fpc/compiler/arm/cpuelf.pas
2020-10-13 19:59:01 +00:00

992 lines
35 KiB
ObjectPascal

{
Copyright (c) 2012 by Sergei Gorelkin
Includes ELF-related code specific to ARM
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit cpuelf;
interface
{$i fpcdefs.inc}
implementation
uses
globtype,globals,cutils,cclasses,
verbose, elfbase,
systems,aasmbase,ogbase,ogelf,assemble;
type
TElfExeOutputARM=class(TElfExeOutput)
private
procedure MaybeWriteGOTEntry(reltyp:byte;relocval:aint;objsym:TObjSymbol);
protected
procedure WriteFirstPLTEntry;override;
procedure WritePLTEntry(exesym:TExeSymbol);override;
procedure WriteIndirectPLTEntry(exesym:TExeSymbol);override;
procedure GOTRelocPass1(objsec:TObjSection;var idx:longint);override;
procedure DoRelocationFixup(objsec:TObjSection);override;
end;
const
{ Relocation types }
R_ARM_NONE = 0;
R_ARM_PC24 = 1; // deprecated
R_ARM_ABS32 = 2;
R_ARM_REL32 = 3;
R_ARM_LDR_PC_G0 = 4;
R_ARM_ABS16 = 5;
R_ARM_ABS12 = 6;
R_ARM_THM_ABS5 = 7;
R_ARM_ABS8 = 8;
R_ARM_SBREL32 = 9;
R_ARM_THM_CALL = 10;
R_ARM_THM_PC8 = 11;
R_ARM_BREL_ADJ = 12;
R_ARM_TLS_DESC = 13;
{ 14,15,16 are obsolete }
R_ARM_TLS_DTPMOD32 = 17;
R_ARM_TLS_DTPOFF32 = 18;
R_ARM_TLS_TPOFF32 = 19;
R_ARM_COPY = 20;
R_ARM_GLOB_DAT = 21;
R_ARM_JUMP_SLOT = 22;
R_ARM_RELATIVE = 23;
R_ARM_GOTOFF32 = 24;
R_ARM_BASE_PREL = 25;
R_ARM_GOT_BREL = 26;
R_ARM_PLT32 = 27; // deprecated
R_ARM_CALL = 28;
R_ARM_JUMP24 = 29;
R_ARM_THM_JUMP24 = 30;
R_ARM_BASE_ABS = 31;
{ 32,33,34 are obsolete }
R_ARM_LDR_SBREL_11_0 = 35; // deprecated
R_ARM_ALU_SBREL_19_12 = 36; // deprecated
R_ARM_ALU_SBREL_27_20 = 37; // deprecated
R_ARM_TARGET1 = 38;
R_ARM_SBREL31 = 39; // deprecated
R_ARM_V4BX = 40;
R_ARM_TARGET2 = 41;
R_ARM_PREL31 = 42;
R_ARM_MOVW_ABS_NC = 43;
R_ARM_MOVT_ABS = 44;
R_ARM_MOVW_PREL_NC = 45;
R_ARM_MOVT_PREL = 46;
R_ARM_THM_MOVW_ABS_NC = 47;
R_ARM_THM_MOVT_ABS = 48;
R_ARM_THM_MOVW_PREL_NC = 49;
R_ARM_THM_MOVT_PREL = 50;
R_ARM_THM_JUMP19 = 51;
R_ARM_THM_JUMP6 = 52;
R_ARM_THM_ALU_PREL_11_0 = 53;
R_ARM_THM_PC12 = 54;
R_ARM_ABS32_NOI = 55;
R_ARM_REL32_NOI = 56;
R_ARM_ALU_PC_G0_NC = 57;
R_ARM_ALU_PC_G0 = 58;
R_ARM_ALU_PC_G1_NC = 59;
R_ARM_ALU_PC_G1 = 60;
R_ARM_ALU_PC_G2 = 61;
R_ARM_LDR_PC_G1 = 62;
R_ARM_LDR_PC_G2 = 63;
R_ARM_LDRS_PC_G0 = 64;
R_ARM_LDRS_PC_G1 = 65;
R_ARM_LDRS_PC_G2 = 66;
R_ARM_LDC_PC_G0 = 67;
R_ARM_LDC_PC_G1 = 68;
R_ARM_LDC_PC_G2 = 69;
R_ARM_ALU_SB_G0_NC = 70;
R_ARM_ALU_SB_G0 = 71;
R_ARM_ALU_SB_G1_NC = 72;
R_ARM_ALU_SB_G1 = 73;
R_ARM_ALU_SB_G2 = 74;
R_ARM_LDR_SB_G0 = 75;
R_ARM_LDR_SB_G1 = 76;
R_ARM_LDR_SB_G2 = 77;
R_ARM_LDRS_SB_G0 = 78;
R_ARM_LDRS_SB_G1 = 79;
R_ARM_LDRS_SB_G2 = 80;
R_ARM_LDC_SB_G0 = 81;
R_ARM_LDC_SB_G1 = 82;
R_ARM_LDC_SB_G2 = 83;
R_ARM_MOVW_BREL_NC = 84;
R_ARM_MOVT_BREL = 85;
R_ARM_MOVW_BREL = 86;
R_ARM_THM_MOVW_BREL_NC = 87;
R_ARM_THM_MOVT_BREL = 88;
R_ARM_THM_MOVW_BREL = 89;
R_ARM_TLS_GOTDESC = 90;
R_ARM_TLS_CALL = 91;
R_ARM_TLS_DESCSEQ = 92;
R_ARM_THM_TLS_CALL = 93;
R_ARM_PLT32_ABS = 94;
R_ARM_GOT_ABS = 95;
R_ARM_GOT_PREL = 96;
R_ARM_GOT_BREL12 = 97;
R_ARM_GOTOFF12 = 98;
R_ARM_GOTRELAX = 99;
R_ARM_GNU_VTENTRY = 100; // deprecated - old C++ abi
R_ARM_GNU_VTINHERIT = 101; // deprecated - old C++ abi
R_ARM_THM_JUMP11 = 102;
R_ARM_THM_JUMP8 = 103;
R_ARM_TLS_GD32 = 104;
R_ARM_TLS_LDM32 = 105;
R_ARM_TLS_LDO32 = 106;
R_ARM_TLS_IE32 = 107;
R_ARM_TLS_LE32 = 108;
R_ARM_TLS_LDO12 = 109;
R_ARM_TLS_LE12 = 110;
R_ARM_TLS_IE12GP = 111;
{ 112-127 are for private experiments }
{ 128 is obsolete }
R_ARM_THM_TLS_DESCSEQ = 129;
R_ARM_IRELATIVE = 160;
{ Section types }
SHT_ARM_EXIDX = $70000001;
SHT_ARM_PREEMPTMAP = $70000002;
SHT_ARM_ATTRIBUTES = $70000003;
SHT_ARM_DEBUGOVERLAY = $70000004;
SHT_ARM_OVERLAYSECTION = $70000005;
TCB_SIZE = 8;
{ ELF header e_flags }
EF_ARM_BE8 = $00800000;
EF_ARM_EABIMASK = $FF000000;
EF_ARM_EABI_UNKNOWN = $00000000;
EF_ARM_EABI_VER1 = $01000000;
EF_ARM_EABI_VER2 = $02000000;
EF_ARM_EABI_VER3 = $03000000;
EF_ARM_EABI_VER4 = $04000000;
EF_ARM_EABI_VER5 = $05000000;
{ Using short identifiers to save typing. This ARM thing has more relocations
than it has instructions... }
const
g0=1;
g1=2;
g2=3;
gpmask=3;
pc=4;
nc=8;
thm=16;
type
TArmRelocProp=record
name: PChar;
flags: byte; // bits 0,1: group, bit 2: PC-relative, bit 3: unchecked,
// bit 4: THUMB
end;
const
relocprops: array[0..111] of TArmRelocProp = (
(name: 'R_ARM_NONE'; flags: 0), //
(name: 'R_ARM_PC24'; flags: pc), //
(name: 'R_ARM_ABS32'; flags: 0), //
(name: 'R_ARM_REL32'; flags: pc), //
(name: 'R_ARM_LDR_PC_G0'; flags: g0+pc), //
(name: 'R_ARM_ABS16'; flags: 0),
(name: 'R_ARM_ABS12'; flags: 0),
(name: 'R_ARM_THM_ABS5'; flags: thm),
(name: 'R_ARM_ABS8'; flags: 0),
(name: 'R_ARM_SBREL32'; flags: 0),
(name: 'R_ARM_THM_CALL'; flags: thm),
(name: 'R_ARM_THM_PC8'; flags: pc+thm),
(name: 'R_ARM_BREL_ADJ'; flags: 0),
(name: 'R_ARM_TLS_DESC'; flags: 0),
(name: 'obsolete(14)'; flags: 0),
(name: 'obsolete(15)'; flags: 0),
(name: 'obsolete(16)'; flags: 0),
(name: 'R_ARM_TLS_DTPMOD32'; flags: 0),
(name: 'R_ARM_TLS_DTPOFF32'; flags: 0),
(name: 'R_ARM_TLS_TPOFF32'; flags: 0),
(name: 'R_ARM_COPY'; flags: 0),
(name: 'R_ARM_GLOB_DAT'; flags: 0),
(name: 'R_ARM_JUMP_SLOT'; flags: 0),
(name: 'R_ARM_RELATIVE'; flags: 0),
(name: 'R_ARM_GOTOFF32'; flags: 0),
(name: 'R_ARM_BASE_PREL'; flags: pc), //
(name: 'R_ARM_GOT_BREL'; flags: 0), //
(name: 'R_ARM_PLT32'; flags: pc), //
(name: 'R_ARM_CALL'; flags: pc), //
(name: 'R_ARM_JUMP24'; flags: pc), //
(name: 'R_ARM_THM_JUMP24'; flags: thm),
(name: 'R_ARM_BASE_ABS'; flags: 0),
(name: 'obsolete(32)'; flags: 0),
(name: 'obsolete(33)'; flags: 0),
(name: 'obsolete(34)'; flags: 0),
(name: 'R_ARM_LDR_SBREL_11_0'; flags: g0),
(name: 'R_ARM_ALU_SBREL_19_12'; flags: g1),
(name: 'R_ARM_ALU_SBREL_27_20'; flags: g2),
(name: 'R_ARM_TARGET1'; flags: 0),
(name: 'R_ARM_SBREL31'; flags: 0),
(name: 'R_ARM_V4BX'; flags: 0),
(name: 'R_ARM_TARGET2'; flags: 0),
(name: 'R_ARM_PREL31'; flags: 0),
(name: 'R_ARM_MOVW_ABS_NC'; flags: nc),
(name: 'R_ARM_MOVT_ABS'; flags: 0),
(name: 'R_ARM_MOVW_PREL_NC'; flags: nc),
(name: 'R_ARM_MOVT_PREL'; flags: 0),
(name: 'R_ARM_THM_MOVW_ABS_NC'; flags: nc+thm),
(name: 'R_ARM_THM_MOVT_ABS'; flags: thm),
(name: 'R_ARM_THM_MOVW_PREL_NC'; flags: nc+thm),
(name: 'R_ARM_THM_MOVT_PREL'; flags: thm),
(name: 'R_ARM_THM_JUMP19'; flags: thm),
(name: 'R_ARM_THM_JUMP6'; flags: thm),
(name: 'R_ARM_THM_ALU_PREL_11_0'; flags: thm+pc),
(name: 'R_ARM_THM_PC12'; flags: thm+pc),
(name: 'R_ARM_ABS32_NOI'; flags: 0),
(name: 'R_ARM_REL32_NOI'; flags: pc),
(name: 'R_ARM_ALU_PC_G0_NC'; flags: pc+g0+nc), //
(name: 'R_ARM_ALU_PC_G0'; flags: pc+g0), //
(name: 'R_ARM_ALU_PC_G1_NC'; flags: pc+g1+nc), //
(name: 'R_ARM_ALU_PC_G1'; flags: pc+g1), //
(name: 'R_ARM_ALU_PC_G2'; flags: pc+g2), //
(name: 'R_ARM_LDR_PC_G1'; flags: pc+g1), //
(name: 'R_ARM_LDR_PC_G2'; flags: pc+g2), //
(name: 'R_ARM_LDRS_PC_G0'; flags: pc+g0), //
(name: 'R_ARM_LDRS_PC_G1'; flags: pc+g1), //
(name: 'R_ARM_LDRS_PC_G2'; flags: pc+g2), //
(name: 'R_ARM_LDC_PC_G0'; flags: pc+g0), //
(name: 'R_ARM_LDC_PC_G1'; flags: pc+g1), //
(name: 'R_ARM_LDC_PC_G2'; flags: pc+g2), //
(name: 'R_ARM_ALU_SB_G0_NC'; flags: g0+nc), //
(name: 'R_ARM_ALU_SB_G0'; flags: g0), //
(name: 'R_ARM_ALU_SB_G1_NC'; flags: g1+nc), //
(name: 'R_ARM_ALU_SB_G1'; flags: g1), //
(name: 'R_ARM_ALU_SB_G2'; flags: g2), //
(name: 'R_ARM_LDR_SB_G0'; flags: g0), //
(name: 'R_ARM_LDR_SB_G1'; flags: g1), //
(name: 'R_ARM_LDR_SB_G2'; flags: g2), //
(name: 'R_ARM_LDRS_SB_G0'; flags: g0), //
(name: 'R_ARM_LDRS_SB_G1'; flags: g1), //
(name: 'R_ARM_LDRS_SB_G2'; flags: g2), //
(name: 'R_ARM_LDC_SB_G0'; flags: g0), //
(name: 'R_ARM_LDC_SB_G1'; flags: g1), //
(name: 'R_ARM_LDC_SB_G2'; flags: g2), //
(name: 'R_ARM_MOVW_BREL_NC'; flags: nc),
(name: 'R_ARM_MOVT_BREL'; flags: 0),
(name: 'R_ARM_MOVW_BREL'; flags: 0),
(name: 'R_ARM_THM_MOVW_BREL_NC'; flags: nc+thm),
(name: 'R_ARM_THM_MOVT_BREL'; flags: thm),
(name: 'R_ARM_THM_MOVW_BREL'; flags: thm),
(name: 'R_ARM_TLS_GOTDESC'; flags: 0),
(name: 'R_ARM_TLS_CALL'; flags: 0),
(name: 'R_ARM_TLS_DESCSEQ'; flags: 0),
(name: 'R_ARM_THM_TLS_CALL'; flags: 0),
(name: 'R_ARM_PLT32_ABS'; flags: 0),
(name: 'R_ARM_GOT_ABS'; flags: 0),
(name: 'R_ARM_GOT_PREL'; flags: pc), //
(name: 'R_ARM_GOT_BREL12'; flags: 0),
(name: 'R_ARM_GOTOFF12'; flags: 0),
(name: 'R_ARM_GOTRELAX'; flags: 0),
(name: 'R_ARM_GNU_VTENTRY'; flags: 0),
(name: 'R_ARM_GNU_VTINHERIT'; flags: 0),
(name: 'R_ARM_THM_JUMP11'; flags: thm),
(name: 'R_ARM_THM_JUMP8'; flags: thm),
(name: 'R_ARM_TLS_GD32'; flags: 0),
(name: 'R_ARM_TLS_LDM32'; flags: 0),
(name: 'R_ARM_TLS_LDO32'; flags: 0),
(name: 'R_ARM_TLS_IE32'; flags: 0),
(name: 'R_ARM_TLS_LE32'; flags: 0),
(name: 'R_ARM_TLS_LDO12'; flags: 0),
(name: 'R_ARM_TLS_LE12'; flags: 0),
(name: 'R_ARM_TLS_IE12GP'; flags: 0)
);
{****************************************************************************
ELF Target methods
****************************************************************************}
function elf_arm_encodereloc(objrel:TObjRelocation):byte;
begin
case objrel.typ of
RELOC_NONE:
result:=R_ARM_NONE;
RELOC_ABSOLUTE:
result:=R_ARM_ABS32;
RELOC_RELATIVE:
result:=R_ARM_REL32;
RELOC_RELATIVE_24:
result:=R_ARM_JUMP24;
RELOC_RELATIVE_CALL:
result:=R_ARM_CALL;
RELOC_RELATIVE_24_THUMB:
result:=R_ARM_CALL;
RELOC_RELATIVE_CALL_THUMB:
result:=R_ARM_THM_CALL;
RELOC_GOT32:
result:=R_ARM_GOT_BREL;
RELOC_TPOFF:
if current_settings.tlsmodel=tlsm_initial_exec then
result:=R_ARM_TLS_IE32
else if current_settings.tlsmodel=tlsm_local_exec then
result:=R_ARM_TLS_LE32
else
Internalerror(2019092901);
RELOC_TLSGD:
result:=R_ARM_TLS_GD32;
RELOC_TLSDESC:
result:=R_ARM_TLS_GOTDESC;
RELOC_TLS_CALL:
result:=R_ARM_TLS_CALL;
RELOC_ARM_CALL:
result:=R_ARM_CALL;
RELOC_DTPOFF:
result:=R_ARM_TLS_LDO32;
else
InternalError(2012110602);
end;
end;
function elf_arm_relocname(reltyp:byte):string;
begin
if reltyp<=high(relocprops) then
result:=relocprops[reltyp].name
else
case reltyp of
112..127:
result:='R_ARM_PRIVATE_'+tostr(reltyp-112);
R_ARM_THM_TLS_DESCSEQ:
result:='R_ARM_THM_TLS_DESCSEQ';
R_ARM_IRELATIVE:
result:='R_ARM_IRELATIVE';
else
result:='unknown ('+tostr(reltyp)+')';
end;
end;
procedure elf_arm_loadreloc(objrel:TObjRelocation);
begin
if (objrel.ftype=R_ARM_V4BX) then
objrel.flags:=objrel.flags or rf_nosymbol;
end;
function elf_arm_loadsection(objinput:TElfObjInput;objdata:TObjData;const shdr:TElfsechdr;shindex:longint):boolean;
var
secname:string;
begin
case shdr.sh_type of
SHT_ARM_EXIDX,
SHT_ARM_PREEMPTMAP,
SHT_ARM_ATTRIBUTES:
begin
objinput.CreateSection(shdr,shindex,objdata,secname);
result:=true;
end;
else
writeln(hexstr(shdr.sh_type,8));
result:=false;
end;
end;
{****************************************************************************
TELFExeOutputARM
****************************************************************************}
function group_reloc_mask(value:longword;n:longint;out final_residual:longword):longword;
var
i:longint;
g_n:longword;
shift:longint;
begin
result:=0;
for i:=0 to n do
begin
if (value=0) then
shift:=0
else
{ MSB in the residual, aligned to a 2-bit boundary }
shift:=max(0,(bsrdword(value) and (not 1))-6);
{ Calculate plain g_n and encode it into constant+rotation form }
g_n:=value and ($ff shl shift);
result:=(g_n shr shift);
if (g_n>$FF) then
result:=result or ((32-shift) div 2) shl 8;
{ Mask away the processed part of residual }
value:=value and (not g_n);
end;
final_residual:=value;
end;
procedure TElfExeOutputARM.MaybeWriteGOTEntry(reltyp:byte;relocval:aint;objsym:TObjSymbol);
var
gotoff,tmp:aword;
begin
gotoff:=objsym.exesymbol.gotoffset;
if gotoff=0 then
InternalError(2012060902);
{ the GOT slot itself, and a dynamic relocation for it }
{ TODO: only data symbols must get here }
if gotoff=gotobjsec.Data.size+sizeof(pint) then
begin
gotobjsec.write(relocval,sizeof(pint));
tmp:=gotobjsec.mempos+gotoff-sizeof(pint);
if (objsym.exesymbol.dynindex>0) then
begin
WriteDynRelocEntry(tmp,R_ARM_GLOB_DAT,objsym.exesymbol.dynindex,0)
end
else if IsSharedLibrary then
WriteDynRelocEntry(tmp,R_ARM_RELATIVE,0,relocval);
end;
end;
procedure TElfExeOutputARM.WriteFirstPLTEntry;
begin
pltobjsec.WriteBytes(
#$04#$E0#$2D#$E5+ // str lr, [sp, #-4]!
#$04#$E0#$9F#$E5+ // ldr lr, [pc, #4]
#$0E#$E0#$8F#$E0+ // add lr, pc, lr
#$08#$F0#$BE#$E5); // ldr pc, [lr, #8]!
// .long _GLOBAL_OFFSET_TABLE-.
pltobjsec.writeReloc_internal(gotpltobjsec,0,4,RELOC_RELATIVE);
end;
procedure TElfExeOutputARM.WritePLTEntry(exesym: TExeSymbol);
var
tmp: longword;
sym:TObjSymbol;
begin
{ TODO: it may be beneficial to postpone processing until after mempos pass,
and calculate instructions directly, instead of messing with complex relocations. }
{ Group relocation to "section+offset" with REL-style is impossible, because the
offset has be encoded into instructions, and it is only possible for offsets
representable as shifter constants. Therefore we need to define a symbol
(and risk a name conflict, to some degree) }
internalobjdata.setsection(gotpltobjsec);
sym:=internalobjdata.SymbolDefine(exesym.name+'_ptr',AB_LOCAL,AT_DATA);
pltobjsec.WriteBytes(
#$08#$C0#$4F#$E2+ // add ip,pc,#:pc_g0_nc:sym-8
#$04#$C0#$4C#$E2+ // add ip,ip,#:pc_g1_nc:sym-4
#$00#$F0#$BC#$E5); // ldr pc,[ip,#:pc_g2:sym]!
pltobjsec.addrawReloc(pltobjsec.size-12,sym,R_ARM_ALU_PC_G0_NC);
pltobjsec.addrawReloc(pltobjsec.size-8,sym,R_ARM_ALU_PC_G1_NC);
pltobjsec.addrawReloc(pltobjsec.size-4,sym,R_ARM_LDR_PC_G2);
{ .got.plt slot initially points to the first PLT entry }
gotpltobjsec.writeReloc_internal(pltobjsec,0,sizeof(pint),RELOC_ABSOLUTE);
{ write a .rel.plt entry (Elf32_rel record) }
pltrelocsec.writeReloc_internal(gotpltobjsec,gotpltobjsec.size-sizeof(pint),sizeof(pint),RELOC_ABSOLUTE);
tmp:=(exesym.dynindex shl 8) or R_ARM_JUMP_SLOT;
pltrelocsec.write(tmp,sizeof(tmp));
if ElfTarget.relocs_use_addend then
pltrelocsec.writezeros(sizeof(pint));
end;
procedure TElfExeOutputARM.WriteIndirectPLTEntry(exesym: TExeSymbol);
begin
inherited WriteIndirectPLTEntry(exesym);
end;
procedure TElfExeOutputARM.GOTRelocPass1(objsec:TObjSection;var idx:longint);
var
objreloc:TObjRelocation;
exesym:TExeSymbol;
objsym:TObjSymbol;
reltyp:byte;
begin
objreloc:=TObjRelocation(objsec.ObjRelocations[idx]);
if (ObjReloc.flags and rf_raw)=0 then
reltyp:=ElfTarget.encodereloc(ObjReloc)
else
reltyp:=ObjReloc.ftype;
case reltyp of
// Any call or jump can go through PLT, no x86-like segregation here.
R_ARM_PC24,
R_ARM_CALL,
R_ARM_JUMP24,
R_ARM_PREL31,
R_ARM_THM_CALL,
R_ARM_THM_JUMP24,
R_ARM_THM_JUMP19,
R_ARM_PLT32:
begin
if (objreloc.symbol=nil) or (objreloc.symbol.exesymbol=nil) then
exit;
exesym:=objreloc.symbol.exesymbol;
exesym.objsymbol.refs:=exesym.objsymbol.refs or symref_plt;
end;
R_ARM_ABS32:
if Assigned(ObjReloc.symbol.exesymbol) then
begin
objsym:=ObjReloc.symbol.exesymbol.ObjSymbol;
if (oso_executable in objsec.SecOptions) or
not (oso_write in objsec.SecOptions) then
objsym.refs:=objsym.refs or symref_from_text;
end;
end;
case reltyp of
R_ARM_ABS32:
begin
if not IsSharedLibrary then
exit;
if (oso_executable in objsec.SecOptions) or
not (oso_write in objsec.SecOptions) then
hastextrelocs:=True;
dynrelocsec.alloc(dynrelocsec.shentsize);
objreloc.flags:=objreloc.flags or rf_dynamic;
end;
//R_ARM_GOT_ABS,
//R_ARM_GOT_PREL,
//R_ARM_GOT_BREL12,
R_ARM_GOT_BREL:
begin
AllocGOTSlot(objreloc.symbol);
end;
R_ARM_TLS_IE32:
AllocGOTSlot(objreloc.symbol);
end;
end;
procedure TElfExeOutputARM.DoRelocationFixup(objsec:TObjSection);
var
i,zero:longint;
objreloc: TObjRelocation;
tmp,
address,
relocval : aint;
relocsec : TObjSection;
data: TDynamicArray;
reltyp: byte;
group:longint;
rotation:longint;
residual,g_n:longword;
curloc: aword;
bit_S,bit_I1,bit_I2: aint;
begin
data:=objsec.data;
for i:=0 to objsec.ObjRelocations.Count-1 do
begin
objreloc:=TObjRelocation(objsec.ObjRelocations[i]);
case objreloc.typ of
RELOC_NONE:
continue;
RELOC_ZERO:
begin
data.Seek(objreloc.dataoffset);
zero:=0;
data.Write(zero,4);
continue;
end;
else
;
end;
if (objreloc.flags and rf_raw)=0 then
reltyp:=ElfTarget.encodereloc(objreloc)
else
reltyp:=objreloc.ftype;
{ TODO: TARGET1 and TARGET2 are intended to be configured via commandline }
if (reltyp=R_ARM_TARGET1) then
reltyp:=R_ARM_ABS32; { may be ABS32 or REL32 }
if (reltyp=R_ARM_TARGET2) then
reltyp:=R_ARM_ABS32; { may be ABS32,REL32 or GOT_PREL }
if ElfTarget.relocs_use_addend then
address:=objreloc.orgsize
else
begin
data.Seek(objreloc.dataoffset);
data.Read(address,4);
end;
if assigned(objreloc.symbol) then
begin
relocsec:=objreloc.symbol.objsection;
relocval:=objreloc.symbol.address;
end
else if assigned(objreloc.objsection) then
begin
relocsec:=objreloc.objsection;
relocval:=objreloc.objsection.mempos
end
else if (reltyp=R_ARM_V4BX) then
continue // ignore for now
else
internalerror(2012060702);
{ Only debug sections are allowed to have relocs pointing to unused sections }
if assigned(relocsec) and not (relocsec.used and assigned(relocsec.exesection)) and
not (oso_debug in objsec.secoptions) then
begin
writeln(objsec.fullname,' references ',relocsec.fullname);
internalerror(2012060703);
end;
curloc:=objsec.mempos+objreloc.dataoffset;
if (relocsec=nil) or (relocsec.used) then
case reltyp of
R_ARM_ABS32:
begin
if (objreloc.flags and rf_dynamic)<>0 then
begin
if (objreloc.symbol=nil) or
(objreloc.symbol.exesymbol=nil) or
(objreloc.symbol.exesymbol.dynindex=0) then
begin
address:=address+relocval;
WriteDynRelocEntry(objreloc.dataoffset+objsec.mempos,R_ARM_RELATIVE,0,address);
end
else
{ Don't modify address in this case, as it serves as addend for RTLD }
WriteDynRelocEntry(objreloc.dataoffset+objsec.mempos,R_ARM_ABS32,objreloc.symbol.exesymbol.dynindex,0);
end
else
address:=address+relocval;
end;
R_ARM_REL32:
begin
address:=address+relocval-curloc;
end;
R_ARM_PC24,
R_ARM_PLT32,
R_ARM_JUMP24,
R_ARM_CALL:
begin
{ R_ARM_PC24 is deprecated in favour of R_ARM_JUMP24 and R_ARM_CALL,
which allow to distinguish opcodes without examining them.
Difference is:
1) when target is Thumb, BL can be changed to BLX, while B has
to go via thunking code.
2) when target is unresolved weak symbol, CALL must be changed to NOP,
while JUMP24 behavior is unspecified. }
tmp:=sarlongint((address and $00FFFFFF) shl 8,6);
tmp:=tmp+relocval;
if odd(tmp) then { dest is Thumb? }
begin
if (reltyp=R_ARM_CALL) then
{ change BL to BLX, dest bit 1 goes to instruction bit 24 }
address:=(address and $FE000000) or (((tmp-curloc) and 2) shl 23) or $F0000000
else
InternalError(2014092001);
end
else if (address and $FF000000)=$FA000000 then
begin
{ Change BLX to BL }
address:=(address and $EA000000) or $01000000;
end;
tmp:=tmp-curloc;
// TODO: check overflow
address:=(address and $FF000000) or ((tmp and $3FFFFFE) shr 2);
end;
R_ARM_BASE_PREL: { GOTPC }
address:=address+gotsymbol.address-curloc;
R_ARM_GOT_BREL: { GOT32 }
begin
MaybeWriteGOTEntry(reltyp,relocval,objreloc.symbol);
address:=address+gotobjsec.mempos+objreloc.symbol.exesymbol.gotoffset-sizeof(pint)-gotsymbol.address;
end;
R_ARM_GOTOFF32:
address:=address+relocval-gotsymbol.address;
R_ARM_ALU_PC_G0_NC,
R_ARM_ALU_PC_G1_NC,
R_ARM_ALU_PC_G0,
R_ARM_ALU_PC_G1,
R_ARM_ALU_PC_G2,
R_ARM_ALU_SB_G0_NC,
R_ARM_ALU_SB_G1_NC,
R_ARM_ALU_SB_G0,
R_ARM_ALU_SB_G1,
R_ARM_ALU_SB_G2:
begin
group:=(relocprops[reltyp].flags and gpmask)-1;
if group<0 then
InternalError(2012112601);
if (not ElfTarget.relocs_use_addend) then
begin
{ initial addend must be determined by parsing the instruction }
tmp:=address and $FF;
rotation:=(address and $F00) shr 7; { is in multpile of 2 bits }
if rotation<>0 then
tmp:=RorDword(tmp,rotation);
case (address and $1E00000) of
1 shl 23: ; { ADD instruction }
1 shl 22: tmp:=-tmp; { SUB instruction }
else
Comment(v_error,'Group ALU relocations are permitted only for ADD or SUB instructions');
continue;
end;
end
else { TODO: must read the instruction anyway!! }
tmp:=address;
if (relocprops[reltyp].flags and pc)<>0 then
tmp:=tmp+relocval-curloc
else
tmp:=tmp+relocval{-SB}; { assuming zero segment base }
g_n:=group_reloc_mask(abs(tmp),group,residual);
{TODO: check for overflow}
address:=address and $FF1FF000 or g_n;
{ set opcode depending on the sign of resulting value }
if tmp<0 then
address:=address or (1 shl 22)
else
address:=address or (1 shl 23);
end;
R_ARM_LDR_PC_G0,
R_ARM_LDR_PC_G1,
R_ARM_LDR_PC_G2,
R_ARM_LDR_SB_G0,
R_ARM_LDR_SB_G1,
R_ARM_LDR_SB_G2:
begin
group:=(relocprops[reltyp].flags and gpmask)-1;
if group<0 then
InternalError(2012112602);
if (not ElfTarget.relocs_use_addend) then
begin
tmp:=(address and $FFF);
if (address and (1 shl 23))=0 then
tmp:=-tmp;
end
else { TODO: must read the instruction anyway }
tmp:=address;
if (relocprops[reltyp].flags and pc)<>0 then
tmp:=tmp+relocval-curloc
else
tmp:=tmp+relocval{-SB}; { assuming zero segment base }
group_reloc_mask(abs(tmp),group-1,residual);
if residual>$FFF then
InternalError(2012112603); { TODO: meaningful overflow error message }
address:=address and $FF7FF000 or residual;
if tmp>=0 then
address:=address or (1 shl 23);
end;
R_ARM_LDRS_PC_G0,
R_ARM_LDRS_PC_G1,
R_ARM_LDRS_PC_G2,
R_ARM_LDRS_SB_G0,
R_ARM_LDRS_SB_G1,
R_ARM_LDRS_SB_G2:
begin
group:=(relocprops[reltyp].flags and gpmask)-1;
if group<0 then
InternalError(2012112606);
if (not ElfTarget.relocs_use_addend) then
begin
tmp:=((address and $F00) shr 4) or (address and $F);
if (address and (1 shl 23))=0 then
tmp:=-tmp;
end
else { TODO: must read the instruction anyway }
tmp:=address;
if (relocprops[reltyp].flags and pc)<>0 then
tmp:=tmp+relocval-curloc
else
tmp:=tmp+relocval{-SB}; { assuming zero segment base }
group_reloc_mask(abs(tmp),group-1,residual);
if (residual>$FF) then
InternalError(2012112607); { TODO: meaningful overflow error message }
address:=address and $FF7FF0F0 or ((residual and $F0) shl 4) or (residual and $F);
if tmp>=0 then
address:=address or (1 shl 23);
end;
R_ARM_LDC_PC_G0,
R_ARM_LDC_PC_G1,
R_ARM_LDC_PC_G2,
R_ARM_LDC_SB_G0,
R_ARM_LDC_SB_G1,
R_ARM_LDC_SB_G2:
begin
group:=(relocprops[reltyp].flags and gpmask)-1;
if group<0 then
InternalError(2012112604);
if (not ElfTarget.relocs_use_addend) then
begin
tmp:=(address and $FF) shl 2;
if (address and (1 shl 23))=0 then
tmp:=-tmp;
end
else { TODO: must read the instruction anyway }
tmp:=address;
if (relocprops[reltyp].flags and pc)<>0 then
tmp:=tmp+relocval-curloc
else
tmp:=tmp+relocval{-SB}; { assuming zero segment base }
group_reloc_mask(abs(tmp),group-1,residual);
{ residual must be divisible by 4 and fit into 8 bits after having been divided }
if ((residual and 3)<>0) or (residual>$3FF) then
InternalError(2012112605); { TODO: meaningful overflow error message }
address:=address and $FF7FFF00 or (residual shr 2);
if tmp>=0 then
address:=address or (1 shl 23);
end;
R_ARM_THM_CALL:
begin
if (not ElfTarget.relocs_use_addend) then
begin
address:=((address and $ffff) shl 16) or word(address shr 16);
bit_S:=(address shr 26) and 1;
bit_I1:=(bit_S xor ((address shr 13) and 1)) xor 1;
bit_I2:=(bit_S xor ((address shr 11) and 1)) xor 1;
tmp:=((-bit_S) shl 24) or (bit_I1 shl 23) or (bit_I2 shl 22) or (((address shr 16) and $3ff) shl 12) or ((address and $7ff) shl 1);
end
else { TODO: must read the instruction anyway }
tmp:=address;
tmp:=tmp+relocval; { dest address }
if odd(tmp) then { if it's Thumb code, change possible BLX to BL }
address:=address or $1800;
tmp:=tmp-curloc; { now take PC-relative }
{ TODO: overflow check, different limit for Thumb and Thumb-2 }
{ now encode this mess back }
if (address and $5000)=$4000 then
tmp:=(tmp+2) and (not 3);
bit_S:=(tmp shr 31) and 1;
address:=(address and $F800D000) or
(bit_S shl 26) or
(((tmp shr 12) and $3ff) shl 16) or
((tmp shr 1) and $7FF) or
((((tmp shr 23) and 1) xor 1 xor bit_S) shl 13) or
((((tmp shr 22) and 1) xor 1 xor bit_S) shl 11);
address:=((address and $ffff) shl 16) or word(address shr 16);
end;
R_ARM_TLS_IE32:
begin
relocval:=relocval-tlsseg.mempos+align_aword(TCB_SIZE,tlsseg.align);
MaybeWriteGOTEntry(reltyp,relocval,objreloc.symbol);
{ resolves to PC-relative offset to GOT slot }
relocval:=gotobjsec.mempos+objreloc.symbol.exesymbol.gotoffset-sizeof(pint);
address:=address+relocval-curloc;
end;
R_ARM_TLS_LE32:
if IsSharedLibrary then
{ TODO: error message saying "recompile with -Cg" isn't correct. Or is it? }
ReportNonDSOReloc(reltyp,objsec,objreloc)
else
address:=relocval-tlsseg.mempos+align_aword(TCB_SIZE,tlsseg.align);
else
begin
writeln(objreloc.ftype);
internalerror(2006040107);
end;
end
else { not relocsec.Used }
address:=0; { Relocation in debug section points to unused section, which is eliminated by linker }
data.Seek(objreloc.dataoffset);
data.Write(address,4);
end;
end;
function elf_arm_encodeflags: longword;
begin
result:=EF_ARM_EABI_VER5;
end;
{*****************************************************************************
Initialize
*****************************************************************************}
const
elf_target_arm: TElfTarget =
(
max_page_size: $8000;
exe_image_base: $8000;
machine_code: EM_ARM;
relocs_use_addend: false;
dyn_reloc_codes: (
R_ARM_RELATIVE,
R_ARM_GLOB_DAT,
R_ARM_JUMP_SLOT,
R_ARM_COPY,
R_ARM_IRELATIVE
);
relocname: @elf_arm_relocName;
encodereloc: @elf_arm_encodeReloc;
loadreloc: @elf_arm_loadReloc;
loadsection: @elf_arm_loadSection;
encodeflags: @elf_arm_encodeflags;
);
as_arm_elf32_info : tasminfo =
(
id : as_arm_elf32;
idtxt : 'ELF';
asmbin : '';
asmcmd : '';
supported_targets : [system_arm_embedded,system_arm_ios,
system_arm_linux,system_arm_netbsd,
system_arm_gba,system_arm_nds,
system_arm_aros,system_arm_freertos];
flags : [af_outputbinary,af_smartlink_sections,af_supports_dwarf];
labelprefix : '.L';
labelmaxlen : -1;
comment : '';
dollarsign: '$';
);
initialization
RegisterAssembler(as_arm_elf32_info,TElfAssembler);
ElfTarget:=elf_target_arm;
ElfExeOutputClass:=TElfExeOutputARM;
end.