fpc/compiler/ptype.pas
Jonas Maebe 8349cde7db * changed byte/word/longbool to be Delphi-compatible (+ similar changes
for qwordbool) + test:
    o assigning true to such a variable now sets them to $ff/$ffff/$ffffffff
    o these types are now all signed
    o converting an integer type to a byte/word/long/qwordbool using an
      explicit type cast keeps the integer's original value stored in the
      bool, instead of forcing it to ord(true)/ord(false)
    (mantis #10233 and #10613, implemented for all architectures, testsuite
     tested for ppc32, sparc and x86)
  * fixed some places where the rtl depended on longbool(true) having the
    value 1
  * extended several boolean tests (and adapted some to no longer assume
    that byte/word/long/qwordbool(true)=1)
  + support for converting to qwordbool in second_int_to_bool for x86, ppc
    and sparc

git-svn-id: trunk@9898 -
2008-01-24 21:30:55 +00:00

977 lines
35 KiB
ObjectPascal

{
Copyright (c) 1998-2002 by Florian Klaempfl
Does parsing types for Free Pascal
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit ptype;
{$i fpcdefs.inc}
interface
uses
globtype,cclasses,
symtype,symdef,symbase;
const
{ forward types should only be possible inside a TYPE statement }
typecanbeforward : boolean = false;
var
{ hack, which allows to use the current parsed }
{ object type as function argument type }
testcurobject : byte;
{ reads a type identifier }
procedure id_type(var def : tdef;isforwarddef:boolean);
{ reads a string, file type or a type identifier }
procedure single_type(var def:tdef;isforwarddef:boolean);
{ reads any type declaration, where the resulting type will get name as type identifier }
procedure read_named_type(var def:tdef;const name : TIDString;genericdef:tstoreddef;genericlist:TFPObjectList;parseprocvardir:boolean);
{ reads any type declaration }
procedure read_anon_type(var def : tdef;parseprocvardir:boolean);
{ generate persistent type information like VMT, RTTI and inittables }
procedure write_persistent_type_info(st:tsymtable);
implementation
uses
{ common }
cutils,
{ global }
globals,tokens,verbose,constexp,
systems,
{ target }
paramgr,procinfo,
{ symtable }
symconst,symsym,symtable,
defutil,defcmp,
{ modules }
fmodule,
{ pass 1 }
node,ncgrtti,nobj,
nmat,nadd,ncal,nset,ncnv,ninl,ncon,nld,nflw,
{ parser }
scanner,
pbase,pexpr,pdecsub,pdecvar,pdecobj;
procedure generate_specialization(var tt:tdef);
var
st : TSymtable;
srsym : tsym;
pt2 : tnode;
first,
err : boolean;
i : longint;
sym : tsym;
old_block_type : tblock_type;
genericdef : tstoreddef;
generictype : ttypesym;
generictypelist : TFPObjectList;
oldsymtablestack : tsymtablestack;
hmodule : tmodule;
pu : tused_unit;
uspecializename,
specializename : string;
vmtbuilder : TVMTBuilder;
onlyparsepara : boolean;
begin
{ retrieve generic def that we are going to replace }
genericdef:=tstoreddef(tt);
tt:=nil;
onlyparsepara:=false;
if not(df_generic in genericdef.defoptions) then
begin
Message(parser_e_special_onlygenerics);
tt:=generrordef;
onlyparsepara:=true;
end;
{ Only need to record the tokens, then we don't know the type yet }
if parse_generic then
begin
tt:=cundefinedtype;
onlyparsepara:=true;
end;
{ Only parse the parameters for recovery or
for recording in genericbuf }
if onlyparsepara then
begin
consume(_LSHARPBRACKET);
repeat
pt2:=factor(false);
pt2.free;
until not try_to_consume(_COMMA);
consume(_RSHARPBRACKET);
exit;
end;
consume(_LSHARPBRACKET);
old_block_type:=block_type;
block_type:=bt_specialize;
{ Parse generic parameters, for each undefineddef in the symtable of
the genericdef we need to have a new def }
err:=false;
first:=true;
generictypelist:=TFPObjectList.create(false);
case genericdef.typ of
procdef :
st:=genericdef.GetSymtable(gs_para);
objectdef,
recorddef :
st:=genericdef.GetSymtable(gs_record);
end;
if not assigned(st) then
internalerror(200511182);
{ Parse type parameters }
if not assigned(genericdef.typesym) then
internalerror(200710173);
specializename:=genericdef.typesym.realname;
for i:=0 to st.SymList.Count-1 do
begin
sym:=tsym(st.SymList[i]);
if (sym.typ=typesym) and
(ttypesym(sym).typedef.typ=undefineddef) then
begin
if not first then
consume(_COMMA)
else
first:=false;
pt2:=factor(false);
if pt2.nodetype=typen then
begin
if df_generic in pt2.resultdef.defoptions then
Message(parser_e_no_generics_as_params);
generictype:=ttypesym.create(sym.realname,pt2.resultdef);
generictypelist.add(generictype);
if not assigned(pt2.resultdef.typesym) then
internalerror(200710172);
specializename:=specializename+'$'+pt2.resultdef.typesym.realname;
end
else
begin
Message(type_e_type_id_expected);
err:=true;
end;
pt2.free;
end;
end;
uspecializename:=upper(specializename);
{ force correct error location if too much type parameters are passed }
if token<>_RSHARPBRACKET then
consume(_RSHARPBRACKET);
{ Special case if we are referencing the current defined object }
if assigned(aktobjectdef) and
(aktobjectdef.objname^=uspecializename) then
tt:=aktobjectdef;
{ Can we reuse an already specialized type? }
if not assigned(tt) then
begin
srsym:=tsym(tsymtable(current_module.localsymtable).find(uspecializename));
if assigned(srsym) then
begin
if srsym.typ<>typesym then
internalerror(200710171);
tt:=ttypesym(srsym).typedef;
end;
end;
if not assigned(tt) then
begin
{ Setup symtablestack at definition time
to get types right, however this is not perfect, we should probably record
the resolved symbols }
oldsymtablestack:=symtablestack;
symtablestack:=tsymtablestack.create;
if not assigned(genericdef) then
internalerror(200705151);
hmodule:=find_module_from_symtable(genericdef.owner);
if hmodule=nil then
internalerror(200705152);
pu:=tused_unit(hmodule.used_units.first);
while assigned(pu) do
begin
if not assigned(pu.u.globalsymtable) then
internalerror(200705153);
symtablestack.push(pu.u.globalsymtable);
pu:=tused_unit(pu.next);
end;
if assigned(hmodule.globalsymtable) then
symtablestack.push(hmodule.globalsymtable);
{ hacky, but necessary to insert the newly generated class properly }
symtablestack.push(oldsymtablestack.top);
{ Reparse the original type definition }
if not err then
begin
{ Firsta new typesym so we can reuse this specialization and
references to this specialization can be handled }
srsym:=ttypesym.create(specializename,generrordef);
current_module.localsymtable.insert(srsym);
if not assigned(genericdef.generictokenbuf) then
internalerror(200511171);
current_scanner.startreplaytokens(genericdef.generictokenbuf);
read_named_type(tt,specializename,genericdef,generictypelist,false);
ttypesym(srsym).typedef:=tt;
tt.typesym:=srsym;
{ Consume the semicolon if it is also recorded }
try_to_consume(_SEMICOLON);
{ Build VMT indexes for classes }
if (tt.typ=objectdef) then
begin
vmtbuilder:=TVMTBuilder.Create(tobjectdef(tt));
vmtbuilder.generate_vmt;
vmtbuilder.free;
end;
end;
{ Restore symtablestack }
symtablestack.free;
symtablestack:=oldsymtablestack;
end;
generictypelist.free;
consume(_RSHARPBRACKET);
block_type:=old_block_type;
end;
procedure id_type(var def : tdef;isforwarddef:boolean);
{ reads a type definition }
{ to a appropriating tdef, s gets the name of }
{ the type to allow name mangling }
var
is_unit_specific : boolean;
pos : tfileposinfo;
srsym : tsym;
srsymtable : TSymtable;
s,sorg : TIDString;
t : ttoken;
begin
s:=pattern;
sorg:=orgpattern;
pos:=current_tokenpos;
{ use of current parsed object:
- classes can be used also in classes
- objects can be parameters }
if assigned(aktobjectdef) and
(aktobjectdef.objname^=pattern) and
(
(testcurobject=2) or
is_class_or_interface(aktobjectdef)
)then
begin
consume(_ID);
def:=aktobjectdef;
exit;
end;
{ Use the special searchsym_type that ignores records,objects and
parameters }
searchsym_type(s,srsym,srsymtable);
{ handle unit specification like System.Writeln }
is_unit_specific:=try_consume_unitsym(srsym,srsymtable,t);
consume(t);
{ Types are first defined with an error def before assigning
the real type so check if it's an errordef. if so then
give an error. Only check for typesyms in the current symbol
table as forwarddef are not resolved directly }
if assigned(srsym) and
(srsym.typ=typesym) and
(ttypesym(srsym).typedef.typ=errordef) then
begin
Message1(type_e_type_is_not_completly_defined,ttypesym(srsym).realname);
def:=generrordef;
exit;
end;
{ are we parsing a possible forward def ? }
if isforwarddef and
not(is_unit_specific) then
begin
def:=tforwarddef.create(s,pos);
exit;
end;
{ unknown sym ? }
if not assigned(srsym) then
begin
Message1(sym_e_id_not_found,sorg);
def:=generrordef;
exit;
end;
{ type sym ? }
if (srsym.typ<>typesym) then
begin
Message(type_e_type_id_expected);
def:=generrordef;
exit;
end;
{ Give an error when referring to an errordef }
if (ttypesym(srsym).typedef.typ=errordef) then
begin
Message(sym_e_error_in_type_def);
def:=generrordef;
exit;
end;
def:=ttypesym(srsym).typedef;
end;
procedure single_type(var def:tdef;isforwarddef:boolean);
var
t2 : tdef;
dospecialize,
again : boolean;
begin
dospecialize:=false;
repeat
again:=false;
case token of
_STRING:
string_dec(def);
_FILE:
begin
consume(_FILE);
if try_to_consume(_OF) then
begin
single_type(t2,false);
def:=tfiledef.createtyped(t2);
end
else
def:=cfiletype;
end;
_ID:
begin
if try_to_consume(_SPECIALIZE) then
begin
dospecialize:=true;
again:=true;
end
else
id_type(def,isforwarddef);
end;
else
begin
message(type_e_type_id_expected);
def:=generrordef;
end;
end;
until not again;
if dospecialize then
generate_specialization(def)
else
begin
if (df_generic in def.defoptions) then
begin
Message(parser_e_no_generics_as_types);
def:=generrordef;
end;
end;
end;
{ reads a record declaration }
function record_dec : tdef;
var
recst : trecordsymtable;
storetypecanbeforward : boolean;
old_object_option : tsymoptions;
begin
{ create recdef }
recst:=trecordsymtable.create(current_settings.packrecords);
record_dec:=trecorddef.create(recst);
{ insert in symtablestack }
symtablestack.push(recst);
{ parse record }
consume(_RECORD);
old_object_option:=current_object_option;
current_object_option:=[sp_public];
storetypecanbeforward:=typecanbeforward;
{ for tp7 don't allow forward types }
if m_tp7 in current_settings.modeswitches then
typecanbeforward:=false;
read_record_fields([vd_record]);
consume(_END);
typecanbeforward:=storetypecanbeforward;
current_object_option:=old_object_option;
{ make the record size aligned }
recst.addalignmentpadding;
{ restore symtable stack }
symtablestack.pop(recst);
if trecorddef(record_dec).is_packed and
record_dec.needs_inittable then
Message(type_e_no_packed_inittable);
end;
{ reads a type definition and returns a pointer to it }
procedure read_named_type(var def : tdef;const name : TIDString;genericdef:tstoreddef;genericlist:TFPObjectList;parseprocvardir:boolean);
var
pt : tnode;
tt2 : tdef;
aktenumdef : tenumdef;
s : TIDString;
l,v : TConstExprInt;
oldpackrecords : longint;
defpos,storepos : tfileposinfo;
procedure expr_type;
var
pt1,pt2 : tnode;
lv,hv : TConstExprInt;
old_block_type : tblock_type;
dospecialize : boolean;
begin
old_block_type:=block_type;
dospecialize:=false;
{ use of current parsed object:
- classes can be used also in classes
- objects can be parameters }
if (token=_ID) and
assigned(aktobjectdef) and
(aktobjectdef.objname^=pattern) and
(
(testcurobject=2) or
is_class_or_interface(aktobjectdef)
)then
begin
consume(_ID);
def:=aktobjectdef;
exit;
end;
{ Generate a specialization? }
if try_to_consume(_SPECIALIZE) then
dospecialize:=true;
{ we can't accept a equal in type }
pt1:=comp_expr(false);
if not dospecialize and
try_to_consume(_POINTPOINT) then
begin
{ get high value of range }
pt2:=comp_expr(false);
{ make both the same type or give an error. This is not
done when both are integer values, because typecasting
between -3200..3200 will result in a signed-unsigned
conflict and give a range check error (PFV) }
if not(is_integer(pt1.resultdef) and is_integer(pt2.resultdef)) then
inserttypeconv(pt1,pt2.resultdef);
{ both must be evaluated to constants now }
if (pt1.nodetype=ordconstn) and
(pt2.nodetype=ordconstn) then
begin
lv:=tordconstnode(pt1).value;
hv:=tordconstnode(pt2).value;
{ Check bounds }
if hv<lv then
message(parser_e_upper_lower_than_lower)
else if (lv.signed and (lv.svalue<0)) and (not hv.signed and (hv.uvalue>qword(high(int64)))) then
message(type_e_cant_eval_constant_expr)
else
begin
{ All checks passed, create the new def }
case pt1.resultdef.typ of
enumdef :
def:=tenumdef.create_subrange(tenumdef(pt1.resultdef),lv.svalue,hv.svalue);
orddef :
begin
if is_char(pt1.resultdef) then
def:=torddef.create(uchar,lv,hv)
else
if is_boolean(pt1.resultdef) then
def:=torddef.create(pasbool,lv,hv)
else if is_signed(pt1.resultdef) then
def:=torddef.create(range_to_basetype(lv,hv),lv,hv)
else
def:=torddef.create(range_to_basetype(lv,hv),lv,hv);
end;
end;
end;
end
else
Message(sym_e_error_in_type_def);
pt2.free;
end
else
begin
{ a simple type renaming or generic specialization }
if (pt1.nodetype=typen) then
begin
def:=ttypenode(pt1).resultdef;
if dospecialize then
generate_specialization(def)
else
begin
if (df_generic in def.defoptions) then
begin
Message(parser_e_no_generics_as_types);
def:=generrordef;
end;
end;
end
else
Message(sym_e_error_in_type_def);
end;
pt1.free;
block_type:=old_block_type;
end;
procedure set_dec;
begin
consume(_SET);
consume(_OF);
read_anon_type(tt2,true);
if assigned(tt2) then
begin
case tt2.typ of
{ don't forget that min can be negativ PM }
enumdef :
if (tenumdef(tt2).min>=0) and
(tenumdef(tt2).max<=255) then
// !! def:=tsetdef.create(tt2,tenumdef(tt2.def).min,tenumdef(tt2.def).max))
def:=tsetdef.create(tt2,tenumdef(tt2).min,tenumdef(tt2).max)
else
Message(sym_e_ill_type_decl_set);
orddef :
begin
if (torddef(tt2).ordtype<>uvoid) and
(torddef(tt2).ordtype<>uwidechar) and
(torddef(tt2).low>=0) then
// !! def:=tsetdef.create(tt2,torddef(tt2.def).low,torddef(tt2.def).high))
if Torddef(tt2).high>int64(high(byte)) then
message(sym_e_ill_type_decl_set)
else
def:=tsetdef.create(tt2,torddef(tt2).low.svalue,torddef(tt2).high.svalue)
else
Message(sym_e_ill_type_decl_set);
end;
else
Message(sym_e_ill_type_decl_set);
end;
end
else
def:=generrordef;
end;
procedure array_dec(is_packed: boolean);
var
lowval,
highval : TConstExprInt;
indexdef : tdef;
hdef : tdef;
arrdef : tarraydef;
procedure setdefdecl(def:tdef);
begin
case def.typ of
enumdef :
begin
lowval:=tenumdef(def).min;
highval:=tenumdef(def).max;
if (m_fpc in current_settings.modeswitches) and
(tenumdef(def).has_jumps) then
Message(type_e_array_index_enums_with_assign_not_possible);
indexdef:=def;
end;
orddef :
begin
if torddef(def).ordtype in [uchar,
u8bit,u16bit,
s8bit,s16bit,s32bit,
{$ifdef cpu64bit}
u32bit,s64bit,
{$endif cpu64bit}
pasbool,bool8bit,bool16bit,bool32bit,bool64bit,
uwidechar] then
begin
lowval:=torddef(def).low;
highval:=torddef(def).high;
indexdef:=def;
end
else
Message1(parser_e_type_cant_be_used_in_array_index,def.GetTypeName);
end;
else
Message(sym_e_error_in_type_def);
end;
end;
begin
arrdef:=nil;
consume(_ARRAY);
{ open array? }
if try_to_consume(_LECKKLAMMER) then
begin
{ defaults }
indexdef:=generrordef;
lowval:=int64(low(aint));
highval:=high(aint);
repeat
{ read the expression and check it, check apart if the
declaration is an enum declaration because that needs to
be parsed by readtype (PFV) }
if token=_LKLAMMER then
begin
read_anon_type(hdef,true);
setdefdecl(hdef);
end
else
begin
pt:=expr;
if pt.nodetype=typen then
setdefdecl(pt.resultdef)
else
begin
if (pt.nodetype=rangen) then
begin
if (trangenode(pt).left.nodetype=ordconstn) and
(trangenode(pt).right.nodetype=ordconstn) then
begin
{ make both the same type or give an error. This is not
done when both are integer values, because typecasting
between -3200..3200 will result in a signed-unsigned
conflict and give a range check error (PFV) }
if not(is_integer(trangenode(pt).left.resultdef) and is_integer(trangenode(pt).left.resultdef)) then
inserttypeconv(trangenode(pt).left,trangenode(pt).right.resultdef);
lowval:=tordconstnode(trangenode(pt).left).value;
highval:=tordconstnode(trangenode(pt).right).value;
if highval<lowval then
begin
Message(parser_e_array_lower_less_than_upper_bound);
highval:=lowval;
end
else if (lowval<int64(low(aint))) or
(highval > high(aint)) then
begin
Message(parser_e_array_range_out_of_bounds);
lowval :=0;
highval:=0;
end;
if is_integer(trangenode(pt).left.resultdef) then
range_to_type(lowval,highval,indexdef)
else
indexdef:=trangenode(pt).left.resultdef;
end
else
Message(type_e_cant_eval_constant_expr);
end
else
Message(sym_e_error_in_type_def)
end;
pt.free;
end;
{ if the array is already created add the new arrray
as element of the existing array, otherwise create a new array }
if assigned(arrdef) then
begin
arrdef.elementdef:=tarraydef.create(lowval.svalue,highval.svalue,indexdef);
arrdef:=tarraydef(arrdef.elementdef);
end
else
begin
arrdef:=tarraydef.create(lowval.svalue,highval.svalue,indexdef);
def:=arrdef;
end;
if is_packed then
include(arrdef.arrayoptions,ado_IsBitPacked);
if token=_COMMA then
consume(_COMMA)
else
break;
until false;
consume(_RECKKLAMMER);
end
else
begin
if is_packed then
Message(parser_e_packed_dynamic_open_array);
arrdef:=tarraydef.create(0,-1,s32inttype);
include(arrdef.arrayoptions,ado_IsDynamicArray);
def:=arrdef;
end;
consume(_OF);
read_anon_type(tt2,true);
{ set element type of the last array definition }
if assigned(arrdef) then
begin
arrdef.elementdef:=tt2;
if is_packed and
tt2.needs_inittable then
Message(type_e_no_packed_inittable);
end;
end;
var
p : tnode;
pd : tabstractprocdef;
is_func,
enumdupmsg, first : boolean;
newtype : ttypesym;
oldlocalswitches : tlocalswitches;
bitpacking: boolean;
begin
def:=nil;
case token of
_STRING,_FILE:
begin
single_type(def,false);
end;
_LKLAMMER:
begin
consume(_LKLAMMER);
first := true;
{ allow negativ value_str }
l:=int64(-1);
enumdupmsg:=false;
aktenumdef:=tenumdef.create;
repeat
s:=orgpattern;
defpos:=current_tokenpos;
consume(_ID);
{ only allow assigning of specific numbers under fpc mode }
if not(m_tp7 in current_settings.modeswitches) and
(
{ in fpc mode also allow := to be compatible
with previous 1.0.x versions }
((m_fpc in current_settings.modeswitches) and
try_to_consume(_ASSIGNMENT)) or
try_to_consume(_EQUAL)
) then
begin
oldlocalswitches:=current_settings.localswitches;
include(current_settings.localswitches,cs_allow_enum_calc);
p:=comp_expr(true);
current_settings.localswitches:=oldlocalswitches;
if (p.nodetype=ordconstn) then
begin
{ we expect an integer or an enum of the
same type }
if is_integer(p.resultdef) or
is_char(p.resultdef) or
equal_defs(p.resultdef,aktenumdef) then
v:=tordconstnode(p).value
else
IncompatibleTypes(p.resultdef,s32inttype);
end
else
Message(parser_e_illegal_expression);
p.free;
{ please leave that a note, allows type save }
{ declarations in the win32 units ! }
if (not first) and (v<=l) and (not enumdupmsg) then
begin
Message(parser_n_duplicate_enum);
enumdupmsg:=true;
end;
l:=v;
end
else
inc(l.svalue);
first := false;
storepos:=current_tokenpos;
current_tokenpos:=defpos;
tstoredsymtable(aktenumdef.owner).insert(tenumsym.create(s,aktenumdef,l.svalue));
current_tokenpos:=storepos;
until not try_to_consume(_COMMA);
def:=aktenumdef;
consume(_RKLAMMER);
end;
_ARRAY:
begin
array_dec(false);
end;
_SET:
begin
set_dec;
end;
_CARET:
begin
consume(_CARET);
single_type(tt2,typecanbeforward);
def:=tpointerdef.create(tt2);
end;
_RECORD:
begin
def:=record_dec;
end;
_PACKED,
_BITPACKED:
begin
bitpacking :=
(cs_bitpacking in current_settings.localswitches) or
(token = _BITPACKED);
consume(token);
if token=_ARRAY then
array_dec(bitpacking)
else if token=_SET then
set_dec
else
begin
oldpackrecords:=current_settings.packrecords;
if (not bitpacking) or
(token in [_CLASS,_OBJECT]) then
current_settings.packrecords:=1
else
current_settings.packrecords:=bit_alignment;
if token in [_CLASS,_OBJECT] then
def:=object_dec(name,genericdef,genericlist,nil)
else
def:=record_dec;
current_settings.packrecords:=oldpackrecords;
end;
end;
_DISPINTERFACE,
_CLASS,
_CPPCLASS,
_INTERFACE,
_OBJECT:
begin
def:=object_dec(name,genericdef,genericlist,nil);
end;
_PROCEDURE,
_FUNCTION:
begin
is_func:=(token=_FUNCTION);
consume(token);
pd:=tprocvardef.create(normal_function_level);
if token=_LKLAMMER then
parse_parameter_dec(pd);
if is_func then
begin
consume(_COLON);
single_type(pd.returndef,false);
end;
if token=_OF then
begin
consume(_OF);
consume(_OBJECT);
include(pd.procoptions,po_methodpointer);
end;
def:=pd;
{ possible proc directives }
if parseprocvardir then
begin
if check_proc_directive(true) then
begin
newtype:=ttypesym.create('unnamed',def);
parse_var_proc_directives(tsym(newtype));
newtype.typedef:=nil;
def.typesym:=nil;
newtype.free;
end;
{ Add implicit hidden parameters and function result }
handle_calling_convention(pd);
end;
end;
else
expr_type;
end;
if def=nil then
def:=generrordef;
end;
procedure read_anon_type(var def : tdef;parseprocvardir:boolean);
begin
read_named_type(def,'',nil,nil,parseprocvardir);
end;
procedure write_persistent_type_info(st:tsymtable);
var
i : longint;
def : tdef;
vmtwriter : TVMTWriter;
begin
for i:=0 to st.DefList.Count-1 do
begin
def:=tdef(st.DefList[i]);
case def.typ of
recorddef :
write_persistent_type_info(trecorddef(def).symtable);
objectdef :
begin
{ Skip generics and forward defs }
if (df_generic in def.defoptions) or
(oo_is_forward in tobjectdef(def).objectoptions) then
continue;
write_persistent_type_info(tobjectdef(def).symtable);
{ Write also VMT if not done yet }
if not(ds_vmt_written in def.defstates) then
begin
vmtwriter:=TVMTWriter.create(tobjectdef(def));
if is_interface(tobjectdef(def)) then
vmtwriter.writeinterfaceids;
if (oo_has_vmt in tobjectdef(def).objectoptions) then
vmtwriter.writevmt;
vmtwriter.free;
include(def.defstates,ds_vmt_written);
end;
end;
procdef :
begin
if assigned(tprocdef(def).localst) and
(tprocdef(def).localst.symtabletype=localsymtable) then
write_persistent_type_info(tprocdef(def).localst);
if assigned(tprocdef(def).parast) then
write_persistent_type_info(tprocdef(def).parast);
end;
end;
{ generate always persistent tables for types in the interface so it can
be reused in other units and give always the same pointer location. }
{ Init }
if (
assigned(def.typesym) and
(st.symtabletype=globalsymtable)
) or
def.needs_inittable or
(ds_init_table_used in def.defstates) then
RTTIWriter.write_rtti(def,initrtti);
{ RTTI }
if (
assigned(def.typesym) and
(st.symtabletype=globalsymtable)
) or
(ds_rtti_table_used in def.defstates) then
RTTIWriter.write_rtti(def,fullrtti);
end;
end;
end.