_op3);
end;
constructor taicpu.op_reg_reg_reg_shifterop(op : tasmop;_op1,_op2,_op3 : tregister;_op4 : tshifterop);
begin
inherited create(op);
ops:=4;
loadreg(0,_op1);
loadreg(1,_op2);
loadreg(2,_op3);
loadshifterop(3,_op4);
end;
constructor taicpu.op_cond_sym(op : tasmop;cond:TAsmCond;_op1 : tasmsymbol);
begin
inherited create(op);
condition:=cond;
ops:=1;
loadsymbol(0,_op1,0);
end;
constructor taicpu.op_sym(op : tasmop;_op1 : tasmsymbol);
begin
inherited create(op);
ops:=1;
loadsymbol(0,_op1,0);
end;
constructor taicpu.op_sym_ofs(op : tasmop;_op1 : tasmsymbol;_op1ofs:longint);
begin
inherited create(op);
ops:=1;
loadsymbol(0,_op1,_op1ofs);
end;
constructor taicpu.op_reg_sym_ofs(op : tasmop;_op1 : tregister;_op2:tasmsymbol;_op2ofs : longint);
begin
inherited create(op);
ops:=2;
loadreg(0,_op1);
loadsymbol(1,_op2,_op2ofs);
end;
constructor taicpu.op_sym_ofs_ref(op : tasmop;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
begin
inherited create(op);
ops:=2;
loadsymbol(0,_op1,_op1ofs);
loadref(1,_op2);
end;
function taicpu.is_same_reg_move(regtype: Tregistertype):boolean;
begin
{ allow the register allocator to remove unnecessary moves }
result:=(
((opcode=A_MOV) and (regtype = R_INTREGISTER)) or
((opcode=A_FMOV) and (regtype = R_MMREGISTER))
) and
(oppostfix in [PF_None]) and
(condition=C_None) and
(ops=2) and
(oper[0]^.typ=top_reg) and
(oper[1]^.typ=top_reg) and
(oper[0]^.reg=oper[1]^.reg);
end;
function spilling_create_load(const ref:treference;r:tregister):Taicpu;
var
op: tasmop;
begin
case getregtype(r) of
R_INTREGISTER :
result:=taicpu.op_reg_ref(A_LDR,r,ref);
R_MMREGISTER :
begin
case getsubreg(r) of
R_SUBFD:
op:=A_LDR;
R_SUBFS:
op:=A_LDR;
else
internalerror(2009112905);
end;
result:=taicpu.op_reg_ref(op,r,ref);
end;
else
internalerror(200401041);
end;
end;
function spilling_create_store(r:tregister; const ref:treference):Taicpu;
var
op: tasmop;
begin
case getregtype(r) of
R_INTREGISTER :
result:=taicpu.op_reg_ref(A_STR,r,ref);
R_MMREGISTER :
begin
case getsubreg(r) of
R_SUBFD:
op:=A_STR;
R_SUBFS:
op:=A_STR;
else
internalerror(2009112904);
end;
result:=taicpu.op_reg_ref(op,r,ref);
end;
else
internalerror(200401041);
end;
end;
function taicpu.spilling_get_operation_type(opnr: longint): topertype;
begin
case opcode of
A_ADC,A_ADD,A_AND,A_BIC,
A_EOR,A_CLZ,A_RBIT,
A_LDR,
A_MOV,A_MVN,A_MUL,
A_ORR,A_SBC,A_SUB,
A_UXT,A_SXT:
if opnr=0 then
result:=operand_write
else
result:=operand_read;
A_B,A_BL,
A_CMN,A_CMP,A_TST:
result:=operand_read;
A_STR:
{ important is what happens with the involved registers }
if opnr=0 then
result := operand_read
else
{ check for pre/post indexed }
result := operand_read;
else
internalerror(200403151);
end;
end;
procedure BuildInsTabCache;
var
i : longint;
begin
(* new(instabcache);
FillChar(instabcache^,sizeof(tinstabcache),$ff);
i:=0;
while (i<InsTabEntries) do
begin
if InsTabCache^[InsTab[i].Opcode]=-1 then
InsTabCache^[InsTab[i].Opcode]:=i;
inc(i);
end; *)
end;
procedure InitAsm;
begin
if not assigned(instabcache) then
BuildInsTabCache;
end;
procedure DoneAsm;
begin
if assigned(instabcache) then
begin
dispose(instabcache);
instabcache:=nil;
end;
end;
function setoppostfix(i : taicpu;pf : toppostfix) : taicpu;
begin
i.oppostfix:=pf;
result:=i;
end;
function setcondition(i : taicpu;c : tasmcond) : taicpu;
begin
i.condition:=c;
result:=i;
end;
Function SimpleGetNextInstruction(Current: tai; Var Next: tai): Boolean;
Begin
Current:=tai(Current.Next);
While Assigned(Current) And (Current.typ In SkipInstr) Do
Current:=tai(Current.Next);
Next:=Current;
If Assigned(Next) And Not(Next.typ In SkipInstr) Then
Result:=True
Else
Begin
Next:=Nil;
Result:=False;
End;
End;
(*
function armconstequal(hp1,hp2: tai): boolean;
begin
result:=false;
if hp1.typ<>hp2.typ then
exit;
case hp1.typ of
tai_const:
result:=
(tai_const(hp2).sym=tai_const(hp).sym) and
(tai_const(hp2).value=tai_const(hp).value) and
(tai(hp2.previous).typ=ait_label);
tai_const:
result:=
(tai_const(hp2).sym=tai_const(hp).sym) and
(tai_const(hp2).value=tai_const(hp).value) and
(tai(hp2.previous).typ=ait_label);
end;
end;
*)
procedure insertpcrelativedata(list,listtoinsert : TAsmList);
var
curinspos,
penalty,
lastinspos,
{ increased for every data element > 4 bytes inserted }
currentsize,
extradataoffset,
limit: longint;
curop : longint;
curtai : tai;
curdatatai,hp,hp2 : tai;
curdata : TAsmList;
l : tasmlabel;
doinsert,
removeref : boolean;
begin
(*
curdata:=TAsmList.create;
lastinspos:=-1;
curinspos:=0;
extradataoffset:=0;
limit:=1016;
curtai:=tai(list.first);
doinsert:=false;
while assigned(curtai) do
begin
{ instruction? }
case curtai.typ of
ait_instruction:
begin
{ walk through all operand of the instruction }
for curop:=0 to taicpu(curtai).ops-1 do
begin
{ reference? }
if (taicpu(curtai).oper[curop]^.typ=top_ref) then
begin
{ pc relative symbol? }
curdatatai:=tai(taicpu(curtai).oper[curop]^.ref^.symboldata);
if assigned(curdatatai) and
{ move only if we're at the first reference of a label }
not(tai_label(curdatatai).moved) then
begin
tai_label(curdatatai).moved:=true;
{ check if symbol already used. }
{ if yes, reuse the symbol }
hp:=tai(curdatatai.next);
removeref:=false;
if assigned(hp) then
begin
case hp.typ of
ait_const:
begin
if (tai_const(hp).consttype=aitconst_64bit) then
inc(extradataoffset);
end;
ait_comp_64bit,
ait_real_64bit:
begin
inc(extradataoffset);
end;
ait_real_80bit:
begin
inc(extradataoffset,2);
end;
end;
if (hp.typ=ait_const) then
begin
hp2:=tai(curdata.first);
while assigned(hp2) do
begin
{ if armconstequal(hp2,hp) then }
if (hp2.typ=ait_const) and (tai_const(hp2).sym=tai_const(hp).sym)
and (tai_const(hp2).value=tai_const(hp).value) and (tai(hp2.previous).typ=ait_label)
then
begin
with taicpu(curtai).oper[curop]^.ref^ do
begin
symboldata:=hp2.previous;
symbol:=tai_label(hp2.previous).labsym;
end;
removeref:=true;
break;
end;
hp2:=tai(hp2.next);
end;
end;
end;
{ move or remove symbol reference }
repeat
hp:=tai(curdatatai.next);
listtoinsert.remove(curdatatai);
if removeref then
curdatatai.free
else
curdata.concat(curdatatai);
curdatatai:=hp;
until (curdatatai=nil) or (curdatatai.typ=ait_label);
if lastinspos=-1 then
lastinspos:=curinspos;
end;
end;
end;
inc(curinspos);
end;
ait_align:
begin
{ code is always 4 byte aligned, so we don't have to take care of .align 2 which would
requires also incrementing curinspos by 1 }
inc(curinspos,(tai_align(curtai).aligntype div 4));
end;
ait_const:
begin
inc(curinspos);
if (tai_const(curtai).consttype=aitconst_64bit) then
inc(curinspos);
end;
ait_real_32bit:
begin
inc(curinspos);
end;
ait_comp_64bit,
ait_real_64bit:
begin
inc(curinspos,2);
end;
ait_real_80bit:
begin
inc(curinspos,3);
end;
end;
{ special case for case jump tables }
if SimpleGetNextInstruction(curtai,hp) and
(tai(hp).typ=ait_instruction) and
(taicpu(hp).opcode=A_LDR) and
(taicpu(hp).oper[0]^.typ=top_reg) and
(taicpu(hp).oper[0]^.reg=NR_PC) then
begin
penalty:=1;
hp:=tai(hp.next);
{ skip register allocations and comments inserted by the optimizer }
while assigned(hp) and (hp.typ in [ait_comment,ait_regalloc]) do
hp:=tai(hp.next);
while assigned(hp) and (hp.typ=ait_const) do
begin
inc(penalty);
hp:=tai(hp.next);
end;
end
else
penalty:=0;
{ FLD/FST VFP instructions have a limit of +/- 1024, not 4096 }
if SimpleGetNextInstruction(curtai,hp) and
(tai(hp).typ=ait_instruction) and
((taicpu(hp).opcode=A_FLDS) or
(taicpu(hp).opcode=A_FLDD)) then
limit:=254;
{ don't miss an insert }
doinsert:=doinsert or
(not(curdata.empty) and
(curinspos-lastinspos+penalty+extradataoffset>limit));
{ split only at real instructions else the test below fails }
if doinsert and (curtai.typ=ait_instruction) and
(
{ don't split loads of pc to lr and the following move }
not(
(taicpu(curtai).opcode=A_MOV) and
(taicpu(curtai).oper[0]^.typ=top_reg) and
(taicpu(curtai).oper[0]^.reg=NR_R14) and
(taicpu(curtai).oper[1]^.typ=top_reg) and
(taicpu(curtai).oper[1]^.reg=NR_PC)
)
) then
begin
lastinspos:=-1;
extradataoffset:=0;
limit:=1016;
doinsert:=false;
hp:=tai(curtai.next);
current_asmdata.getjumplabel(l);
curdata.insert(taicpu.op_sym(A_B,l));
curdata.concat(tai_label.create(l));
list.insertlistafter(curtai,curdata);
curtai:=hp;
end
else
curtai:=tai(curtai.next);
end;
list.concatlist(curdata);
curdata.free;
*)
end;
procedure finalizearmcode(list, listtoinsert: TAsmList);
begin
insertpcrelativedata(list, listtoinsert);
end;
procedure InsertPData;
var
prolog: TAsmList;
begin
prolog:=TAsmList.create;
new_section(prolog,sec_code,'FPC_EH_PROLOG',sizeof(pint),secorder_begin);
prolog.concat(Tai_const.Createname('_ARM_ExceptionHandler', 0));
prolog.concat(Tai_const.Create_32bit(0));
prolog.concat(Tai_symbol.Createname_global('FPC_EH_CODE_START',AT_DATA,0));
{ dummy function }
prolog.concat(taicpu.op_reg(A_BR,NR_X29));
current_asmdata.asmlists[al_start].insertList(prolog);
prolog.Free;
new_section(current_asmdata.asmlists[al_end],sec_pdata,'',sizeof(pint));
current_asmdata.asmlists[al_end].concat(Tai_const.Createname('FPC_EH_CODE_START', 0));
current_asmdata.asmlists[al_end].concat(Tai_const.Create_32bit(longint($ffffff01)));
end;
(*
Floating point instruction format information, taken from the linux kernel
ARM Floating Point Instruction Classes
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|c o n d|1 1 0 P|U|u|W|L| Rn |v| Fd |0|0|0|1| o f f s e t | CPDT
|c o n d|1 1 0 P|U|w|W|L| Rn |x| Fd |0|0|1|0| o f f s e t | CPDT (copro 2)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|c o n d|1 1 1 0|a|b|c|d|e| Fn |j| Fd |0|0|0|1|f|g|h|0|i| Fm | CPDO
|c o n d|1 1 1 0|a|b|c|L|e| Fn | Rd |0|0|0|1|f|g|h|1|i| Fm | CPRT
|c o n d|1 1 1 0|a|b|c|1|e| Fn |1|1|1|1|0|0|0|1|f|g|h|1|i| Fm | comparisons
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
CPDT data transfer instructions
LDF, STF, LFM (copro 2), SFM (copro 2)
CPDO dyadic arithmetic instructions
ADF, MUF, SUF, RSF, DVF, RDF,
POW, RPW, RMF, FML, FDV, FRD, POL
CPDO monadic arithmetic instructions
MVF, MNF, ABS, RND, SQT, LOG, LGN, EXP,
SIN, COS, TAN, ASN, ACS, ATN, URD, NRM
CPRT joint arithmetic/data transfer instructions
FIX (arithmetic followed by load/store)
FLT (load/store followed by arithmetic)
CMF, CNF CMFE, CNFE (comparisons)
WFS, RFS (write/read floating point status register)
WFC, RFC (write/read floating point control register)
cond condition codes
P pre/post index bit: 0 = postindex, 1 = preindex
U up/down bit: 0 = stack grows down, 1 = stack grows up
W write back bit: 1 = update base register (Rn)
L load/store bit: 0 = store, 1 = load
Rn base register
Rd destination/source register
Fd floating point destination register
Fn floating point source register
Fm floating point source register or floating point constant
uv transfer length (TABLE 1)
wx register count (TABLE 2)
abcd arithmetic opcode (TABLES 3 & 4)
ef destination size (rounding precision) (TABLE 5)
gh rounding mode (TABLE 6)
j dyadic/monadic bit: 0 = dyadic, 1 = monadic
i constant bit: 1 = constant (TABLE 6)
*/
/*
TABLE 1
+-------------------------+---+---+---------+---------+
| Precision | u | v | FPSR.EP | length |
+-------------------------+---+---+---------+---------+
| Single | 0 | 0 | x | 1 words |
| Double | 1 | 1 | x | 2 words |
| Extended | 1 | 1 | x | 3 words |
| Packed decimal | 1 | 1 | 0 | 3 words |
| Expanded packed decimal | 1 | 1 | 1 | 4 words |
+-------------------------+---+---+---------+---------+
Note: x = don't care
*/
/*
TABLE 2
+---+---+---------------------------------+
| w | x | Number of registers to transfer |
+---+---+---------------------------------+
| 0 | 1 | 1 |
| 1 | 0 | 2 |
| 1 | 1 | 3 |
| 0 | 0 | 4 |
+---+---+---------------------------------+
*/
/*
TABLE 3: Dyadic Floating Point Opcodes
+---+---+---+---+----------+-----------------------+-----------------------+
| a | b | c | d | Mnemonic | Description | Operation |
+---+---+---+---+----------+-----------------------+-----------------------+
| 0 | 0 | 0 | 0 | ADF | Add | Fd := Fn + Fm |
| 0 | 0 | 0 | 1 | MUF | Multiply | Fd := Fn * Fm |
| 0 | 0 | 1 | 0 | SUF | Subtract | Fd := Fn - Fm |
| 0 | 0 | 1 | 1 | RSF | Reverse subtract | Fd := Fm - Fn |
| 0 | 1 | 0 | 0 | DVF | Divide | Fd := Fn / Fm |
| 0 | 1 | 0 | 1 | RDF | Reverse divide | Fd := Fm / Fn |
| 0 | 1 | 1 | 0 | POW | Power | Fd := Fn ^ Fm |
| 0 | 1 | 1 | 1 | RPW | Reverse power | Fd := Fm ^ Fn |
| 1 | 0 | 0 | 0 | RMF | Remainder | Fd := IEEE rem(Fn/Fm) |
| 1 | 0 | 0 | 1 | FML | Fast Multiply | Fd := Fn * Fm |
| 1 | 0 | 1 | 0 | FDV | Fast Divide | Fd := Fn / Fm |
| 1 | 0 | 1 | 1 | FRD | Fast reverse divide | Fd := Fm / Fn |
| 1 | 1 | 0 | 0 | POL | Polar angle (ArcTan2) | Fd := arctan2(Fn,Fm) |
| 1 | 1 | 0 | 1 | | undefined instruction | trap |
| 1 | 1 | 1 | 0 | | undefined instruction | trap |
| 1 | 1 | 1 | 1 | | undefined instruction | trap |
+---+---+---+---+----------+-----------------------+-----------------------+
Note: POW, RPW, POL are deprecated, and are available for backwards
compatibility only.
*/
/*
TABLE 4: Monadic Floating Point Opcodes
+---+---+---+---+----------+-----------------------+-----------------------+
| a | b | c | d | Mnemonic | Description | Operation |
+---+---+---+---+----------+-----------------------+-----------------------+
| 0 | 0 | 0 | 0 | MVF | Move | Fd := Fm |
| 0 | 0 | 0 | 1 | MNF | Move negated | Fd := - Fm |
| 0 | 0 | 1 | 0 | ABS | Absolute value | Fd := abs(Fm) |
| 0 | 0 | 1 | 1 | RND | Round to integer | Fd := int(Fm) |
| 0 | 1 | 0 | 0 | SQT | Square root | Fd := sqrt(Fm) |
| 0 | 1 | 0 | 1 | LOG | Log base 10 | Fd := log10(Fm) |
| 0 | 1 | 1 | 0 | LGN | Log base e | Fd := ln(Fm) |
| 0 | 1 | 1 | 1 | EXP | Exponent | Fd := e ^ Fm |
| 1 | 0 | 0 | 0 | SIN | Sine | Fd := sin(Fm) |
| 1 | 0 | 0 | 1 | COS | Cosine | Fd := cos(Fm) |
| 1 | 0 | 1 | 0 | TAN | Tangent | Fd := tan(Fm) |
| 1 | 0 | 1 | 1 | ASN | Arc Sine | Fd := arcsin(Fm) |
| 1 | 1 | 0 | 0 | ACS | Arc Cosine | Fd := arccos(Fm) |
| 1 | 1 | 0 | 1 | ATN | Arc Tangent | Fd := arctan(Fm) |
| 1 | 1 | 1 | 0 | URD | Unnormalized round | Fd := int(Fm) |
| 1 | 1 | 1 | 1 | NRM | Normalize | Fd := norm(Fm) |
+---+---+---+---+----------+-----------------------+-----------------------+
Note: LOG, LGN, EXP, SIN, COS, TAN, ASN, ACS, ATN are deprecated, and are
available for backwards compatibility only.
*/
/*
TABLE 5
+-------------------------+---+---+
| Rounding Precision | e | f |
+-------------------------+---+---+
| IEEE Single precision | 0 | 0 |
| IEEE Double precision | 0 | 1 |
| IEEE Extended precision | 1 | 0 |
| undefined (trap) | 1 | 1 |
+-------------------------+---+---+
*/
/*
TABLE 5
+---------------------------------+---+---+
| Rounding Mode | g | h |
+---------------------------------+---+---+
| Round to nearest (default) | 0 | 0 |
| Round toward plus infinity | 0 | 1 |
| Round toward negative infinity | 1 | 0 |
| Round toward zero | 1 | 1 |
+---------------------------------+---+---+
*)
function taicpu.GetString:string;
var
i : longint;
s : string;
addsize : boolean;
begin
s:='['+gas_op2str[opcode];
for i:=0 to ops-1 do
begin
with oper[i]^ do
begin
if i=0 then
s:=s+' '
else
s:=s+',';
{ type }
addsize:=false;
if (ot and OT_VREG)=OT_VREG then
s:=s+'vreg'
else
if (ot and OT_FPUREG)=OT_FPUREG then
s:=s+'fpureg'
else
if (ot and OT_REGISTER)=OT_REGISTER then
begin
s:=s+'reg';
addsize:=true;
end
else
if (ot and OT_REGLIST)=OT_REGLIST then
begin
s:=s+'reglist';
addsize:=false;
end
else
if (ot and OT_IMMEDIATE)=OT_IMMEDIATE then
begin
s:=s+'imm';
addsize:=true;
end
else
if (ot and OT_MEMORY)=OT_MEMORY then
begin
s:=s+'mem';
addsize:=true;
if (ot and OT_AM2)<>0 then
s:=s+' am2 ';
end
else
s:=s+'???';
{ size }
if addsize then
begin
if (ot and OT_BITS8)<>0 then
s:=s+'8'
else
if (ot and OT_BITS16)<>0 then
s:=s+'24'
else
if (ot and OT_BITS32)<>0 then
s:=s+'32'
else
if (ot and OT_BITSSHIFTER)<>0 then
s:=s+'shifter'
else
s:=s+'??';
{ signed }
if (ot and OT_SIGNED)<>0 then
s:=s+'s';
end;
end;
end;
GetString:=s+']';
end;
procedure taicpu.ResetPass1;
begin
{ we need to reset everything here, because the choosen insentry
can be invalid for a new situation where the previously optimized
insentry is not correct }
InsEntry:=nil;
InsSize:=0;
LastInsOffset:=-1;
end;
procedure taicpu.ResetPass2;
begin
{ we are here in a second pass, check if the instruction can be optimized }
if assigned(InsEntry) and
((InsEntry^.flags and IF_PASS2)<>0) then
begin
InsEntry:=nil;
InsSize:=0;
end;
LastInsOffset:=-1;
end;
function taicpu.CheckIfValid:boolean;
begin
Result:=False; { unimplemented }
end;
function taicpu.Pass1(objdata:TObjData):longint;
begin
Pass1:=0;
LastInsOffset:=-1;
end;
procedure taicpu.Pass2(objdata:TObjData);
begin
{ error in pass1 ? }
if insentry=nil then
exit;
current_filepos:=fileinfo;
{ Generate the instruction }
GenCode(objdata);
end;
procedure taicpu.ppuloadoper(ppufile:tcompilerppufile;var o:toper);
begin
end;
procedure taicpu.ppuwriteoper(ppufile:tcompilerppufile;const o:toper);
begin
end;
procedure taicpu.ppubuildderefimploper(var o:toper);
begin
end;
procedure taicpu.ppuderefoper(var o:toper);
begin
end;
function taicpu.InsEnd:longint;
begin
Result:=0; { unimplemented }
end;
procedure taicpu.create_ot(objdata:TObjData);
begin
end;
function taicpu.Matches(p:PInsEntry):longint;
begin
end;
function taicpu.calcsize(p:PInsEntry):shortint;
begin
result:=4;
end;
function taicpu.NeedAddrPrefix(opidx:byte):boolean;
begin
Result:=False; { unimplemented }
end;
procedure taicpu.Swapoperands;
begin
end;
function taicpu.FindInsentry(objdata:TObjData):boolean;
begin
end;
procedure taicpu.gencode(objdata:TObjData);
var
bytes : dword;
i_field : byte;
procedure setshifterop(op : byte);
begin
case oper[op]^.typ of
top_const:
begin
i_field:=1;
bytes:=bytes or dword(oper[op]^.val and $fff);
end;
top_reg:
begin
i_field:=0;
bytes:=bytes or (getsupreg(oper[op]^.reg) shl 16);
{ does a real shifter op follow? }
if (op+1<=op) and (oper[op+1]^.typ=top_shifterop) then
begin
end;
end;
else
internalerror(2005091103);
end;
end;
begin
bytes:=$0;
{ evaluate and set condition code }
{ condition code allowed? }
{ setup rest of the instruction }
case insentry^.code[0] of
#$08:
begin
{ set instruction code }
bytes:=bytes or (ord(insentry^.code[1]) shl 26);
bytes:=bytes or (ord(insentry^.code[2]) shl 21);
{ set destination }
bytes:=bytes or (getsupreg(oper[0]^.reg) shl 12);
{ create shifter op }
setshifterop(1);
{ set i field }
bytes:=bytes or (i_field shl 25);
{ set s if necessary }
if oppostfix=PF_S then
bytes:=bytes or (1 shl 20);
end;
#$ff:
internalerror(2005091101);
else
internalerror(2005091102);
end;
{ we're finished, write code }
objdata.writebytes(bytes,sizeof(bytes));
end;
{$ifdef dummy}
(*
static void gencode (long segment, long offset, int bits,
insn *ins, char *codes, long insn_end)
{
int has_S_code; /* S - setflag */
int has_B_code; /* B - setflag */
int has_T_code; /* T - setflag */
int has_W_code; /* ! => W flag */
int has_F_code; /* ^ => S flag */
int keep;
unsigned char c;
unsigned char bytes[4];
long data, size;
static int cc_code[] = /* bit pattern of cc */
{ /* order as enum in */
0x0E, 0x03, 0x02, 0x00, /* nasm.h */
0x0A, 0x0C, 0x08, 0x0D,
0x09, 0x0B, 0x04, 0x01,
0x05, 0x07, 0x06,
};
#ifdef DEBUG
static char *CC[] =
{ /* condition code names */
"AL", "CC", "CS", "EQ",
"GE", "GT", "HI", "LE",
"LS", "LT", "MI", "NE",
"PL", "VC", "VS", "",
"S"
};
has_S_code = (ins->condition & C_SSETFLAG);
has_B_code = (ins->condition & C_BSETFLAG);
has_T_code = (ins->condition & C_TSETFLAG);
has_W_code = (ins->condition & C_EXSETFLAG);
has_F_code = (ins->condition & C_FSETFLAG);
ins->condition = (ins->condition & 0x0F);
if (rt_debug)
{
printf ("gencode: instruction: %s%s", insn_names[ins->opcode],
CC[ins->condition & 0x0F]);
if (has_S_code)
printf ("S");
if (has_B_code)
printf ("B");
if (has_T_code)
printf ("T");
if (has_W_code)
printf ("!");
if (has_F_code)
printf ("^");
printf ("\n");
c = *codes;
printf (" (%d) decode - '0x%02X'\n", ins->operands, c);
bytes[0] = 0xB;
bytes[1] = 0xE;
bytes[2] = 0xE;
bytes[3] = 0xF;
}
// First condition code in upper nibble
if (ins->condition < C_NONE)
{
c = cc_code[ins->condition] << 4;
}
else
{
c = cc_code[C_AL] << 4; // is often ALWAYS but not always
}
switch (keep = *codes)
{
case 1:
// B, BL
++codes;
c |= *codes++;
bytes[0] = c;
if (ins->oprs[0].segment != segment)
{
// fais une relocation
c = 1;
data = 0; // Let the linker locate ??
}
else
{
c = 0;
data = ins->oprs[0].offset - (offset + 8);
if (data % 4)
{
errfunc (ERR_NONFATAL, "offset not aligned on 4 bytes");
}
}
if (data >= 0x1000)
{
errfunc (ERR_NONFATAL, "too long offset");
}
data = data >> 2;
bytes[1] = (data >> 16) & 0xFF;
bytes[2] = (data >> 8) & 0xFF;
bytes[3] = (data ) & 0xFF;
if (c == 1)
{
// out (offset, segment, &bytes[0], OUT_RAWDATA+1, NO_SEG, NO_SEG);
out (offset, segment, &bytes[0], OUT_REL3ADR+4, ins->oprs[0].segment, NO_SEG);
}
else
{
out (offset, segment, &bytes[0], OUT_RAWDATA+4, NO_SEG, NO_SEG);
}
return;
case 2:
// SWI
++codes;
c |= *codes++;
bytes[0] = c;
data = ins->oprs[0].offset;
bytes[1] = (data >> 16) & 0xFF;
bytes[2] = (data >> 8) & 0xFF;
bytes[3] = (data) & 0xFF;
out (offset, segment, &bytes, OUT_RAWDATA+4, NO_SEG, NO_SEG);
return;
case 3:
// BX
++codes;
c |= *codes++;
bytes[0] = c;
bytes[1] = *codes++;
bytes[2] = *codes++;
bytes[3] = *codes++;
c = regval (&ins->oprs[0],1);
if (c == 15) // PC
{
errfunc (ERR_WARNING, "'BX' with R15 has undefined behaviour");
}
else if (c > 15)
{
errfunc (ERR_NONFATAL, "Illegal register specified for 'BX'");
}
bytes[3] |= (c & 0x0F);
out (offset, segment, bytes, OUT_RAWDATA+4, NO_SEG, NO_SEG);
return;
case 4: // AND Rd,Rn,Rm
case 5: // AND Rd,Rn,Rm,<shift>Rs
case 6: // AND Rd,Rn,Rm,<shift>imm
case 7: // AND Rd,Rn,<shift>imm
++codes;
#ifdef DEBUG
if (rt_debug)
{
printf (" decode - '0x%02X'\n", keep);
printf (" code - '0x%02X'\n", (unsigned char) ( *codes));
}
#endif
bytes[0] = c | *codes;
++codes;
bytes[1] = *codes;
if (has_S_code)
bytes[1] |= 0x10;
c = regval (&ins->oprs[1],1);
// Rn in low nibble
bytes[1] |= c;
// Rd in high nibble
bytes[2] = regval (&ins->oprs[0],1) << 4;
if (keep != 7)
{
// Rm in low nibble
bytes[3] = regval (&ins->oprs[2],1);
}
// Shifts if any
if (keep == 5 || keep == 6)
{
// Shift in bytes 2 and 3
if (keep == 5)
{
// Rs
c = regval (&ins->oprs[3],1);
bytes[2] |= c;
c = 0x10; // Set bit 4 in byte[3]
}
if (keep == 6)
{
c = (ins->oprs[3].offset) & 0x1F;
// #imm
bytes[2] |= c >> 1;
if (c & 0x01)
{
bytes[3] |= 0x80;
}
c = 0; // Clr bit 4 in byte[3]
}
// <shift>
c |= shiftval (&ins->oprs[3]) << 5;
bytes[3] |= c;
}
// reg,reg,imm
if (keep == 7)
{
int shimm;
shimm = imm_shift (ins->oprs[2].offset);
if (shimm == -1)
{
errfunc (ERR_NONFATAL, "cannot create that constant");
}
bytes[3] = shimm & 0xFF;
bytes[2] |= (shimm & 0xF00) >> 8;
}
out (offset, segment, bytes, OUT_RAWDATA+4, NO_SEG, NO_SEG);
return;
case 8: // MOV Rd,Rm
case 9: // MOV Rd,Rm,<shift>Rs
case 0xA: // MOV Rd,Rm,<shift>imm
case 0xB: // MOV Rd,<shift>imm
++codes;
#ifdef DEBUG
if (rt_debug)
{
printf (" decode - '0x%02X'\n", keep);
printf (" code - '0x%02X'\n", (unsigned char) ( *codes));
}
#endif
bytes[0] = c | *codes;
++codes;
bytes[1] = *codes;
if (has_S_code)
bytes[1] |= 0x10;
// Rd in high nibble
bytes[2] = regval (&ins->oprs[0],1) << 4;
if (keep != 0x0B)
{
// Rm in low nibble
bytes[3] = regval (&ins->oprs[1],1);
}
// Shifts if any
if (keep == 0x09 || keep == 0x0A)
{
// Shift in bytes 2 and 3
if (keep == 0x09)
{
// Rs
c = regval (&ins->oprs[2],1);
bytes[2] |= c;
c = 0x10; // Set bit 4 in byte[3]
}
if (keep == 0x0A)
{
c = (ins->oprs[2].offset) & 0x1F;
// #imm
bytes[2] |= c >> 1;
if (c & 0x01)
{
bytes[3] |= 0x80;
}
c = 0; // Clr bit 4 in byte[3]
}
// <shift>
c |= shiftval (&ins->oprs[2]) << 5;
bytes[3] |= c;
}
// reg,imm
if (keep == 0x0B)
{
int shimm;
shimm = imm_shift (ins->oprs[1].offset);
if (shimm == -1)
{
errfunc (ERR_NONFATAL, "cannot create that constant");
}
bytes[3] = shimm & 0xFF;
bytes[2] |= (shimm & 0xF00) >> 8;
}
out (offset, segment, bytes, OUT_RAWDATA+4, NO_SEG, NO_SEG);
return;
case 0xC: // CMP Rn,Rm
case 0xD: // CMP Rn,Rm,<shift>Rs
case 0xE: // CMP Rn,Rm,<shift>imm
case 0xF: // CMP Rn,<shift>imm
++codes;
bytes[0] = c | *codes++;
bytes[1] = *codes;
// Implicit S code
bytes[1] |= 0x10;
c = regval (&ins->oprs[0],1);
// Rn in low nibble
bytes[1] |= c;
// No destination
bytes[2] = 0;
if (keep != 0x0B)
{
// Rm in low nibble
bytes[3] = regval (&ins->oprs[1],1);
}
// Shifts if any
if (keep == 0x0D || keep == 0x0E)
{
// Shift in bytes 2 and 3
if (keep == 0x0D)
{
// Rs
c = regval (&ins->oprs[2],1);
bytes[2] |= c;
c = 0x10; // Set bit 4 in byte[3]
}
if (keep == 0x0E)
{
c = (ins->oprs[2].offset) & 0x1F;
// #imm
bytes[2] |= c >> 1;
if (c & 0x01)
{
bytes[3] |= 0x80;
}
c = 0; // Clr bit 4 in byte[3]
}
// <shift>
c |= shiftval (&ins->oprs[2]) << 5;
bytes[3] |= c;
}
// reg,imm
if (keep == 0x0F)
{
int shimm;
shimm = imm_shift (ins->oprs[1].offset);
if (shimm == -1)
{
errfunc (ERR_NONFATAL, "cannot create that constant");
}
bytes[3] = shimm & 0xFF;
bytes[2] |= (shimm & 0xF00) >> 8;
}
out (offset, segment, bytes, OUT_RAWDATA+4, NO_SEG, NO_SEG);
return;
case 0x10: // MRS Rd,<psr>
++codes;
bytes[0] = c | *codes++;
bytes[1] = *codes++;
// Rd
c = regval (&ins->oprs[0],1);
bytes[2] = c << 4;
bytes[3] = 0;
c = ins->oprs[1].basereg;
if (c == R_CPSR || c == R_SPSR)
{
if (c == R_SPSR)
{
bytes[1] |= 0x40;
}
}
else
{
errfunc (ERR_NONFATAL, "CPSR or SPSR expected");
}
out (offset, segment, bytes, OUT_RAWDATA+4, NO_SEG, NO_SEG);
return;
case 0x11: // MSR <psr>,Rm
case 0x12: // MSR <psrf>,Rm
case 0x13: // MSR <psrf>,#expression
++codes;
bytes[0] = c | *codes++;
bytes[1] = *codes++;
bytes[2] = *codes;
if (keep == 0x11 || keep == 0x12)
{
// Rm
c = regval (&ins->oprs[1],1);
bytes[3] = c;
}
else
{
int shimm;
shimm = imm_shift (ins->oprs[1].offset);
if (shimm == -1)
{
errfunc (ERR_NONFATAL, "cannot create that constant");
}
bytes[3] = shimm & 0xFF;
bytes[2] |= (shimm & 0xF00) >> 8;
}
c = ins->oprs[0].basereg;
if ( keep == 0x11)
{
if ( c == R_CPSR || c == R_SPSR)
{
if ( c== R_SPSR)
{
bytes[1] |= 0x40;
}
}
else
{
errfunc (ERR_NONFATAL, "CPSR or SPSR expected");
}
}
else
{
if ( c == R_CPSR_FLG || c == R_SPSR_FLG)
{
if ( c== R_SPSR_FLG)
{
bytes[1] |= 0x40;
}
}
else
{
errfunc (ERR_NONFATAL, "CPSR_flg or SPSR_flg expected");
}
}
break;
case 0x14: // MUL Rd,Rm,Rs
case 0x15: // MULA Rd,Rm,Rs,Rn
++codes;
bytes[0] = c | *codes++;
bytes[1] = *codes++;
bytes[3] = *codes;
// Rd
bytes[1] |= regval (&ins->oprs[0],1);
if (has_S_code)
bytes[1] |= 0x10;
// Rm
bytes[3] |= regval (&ins->oprs[1],1);
// Rs
bytes[2] = regval (&ins->oprs[2],1);
if (keep == 0x15)
{
bytes[2] |= regval (&ins->oprs[3],1) << 4;
}
break;
case 0x16: // SMLAL RdHi,RdLo,Rm,Rs
++codes;
bytes[0] = c | *codes++;
bytes[1] = *codes++;
bytes[3] = *codes;
// RdHi
bytes[1] |= regval (&ins->oprs[1],1);
if (has_S_code)
bytes[1] |= 0x10;
// RdLo
bytes[2] = regval (&ins->oprs[0],1) << 4;
// Rm
bytes[3] |= regval (&ins->oprs[2],1);
// Rs
bytes[2] |= regval (&ins->oprs[3],1);
break;
case 0x17: // LDR Rd, expression
++codes;
bytes[0] = c | *codes++;
bytes[1] = *codes++;
// Rd
bytes[2] = regval (&ins->oprs[0],1) << 4;
if (has_B_code)
bytes[1] |= 0x40;
if (has_T_code)
{
errfunc (ERR_NONFATAL, "'T' not allowed in pre-index mode");
}
if (has_W_code)
{
errfunc (ERR_NONFATAL, "'!' not allowed");
}
// Rn - implicit R15
bytes[1] |= 0xF;
if (ins->oprs[1].segment != segment)
{
errfunc (ERR_NONFATAL, "label not in same segment");
}
data = ins->oprs[1].offset - (offset + 8);
if (data < 0)
{
data = -data;
}
else
{
bytes[1] |= 0x80;
}
if (data >= 0x1000)
{
errfunc (ERR_NONFATAL, "too long offset");
}
bytes[2] |= ((data & 0xF00) >> 8);
bytes[3] = data & 0xFF;
break;
case 0x18: // LDR Rd, [Rn]
++codes;
bytes[0] = c | *codes++;
bytes[1] = *codes++;
// Rd
bytes[2] = regval (&ins->oprs[0],1) << 4;
if (has_B_code)
bytes[1] |= 0x40;
if (has_T_code)
{
bytes[1] |= 0x20; // write-back
}
else
{
bytes[0] |= 0x01; // implicit pre-index mode
}
if (has_W_code)
{
bytes[1] |= 0x20; // write-back
}
// Rn
c = regval (&ins->oprs[1],1);
bytes[1] |= c;
if (c == 0x15) // R15
data = -8;
else
data = 0;
if (data < 0)
{
data = -data;
}
else
{
bytes[1] |= 0x80;
}
bytes[2] |= ((data & 0xF00) >> 8);
bytes[3] = data & 0xFF;
break;
case 0x19: // LDR Rd, [Rn,#expression]
case 0x20: // LDR Rd, [Rn,Rm]
case 0x21: // LDR Rd, [Rn,Rm,shift]
++codes;
bytes[0] = c | *codes++;
bytes[1] = *codes++;
// Rd
bytes[2] = regval (&ins->oprs[0],1) << 4;
if (has_B_code)
bytes[1] |= 0x40;
// Rn
c = regval (&ins->oprs[1],1);
bytes[1] |= c;
if (ins->oprs[ins->operands-1].bracket) // FIXME: Bracket on last operand -> pre-index <--
{
bytes[0] |= 0x01; // pre-index mode
if (has_W_code)
{
bytes[1] |= 0x20;
}
if (has_T_code)
{
errfunc (ERR_NONFATAL, "'T' not allowed in pre-index mode");
}
}
else
{
if (has_T_code) // Forced write-back in post-index mode
{
bytes[1] |= 0x20;
}
if (has_W_code)
{
errfunc (ERR_NONFATAL, "'!' not allowed in post-index mode");
}
}
if (keep == 0x19)
{
data = ins->oprs[2].offset;
if (data < 0)
{
data = -data;
}
else
{
bytes[1] |= 0x80;
}
if (data >= 0x1000)
{
errfunc (ERR_NONFATAL, "too long offset");
}
bytes[2] |= ((data & 0xF00) >> 8);
bytes[3] = data & 0xFF;
}
else
{
if (ins->oprs[2].minus == 0)
{
bytes[1] |= 0x80;
}
c = regval (&ins->oprs[2],1);
bytes[3] = c;
if (keep == 0x21)
{
c = ins->oprs[3].offset;
if (c > 0x1F)
{
errfunc (ERR_NONFATAL, "too large shiftvalue");
c = c & 0x1F;
}
bytes[2] |= c >> 1;
if (c & 0x01)
{
bytes[3] |= 0x80;
}
bytes[3] |= shiftval (&ins->oprs[3]) << 5;
}
}
break;
case 0x22: // LDRH Rd, expression
++codes;
bytes[0] = c | 0x01; // Implicit pre-index
bytes[1] = *codes++;
// Rd
bytes[2] = regval (&ins->oprs[0],1) << 4;
// Rn - implicit R15
bytes[1] |= 0xF;
if (ins->oprs[1].segment != segment)
{
errfunc (ERR_NONFATAL, "label not in same segment");
}
data = ins->oprs[1].offset - (offset + 8);
if (data < 0)
{
data = -data;
}
else
{
bytes[1] |= 0x80;
}
if (data >= 0x100)
{
errfunc (ERR_NONFATAL, "too long offset");
}
bytes[3] = *codes++;
bytes[2] |= ((data & 0xF0) >> 4);
bytes[3] |= data & 0xF;
break;
case 0x23: // LDRH Rd, Rn
++codes;
bytes[0] = c | 0x01; // Implicit pre-index
bytes[1] = *codes++;
// Rd
bytes[2] = regval (&ins->oprs[0],1) << 4;
// Rn
c = regval (&ins->oprs[1],1);
bytes[1] |= c;
if (c == 0x15) // R15
data = -8;
else
data = 0;
if (data < 0)
{
data = -data;
}
else
{
bytes[1] |= 0x80;
}
if (data >= 0x100)
{
errfunc (ERR_NONFATAL, "too long offset");
}
bytes[3] = *codes++;
bytes[2] |= ((data & 0xF0) >> 4);
bytes[3] |= data & 0xF;
break;
case 0x24: // LDRH Rd, Rn, expression
case 0x25: // LDRH Rd, Rn, Rm
++codes;
bytes[0] = c;
bytes[1] = *codes++;
// Rd
bytes[2] = regval (&ins->oprs[0],1) << 4;
// Rn
c = regval (&ins->oprs[1],1);
bytes[1] |= c;
if (ins->oprs[ins->operands-1].bracket) // FIXME: Bracket on last operand -> pre-index <--
{
bytes[0] |= 0x01; // pre-index mode
if (has_W_code)
{
bytes[1] |= 0x20;
}
}
else
{
if (has_W_code)
{
errfunc (ERR_NONFATAL, "'!' not allowed in post-index mode");
}
}
bytes[3] = *codes++;
if (keep == 0x24)
{
data = ins->oprs[2].offset;
if (data < 0)
{
data = -data;
}
else
{
bytes[1] |= 0x80;
}
if (data >= 0x100)
{
errfunc (ERR_NONFATAL, "too long offset");
}
bytes[2] |= ((data & 0xF0) >> 4);
bytes[3] |= data & 0xF;
}
else
{
if (ins->oprs[2].minus == 0)
{
bytes[1] |= 0x80;
}
c = regval (&ins->oprs[2],1);
bytes[3] |= c;
}
break;
case 0x26: // LDM/STM Rn, {reg-list}
++codes;
bytes[0] = c;
bytes[0] |= ( *codes >> 4) & 0xF;
bytes[1] = ( *codes << 4) & 0xF0;
++codes;
if (has_W_code)
{
bytes[1] |= 0x20;
}
if (has_F_code)
{
bytes[1] |= 0x40;
}
// Rn
bytes[1] |= regval (&ins->oprs[0],1);
data = ins->oprs[1].basereg;
bytes[2] = ((data >> 8) & 0xFF);
bytes[3] = (data & 0xFF);
break;
case 0x27: // SWP Rd, Rm, [Rn]
++codes;
bytes[0] = c;
bytes[0] |= *codes++;
bytes[1] = regval (&ins->oprs[2],1);
if (has_B_code)
{
bytes[1] |= 0x40;
}
bytes[2] = regval (&ins->oprs[0],1) << 4;
bytes[3] = *codes++;
bytes[3] |= regval (&ins->oprs[1],1);
break;
default:
errfunc (ERR_FATAL, "unknown decoding of instruction");
bytes[0] = c;
// And a fix nibble
++codes;
bytes[0] |= *codes++;
if ( *codes == 0x01) // An I bit
{
}
if ( *codes == 0x02) // An I bit
{
}
++codes;
}
out (offset, segment, bytes, OUT_RAWDATA+4, NO_SEG, NO_SEG);
}
*)
{$endif dummy}
begin
cai_align:=tai_align;
end.