fpc/compiler/x86/aasmcpu.pas
2010-01-12 19:52:55 +00:00

2517 lines
81 KiB
ObjectPascal

{
Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
Contains the abstract assembler implementation for the i386
* Portions of this code was inspired by the NASM sources
The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
Julian Hall. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit aasmcpu;
{$i fpcdefs.inc}
interface
uses
globtype,verbose,
cpubase,
cgbase,cgutils,
symtype,
aasmbase,aasmtai,aasmdata,aasmsym,
ogbase;
const
{ "mov reg,reg" source operand number }
O_MOV_SOURCE = 0;
{ "mov reg,reg" destination operand number }
O_MOV_DEST = 1;
{ Operand types }
OT_NONE = $00000000;
OT_BITS8 = $00000001; { size, and other attributes, of the operand }
OT_BITS16 = $00000002;
OT_BITS32 = $00000004;
OT_BITS64 = $00000008; { FPU only }
OT_BITS80 = $00000010;
OT_SIZE_MASK = $0000001F; { all the size attributes }
OT_NON_SIZE = longint(not OT_SIZE_MASK);
OT_FAR = $00000020; { this means 16:16 or 16:32, like in CALL/JMP }
OT_NEAR = $00000040;
OT_SHORT = $00000080;
OT_SIGNED = $00000100; { the operand need to be signed -128-127 }
OT_TO = $00000200; { operand is followed by a colon }
{ reverse effect in FADD, FSUB &c }
OT_COLON = $00000400;
OT_REGISTER = $00001000;
OT_IMMEDIATE = $00002000;
OT_IMM8 = $00002001;
OT_IMM16 = $00002002;
OT_IMM32 = $00002004;
OT_IMM64 = $00002008;
OT_IMM80 = $00002010;
OT_REGMEM = $00200000; { for r/m, ie EA, operands }
OT_REGNORM = $00201000; { 'normal' reg, qualifies as EA }
OT_REG8 = $00201001;
OT_REG16 = $00201002;
OT_REG32 = $00201004;
OT_REG64 = $00201008;
OT_XMMREG = $00201010; { Katmai registers }
OT_MMXREG = $00201020; { MMX registers }
OT_MEMORY = $00204000; { register number in 'basereg' }
OT_MEM8 = $00204001;
OT_MEM16 = $00204002;
OT_MEM32 = $00204004;
OT_MEM64 = $00204008;
OT_MEM80 = $00204010;
OT_FPUREG = $01000000; { floating point stack registers }
OT_FPU0 = $01000800; { FPU stack register zero }
OT_REG_SMASK = $00070000; { special register operands: these may be treated differently }
{ a mask for the following }
OT_REG_ACCUM = $00211000; { FUNCTION_RETURN_REG: AL, AX or EAX }
OT_REG_AL = $00211001; { REG_ACCUM | BITSxx }
OT_REG_AX = $00211002; { ditto }
OT_REG_EAX = $00211004; { and again }
{$ifdef x86_64}
OT_REG_RAX = $00211008;
{$endif x86_64}
OT_REG_COUNT = $00221000; { counter: CL, CX or ECX }
OT_REG_CL = $00221001; { REG_COUNT | BITSxx }
OT_REG_CX = $00221002; { ditto }
OT_REG_ECX = $00221004; { another one }
{$ifdef x86_64}
OT_REG_RCX = $00221008;
{$endif x86_64}
OT_REG_DX = $00241002;
OT_REG_EDX = $00241004;
OT_REG_SREG = $00081002; { any segment register }
OT_REG_CS = $01081002; { CS }
OT_REG_DESS = $02081002; { DS, ES, SS (non-CS 86 registers) }
OT_REG_FSGS = $04081002; { FS, GS (386 extended registers) }
OT_REG_CDT = $00101004; { CRn, DRn and TRn }
OT_REG_CREG = $08101004; { CRn }
OT_REG_CR4 = $08101404; { CR4 (Pentium only) }
OT_REG_DREG = $10101004; { DRn }
OT_REG_TREG = $20101004; { TRn }
OT_MEM_OFFS = $00604000; { special type of EA }
{ simple [address] offset }
OT_ONENESS = $00800000; { special type of immediate operand }
{ so UNITY == IMMEDIATE | ONENESS }
OT_UNITY = $00802000; { for shift/rotate instructions }
{ Size of the instruction table converted by nasmconv.pas }
{$ifdef x86_64}
instabentries = {$i x8664nop.inc}
{$else x86_64}
instabentries = {$i i386nop.inc}
{$endif x86_64}
maxinfolen = 11;
MaxInsChanges = 3; { Max things a instruction can change }
type
{ What an instruction can change. Needed for optimizer and spilling code.
Note: The order of this enumeration is should not be changed! }
TInsChange = (Ch_None,
{Read from a register}
Ch_REAX, Ch_RECX, Ch_REDX, Ch_REBX, Ch_RESP, Ch_REBP, Ch_RESI, Ch_REDI,
{write from a register}
Ch_WEAX, Ch_WECX, Ch_WEDX, Ch_WEBX, Ch_WESP, Ch_WEBP, Ch_WESI, Ch_WEDI,
{read and write from/to a register}
Ch_RWEAX, Ch_RWECX, Ch_RWEDX, Ch_RWEBX, Ch_RWESP, Ch_RWEBP, Ch_RWESI, Ch_RWEDI,
{modify the contents of a register with the purpose of using
this changed content afterwards (add/sub/..., but e.g. not rep
or movsd)}
Ch_MEAX, Ch_MECX, Ch_MEDX, Ch_MEBX, Ch_MESP, Ch_MEBP, Ch_MESI, Ch_MEDI,
Ch_CDirFlag {clear direction flag}, Ch_SDirFlag {set dir flag},
Ch_RFlags, Ch_WFlags, Ch_RWFlags, Ch_FPU,
Ch_Rop1, Ch_Wop1, Ch_RWop1,Ch_Mop1,
Ch_Rop2, Ch_Wop2, Ch_RWop2,Ch_Mop2,
Ch_Rop3, Ch_WOp3, Ch_RWOp3,Ch_Mop3,
Ch_WMemEDI,
Ch_All,
{ x86_64 registers }
Ch_RRAX, Ch_RRCX, Ch_RRDX, Ch_RRBX, Ch_RRSP, Ch_RRBP, Ch_RRSI, Ch_RRDI,
Ch_WRAX, Ch_WRCX, Ch_WRDX, Ch_WRBX, Ch_WRSP, Ch_WRBP, Ch_WRSI, Ch_WRDI,
Ch_RWRAX, Ch_RWRCX, Ch_RWRDX, Ch_RWRBX, Ch_RWRSP, Ch_RWRBP, Ch_RWRSI, Ch_RWRDI,
Ch_MRAX, Ch_MRCX, Ch_MRDX, Ch_MRBX, Ch_MRSP, Ch_MRBP, Ch_MRSI, Ch_MRDI
);
TInsProp = packed record
Ch : Array[1..MaxInsChanges] of TInsChange;
end;
const
InsProp : array[tasmop] of TInsProp =
{$ifdef x86_64}
{$i x8664pro.inc}
{$else x86_64}
{$i i386prop.inc}
{$endif x86_64}
type
TOperandOrder = (op_intel,op_att);
tinsentry=packed record
opcode : tasmop;
ops : byte;
optypes : array[0..2] of longint;
code : array[0..maxinfolen] of char;
flags : cardinal;
end;
pinsentry=^tinsentry;
{ alignment for operator }
tai_align = class(tai_align_abstract)
reg : tregister;
constructor create(b:byte);override;
constructor create_op(b: byte; _op: byte);override;
function calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;override;
end;
taicpu = class(tai_cpu_abstract_sym)
opsize : topsize;
constructor op_none(op : tasmop);
constructor op_none(op : tasmop;_size : topsize);
constructor op_reg(op : tasmop;_size : topsize;_op1 : tregister);
constructor op_const(op : tasmop;_size : topsize;_op1 : aint);
constructor op_ref(op : tasmop;_size : topsize;const _op1 : treference);
constructor op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
constructor op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
constructor op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
constructor op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
constructor op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
constructor op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
constructor op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
constructor op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
constructor op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
constructor op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
constructor op_reg_reg_ref(op : tasmop;_size : topsize;_op1,_op2 : tregister; const _op3 : treference);
constructor op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
{ this is for Jmp instructions }
constructor op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
constructor op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
constructor op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
constructor op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
constructor op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
procedure changeopsize(siz:topsize);
function GetString:string;
procedure CheckNonCommutativeOpcodes;
private
FOperandOrder : TOperandOrder;
procedure init(_size : topsize); { this need to be called by all constructor }
public
{ the next will reset all instructions that can change in pass 2 }
procedure ResetPass1;override;
procedure ResetPass2;override;
function CheckIfValid:boolean;
function Pass1(objdata:TObjData):longint;override;
procedure Pass2(objdata:TObjData);override;
procedure SetOperandOrder(order:TOperandOrder);
function is_same_reg_move(regtype: Tregistertype):boolean;override;
{ register spilling code }
function spilling_get_operation_type(opnr: longint): topertype;override;
private
{ next fields are filled in pass1, so pass2 is faster }
insentry : PInsEntry;
insoffset : longint;
LastInsOffset : longint; { need to be public to be reset }
inssize : shortint;
{$ifdef x86_64}
rex : byte;
{$endif x86_64}
function InsEnd:longint;
procedure create_ot(objdata:TObjData);
function Matches(p:PInsEntry):boolean;
function calcsize(p:PInsEntry):shortint;
procedure gencode(objdata:TObjData);
function NeedAddrPrefix(opidx:byte):boolean;
procedure Swapoperands;
function FindInsentry(objdata:TObjData):boolean;
end;
function spilling_create_load(const ref:treference;r:tregister):Taicpu;
function spilling_create_store(r:tregister; const ref:treference):Taicpu;
procedure InitAsm;
procedure DoneAsm;
implementation
uses
cutils,
globals,
itcpugas,
symsym;
{*****************************************************************************
Instruction table
*****************************************************************************}
const
{Instruction flags }
IF_NONE = $00000000;
IF_SM = $00000001; { size match first two operands }
IF_SM2 = $00000002;
IF_SB = $00000004; { unsized operands can't be non-byte }
IF_SW = $00000008; { unsized operands can't be non-word }
IF_SD = $00000010; { unsized operands can't be nondword }
IF_SMASK = $0000001f;
IF_AR0 = $00000020; { SB, SW, SD applies to argument 0 }
IF_AR1 = $00000040; { SB, SW, SD applies to argument 1 }
IF_AR2 = $00000060; { SB, SW, SD applies to argument 2 }
IF_ARMASK = $00000060; { mask for unsized argument spec }
IF_PRIV = $00000100; { it's a privileged instruction }
IF_SMM = $00000200; { it's only valid in SMM }
IF_PROT = $00000400; { it's protected mode only }
IF_NOX86_64 = $00000800; { removed instruction in x86_64 }
IF_UNDOC = $00001000; { it's an undocumented instruction }
IF_FPU = $00002000; { it's an FPU instruction }
IF_MMX = $00004000; { it's an MMX instruction }
{ it's a 3DNow! instruction }
IF_3DNOW = $00008000;
{ it's a SSE (KNI, MMX2) instruction }
IF_SSE = $00010000;
{ SSE2 instructions }
IF_SSE2 = $00020000;
{ SSE3 instructions }
IF_SSE3 = $00040000;
{ SSE64 instructions }
IF_SSE64 = $00080000;
{ the mask for processor types }
{IF_PMASK = longint($FF000000);}
{ the mask for disassembly "prefer" }
{IF_PFMASK = longint($F001FF00);}
{ SVM instructions }
IF_SVM = $00100000;
{ SSE4 instructions }
IF_SSE4 = $00200000;
IF_8086 = $00000000; { 8086 instruction }
IF_186 = $01000000; { 186+ instruction }
IF_286 = $02000000; { 286+ instruction }
IF_386 = $03000000; { 386+ instruction }
IF_486 = $04000000; { 486+ instruction }
IF_PENT = $05000000; { Pentium instruction }
IF_P6 = $06000000; { P6 instruction }
IF_KATMAI = $07000000; { Katmai instructions }
{ Willamette instructions }
IF_WILLAMETTE = $08000000;
{ Prescott instructions }
IF_PRESCOTT = $09000000;
IF_X86_64 = $0a000000;
IF_CYRIX = $0b000000; { Cyrix-specific instruction }
IF_AMD = $0c000000; { AMD-specific instruction }
IF_CENTAUR = $0d000000; { centaur-specific instruction }
{ added flags }
IF_PRE = $40000000; { it's a prefix instruction }
IF_PASS2 = $80000000; { if the instruction can change in a second pass }
type
TInsTabCache=array[TasmOp] of longint;
PInsTabCache=^TInsTabCache;
const
{$ifdef x86_64}
InsTab:array[0..instabentries-1] of TInsEntry={$i x8664tab.inc}
{$else x86_64}
InsTab:array[0..instabentries-1] of TInsEntry={$i i386tab.inc}
{$endif x86_64}
var
InsTabCache : PInsTabCache;
const
{$ifdef x86_64}
{ Intel style operands ! }
opsize_2_type:array[0..2,topsize] of longint=(
(OT_NONE,
OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,OT_BITS64,OT_BITS64,OT_BITS64,
OT_BITS16,OT_BITS32,OT_BITS64,
OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
OT_BITS64,
OT_NEAR,OT_FAR,OT_SHORT,
OT_NONE,
OT_NONE
),
(OT_NONE,
OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,OT_BITS8,OT_BITS16,OT_BITS32,
OT_BITS16,OT_BITS32,OT_BITS64,
OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
OT_BITS64,
OT_NEAR,OT_FAR,OT_SHORT,
OT_NONE,
OT_NONE
),
(OT_NONE,
OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,
OT_BITS16,OT_BITS32,OT_BITS64,
OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
OT_BITS64,
OT_NEAR,OT_FAR,OT_SHORT,
OT_NONE,
OT_NONE
)
);
reg_ot_table : array[tregisterindex] of longint = (
{$i r8664ot.inc}
);
{$else x86_64}
{ Intel style operands ! }
opsize_2_type:array[0..2,topsize] of longint=(
(OT_NONE,
OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
OT_BITS16,OT_BITS32,OT_BITS64,
OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
OT_BITS64,
OT_NEAR,OT_FAR,OT_SHORT,
OT_NONE,
OT_NONE
),
(OT_NONE,
OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
OT_BITS16,OT_BITS32,OT_BITS64,
OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
OT_BITS64,
OT_NEAR,OT_FAR,OT_SHORT,
OT_NONE,
OT_NONE
),
(OT_NONE,
OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
OT_BITS16,OT_BITS32,OT_BITS64,
OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
OT_BITS64,
OT_NEAR,OT_FAR,OT_SHORT,
OT_NONE,
OT_NONE
)
);
reg_ot_table : array[tregisterindex] of longint = (
{$i r386ot.inc}
);
{$endif x86_64}
{ Operation type for spilling code }
type
toperation_type_table=array[tasmop,0..Max_Operands] of topertype;
var
operation_type_table : ^toperation_type_table;
{****************************************************************************
TAI_ALIGN
****************************************************************************}
constructor tai_align.create(b: byte);
begin
inherited create(b);
reg:=NR_ECX;
end;
constructor tai_align.create_op(b: byte; _op: byte);
begin
inherited create_op(b,_op);
reg:=NR_NO;
end;
function tai_align.calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;
const
{$ifdef x86_64}
alignarray:array[0..3] of string[4]=(
#$66#$66#$66#$90,
#$66#$66#$90,
#$66#$90,
#$90
);
{$else x86_64}
alignarray:array[0..5] of string[8]=(
#$8D#$B4#$26#$00#$00#$00#$00,
#$8D#$B6#$00#$00#$00#$00,
#$8D#$74#$26#$00,
#$8D#$76#$00,
#$89#$F6,
#$90);
{$endif x86_64}
var
bufptr : pchar;
j : longint;
localsize: byte;
begin
inherited calculatefillbuf(buf,executable);
if not(use_op) and executable then
begin
bufptr:=pchar(@buf);
{ fillsize may still be used afterwards, so don't modify }
{ e.g. writebytes(hp.calculatefillbuf(buf)^,hp.fillsize) }
localsize:=fillsize;
while (localsize>0) do
begin
for j:=low(alignarray) to high(alignarray) do
if (localsize>=length(alignarray[j])) then
break;
move(alignarray[j][1],bufptr^,length(alignarray[j]));
inc(bufptr,length(alignarray[j]));
dec(localsize,length(alignarray[j]));
end;
end;
calculatefillbuf:=pchar(@buf);
end;
{*****************************************************************************
Taicpu Constructors
*****************************************************************************}
procedure taicpu.changeopsize(siz:topsize);
begin
opsize:=siz;
end;
procedure taicpu.init(_size : topsize);
begin
{ default order is att }
FOperandOrder:=op_att;
segprefix:=NR_NO;
opsize:=_size;
insentry:=nil;
LastInsOffset:=-1;
InsOffset:=0;
InsSize:=0;
end;
constructor taicpu.op_none(op : tasmop);
begin
inherited create(op);
init(S_NO);
end;
constructor taicpu.op_none(op : tasmop;_size : topsize);
begin
inherited create(op);
init(_size);
end;
constructor taicpu.op_reg(op : tasmop;_size : topsize;_op1 : tregister);
begin
inherited create(op);
init(_size);
ops:=1;
loadreg(0,_op1);
end;
constructor taicpu.op_const(op : tasmop;_size : topsize;_op1 : aint);
begin
inherited create(op);
init(_size);
ops:=1;
loadconst(0,_op1);
end;
constructor taicpu.op_ref(op : tasmop;_size : topsize;const _op1 : treference);
begin
inherited create(op);
init(_size);
ops:=1;
loadref(0,_op1);
end;
constructor taicpu.op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
begin
inherited create(op);
init(_size);
ops:=2;
loadreg(0,_op1);
loadreg(1,_op2);
end;
constructor taicpu.op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
begin
inherited create(op);
init(_size);
ops:=2;
loadreg(0,_op1);
loadconst(1,_op2);
end;
constructor taicpu.op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
begin
inherited create(op);
init(_size);
ops:=2;
loadreg(0,_op1);
loadref(1,_op2);
end;
constructor taicpu.op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
begin
inherited create(op);
init(_size);
ops:=2;
loadconst(0,_op1);
loadreg(1,_op2);
end;
constructor taicpu.op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
begin
inherited create(op);
init(_size);
ops:=2;
loadconst(0,_op1);
loadconst(1,_op2);
end;
constructor taicpu.op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
begin
inherited create(op);
init(_size);
ops:=2;
loadconst(0,_op1);
loadref(1,_op2);
end;
constructor taicpu.op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
begin
inherited create(op);
init(_size);
ops:=2;
loadref(0,_op1);
loadreg(1,_op2);
end;
constructor taicpu.op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
begin
inherited create(op);
init(_size);
ops:=3;
loadreg(0,_op1);
loadreg(1,_op2);
loadreg(2,_op3);
end;
constructor taicpu.op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
begin
inherited create(op);
init(_size);
ops:=3;
loadconst(0,_op1);
loadreg(1,_op2);
loadreg(2,_op3);
end;
constructor taicpu.op_reg_reg_ref(op : tasmop;_size : topsize;_op1,_op2 : tregister;const _op3 : treference);
begin
inherited create(op);
init(_size);
ops:=3;
loadreg(0,_op1);
loadreg(1,_op2);
loadref(2,_op3);
end;
constructor taicpu.op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
begin
inherited create(op);
init(_size);
ops:=3;
loadconst(0,_op1);
loadref(1,_op2);
loadreg(2,_op3);
end;
constructor taicpu.op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
begin
inherited create(op);
init(_size);
ops:=3;
loadconst(0,_op1);
loadreg(1,_op2);
loadref(2,_op3);
end;
constructor taicpu.op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
begin
inherited create(op);
init(_size);
condition:=cond;
ops:=1;
loadsymbol(0,_op1,0);
end;
constructor taicpu.op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
begin
inherited create(op);
init(_size);
ops:=1;
loadsymbol(0,_op1,0);
end;
constructor taicpu.op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
begin
inherited create(op);
init(_size);
ops:=1;
loadsymbol(0,_op1,_op1ofs);
end;
constructor taicpu.op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
begin
inherited create(op);
init(_size);
ops:=2;
loadsymbol(0,_op1,_op1ofs);
loadreg(1,_op2);
end;
constructor taicpu.op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
begin
inherited create(op);
init(_size);
ops:=2;
loadsymbol(0,_op1,_op1ofs);
loadref(1,_op2);
end;
function taicpu.GetString:string;
var
i : longint;
s : string;
addsize : boolean;
begin
s:='['+std_op2str[opcode];
for i:=0 to ops-1 do
begin
with oper[i]^ do
begin
if i=0 then
s:=s+' '
else
s:=s+',';
{ type }
addsize:=false;
if (ot and OT_XMMREG)=OT_XMMREG then
s:=s+'xmmreg'
else
if (ot and OT_MMXREG)=OT_MMXREG then
s:=s+'mmxreg'
else
if (ot and OT_FPUREG)=OT_FPUREG then
s:=s+'fpureg'
else
if (ot and OT_REGISTER)=OT_REGISTER then
begin
s:=s+'reg';
addsize:=true;
end
else
if (ot and OT_IMMEDIATE)=OT_IMMEDIATE then
begin
s:=s+'imm';
addsize:=true;
end
else
if (ot and OT_MEMORY)=OT_MEMORY then
begin
s:=s+'mem';
addsize:=true;
end
else
s:=s+'???';
{ size }
if addsize then
begin
if (ot and OT_BITS8)<>0 then
s:=s+'8'
else
if (ot and OT_BITS16)<>0 then
s:=s+'16'
else
if (ot and OT_BITS32)<>0 then
s:=s+'32'
else
if (ot and OT_BITS64)<>0 then
s:=s+'64'
else
s:=s+'??';
{ signed }
if (ot and OT_SIGNED)<>0 then
s:=s+'s';
end;
end;
end;
GetString:=s+']';
end;
procedure taicpu.Swapoperands;
var
p : POper;
begin
{ Fix the operands which are in AT&T style and we need them in Intel style }
case ops of
2 : begin
{ 0,1 -> 1,0 }
p:=oper[0];
oper[0]:=oper[1];
oper[1]:=p;
end;
3 : begin
{ 0,1,2 -> 2,1,0 }
p:=oper[0];
oper[0]:=oper[2];
oper[2]:=p;
end;
end;
end;
procedure taicpu.SetOperandOrder(order:TOperandOrder);
begin
if FOperandOrder<>order then
begin
Swapoperands;
FOperandOrder:=order;
end;
end;
procedure taicpu.CheckNonCommutativeOpcodes;
begin
{ we need ATT order }
SetOperandOrder(op_att);
if (
(ops=2) and
(oper[0]^.typ=top_reg) and
(oper[1]^.typ=top_reg) and
{ if the first is ST and the second is also a register
it is necessarily ST1 .. ST7 }
((oper[0]^.reg=NR_ST) or
(oper[0]^.reg=NR_ST0))
) or
{ ((ops=1) and
(oper[0]^.typ=top_reg) and
(oper[0]^.reg in [R_ST1..R_ST7])) or}
(ops=0) then
begin
if opcode=A_FSUBR then
opcode:=A_FSUB
else if opcode=A_FSUB then
opcode:=A_FSUBR
else if opcode=A_FDIVR then
opcode:=A_FDIV
else if opcode=A_FDIV then
opcode:=A_FDIVR
else if opcode=A_FSUBRP then
opcode:=A_FSUBP
else if opcode=A_FSUBP then
opcode:=A_FSUBRP
else if opcode=A_FDIVRP then
opcode:=A_FDIVP
else if opcode=A_FDIVP then
opcode:=A_FDIVRP;
end;
if (
(ops=1) and
(oper[0]^.typ=top_reg) and
(getregtype(oper[0]^.reg)=R_FPUREGISTER) and
(oper[0]^.reg<>NR_ST)
) then
begin
if opcode=A_FSUBRP then
opcode:=A_FSUBP
else if opcode=A_FSUBP then
opcode:=A_FSUBRP
else if opcode=A_FDIVRP then
opcode:=A_FDIVP
else if opcode=A_FDIVP then
opcode:=A_FDIVRP;
end;
end;
{*****************************************************************************
Assembler
*****************************************************************************}
type
ea = packed record
sib_present : boolean;
bytes : byte;
size : byte;
modrm : byte;
sib : byte;
{$ifdef x86_64}
rex_present : boolean;
rex : byte;
{$endif x86_64}
end;
procedure taicpu.create_ot(objdata:TObjData);
{
this function will also fix some other fields which only needs to be once
}
var
i,l,relsize : longint;
currsym : TObjSymbol;
begin
if ops=0 then
exit;
{ update oper[].ot field }
for i:=0 to ops-1 do
with oper[i]^ do
begin
case typ of
top_reg :
begin
ot:=reg_ot_table[findreg_by_number(reg)];
end;
top_ref :
begin
if (ref^.refaddr=addr_no)
{$ifdef x86_64}
or (
(ref^.refaddr in [addr_pic,addr_pic_no_got]) and
(ref^.base<>NR_NO)
)
{$endif x86_64}
then
begin
{ create ot field }
if (ot and OT_SIZE_MASK)=0 then
ot:=OT_MEMORY or opsize_2_type[i,opsize]
else
ot:=OT_MEMORY or (ot and OT_SIZE_MASK);
if (ref^.base=NR_NO) and (ref^.index=NR_NO) then
ot:=ot or OT_MEM_OFFS;
{ fix scalefactor }
if (ref^.index=NR_NO) then
ref^.scalefactor:=0
else
if (ref^.scalefactor=0) then
ref^.scalefactor:=1;
end
else
begin
{ Jumps use a relative offset which can be 8bit,
for other opcodes we always need to generate the full
32bit address }
if assigned(objdata) and
is_jmp then
begin
currsym:=objdata.symbolref(ref^.symbol);
l:=ref^.offset;
if assigned(currsym) then
inc(l,currsym.address);
{ when it is a forward jump we need to compensate the
offset of the instruction since the previous time,
because the symbol address is then still using the
'old-style' addressing.
For backwards jumps this is not required because the
address of the symbol is already adjusted to the
new offset }
if (l>InsOffset) and (LastInsOffset<>-1) then
inc(l,InsOffset-LastInsOffset);
{ instruction size will then always become 2 (PFV) }
relsize:=(InsOffset+2)-l;
if (relsize>=-128) and (relsize<=127) and
(
not assigned(currsym) or
(currsym.objsection=objdata.currobjsec)
) then
ot:=OT_IMM8 or OT_SHORT
else
ot:=OT_IMM32 or OT_NEAR;
end
else
ot:=OT_IMM32 or OT_NEAR;
end;
end;
top_local :
begin
if (ot and OT_SIZE_MASK)=0 then
ot:=OT_MEMORY or opsize_2_type[i,opsize]
else
ot:=OT_MEMORY or (ot and OT_SIZE_MASK);
end;
top_const :
begin
{ allow 2nd or 3rd operand being a constant and expect no size for shuf* etc. }
{ further, allow AAD and AAM with imm. operand }
if (opsize=S_NO) and not((i in [1,2]) or ((i=0) and (opcode in [A_AAD,A_AAM]))) then
message(asmr_e_invalid_opcode_and_operand);
if (opsize<>S_W) and (aint(val)>=-128) and (val<=127) then
ot:=OT_IMM8 or OT_SIGNED
else
ot:=OT_IMMEDIATE or opsize_2_type[i,opsize];
if (val=1) and (i=1) then
ot := ot or OT_ONENESS;
end;
top_none :
begin
{ generated when there was an error in the
assembler reader. It never happends when generating
assembler }
end;
else
internalerror(200402261);
end;
end;
end;
function taicpu.InsEnd:longint;
begin
InsEnd:=InsOffset+InsSize;
end;
function taicpu.Matches(p:PInsEntry):boolean;
{ * IF_SM stands for Size Match: any operand whose size is not
* explicitly specified by the template is `really' intended to be
* the same size as the first size-specified operand.
* Non-specification is tolerated in the input instruction, but
* _wrong_ specification is not.
*
* IF_SM2 invokes Size Match on only the first _two_ operands, for
* three-operand instructions such as SHLD: it implies that the
* first two operands must match in size, but that the third is
* required to be _unspecified_.
*
* IF_SB invokes Size Byte: operands with unspecified size in the
* template are really bytes, and so no non-byte specification in
* the input instruction will be tolerated. IF_SW similarly invokes
* Size Word, and IF_SD invokes Size Doubleword.
*
* (The default state if neither IF_SM nor IF_SM2 is specified is
* that any operand with unspecified size in the template is
* required to have unspecified size in the instruction too...)
}
var
insot,
currot,
i,j,asize,oprs : longint;
insflags:cardinal;
siz : array[0..2] of longint;
begin
result:=false;
{ Check the opcode and operands }
if (p^.opcode<>opcode) or (p^.ops<>ops) then
exit;
for i:=0 to p^.ops-1 do
begin
insot:=p^.optypes[i];
currot:=oper[i]^.ot;
{ Check the operand flags }
if (insot and (not currot) and OT_NON_SIZE)<>0 then
exit;
{ Check if the passed operand size matches with one of
the supported operand sizes }
if ((insot and OT_SIZE_MASK)<>0) and
((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
exit;
end;
{ Check operand sizes }
insflags:=p^.flags;
if insflags and IF_SMASK<>0 then
begin
{ as default an untyped size can get all the sizes, this is different
from nasm, but else we need to do a lot checking which opcodes want
size or not with the automatic size generation }
asize:=-1;
if (insflags and IF_SB)<>0 then
asize:=OT_BITS8
else if (insflags and IF_SW)<>0 then
asize:=OT_BITS16
else if (insflags and IF_SD)<>0 then
asize:=OT_BITS32;
if (insflags and IF_ARMASK)<>0 then
begin
siz[0]:=0;
siz[1]:=0;
siz[2]:=0;
if (insflags and IF_AR0)<>0 then
siz[0]:=asize
else if (insflags and IF_AR1)<>0 then
siz[1]:=asize
else if (insflags and IF_AR2)<>0 then
siz[2]:=asize;
end
else
begin
siz[0]:=asize;
siz[1]:=asize;
siz[2]:=asize;
end;
if (insflags and (IF_SM or IF_SM2))<>0 then
begin
if (insflags and IF_SM2)<>0 then
oprs:=2
else
oprs:=p^.ops;
for i:=0 to oprs-1 do
if ((p^.optypes[i] and OT_SIZE_MASK) <> 0) then
begin
for j:=0 to oprs-1 do
siz[j]:=p^.optypes[i] and OT_SIZE_MASK;
break;
end;
end
else
oprs:=2;
{ Check operand sizes }
for i:=0 to p^.ops-1 do
begin
insot:=p^.optypes[i];
currot:=oper[i]^.ot;
if ((insot and OT_SIZE_MASK)=0) and
((currot and OT_SIZE_MASK and (not siz[i]))<>0) and
{ Immediates can always include smaller size }
((currot and OT_IMMEDIATE)=0) and
(((insot and OT_SIZE_MASK) or siz[i])<(currot and OT_SIZE_MASK)) then
exit;
end;
end;
result:=true;
end;
procedure taicpu.ResetPass1;
begin
{ we need to reset everything here, because the choosen insentry
can be invalid for a new situation where the previously optimized
insentry is not correct }
InsEntry:=nil;
InsSize:=0;
LastInsOffset:=-1;
end;
procedure taicpu.ResetPass2;
begin
{ we are here in a second pass, check if the instruction can be optimized }
if assigned(InsEntry) and
((InsEntry^.flags and IF_PASS2)<>0) then
begin
InsEntry:=nil;
InsSize:=0;
end;
LastInsOffset:=-1;
end;
function taicpu.CheckIfValid:boolean;
begin
result:=FindInsEntry(nil);
end;
function taicpu.FindInsentry(objdata:TObjData):boolean;
var
i : longint;
begin
result:=false;
{ Things which may only be done once, not when a second pass is done to
optimize }
if (Insentry=nil) or ((InsEntry^.flags and IF_PASS2)<>0) then
begin
current_filepos:=fileinfo;
{ We need intel style operands }
SetOperandOrder(op_intel);
{ create the .ot fields }
create_ot(objdata);
{ set the file postion }
end
else
begin
{ we've already an insentry so it's valid }
result:=true;
exit;
end;
{ Lookup opcode in the table }
InsSize:=-1;
i:=instabcache^[opcode];
if i=-1 then
begin
Message1(asmw_e_opcode_not_in_table,gas_op2str[opcode]);
exit;
end;
insentry:=@instab[i];
while (insentry^.opcode=opcode) do
begin
if matches(insentry) then
begin
result:=true;
exit;
end;
inc(insentry);
end;
Message1(asmw_e_invalid_opcode_and_operands,GetString);
{ No instruction found, set insentry to nil and inssize to -1 }
insentry:=nil;
inssize:=-1;
end;
function taicpu.Pass1(objdata:TObjData):longint;
begin
Pass1:=0;
{ Save the old offset and set the new offset }
InsOffset:=ObjData.CurrObjSec.Size;
{ Error? }
if (Insentry=nil) and (InsSize=-1) then
exit;
{ set the file postion }
current_filepos:=fileinfo;
{ Get InsEntry }
if FindInsEntry(ObjData) then
begin
{ Calculate instruction size }
InsSize:=calcsize(insentry);
if segprefix<>NR_NO then
inc(InsSize);
{ Fix opsize if size if forced }
if (insentry^.flags and (IF_SB or IF_SW or IF_SD))<>0 then
begin
if (insentry^.flags and IF_ARMASK)=0 then
begin
if (insentry^.flags and IF_SB)<>0 then
begin
if opsize=S_NO then
opsize:=S_B;
end
else if (insentry^.flags and IF_SW)<>0 then
begin
if opsize=S_NO then
opsize:=S_W;
end
else if (insentry^.flags and IF_SD)<>0 then
begin
if opsize=S_NO then
opsize:=S_L;
end;
end;
end;
LastInsOffset:=InsOffset;
Pass1:=InsSize;
exit;
end;
LastInsOffset:=-1;
end;
procedure taicpu.Pass2(objdata:TObjData);
var
c : longint;
begin
{ error in pass1 ? }
if insentry=nil then
exit;
current_filepos:=fileinfo;
{ Segment override }
if (segprefix<>NR_NO) then
begin
case segprefix of
NR_CS : c:=$2e;
NR_DS : c:=$3e;
NR_ES : c:=$26;
NR_FS : c:=$64;
NR_GS : c:=$65;
NR_SS : c:=$36;
end;
objdata.writebytes(c,1);
{ fix the offset for GenNode }
inc(InsOffset);
end;
{ Generate the instruction }
GenCode(objdata);
end;
function taicpu.needaddrprefix(opidx:byte):boolean;
begin
result:=(oper[opidx]^.typ=top_ref) and
(oper[opidx]^.ref^.refaddr=addr_no) and
{$ifdef x86_64}
(oper[opidx]^.ref^.base<>NR_RIP) and
{$endif x86_64}
(
(
(oper[opidx]^.ref^.index<>NR_NO) and
(getsubreg(oper[opidx]^.ref^.index)<>R_SUBADDR)
) or
(
(oper[opidx]^.ref^.base<>NR_NO) and
(getsubreg(oper[opidx]^.ref^.base)<>R_SUBADDR)
)
);
end;
function regval(r:Tregister):byte;
const
{$ifdef x86_64}
opcode_table:array[tregisterindex] of tregisterindex = (
{$i r8664op.inc}
);
{$else x86_64}
opcode_table:array[tregisterindex] of tregisterindex = (
{$i r386op.inc}
);
{$endif x86_64}
var
regidx : tregisterindex;
begin
regidx:=findreg_by_number(r);
if regidx<>0 then
result:=opcode_table[regidx]
else
begin
Message1(asmw_e_invalid_register,generic_regname(r));
result:=0;
end;
end;
{$ifdef x86_64}
function process_ea(const input:toper;out output:ea;rfield:longint):boolean;
var
sym : tasmsymbol;
md,s,rv : byte;
base,index,scalefactor,
o : longint;
ir,br : Tregister;
isub,bsub : tsubregister;
begin
process_ea:=false;
fillchar(output,sizeof(output),0);
{Register ?}
if (input.typ=top_reg) then
begin
rv:=regval(input.reg);
output.modrm:=$c0 or (rfield shl 3) or rv;
output.size:=1;
if ((getregtype(input.reg)=R_INTREGISTER) and
(getsupreg(input.reg)>=RS_R8)) or
((getregtype(input.reg)=R_MMREGISTER) and
(getsupreg(input.reg)>=RS_XMM8)) then
begin
output.rex_present:=true;
output.rex:=output.rex or $41;
inc(output.size,1);
end
else if (getregtype(input.reg)=R_INTREGISTER) and
(getsubreg(input.reg)=R_SUBL) and
(getsupreg(input.reg) in [RS_RDI,RS_RSI,RS_RBP,RS_RSP]) then
begin
output.rex_present:=true;
output.rex:=output.rex or $40;
inc(output.size,1);
end;
process_ea:=true;
exit;
end;
{No register, so memory reference.}
if input.typ<>top_ref then
internalerror(200409263);
ir:=input.ref^.index;
br:=input.ref^.base;
isub:=getsubreg(ir);
bsub:=getsubreg(br);
s:=input.ref^.scalefactor;
o:=input.ref^.offset;
sym:=input.ref^.symbol;
if ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER)) or
((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
internalerror(200301081);
{ it's direct address }
if (br=NR_NO) and (ir=NR_NO) then
begin
output.sib_present:=true;
output.bytes:=4;
output.modrm:=4 or (rfield shl 3);
output.sib:=$25;
end
else if (br=NR_RIP) and (ir=NR_NO) then
begin
{ rip based }
output.sib_present:=false;
output.bytes:=4;
output.modrm:=5 or (rfield shl 3);
end
else
{ it's an indirection }
begin
{ 16 bit or 32 bit address? }
if ((ir<>NR_NO) and (isub<>R_SUBADDR)) or
((br<>NR_NO) and (bsub<>R_SUBADDR)) then
message(asmw_e_16bit_32bit_not_supported);
{ wrong, for various reasons }
if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
exit;
if ((getregtype(br)=R_INTREGISTER) and
(getsupreg(br)>=RS_R8)) or
((getregtype(br)=R_MMREGISTER) and
(getsupreg(br)>=RS_XMM8)) then
begin
output.rex_present:=true;
output.rex:=output.rex or $41;
end;
if ((getregtype(ir)=R_INTREGISTER) and
(getsupreg(ir)>=RS_R8)) or
((getregtype(ir)=R_MMREGISTER) and
(getsupreg(ir)>=RS_XMM8)) then
begin
output.rex_present:=true;
output.rex:=output.rex or $42;
end;
process_ea:=true;
{ base }
case br of
NR_R8,
NR_RAX : base:=0;
NR_R9,
NR_RCX : base:=1;
NR_R10,
NR_RDX : base:=2;
NR_R11,
NR_RBX : base:=3;
NR_R12,
NR_RSP : base:=4;
NR_R13,
NR_NO,
NR_RBP : base:=5;
NR_R14,
NR_RSI : base:=6;
NR_R15,
NR_RDI : base:=7;
else
exit;
end;
{ index }
case ir of
NR_R8,
NR_RAX : index:=0;
NR_R9,
NR_RCX : index:=1;
NR_R10,
NR_RDX : index:=2;
NR_R11,
NR_RBX : index:=3;
NR_R12,
NR_NO : index:=4;
NR_R13,
NR_RBP : index:=5;
NR_R14,
NR_RSI : index:=6;
NR_R15,
NR_RDI : index:=7;
else
exit;
end;
case s of
0,
1 : scalefactor:=0;
2 : scalefactor:=1;
4 : scalefactor:=2;
8 : scalefactor:=3;
else
exit;
end;
{ If rbp or r13 is used we must always include an offset }
if (br=NR_NO) or
((br<>NR_RBP) and (br<>NR_R13) and (o=0) and (sym=nil)) then
md:=0
else
if ((o>=-128) and (o<=127) and (sym=nil)) then
md:=1
else
md:=2;
if (br=NR_NO) or (md=2) then
output.bytes:=4
else
output.bytes:=md;
{ SIB needed ? }
if (ir=NR_NO) and (br<>NR_RSP) and (br<>NR_R12) then
begin
output.sib_present:=false;
output.modrm:=(md shl 6) or (rfield shl 3) or base;
end
else
begin
output.sib_present:=true;
output.modrm:=(md shl 6) or (rfield shl 3) or 4;
output.sib:=(scalefactor shl 6) or (index shl 3) or base;
end;
end;
output.size:=1+ord(output.sib_present)+ord(output.rex_present)+output.bytes;
process_ea:=true;
end;
{$else x86_64}
function process_ea(const input:toper;out output:ea;rfield:longint):boolean;
var
sym : tasmsymbol;
md,s,rv : byte;
base,index,scalefactor,
o : longint;
ir,br : Tregister;
isub,bsub : tsubregister;
begin
process_ea:=false;
fillchar(output,sizeof(output),0);
{Register ?}
if (input.typ=top_reg) then
begin
rv:=regval(input.reg);
output.modrm:=$c0 or (rfield shl 3) or rv;
output.size:=1;
process_ea:=true;
exit;
end;
{No register, so memory reference.}
if (input.typ<>top_ref) then
internalerror(200409262);
if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER)) or
((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
internalerror(200301081);
ir:=input.ref^.index;
br:=input.ref^.base;
isub:=getsubreg(ir);
bsub:=getsubreg(br);
s:=input.ref^.scalefactor;
o:=input.ref^.offset;
sym:=input.ref^.symbol;
{ it's direct address }
if (br=NR_NO) and (ir=NR_NO) then
begin
{ it's a pure offset }
output.sib_present:=false;
output.bytes:=4;
output.modrm:=5 or (rfield shl 3);
end
else
{ it's an indirection }
begin
{ 16 bit address? }
if ((ir<>NR_NO) and (isub<>R_SUBADDR)) or
((br<>NR_NO) and (bsub<>R_SUBADDR)) then
message(asmw_e_16bit_not_supported);
{$ifdef OPTEA}
{ make single reg base }
if (br=NR_NO) and (s=1) then
begin
br:=ir;
ir:=NR_NO;
end;
{ convert [3,5,9]*EAX to EAX+[2,4,8]*EAX }
if (br=NR_NO) and
(((s=2) and (ir<>NR_ESP)) or
(s=3) or (s=5) or (s=9)) then
begin
br:=ir;
dec(s);
end;
{ swap ESP into base if scalefactor is 1 }
if (s=1) and (ir=NR_ESP) then
begin
ir:=br;
br:=NR_ESP;
end;
{$endif OPTEA}
{ wrong, for various reasons }
if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
exit;
{ base }
case br of
NR_EAX : base:=0;
NR_ECX : base:=1;
NR_EDX : base:=2;
NR_EBX : base:=3;
NR_ESP : base:=4;
NR_NO,
NR_EBP : base:=5;
NR_ESI : base:=6;
NR_EDI : base:=7;
else
exit;
end;
{ index }
case ir of
NR_EAX : index:=0;
NR_ECX : index:=1;
NR_EDX : index:=2;
NR_EBX : index:=3;
NR_NO : index:=4;
NR_EBP : index:=5;
NR_ESI : index:=6;
NR_EDI : index:=7;
else
exit;
end;
case s of
0,
1 : scalefactor:=0;
2 : scalefactor:=1;
4 : scalefactor:=2;
8 : scalefactor:=3;
else
exit;
end;
if (br=NR_NO) or
((br<>NR_EBP) and (o=0) and (sym=nil)) then
md:=0
else
if ((o>=-128) and (o<=127) and (sym=nil)) then
md:=1
else
md:=2;
if (br=NR_NO) or (md=2) then
output.bytes:=4
else
output.bytes:=md;
{ SIB needed ? }
if (ir=NR_NO) and (br<>NR_ESP) then
begin
output.sib_present:=false;
output.modrm:=(longint(md) shl 6) or (rfield shl 3) or base;
end
else
begin
output.sib_present:=true;
output.modrm:=(longint(md) shl 6) or (rfield shl 3) or 4;
output.sib:=(scalefactor shl 6) or (index shl 3) or base;
end;
end;
if output.sib_present then
output.size:=2+output.bytes
else
output.size:=1+output.bytes;
process_ea:=true;
end;
{$endif x86_64}
function taicpu.calcsize(p:PInsEntry):shortint;
var
codes : pchar;
c : byte;
len : shortint;
ea_data : ea;
begin
len:=0;
codes:=@p^.code[0];
{$ifdef x86_64}
rex:=0;
{$endif x86_64}
repeat
c:=ord(codes^);
inc(codes);
case c of
0 :
break;
1,2,3 :
begin
inc(codes,c);
inc(len,c);
end;
8,9,10 :
begin
{$ifdef x86_64}
if ((getregtype(oper[c-8]^.reg)=R_INTREGISTER) and
(getsupreg(oper[c-8]^.reg)>=RS_R8)) or
((getregtype(oper[c-8]^.reg)=R_MMREGISTER) and
(getsupreg(oper[c-8]^.reg)>=RS_XMM8)) then
begin
if rex=0 then
inc(len);
rex:=rex or $41;
end
else if (getregtype(oper[c-8]^.reg)=R_INTREGISTER) and
(getsubreg(oper[c-8]^.reg)=R_SUBL) and
(getsupreg(oper[c-8]^.reg) in [RS_RDI,RS_RSI,RS_RBP,RS_RSP]) then
begin
if rex=0 then
inc(len);
rex:=rex or $40;
end;
{$endif x86_64}
inc(codes);
inc(len);
end;
11 :
begin
inc(codes);
inc(len);
end;
4,5,6,7 :
begin
if opsize=S_W then
inc(len,2)
else
inc(len);
end;
15,
12,13,14,
16,17,18,
20,21,22,
40,41,42 :
inc(len);
24,25,26,
31,
48,49,50 :
inc(len,2);
28,29,30:
begin
if opsize=S_Q then
inc(len,8)
else
inc(len,4);
end;
32,33,34,
52,53,54,
56,57,58 :
inc(len,4);
192,193,194 :
if NeedAddrPrefix(c-192) then
inc(len);
208,209,210 :
begin
case (oper[c-208]^.ot and OT_SIZE_MASK) of
OT_BITS16:
inc(len);
{$ifdef x86_64}
OT_BITS64:
begin
if rex=0 then
inc(len);
rex:=rex or $48;
end;
{$endif x86_64}
end;
end;
200,
212 :
inc(len);
214 :
begin
{$ifdef x86_64}
if rex=0 then
inc(len);
rex:=rex or $48;
{$endif x86_64}
end;
201,
202,
211,
213,
215,
217,218: ;
219,220 :
inc(len);
221:
{$ifdef x86_64}
{ remove rex competely? }
if rex=$48 then
begin
rex:=0;
dec(len);
end
else
rex:=rex and $f7
{$endif x86_64}
;
64..191 :
begin
{$ifdef x86_64}
if (c<127) then
begin
if (oper[c and 7]^.typ=top_reg) then
begin
if ((getregtype(oper[c and 7]^.reg)=R_INTREGISTER) and
(getsupreg(oper[c and 7]^.reg)>=RS_R8)) or
((getregtype(oper[c and 7]^.reg)=R_MMREGISTER) and
(getsupreg(oper[c and 7]^.reg)>=RS_XMM8)) then
begin
if rex=0 then
inc(len);
rex:=rex or $44;
end
else if (getregtype(oper[c and 7]^.reg)=R_INTREGISTER) and
(getsubreg(oper[c and 7]^.reg)=R_SUBL) and
(getsupreg(oper[c and 7]^.reg) in [RS_RDI,RS_RSI,RS_RBP,RS_RSP]) then
begin
if rex=0 then
inc(len);
rex:=rex or $40;
end;
end;
end;
{$endif x86_64}
if not process_ea(oper[(c shr 3) and 7]^, ea_data, 0) then
Message(asmw_e_invalid_effective_address)
else
inc(len,ea_data.size);
{$ifdef x86_64}
{ did we already create include a rex into the length calculation? }
if (rex<>0) and (ea_data.rex<>0) then
dec(len);
rex:=rex or ea_data.rex;
{$endif x86_64}
end;
else
InternalError(200603141);
end;
until false;
calcsize:=len;
end;
procedure taicpu.GenCode(objdata:TObjData);
{
* the actual codes (C syntax, i.e. octal):
* \0 - terminates the code. (Unless it's a literal of course.)
* \1, \2, \3 - that many literal bytes follow in the code stream
* \4, \6 - the POP/PUSH (respectively) codes for CS, DS, ES, SS
* (POP is never used for CS) depending on operand 0
* \5, \7 - the second byte of POP/PUSH codes for FS, GS, depending
* on operand 0
* \10, \11, \12 - a literal byte follows in the code stream, to be added
* to the register value of operand 0, 1 or 2
* \13 - a literal byte follows in the code stream, to be added
* to the condition code value of the instruction.
* \17 - encodes the literal byte 0. (Some compilers don't take
* kindly to a zero byte in the _middle_ of a compile time
* string constant, so I had to put this hack in.)
* \14, \15, \16 - a signed byte immediate operand, from operand 0, 1 or 2
* \20, \21, \22 - a byte immediate operand, from operand 0, 1 or 2
* \24, \25, \26 - an unsigned byte immediate operand, from operand 0, 1 or 2
* \30, \31, \32 - a word immediate operand, from operand 0, 1 or 2
* \34, \35, \36 - select between \3[012] and \4[012] depending on 16/32 bit
* assembly mode or the address-size override on the operand
* \37 - a word constant, from the _segment_ part of operand 0
* \40, \41, \42 - a long immediate operand, from operand 0, 1 or 2
* \50, \51, \52 - a byte relative operand, from operand 0, 1 or 2
* \60, \61, \62 - a word relative operand, from operand 0, 1 or 2
* \64, \65, \66 - select between \6[012] and \7[012] depending on 16/32 bit
* assembly mode or the address-size override on the operand
* \70, \71, \72 - a long relative operand, from operand 0, 1 or 2
* \1ab - a ModRM, calculated on EA in operand a, with the spare
* field the register value of operand b.
* \2ab - a ModRM, calculated on EA in operand a, with the spare
* field equal to digit b.
* \300,\301,\302 - might be an 0x67, depending on the address size of
* the memory reference in operand x.
* \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
* \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
* \312 - indicates fixed 64-bit address size, i.e. optional 0x48.
* \320,\321,\322 - might be an 0x66 or 0x48 byte, depending on the operand
* size of operand x.
* \323 - insert x86_64 REX at this position.
* \324 - indicates fixed 16-bit operand size, i.e. optional 0x66.
* \325 - indicates fixed 32-bit operand size, i.e. optional 0x66.
* \326 - indicates fixed 64-bit operand size, i.e. optional 0x48.
* \327 - indicates that this instruction is only valid when the
* operand size is the default (instruction to disassembler,
* generates no code in the assembler)
* \331 - instruction not valid with REP prefix. Hint for
* disassembler only; for SSE instructions.
* \332 - disassemble a rep (0xF3 byte) prefix as repe not rep.
* \333 - REP prefix (0xF3 byte); for SSE instructions. Not encoded
* \335 - removes rex size prefix, i.e. rex.w must be the last opcode
}
var
currval : aint;
currsym : tobjsymbol;
currrelreloc,
currabsreloc,
currabsreloc32 : TObjRelocationType;
{$ifdef x86_64}
rexwritten : boolean;
{$endif x86_64}
procedure getvalsym(opidx:longint);
begin
case oper[opidx]^.typ of
top_ref :
begin
currval:=oper[opidx]^.ref^.offset;
currsym:=ObjData.symbolref(oper[opidx]^.ref^.symbol);
{$ifdef x86_64}
if oper[opidx]^.ref^.refaddr=addr_pic then
begin
currrelreloc:=RELOC_PLT32;
currabsreloc:=RELOC_GOTPCREL;
currabsreloc32:=RELOC_GOTPCREL;
end
else
{$endif x86_64}
begin
currrelreloc:=RELOC_RELATIVE;
currabsreloc:=RELOC_ABSOLUTE;
currabsreloc32:=RELOC_ABSOLUTE32;
end;
end;
top_const :
begin
currval:=aint(oper[opidx]^.val);
currsym:=nil;
currabsreloc:=RELOC_ABSOLUTE;
currabsreloc32:=RELOC_ABSOLUTE32;
end;
else
Message(asmw_e_immediate_or_reference_expected);
end;
end;
{$ifdef x86_64}
procedure maybewriterex;
begin
if (rex<>0) and not(rexwritten) then
begin
rexwritten:=true;
objdata.writebytes(rex,1);
end;
end;
{$endif x86_64}
const
CondVal:array[TAsmCond] of byte=($0,
$7, $3, $2, $6, $2, $4, $F, $D, $C, $E, $6, $2,
$3, $7, $3, $5, $E, $C, $D, $F, $1, $B, $9, $5,
$0, $A, $A, $B, $8, $4);
var
c : byte;
pb : pbyte;
codes : pchar;
bytes : array[0..3] of byte;
rfield,
data,s,opidx : longint;
ea_data : ea;
relsym : TObjSymbol;
begin
{ safety check }
if objdata.currobjsec.size<>longword(insoffset) then
internalerror(200130121);
{ load data to write }
codes:=insentry^.code;
{$ifdef x86_64}
rexwritten:=false;
{$endif x86_64}
{ Force word push/pop for registers }
if (opsize=S_W) and ((codes[0]=#4) or (codes[0]=#6) or
((codes[0]=#1) and ((codes[2]=#5) or (codes[2]=#7)))) then
begin
bytes[0]:=$66;
objdata.writebytes(bytes,1);
end;
repeat
c:=ord(codes^);
inc(codes);
case c of
0 :
break;
1,2,3 :
begin
objdata.writebytes(codes^,c);
inc(codes,c);
end;
4,6 :
begin
case oper[0]^.reg of
NR_CS:
bytes[0]:=$e;
NR_NO,
NR_DS:
bytes[0]:=$1e;
NR_ES:
bytes[0]:=$6;
NR_SS:
bytes[0]:=$16;
else
internalerror(777004);
end;
if c=4 then
inc(bytes[0]);
objdata.writebytes(bytes,1);
end;
5,7 :
begin
case oper[0]^.reg of
NR_FS:
bytes[0]:=$a0;
NR_GS:
bytes[0]:=$a8;
else
internalerror(777005);
end;
if c=5 then
inc(bytes[0]);
objdata.writebytes(bytes,1);
end;
8,9,10 :
begin
bytes[0]:=ord(codes^)+regval(oper[c-8]^.reg);
inc(codes);
objdata.writebytes(bytes,1);
end;
11 :
begin
bytes[0]:=ord(codes^)+condval[condition];
inc(codes);
objdata.writebytes(bytes,1);
end;
15 :
begin
bytes[0]:=0;
objdata.writebytes(bytes,1);
end;
12,13,14 :
begin
getvalsym(c-12);
if (currval<-128) or (currval>127) then
Message2(asmw_e_value_exceeds_bounds,'signed byte',tostr(currval));
if assigned(currsym) then
objdata.writereloc(currval,1,currsym,currabsreloc)
else
objdata.writebytes(currval,1);
end;
16,17,18 :
begin
getvalsym(c-16);
if (currval<-256) or (currval>255) then
Message2(asmw_e_value_exceeds_bounds,'byte',tostr(currval));
if assigned(currsym) then
objdata.writereloc(currval,1,currsym,currabsreloc)
else
objdata.writebytes(currval,1);
end;
20,21,22 :
begin
getvalsym(c-20);
if (currval<0) or (currval>255) then
Message2(asmw_e_value_exceeds_bounds,'unsigned byte',tostr(currval));
if assigned(currsym) then
objdata.writereloc(currval,1,currsym,currabsreloc)
else
objdata.writebytes(currval,1);
end;
24,25,26 :
begin
getvalsym(c-24);
if (currval<-65536) or (currval>65535) then
Message2(asmw_e_value_exceeds_bounds,'word',tostr(currval));
if assigned(currsym) then
objdata.writereloc(currval,2,currsym,currabsreloc)
else
objdata.writebytes(currval,2);
end;
28,29,30 :
begin
getvalsym(c-28);
if opsize=S_Q then
begin
if assigned(currsym) then
objdata.writereloc(currval,8,currsym,currabsreloc)
else
objdata.writebytes(currval,8);
end
else
begin
if assigned(currsym) then
objdata.writereloc(currval,4,currsym,currabsreloc32)
else
objdata.writebytes(currval,4);
end
end;
32,33,34 :
begin
getvalsym(c-32);
if assigned(currsym) then
objdata.writereloc(currval,4,currsym,currabsreloc32)
else
objdata.writebytes(currval,4);
end;
40,41,42 :
begin
getvalsym(c-40);
data:=currval-insend;
if assigned(currsym) then
inc(data,currsym.address);
if (data>127) or (data<-128) then
Message1(asmw_e_short_jmp_out_of_range,tostr(data));
objdata.writebytes(data,1);
end;
52,53,54 :
begin
getvalsym(c-52);
if assigned(currsym) then
objdata.writereloc(currval,4,currsym,currrelreloc)
else
objdata.writereloc(currval-insend,4,nil,currabsreloc32)
end;
56,57,58 :
begin
getvalsym(c-56);
if assigned(currsym) then
objdata.writereloc(currval,4,currsym,currrelreloc)
else
objdata.writereloc(currval-insend,4,nil,currabsreloc32)
end;
192,193,194 :
begin
if NeedAddrPrefix(c-192) then
begin
bytes[0]:=$67;
objdata.writebytes(bytes,1);
end;
end;
200 :
begin
bytes[0]:=$67;
objdata.writebytes(bytes,1);
end;
208,209,210 :
begin
case oper[c-208]^.ot and OT_SIZE_MASK of
OT_BITS16 :
begin
bytes[0]:=$66;
objdata.writebytes(bytes,1);
end;
{$ifndef x86_64}
OT_BITS64 :
Message(asmw_e_64bit_not_supported);
{$endif x86_64}
end;
{$ifdef x86_64}
maybewriterex;
{$endif x86_64}
end;
211,
213 :
begin
{$ifdef x86_64}
maybewriterex;
{$endif x86_64}
end;
212 :
begin
bytes[0]:=$66;
objdata.writebytes(bytes,1);
{$ifdef x86_64}
maybewriterex;
{$endif x86_64}
end;
214 :
begin
{$ifdef x86_64}
maybewriterex;
{$else x86_64}
Message(asmw_e_64bit_not_supported);
{$endif x86_64}
end;
219 :
begin
bytes[0]:=$f3;
objdata.writebytes(bytes,1);
{$ifdef x86_64}
maybewriterex;
{$endif x86_64}
end;
220 :
begin
bytes[0]:=$f2;
objdata.writebytes(bytes,1);
end;
221:
;
201,
202,
215,
217,218 :
begin
{ these are dissambler hints or 32 bit prefixes which
are not needed
It's usefull to write rex :) (FK) }
{$ifdef x86_64}
maybewriterex;
{$endif x86_64}
end;
31,
48,49,50 :
begin
InternalError(777006);
end
else
begin
{ rex should be written at this point }
{$ifdef x86_64}
if (rex<>0) and not(rexwritten) then
internalerror(200603191);
{$endif x86_64}
if (c>=64) and (c<=191) then
begin
if (c<127) then
begin
if (oper[c and 7]^.typ=top_reg) then
rfield:=regval(oper[c and 7]^.reg)
else
rfield:=regval(oper[c and 7]^.ref^.base);
end
else
rfield:=c and 7;
opidx:=(c shr 3) and 7;
if not process_ea(oper[opidx]^,ea_data,rfield) then
Message(asmw_e_invalid_effective_address);
pb:=@bytes[0];
pb^:=ea_data.modrm;
inc(pb);
if ea_data.sib_present then
begin
pb^:=ea_data.sib;
inc(pb);
end;
s:=pb-@bytes[0];
objdata.writebytes(bytes,s);
case ea_data.bytes of
0 : ;
1 :
begin
if (oper[opidx]^.ot and OT_MEMORY)=OT_MEMORY then
begin
currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
{$ifdef x86_64}
if oper[opidx]^.ref^.refaddr=addr_pic then
currabsreloc:=RELOC_GOTPCREL
else
{$endif x86_64}
currabsreloc:=RELOC_ABSOLUTE;
objdata.writereloc(oper[opidx]^.ref^.offset,1,currsym,currabsreloc);
end
else
begin
bytes[0]:=oper[opidx]^.ref^.offset;
objdata.writebytes(bytes,1);
end;
inc(s);
end;
2,4 :
begin
currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
currval:=oper[opidx]^.ref^.offset;
{$ifdef x86_64}
if oper[opidx]^.ref^.refaddr=addr_pic then
currabsreloc:=RELOC_GOTPCREL
else
if oper[opidx]^.ref^.base=NR_RIP then
begin
currabsreloc:=RELOC_RELATIVE;
{ Adjust reloc value depending of immediate operand size }
case Ord(codes^) of
12,13,14,16,17,18,20,21,22:
Dec(currval, 1);
24,25,26:
Dec(currval, 2);
32,33,34:
Dec(currval, 4);
end;
end
else
{$endif x86_64}
currabsreloc:=RELOC_ABSOLUTE32;
if (currabsreloc=RELOC_ABSOLUTE32) and
(Assigned(oper[opidx]^.ref^.relsymbol)) then
begin
relsym:=objdata.symbolref(oper[opidx]^.ref^.relsymbol);
currabsreloc:=RELOC_PIC_PAIR;
currval:=relsym.offset;
end;
objdata.writereloc(currval,ea_data.bytes,currsym,currabsreloc);
inc(s,ea_data.bytes);
end;
end;
end
else
InternalError(777007);
end;
end;
until false;
end;
function taicpu.is_same_reg_move(regtype: Tregistertype):boolean;
begin
result:=(((opcode=A_MOV) or (opcode=A_XCHG)) and
(regtype = R_INTREGISTER) and
(ops=2) and
(oper[0]^.typ=top_reg) and
(oper[1]^.typ=top_reg) and
(oper[0]^.reg=oper[1]^.reg)
) or
(((opcode=A_MOVSS) or (opcode=A_MOVSD) or (opcode=A_MOVQ) or
(opcode=A_MOVAPS) or (OPCODE=A_MOVAPD)) and
(regtype = R_MMREGISTER) and
(ops=2) and
(oper[0]^.typ=top_reg) and
(oper[1]^.typ=top_reg) and
(oper[0]^.reg=oper[1]^.reg)
);
end;
procedure build_spilling_operation_type_table;
var
opcode : tasmop;
i : integer;
begin
new(operation_type_table);
fillchar(operation_type_table^,sizeof(toperation_type_table),byte(operand_read));
for opcode:=low(tasmop) to high(tasmop) do
begin
for i:=1 to MaxInsChanges do
begin
case InsProp[opcode].Ch[i] of
Ch_Rop1 :
operation_type_table^[opcode,0]:=operand_read;
Ch_Wop1 :
operation_type_table^[opcode,0]:=operand_write;
Ch_RWop1,
Ch_Mop1 :
operation_type_table^[opcode,0]:=operand_readwrite;
Ch_Rop2 :
operation_type_table^[opcode,1]:=operand_read;
Ch_Wop2 :
operation_type_table^[opcode,1]:=operand_write;
Ch_RWop2,
Ch_Mop2 :
operation_type_table^[opcode,1]:=operand_readwrite;
Ch_Rop3 :
operation_type_table^[opcode,2]:=operand_read;
Ch_Wop3 :
operation_type_table^[opcode,2]:=operand_write;
Ch_RWop3,
Ch_Mop3 :
operation_type_table^[opcode,2]:=operand_readwrite;
end;
end;
end;
{ Special cases that can't be decoded from the InsChanges flags }
operation_type_table^[A_IMUL,1]:=operand_readwrite;
end;
function taicpu.spilling_get_operation_type(opnr: longint): topertype;
begin
{ the information in the instruction table is made for the string copy
operation MOVSD so hack here (FK)
}
if (opcode=A_MOVSD) and (ops=2) then
begin
case opnr of
0:
result:=operand_read;
1:
result:=operand_write;
else
internalerror(200506055);
end
end
else
result:=operation_type_table^[opcode,opnr];
end;
function spilling_create_load(const ref:treference;r:tregister):Taicpu;
begin
case getregtype(r) of
R_INTREGISTER :
{ we don't need special code here for 32 bit loads on x86_64, since
those will automatically zero-extend the upper 32 bits. }
result:=taicpu.op_ref_reg(A_MOV,reg2opsize(r),ref,r);
R_MMREGISTER :
case getsubreg(r) of
R_SUBMMD:
result:=taicpu.op_ref_reg(A_MOVSD,reg2opsize(r),ref,r);
R_SUBMMS:
result:=taicpu.op_ref_reg(A_MOVSS,reg2opsize(r),ref,r);
R_SUBMMWHOLE:
result:=taicpu.op_ref_reg(A_MOVQ,S_NO,ref,r);
else
internalerror(200506043);
end;
else
internalerror(200401041);
end;
end;
function spilling_create_store(r:tregister; const ref:treference):Taicpu;
var
size: topsize;
begin
case getregtype(r) of
R_INTREGISTER :
begin
size:=reg2opsize(r);
{$ifdef x86_64}
{ even if it's a 32 bit reg, we still have to spill 64 bits
because we often perform 64 bit operations on them }
if (size=S_L) then
begin
size:=S_Q;
r:=newreg(getregtype(r),getsupreg(r),R_SUBWHOLE);
end;
{$endif x86_64}
result:=taicpu.op_reg_ref(A_MOV,size,r,ref);
end;
R_MMREGISTER :
case getsubreg(r) of
R_SUBMMD:
result:=taicpu.op_reg_ref(A_MOVSD,reg2opsize(r),r,ref);
R_SUBMMS:
result:=taicpu.op_reg_ref(A_MOVSS,reg2opsize(r),r,ref);
R_SUBMMWHOLE:
result:=taicpu.op_reg_ref(A_MOVQ,S_NO,r,ref);
else
internalerror(200506042);
end;
else
internalerror(200401041);
end;
end;
{*****************************************************************************
Instruction table
*****************************************************************************}
procedure BuildInsTabCache;
var
i : longint;
begin
new(instabcache);
FillChar(instabcache^,sizeof(tinstabcache),$ff);
i:=0;
while (i<InsTabEntries) do
begin
if InsTabCache^[InsTab[i].OPcode]=-1 then
InsTabCache^[InsTab[i].OPcode]:=i;
inc(i);
end;
end;
procedure InitAsm;
begin
build_spilling_operation_type_table;
if not assigned(instabcache) then
BuildInsTabCache;
end;
procedure DoneAsm;
begin
if assigned(operation_type_table) then
begin
dispose(operation_type_table);
operation_type_table:=nil;
end;
if assigned(instabcache) then
begin
dispose(instabcache);
instabcache:=nil;
end;
end;
begin
cai_align:=tai_align;
cai_cpu:=taicpu;
end.