fpc/compiler/ptype.pas
svenbarth 8c95ea039f Fix for Mantis #22219
ptype.pas:
  * read_named_type: 
      after reading the type we're pointing to we need to make sure that
      we didn't get a generic dummy symbol; this can happen when parsing
      a pointer declaration as the type in a constant or variable 
      declaration
  * resolve_forward_types:
      when resolving forward types we need to make sure that we weren't
      given a generic dummy to which no non-generic definition was
      given (possible in Delphi mode); for non-Delphi modes we can not
      rely on the generic dummy flag as the typedef of the symbol will
      the generic def
+ added test from the bug reports as well as three additional ones to
  make sure that nothing breaks regarding to forward pointer 
  declarations
      

git-svn-id: trunk@21687 -
2012-06-24 10:08:17 +00:00

1755 lines
72 KiB
ObjectPascal

{
Copyright (c) 1998-2002 by Florian Klaempfl
Does parsing types for Free Pascal
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit ptype;
{$i fpcdefs.inc}
interface
uses
globtype,cclasses,
symtype,symdef,symbase;
type
TSingleTypeOption=(
stoIsForwardDef, { foward declaration }
stoAllowTypeDef, { allow type definitions }
stoAllowSpecialization, { allow type specialization }
stoParseClassParent { parse of parent class type }
);
TSingleTypeOptions=set of TSingleTypeOption;
procedure resolve_forward_types;
{ reads a string, file type or a type identifier }
procedure single_type(var def:tdef;options:TSingleTypeOptions);
{ reads any type declaration, where the resulting type will get name as type identifier }
procedure read_named_type(var def:tdef;const newsym:tsym;genericdef:tstoreddef;genericlist:TFPObjectList;parseprocvardir:boolean);
{ reads any type declaration }
procedure read_anon_type(var def : tdef;parseprocvardir:boolean);
{ generate persistent type information like VMT, RTTI and inittables }
procedure write_persistent_type_info(st:tsymtable;is_global:boolean);
{ add a definition for a method to a record/objectdef that will contain
all code for initialising typed constants (only for targets in
systems.systems_typed_constants_node_init) }
procedure add_typedconst_init_routine(def: tabstractrecorddef);
{ parse hint directives (platform, deprecated, ...) for a procdef }
procedure maybe_parse_hint_directives(pd:tprocdef);
implementation
uses
{ common }
cutils,
{ global }
globals,tokens,verbose,constexp,
systems,
{ target }
paramgr,procinfo,
{ symtable }
symconst,symsym,symtable,symcreat,
defutil,defcmp,
{$ifdef jvm}
jvmdef,
{$endif}
{ modules }
fmodule,
{ pass 1 }
node,ncgrtti,nobj,
nmat,nadd,ncal,nset,ncnv,ninl,ncon,nld,nflw,
{ parser }
scanner,
pbase,pexpr,pdecsub,pdecvar,pdecobj,pdecl,pgenutil
{$ifdef jvm}
,pjvm
{$endif}
;
procedure maybe_parse_hint_directives(pd:tprocdef);
var
dummysymoptions : tsymoptions;
deprecatedmsg : pshortstring;
begin
dummysymoptions:=[];
deprecatedmsg:=nil;
while try_consume_hintdirective(dummysymoptions,deprecatedmsg) do
Consume(_SEMICOLON);
if assigned(pd) then
begin
pd.symoptions:=pd.symoptions+dummysymoptions;
pd.deprecatedmsg:=deprecatedmsg;
end
else
stringdispose(deprecatedmsg);
end;
procedure resolve_forward_types;
var
i: longint;
hpd,
def : tdef;
srsym : tsym;
srsymtable : TSymtable;
hs : string;
begin
for i:=0 to current_module.checkforwarddefs.Count-1 do
begin
def:=tdef(current_module.checkforwarddefs[i]);
case def.typ of
pointerdef,
classrefdef :
begin
{ classrefdef inherits from pointerdef }
hpd:=tabstractpointerdef(def).pointeddef;
{ still a forward def ? }
if hpd.typ=forwarddef then
begin
{ try to resolve the forward }
if not assigned(tforwarddef(hpd).tosymname) then
internalerror(200211201);
hs:=tforwarddef(hpd).tosymname^;
searchsym(upper(hs),srsym,srsymtable);
{ we don't need the forwarddef anymore, dispose it }
hpd.free;
tabstractpointerdef(def).pointeddef:=nil; { if error occurs }
{ was a type sym found ? }
if assigned(srsym) and
(srsym.typ=typesym) then
begin
tabstractpointerdef(def).pointeddef:=ttypesym(srsym).typedef;
{ avoid wrong unused warnings web bug 801 PM }
inc(ttypesym(srsym).refs);
{ we need a class type for classrefdef }
if (def.typ=classrefdef) and
not(is_class(ttypesym(srsym).typedef)) and
not(is_objcclass(ttypesym(srsym).typedef)) and
not(is_javaclass(ttypesym(srsym).typedef)) then
MessagePos1(def.typesym.fileinfo,type_e_class_type_expected,ttypesym(srsym).typedef.typename);
{ this could also be a generic dummy that was not
overridden with a specific type }
if (sp_generic_dummy in srsym.symoptions) and
(
(ttypesym(srsym).typedef.typ=undefineddef) or
(
{ or an unspecialized generic symbol, which is
the case for generics defined in non-Delphi
modes }
(df_generic in ttypesym(srsym).typedef.defoptions) and
not parse_generic
)
) then
MessagePos(def.typesym.fileinfo,parser_e_no_generics_as_types);
end
else
begin
Message1(sym_e_forward_type_not_resolved,hs);
{ try to recover }
tabstractpointerdef(def).pointeddef:=generrordef;
end;
end;
end;
objectdef :
begin
{ give an error as the implementation may follow in an
other type block which is allowed by FPC modes }
if not(m_fpc in current_settings.modeswitches) and
(oo_is_forward in tobjectdef(def).objectoptions) then
MessagePos1(def.typesym.fileinfo,type_e_type_is_not_completly_defined,def.typename);
end;
else
internalerror(200811071);
end;
end;
current_module.checkforwarddefs.clear;
end;
procedure id_type(var def : tdef;isforwarddef,checkcurrentrecdef,allowgenericsyms:boolean;out srsym:tsym;out srsymtable:tsymtable); forward;
{ def is the outermost type in which other types have to be searched
isforward indicates whether the current definition can be a forward definition
if assigned, currentstructstack is a list of tabstractrecorddefs that, from
last to first, are child types of def that are not yet visible via the
normal symtable searching routines because they are types that are currently
being parsed (so using id_type on them after pushing def on the
symtablestack would result in errors because they'd come back as errordef)
}
procedure parse_nested_types(var def: tdef; isforwarddef: boolean; currentstructstack: tfpobjectlist);
var
t2: tdef;
structstackindex: longint;
srsym: tsym;
srsymtable: tsymtable;
oldsymtablestack: TSymtablestack;
begin
if assigned(currentstructstack) then
structstackindex:=currentstructstack.count-1
else
structstackindex:=-1;
{ handle types inside classes, e.g. TNode.TLongint }
while (token=_POINT) do
begin
if is_class_or_object(def) or is_record(def) or is_java_class_or_interface(def) then
begin
if (def.typ=objectdef) then
def:=find_real_class_definition(tobjectdef(def),false);
consume(_POINT);
if (structstackindex>=0) and
(tabstractrecorddef(currentstructstack[structstackindex]).objname^=pattern) then
begin
def:=tdef(currentstructstack[structstackindex]);
dec(structstackindex);
consume(_ID);
end
else
begin
structstackindex:=-1;
oldsymtablestack:=symtablestack;
symtablestack:=TSymtablestack.create;
symtablestack.push(tabstractrecorddef(def).symtable);
t2:=generrordef;
id_type(t2,isforwarddef,false,false,srsym,srsymtable);
symtablestack.pop(tabstractrecorddef(def).symtable);
symtablestack.free;
symtablestack:=oldsymtablestack;
def:=t2;
end;
end
else
break;
end;
end;
function try_parse_structdef_nested_type(out def: tdef; basedef: tabstractrecorddef; isfowarddef: boolean): boolean;
var
structdef : tdef;
structdefstack : tfpobjectlist;
begin
def:=nil;
{ use of current parsed object:
classes, objects, records can be used also in themself }
structdef:=basedef;
structdefstack:=nil;
while assigned(structdef) and (structdef.typ in [objectdef,recorddef]) do
begin
if (tabstractrecorddef(structdef).objname^=pattern) then
begin
consume(_ID);
def:=structdef;
{ we found the top-most match, now check how far down we can
follow }
structdefstack:=tfpobjectlist.create(false);
structdef:=basedef;
while (structdef<>def) do
begin
structdefstack.add(structdef);
structdef:=tabstractrecorddef(structdef.owner.defowner);
end;
parse_nested_types(def,isfowarddef,structdefstack);
structdefstack.free;
result:=true;
exit;
end;
structdef:=tdef(tabstractrecorddef(structdef).owner.defowner);
end;
result:=false;
end;
procedure id_type(var def : tdef;isforwarddef,checkcurrentrecdef,allowgenericsyms:boolean;out srsym:tsym;out srsymtable:tsymtable);
{ reads a type definition }
{ to a appropriating tdef, s gets the name of }
{ the type to allow name mangling }
var
is_unit_specific : boolean;
pos : tfileposinfo;
s,sorg : TIDString;
t : ttoken;
begin
srsym:=nil;
srsymtable:=nil;
s:=pattern;
sorg:=orgpattern;
pos:=current_tokenpos;
{ use of current parsed object:
classes, objects, records can be used also in themself }
if checkcurrentrecdef and
try_parse_structdef_nested_type(def,current_structdef,isforwarddef) then
exit;
{ Use the special searchsym_type that search only types }
searchsym_type(s,srsym,srsymtable);
{ handle unit specification like System.Writeln }
is_unit_specific:=try_consume_unitsym(srsym,srsymtable,t,true);
consume(t);
{ Types are first defined with an error def before assigning
the real type so check if it's an errordef. if so then
give an error. Only check for typesyms in the current symbol
table as forwarddef are not resolved directly }
if assigned(srsym) and
(srsym.typ=typesym) and
((ttypesym(srsym).typedef.typ=errordef) or
(not allowgenericsyms and
(ttypesym(srsym).typedef.typ=undefineddef) and
not (sp_generic_para in srsym.symoptions))) then
begin
Message1(type_e_type_is_not_completly_defined,ttypesym(srsym).realname);
def:=generrordef;
exit;
end;
{ are we parsing a possible forward def ? }
if isforwarddef and
not(is_unit_specific) then
begin
def:=tforwarddef.create(sorg,pos);
exit;
end;
{ unknown sym ? }
if not assigned(srsym) then
begin
Message1(sym_e_id_not_found,sorg);
def:=generrordef;
exit;
end;
{ type sym ? }
if (srsym.typ<>typesym) then
begin
Message(type_e_type_id_expected);
def:=generrordef;
exit;
end;
{ Give an error when referring to an errordef }
if (ttypesym(srsym).typedef.typ=errordef) then
begin
Message(sym_e_error_in_type_def);
def:=generrordef;
exit;
end;
{ In non-Delphi modes the class/record name of a generic might be used
in the declaration of sub types without type parameters; in that case
we need to check by name as the link from the dummy symbol to the
current type is not yet established }
if (sp_generic_dummy in srsym.symoptions) and
assigned(current_structdef) and
(df_generic in current_structdef.defoptions) and
(ttypesym(srsym).typedef.typ=undefineddef) and
not (m_delphi in current_settings.modeswitches) then
begin
def:=get_generic_in_hierarchy_by_name(srsym,current_structdef);
if assigned(def) then
exit;
end;
def:=ttypesym(srsym).typedef;
end;
procedure single_type(var def:tdef;options:TSingleTypeOptions);
var
t2 : tdef;
dospecialize,
again : boolean;
srsym : tsym;
srsymtable : tsymtable;
begin
dospecialize:=false;
repeat
again:=false;
case token of
_STRING:
string_dec(def,stoAllowTypeDef in options);
_FILE:
begin
consume(_FILE);
if (token=_OF) then
begin
if not(stoAllowTypeDef in options) then
Message(parser_e_no_local_para_def);
consume(_OF);
single_type(t2,[stoAllowTypeDef]);
if is_managed_type(t2) then
Message(parser_e_no_refcounted_typed_file);
def:=tfiledef.createtyped(t2);
end
else
def:=cfiletype;
end;
_ID:
begin
if try_to_consume(_SPECIALIZE) then
begin
if ([stoAllowSpecialization,stoAllowTypeDef] * options = []) then
begin
Message(parser_e_no_local_para_def);
{ try to recover }
while token<>_SEMICOLON do
consume(token);
def:=generrordef;
end
else
begin
dospecialize:=true;
again:=true;
end;
end
else
begin
id_type(def,stoIsForwardDef in options,true,true,srsym,srsymtable);
parse_nested_types(def,stoIsForwardDef in options,nil);
end;
end;
else
begin
message(type_e_type_id_expected);
def:=generrordef;
end;
end;
until not again;
if ([stoAllowSpecialization,stoAllowTypeDef] * options <> []) and
(m_delphi in current_settings.modeswitches) then
dospecialize:=token in [_LSHARPBRACKET,_LT];
if dospecialize then
generate_specialization(def,stoParseClassParent in options,'',nil,'')
else
begin
if assigned(current_specializedef) and (def=current_specializedef.genericdef) then
begin
def:=current_specializedef
end
else if (def=current_genericdef) then
begin
def:=current_genericdef
end
{ when parsing a nested specialization in non-Delphi mode it might
use the name of the topmost generic without type paramaters, thus
def will contain the generic definition, but we need a reference
to the specialization of that generic }
{ TODO : only in non-Delphi modes? }
else if assigned(current_structdef) and
(df_specialization in current_structdef.defoptions) and
return_specialization_of_generic(current_structdef,def,t2) then
begin
def:=t2
end
else if (df_generic in def.defoptions) and
not
(
parse_generic and
(current_genericdef.typ in [recorddef,objectdef]) and
(
{ if both defs belong to the same generic (e.g. both are
subtypes) then we must allow the usage }
defs_belong_to_same_generic(def,current_genericdef) or
{ this is needed to correctly resolve "type Foo=SomeGeneric<T>"
declarations inside a generic }
sym_is_owned_by(srsym,tabstractrecorddef(current_genericdef).symtable)
)
)
then
begin
Message(parser_e_no_generics_as_types);
def:=generrordef;
end
else if (def.typ=undefineddef) and
(sp_generic_dummy in srsym.symoptions) and
parse_generic and
(current_genericdef.typ in [recorddef,objectdef]) and
(Pos(upper(srsym.realname),tabstractrecorddef(current_genericdef).objname^)=1) then
begin
if m_delphi in current_settings.modeswitches then
begin
Message(parser_e_no_generics_as_types);
def:=generrordef;
end
else
def:=current_genericdef;
end
else if is_classhelper(def) and
not (stoParseClassParent in options) then
begin
Message(parser_e_no_category_as_types);
def:=generrordef
end
end;
end;
procedure parse_record_members;
var
pd : tprocdef;
oldparse_only: boolean;
member_blocktype : tblock_type;
fields_allowed, is_classdef, classfields: boolean;
vdoptions: tvar_dec_options;
begin
{ empty record declaration ? }
if (token=_SEMICOLON) then
Exit;
current_structdef.symtable.currentvisibility:=vis_public;
fields_allowed:=true;
is_classdef:=false;
classfields:=false;
member_blocktype:=bt_general;
repeat
case token of
_TYPE :
begin
consume(_TYPE);
member_blocktype:=bt_type;
{ local and anonymous records can not have inner types. skip top record symtable }
if (current_structdef.objname^='') or
not(symtablestack.stack^.next^.symtable.symtabletype in [globalsymtable,staticsymtable,objectsymtable,recordsymtable]) then
Message(parser_e_no_types_in_local_anonymous_records);
end;
_VAR :
begin
consume(_VAR);
fields_allowed:=true;
member_blocktype:=bt_general;
classfields:=is_classdef;
is_classdef:=false;
end;
_CONST:
begin
consume(_CONST);
member_blocktype:=bt_const;
end;
_ID, _CASE, _OPERATOR :
begin
case idtoken of
_PRIVATE :
begin
consume(_PRIVATE);
current_structdef.symtable.currentvisibility:=vis_private;
include(current_structdef.objectoptions,oo_has_private);
fields_allowed:=true;
is_classdef:=false;
classfields:=false;
member_blocktype:=bt_general;
end;
_PROTECTED :
begin
consume(_PROTECTED);
current_structdef.symtable.currentvisibility:=vis_protected;
include(current_structdef.objectoptions,oo_has_protected);
fields_allowed:=true;
is_classdef:=false;
classfields:=false;
member_blocktype:=bt_general;
end;
_PUBLIC :
begin
consume(_PUBLIC);
current_structdef.symtable.currentvisibility:=vis_public;
fields_allowed:=true;
is_classdef:=false;
classfields:=false;
member_blocktype:=bt_general;
end;
_PUBLISHED :
begin
Message(parser_e_no_record_published);
consume(_PUBLISHED);
current_structdef.symtable.currentvisibility:=vis_published;
fields_allowed:=true;
is_classdef:=false;
classfields:=false;
member_blocktype:=bt_general;
end;
_STRICT :
begin
consume(_STRICT);
if token=_ID then
begin
case idtoken of
_PRIVATE:
begin
consume(_PRIVATE);
current_structdef.symtable.currentvisibility:=vis_strictprivate;
include(current_structdef.objectoptions,oo_has_strictprivate);
end;
_PROTECTED:
begin
consume(_PROTECTED);
current_structdef.symtable.currentvisibility:=vis_strictprotected;
include(current_structdef.objectoptions,oo_has_strictprotected);
end;
else
message(parser_e_protected_or_private_expected);
end;
end
else
message(parser_e_protected_or_private_expected);
fields_allowed:=true;
is_classdef:=false;
classfields:=false;
member_blocktype:=bt_general;
end
else
if is_classdef and (idtoken=_OPERATOR) then
begin
pd:=parse_record_method_dec(current_structdef,is_classdef);
fields_allowed:=false;
is_classdef:=false;
end
else
begin
if member_blocktype=bt_general then
begin
if (not fields_allowed)and(idtoken<>_CASE) then
Message(parser_e_field_not_allowed_here);
vdoptions:=[vd_record];
if classfields then
include(vdoptions,vd_class);
read_record_fields(vdoptions);
end
else if member_blocktype=bt_type then
types_dec(true)
else if member_blocktype=bt_const then
consts_dec(true,true)
else
internalerror(201001110);
end;
end;
end;
_PROPERTY :
begin
struct_property_dec(is_classdef);
fields_allowed:=false;
is_classdef:=false;
end;
_CLASS:
begin
is_classdef:=false;
{ read class method/field/property }
consume(_CLASS);
{ class modifier is only allowed for procedures, functions, }
{ constructors, destructors, fields and properties }
if not(token in [_FUNCTION,_PROCEDURE,_PROPERTY,_VAR,_CONSTRUCTOR,_DESTRUCTOR,_OPERATOR]) and
not((token=_ID) and (idtoken=_OPERATOR)) then
Message(parser_e_procedure_or_function_expected);
is_classdef:=true;
end;
_PROCEDURE,
_FUNCTION:
begin
pd:=parse_record_method_dec(current_structdef,is_classdef);
fields_allowed:=false;
is_classdef:=false;
end;
_CONSTRUCTOR :
begin
if not is_classdef then
Message(parser_e_no_constructor_in_records);
if not is_classdef and (current_structdef.symtable.currentvisibility <> vis_public) then
Message(parser_w_constructor_should_be_public);
{ only 1 class constructor is allowed }
if is_classdef and (oo_has_class_constructor in current_structdef.objectoptions) then
Message1(parser_e_only_one_class_constructor_allowed, current_structdef.objrealname^);
oldparse_only:=parse_only;
parse_only:=true;
if is_classdef then
pd:=class_constructor_head(current_structdef)
else
pd:=constructor_head;
parse_only:=oldparse_only;
fields_allowed:=false;
is_classdef:=false;
end;
_DESTRUCTOR :
begin
if not is_classdef then
Message(parser_e_no_destructor_in_records);
{ only 1 class destructor is allowed }
if is_classdef and (oo_has_class_destructor in current_structdef.objectoptions) then
Message1(parser_e_only_one_class_destructor_allowed, current_structdef.objrealname^);
oldparse_only:=parse_only;
parse_only:=true;
if is_classdef then
pd:=class_destructor_head(current_structdef)
else
pd:=destructor_head;
parse_only:=oldparse_only;
fields_allowed:=false;
is_classdef:=false;
end;
_END :
begin
{$ifdef jvm}
add_java_default_record_methods_intf(trecorddef(current_structdef));
{$endif}
if target_info.system in systems_typed_constants_node_init then
add_typedconst_init_routine(current_structdef);
consume(_END);
break;
end;
else
consume(_ID); { Give a ident expected message, like tp7 }
end;
until false;
end;
{ reads a record declaration }
function record_dec(const n:tidstring;genericdef:tstoreddef;genericlist:TFPObjectList):tdef;
var
old_current_structdef: tabstractrecorddef;
old_current_genericdef,
old_current_specializedef: tstoreddef;
old_parse_generic: boolean;
recst: trecordsymtable;
begin
old_current_structdef:=current_structdef;
old_current_genericdef:=current_genericdef;
old_current_specializedef:=current_specializedef;
old_parse_generic:=parse_generic;
current_genericdef:=nil;
current_specializedef:=nil;
{ create recdef }
if (n<>'') or
not(target_info.system in systems_jvm) then
begin
recst:=trecordsymtable.create(n,current_settings.packrecords);
{ can't use recst.realname^ instead of n, because recst.realname is
nil in case of an empty name }
current_structdef:=trecorddef.create(n,recst);
end
else
begin
{ for the JVM target records always need a name, because they are
represented by a class }
recst:=trecordsymtable.create(current_module.realmodulename^+'__fpc_intern_recname_'+tostr(current_module.deflist.count),current_settings.packrecords);
current_structdef:=trecorddef.create(recst.name^,recst);
end;
result:=current_structdef;
{ insert in symtablestack }
symtablestack.push(recst);
{ usage of specialized type inside its generic template }
if assigned(genericdef) then
current_specializedef:=current_structdef
{ reject declaration of generic class inside generic class }
else if assigned(genericlist) then
current_genericdef:=current_structdef;
{ nested types of specializations are specializations as well }
if assigned(old_current_structdef) and
(df_specialization in old_current_structdef.defoptions) then
include(current_structdef.defoptions,df_specialization);
if assigned(old_current_structdef) and
(df_generic in old_current_structdef.defoptions) then
begin
include(current_structdef.defoptions,df_generic);
current_genericdef:=current_structdef;
end;
insert_generic_parameter_types(current_structdef,genericdef,genericlist);
{ when we are parsing a generic already then this is a generic as
well }
if old_parse_generic then
include(current_structdef.defoptions, df_generic);
parse_generic:=(df_generic in current_structdef.defoptions);
{ in non-Delphi modes we need a strict private symbol without type
count and type parameters in the name to simply resolving }
maybe_insert_generic_rename_symbol(n,genericlist);
if m_advanced_records in current_settings.modeswitches then
begin
parse_record_members;
end
else
begin
read_record_fields([vd_record]);
{$ifdef jvm}
{ we need a constructor to create temps, a deep copy helper, ... }
add_java_default_record_methods_intf(trecorddef(current_structdef));
{$endif}
if target_info.system in systems_typed_constants_node_init then
add_typedconst_init_routine(current_structdef);
consume(_END);
end;
{ don't keep track of procdefs in a separate list, because the
compiler may add additional procdefs (e.g. property wrappers for
the jvm backend) }
insert_record_hidden_paras(trecorddef(current_structdef));
{ make the record size aligned }
recst.addalignmentpadding;
{ restore symtable stack }
symtablestack.pop(recst);
if trecorddef(current_structdef).is_packed and is_managed_type(current_structdef) then
Message(type_e_no_packed_inittable);
{ restore old state }
parse_generic:=old_parse_generic;
current_structdef:=old_current_structdef;
current_genericdef:=old_current_genericdef;
current_specializedef:=old_current_specializedef;
end;
{ reads a type definition and returns a pointer to it }
procedure read_named_type(var def:tdef;const newsym:tsym;genericdef:tstoreddef;genericlist:TFPObjectList;parseprocvardir:boolean);
var
pt : tnode;
tt2 : tdef;
aktenumdef : tenumdef;
s : TIDString;
l,v : TConstExprInt;
oldpackrecords : longint;
defpos,storepos : tfileposinfo;
name: TIDString;
procedure expr_type;
var
pt1,pt2 : tnode;
lv,hv : TConstExprInt;
old_block_type : tblock_type;
dospecialize : boolean;
newdef : tdef;
begin
old_block_type:=block_type;
dospecialize:=false;
{ use of current parsed object:
classes, objects, records can be used also in themself }
if (token=_ID) then
if try_parse_structdef_nested_type(def,current_structdef,false) then
exit;
{ Generate a specialization in FPC mode? }
dospecialize:=not(m_delphi in current_settings.modeswitches) and try_to_consume(_SPECIALIZE);
{ we can't accept a equal in type }
pt1:=comp_expr(false,true);
if not dospecialize and
try_to_consume(_POINTPOINT) then
begin
{ get high value of range }
pt2:=comp_expr(false,false);
{ make both the same type or give an error. This is not
done when both are integer values, because typecasting
between -3200..3200 will result in a signed-unsigned
conflict and give a range check error (PFV) }
if not(is_integer(pt1.resultdef) and is_integer(pt2.resultdef)) then
inserttypeconv(pt1,pt2.resultdef);
{ both must be evaluated to constants now }
if (pt1.nodetype=ordconstn) and
(pt2.nodetype=ordconstn) then
begin
lv:=tordconstnode(pt1).value;
hv:=tordconstnode(pt2).value;
{ Check bounds }
if hv<lv then
message(parser_e_upper_lower_than_lower)
else if (lv.signed and (lv.svalue<0)) and (not hv.signed and (hv.uvalue>qword(high(int64)))) then
message(type_e_cant_eval_constant_expr)
else
begin
{ All checks passed, create the new def }
case pt1.resultdef.typ of
enumdef :
def:=tenumdef.create_subrange(tenumdef(pt1.resultdef),lv.svalue,hv.svalue);
orddef :
begin
if is_char(pt1.resultdef) then
def:=torddef.create(uchar,lv,hv)
else
if is_boolean(pt1.resultdef) then
def:=torddef.create(pasbool8,lv,hv)
else if is_signed(pt1.resultdef) then
def:=torddef.create(range_to_basetype(lv,hv),lv,hv)
else
def:=torddef.create(range_to_basetype(lv,hv),lv,hv);
end;
end;
end;
end
else
Message(sym_e_error_in_type_def);
pt2.free;
end
else
begin
{ a simple type renaming or generic specialization }
if (pt1.nodetype=typen) then
begin
def:=ttypenode(pt1).resultdef;
{ Delphi mode specialization? }
if (m_delphi in current_settings.modeswitches) then
dospecialize:=token=_LSHARPBRACKET
else
{ in non-Delphi modes we might get a inline specialization
without "specialize" or "<T>" of the same type we're
currently parsing, so we need to handle that special }
newdef:=nil;
if not dospecialize and
assigned(ttypenode(pt1).typesym) and
(ttypenode(pt1).typesym.typ=typesym) and
(sp_generic_dummy in ttypenode(pt1).typesym.symoptions) and
assigned(current_structdef) and
(
(
not (m_delphi in current_settings.modeswitches) and
(ttypesym(ttypenode(pt1).typesym).typedef.typ=undefineddef) and
(df_generic in current_structdef.defoptions) and
(ttypesym(ttypenode(pt1).typesym).typedef.owner=current_structdef.owner) and
(upper(ttypenode(pt1).typesym.realname)=copy(current_structdef.objname^,1,pos('$',current_structdef.objname^)-1))
) or (
{ this could be a nested specialization which uses
the type name of a surrounding generic to
reference the specialization of said surrounding
class }
(df_specialization in current_structdef.defoptions) and
return_specialization_of_generic(current_structdef,ttypesym(ttypenode(pt1).typesym).typedef,newdef)
)
)
then
begin
if assigned(newdef) then
def:=newdef
else
def:=current_structdef;
if assigned(def) then
{ handle nested types }
post_comp_expr_gendef(def)
else
def:=generrordef;
end;
if dospecialize then
begin
generate_specialization(def,false,name,nil,'');
{ handle nested types }
if assigned(def) then
post_comp_expr_gendef(def);
end
else
begin
if assigned(current_specializedef) and (def=current_specializedef.genericdef) then
begin
def:=current_specializedef
end
else if (def=current_genericdef) then
begin
def:=current_genericdef
end
else if (df_generic in def.defoptions) and
{ TODO : check once nested generics are allowed }
not
(
parse_generic and
(current_genericdef.typ in [recorddef,objectdef]) and
(def.typ in [recorddef,objectdef]) and
(
{ if both defs belong to the same generic (e.g. both are
subtypes) then we must allow the usage }
defs_belong_to_same_generic(def,current_genericdef) or
{ this is needed to correctly resolve "type Foo=SomeGeneric<T>"
declarations inside a generic }
(
(ttypenode(pt1).typesym<>nil) and
sym_is_owned_by(ttypenode(pt1).typesym,tabstractrecorddef(current_genericdef).symtable)
)
)
)
then
begin
Message(parser_e_no_generics_as_types);
def:=generrordef;
end
else if is_classhelper(def) then
begin
Message(parser_e_no_category_as_types);
def:=generrordef
end
end;
end
else
Message(sym_e_error_in_type_def);
end;
pt1.free;
block_type:=old_block_type;
end;
procedure set_dec;
begin
consume(_SET);
consume(_OF);
read_anon_type(tt2,true);
if assigned(tt2) then
begin
case tt2.typ of
{ don't forget that min can be negativ PM }
enumdef :
if (tenumdef(tt2).min>=0) and
(tenumdef(tt2).max<=255) then
// !! def:=tsetdef.create(tt2,tenumdef(tt2.def).min,tenumdef(tt2.def).max))
def:=tsetdef.create(tt2,tenumdef(tt2).min,tenumdef(tt2).max)
else
Message(sym_e_ill_type_decl_set);
orddef :
begin
if (torddef(tt2).ordtype<>uvoid) and
(torddef(tt2).ordtype<>uwidechar) and
(torddef(tt2).low>=0) then
// !! def:=tsetdef.create(tt2,torddef(tt2.def).low,torddef(tt2.def).high))
if Torddef(tt2).high>int64(high(byte)) then
message(sym_e_ill_type_decl_set)
else
def:=tsetdef.create(tt2,torddef(tt2).low.svalue,torddef(tt2).high.svalue)
else
Message(sym_e_ill_type_decl_set);
end;
else
Message(sym_e_ill_type_decl_set);
end;
end
else
def:=generrordef;
end;
procedure array_dec(is_packed:boolean;genericdef:tstoreddef;genericlist:TFPObjectList);
var
lowval,
highval : TConstExprInt;
indexdef : tdef;
hdef : tdef;
arrdef : tarraydef;
procedure setdefdecl(def:tdef);
begin
case def.typ of
enumdef :
begin
lowval:=tenumdef(def).min;
highval:=tenumdef(def).max;
if (m_fpc in current_settings.modeswitches) and
(tenumdef(def).has_jumps) then
Message(type_e_array_index_enums_with_assign_not_possible);
indexdef:=def;
end;
orddef :
begin
if torddef(def).ordtype in [uchar,
u8bit,u16bit,
s8bit,s16bit,s32bit,
{$ifdef cpu64bitaddr}
u32bit,s64bit,
{$endif cpu64bitaddr}
pasbool8,pasbool16,pasbool32,pasbool64,
bool8bit,bool16bit,bool32bit,bool64bit,
uwidechar] then
begin
lowval:=torddef(def).low;
highval:=torddef(def).high;
indexdef:=def;
end
else
Message1(parser_e_type_cant_be_used_in_array_index,def.typename);
end;
else
Message(sym_e_error_in_type_def);
end;
end;
var
old_current_genericdef,
old_current_specializedef: tstoreddef;
first,
old_parse_generic: boolean;
begin
old_current_genericdef:=current_genericdef;
old_current_specializedef:=current_specializedef;
old_parse_generic:=parse_generic;
current_genericdef:=nil;
current_specializedef:=nil;
first:=true;
arrdef:=tarraydef.create(0,0,s32inttype);
consume(_ARRAY);
{ usage of specialized type inside its generic template }
if assigned(genericdef) then
current_specializedef:=arrdef
{ reject declaration of generic class inside generic class }
else if assigned(genericlist) then
current_genericdef:=arrdef;
symtablestack.push(arrdef.symtable);
insert_generic_parameter_types(arrdef,genericdef,genericlist);
{ there are two possibilties for the following to be true:
* the array declaration itself is generic
* the array is declared inside a generic
in both cases we need "parse_generic" and "current_genericdef"
so that e.g. specializations of another generic inside the
current generic can be used (either inline ones or "type" ones) }
parse_generic:=(df_generic in arrdef.defoptions) or old_parse_generic;
if parse_generic and not assigned(current_genericdef) then
current_genericdef:=old_current_genericdef;
{ open array? }
if try_to_consume(_LECKKLAMMER) then
begin
{ defaults }
indexdef:=generrordef;
{ use defaults which don't overflow the compiler }
lowval:=0;
highval:=0;
repeat
{ read the expression and check it, check apart if the
declaration is an enum declaration because that needs to
be parsed by readtype (PFV) }
if token=_LKLAMMER then
begin
read_anon_type(hdef,true);
setdefdecl(hdef);
end
else
begin
pt:=expr(true);
if pt.nodetype=typen then
setdefdecl(pt.resultdef)
else
begin
if pt.nodetype=rangen then
begin
{ check the expression only if we are not in a generic declaration }
if not(parse_generic) then
begin
if (trangenode(pt).left.nodetype=ordconstn) and
(trangenode(pt).right.nodetype=ordconstn) then
begin
{ make both the same type or give an error. This is not
done when both are integer values, because typecasting
between -3200..3200 will result in a signed-unsigned
conflict and give a range check error (PFV) }
if not(is_integer(trangenode(pt).left.resultdef) and is_integer(trangenode(pt).left.resultdef)) then
inserttypeconv(trangenode(pt).left,trangenode(pt).right.resultdef);
lowval:=tordconstnode(trangenode(pt).left).value;
highval:=tordconstnode(trangenode(pt).right).value;
if highval<lowval then
begin
Message(parser_e_array_lower_less_than_upper_bound);
highval:=lowval;
end
else if (lowval<int64(low(asizeint))) or
(highval>high(asizeint)) then
begin
Message(parser_e_array_range_out_of_bounds);
lowval :=0;
highval:=0;
end;
if is_integer(trangenode(pt).left.resultdef) then
range_to_type(lowval,highval,indexdef)
else
indexdef:=trangenode(pt).left.resultdef;
end
else
Message(type_e_cant_eval_constant_expr);
end;
end
else
Message(sym_e_error_in_type_def)
end;
pt.free;
end;
{ if we are not at the first dimension, add the new arrray
as element of the existing array, otherwise modify the existing array }
if not(first) then
begin
arrdef.elementdef:=tarraydef.create(lowval.svalue,highval.svalue,indexdef);
{ push new symtable }
symtablestack.pop(arrdef.symtable);
arrdef:=tarraydef(arrdef.elementdef);
symtablestack.push(arrdef.symtable);
end
else
begin
arrdef.lowrange:=lowval.svalue;
arrdef.highrange:=highval.svalue;
arrdef.rangedef:=indexdef;
def:=arrdef;
first:=false;
end;
if is_packed then
include(arrdef.arrayoptions,ado_IsBitPacked);
if token=_COMMA then
consume(_COMMA)
else
break;
until false;
consume(_RECKKLAMMER);
end
else
begin
if is_packed then
Message(parser_e_packed_dynamic_open_array);
arrdef.lowrange:=0;
arrdef.highrange:=-1;
arrdef.rangedef:=s32inttype;
include(arrdef.arrayoptions,ado_IsDynamicArray);
def:=arrdef;
end;
consume(_OF);
read_anon_type(tt2,true);
{ set element type of the last array definition }
if assigned(arrdef) then
begin
symtablestack.pop(arrdef.symtable);
arrdef.elementdef:=tt2;
if is_packed and
is_managed_type(tt2) then
Message(type_e_no_packed_inittable);
end;
{ restore old state }
parse_generic:=old_parse_generic;
current_genericdef:=old_current_genericdef;
current_specializedef:=old_current_specializedef;
end;
function procvar_dec(genericdef:tstoreddef;genericlist:TFPObjectList):tdef;
var
is_func:boolean;
pd:tabstractprocdef;
newtype:ttypesym;
old_current_genericdef,
old_current_specializedef: tstoreddef;
old_parse_generic: boolean;
begin
old_current_genericdef:=current_genericdef;
old_current_specializedef:=current_specializedef;
old_parse_generic:=parse_generic;
current_genericdef:=nil;
current_specializedef:=nil;
is_func:=(token=_FUNCTION);
consume(token);
pd:=tprocvardef.create(normal_function_level);
{ usage of specialized type inside its generic template }
if assigned(genericdef) then
current_specializedef:=pd
{ reject declaration of generic class inside generic class }
else if assigned(genericlist) then
current_genericdef:=pd;
symtablestack.push(pd.parast);
insert_generic_parameter_types(pd,genericdef,genericlist);
{ there are two possibilties for the following to be true:
* the procvar declaration itself is generic
* the procvar is declared inside a generic
in both cases we need "parse_generic" and "current_genericdef"
so that e.g. specializations of another generic inside the
current generic can be used (either inline ones or "type" ones) }
parse_generic:=(df_generic in pd.defoptions) or old_parse_generic;
if parse_generic and not assigned(current_genericdef) then
current_genericdef:=old_current_genericdef;
{ don't allow to add defs to the symtable - use it for type param search only }
tparasymtable(pd.parast).readonly:=true;
if token=_LKLAMMER then
parse_parameter_dec(pd);
if is_func then
begin
consume(_COLON);
single_type(pd.returndef,[]);
end;
if try_to_consume(_OF) then
begin
consume(_OBJECT);
include(pd.procoptions,po_methodpointer);
end
else if (m_nested_procvars in current_settings.modeswitches) and
try_to_consume(_IS) then
begin
consume(_NESTED);
pd.parast.symtablelevel:=normal_function_level+1;
pd.check_mark_as_nested;
end;
symtablestack.pop(pd.parast);
tparasymtable(pd.parast).readonly:=false;
result:=pd;
{ possible proc directives }
if parseprocvardir then
begin
if check_proc_directive(true) then
begin
newtype:=ttypesym.create('unnamed',result);
parse_var_proc_directives(tsym(newtype));
newtype.typedef:=nil;
result.typesym:=nil;
newtype.free;
end;
{ Add implicit hidden parameters and function result }
handle_calling_convention(pd);
end;
{ restore old state }
parse_generic:=old_parse_generic;
current_genericdef:=old_current_genericdef;
current_specializedef:=old_current_specializedef;
end;
const
SingleTypeOptionsInTypeBlock:array[Boolean] of TSingleTypeOptions = ([],[stoIsForwardDef]);
var
p : tnode;
hdef : tdef;
enumdupmsg, first, is_specialize : boolean;
oldlocalswitches : tlocalswitches;
bitpacking: boolean;
stitem: psymtablestackitem;
sym: tsym;
st: tsymtable;
begin
def:=nil;
if assigned(newsym) then
name:=newsym.RealName
else
name:='';
case token of
_STRING,_FILE:
begin
single_type(def,[stoAllowTypeDef]);
end;
_LKLAMMER:
begin
consume(_LKLAMMER);
first:=true;
{ allow negativ value_str }
l:=int64(-1);
enumdupmsg:=false;
{ check that we are not adding an enum from specialization
we can't just use current_specializedef because of inner types
like specialize array of record }
is_specialize:=false;
stitem:=symtablestack.stack;
while assigned(stitem) do
begin
{ check records, classes and arrays because they can be specialized }
if stitem^.symtable.symtabletype in [recordsymtable,ObjectSymtable,arraysymtable] then
begin
is_specialize:=is_specialize or (df_specialization in tstoreddef(stitem^.symtable.defowner).defoptions);
stitem:=stitem^.next;
end
else
break;
end;
if not is_specialize then
aktenumdef:=tenumdef.create
else
aktenumdef:=nil;
repeat
{ if it is a specialization then search the first enum member
and get the member owner instead of just created enumdef }
if not assigned(aktenumdef) then
begin
searchsym(pattern,sym,st);
if sym.typ=enumsym then
aktenumdef:=tenumsym(sym).definition
else
internalerror(201101021);
end;
s:=orgpattern;
defpos:=current_tokenpos;
consume(_ID);
{ only allow assigning of specific numbers under fpc mode }
if not(m_tp7 in current_settings.modeswitches) and
(
{ in fpc mode also allow := to be compatible
with previous 1.0.x versions }
((m_fpc in current_settings.modeswitches) and
try_to_consume(_ASSIGNMENT)) or
try_to_consume(_EQ)
) then
begin
oldlocalswitches:=current_settings.localswitches;
include(current_settings.localswitches,cs_allow_enum_calc);
p:=comp_expr(true,false);
current_settings.localswitches:=oldlocalswitches;
if (p.nodetype=ordconstn) then
begin
{ we expect an integer or an enum of the
same type }
if is_integer(p.resultdef) or
is_char(p.resultdef) or
equal_defs(p.resultdef,aktenumdef) then
v:=tordconstnode(p).value
else
IncompatibleTypes(p.resultdef,s32inttype);
end
else
Message(parser_e_illegal_expression);
p.free;
{ please leave that a note, allows type save }
{ declarations in the win32 units ! }
if (not first) and (v<=l) and (not enumdupmsg) then
begin
Message(parser_n_duplicate_enum);
enumdupmsg:=true;
end;
l:=v;
end
else
inc(l.svalue);
first:=false;
{ don't generate enum members is this is a specialization because aktenumdef is copied from the generic type }
if not is_specialize then
begin
storepos:=current_tokenpos;
current_tokenpos:=defpos;
tenumsymtable(aktenumdef.symtable).insert(tenumsym.create(s,aktenumdef,longint(l.svalue)));
if not (cs_scopedenums in current_settings.localswitches) then
tstoredsymtable(aktenumdef.owner).insert(tenumsym.create(s,aktenumdef,longint(l.svalue)));
current_tokenpos:=storepos;
end;
until not try_to_consume(_COMMA);
def:=aktenumdef;
consume(_RKLAMMER);
{$ifdef jvm}
jvm_maybe_create_enum_class(name,def);
{$endif}
end;
_ARRAY:
begin
array_dec(false,genericdef,genericlist);
end;
_SET:
begin
set_dec;
end;
_CARET:
begin
consume(_CARET);
single_type(tt2,SingleTypeOptionsInTypeBlock[block_type=bt_type]);
{ in case of e.g. var or const sections we need to especially
check that we don't use a generic dummy symbol }
if (block_type<>bt_type) and
(tt2.typ=undefineddef) and
assigned(tt2.typesym) and
(sp_generic_dummy in tt2.typesym.symoptions) then
Message(parser_e_no_generics_as_types);
{ don't use getpointerdef() here, since this is a type
declaration (-> must create new typedef) }
def:=tpointerdef.create(tt2);
if tt2.typ=forwarddef then
current_module.checkforwarddefs.add(def);
end;
_RECORD:
begin
consume(token);
if (idtoken=_HELPER) and (m_advanced_records in current_settings.modeswitches) then
begin
consume(_HELPER);
def:=object_dec(odt_helper,name,newsym,genericdef,genericlist,nil,ht_record);
end
else
def:=record_dec(name,genericdef,genericlist);
end;
_PACKED,
_BITPACKED:
begin
bitpacking :=
(cs_bitpacking in current_settings.localswitches) or
(token = _BITPACKED);
consume(token);
if token=_ARRAY then
array_dec(bitpacking,genericdef,genericlist)
else if token=_SET then
set_dec
else if token=_FILE then
single_type(def,[stoAllowTypeDef])
else
begin
oldpackrecords:=current_settings.packrecords;
if (not bitpacking) or
(token in [_CLASS,_OBJECT]) then
current_settings.packrecords:=1
else
current_settings.packrecords:=bit_alignment;
case token of
_CLASS :
begin
consume(_CLASS);
def:=object_dec(odt_class,name,newsym,genericdef,genericlist,nil,ht_none);
end;
_OBJECT :
begin
consume(_OBJECT);
def:=object_dec(odt_object,name,newsym,genericdef,genericlist,nil,ht_none);
end;
else begin
consume(_RECORD);
def:=record_dec(name,genericdef,genericlist);
end;
end;
current_settings.packrecords:=oldpackrecords;
end;
end;
_DISPINTERFACE :
begin
{ need extra check here since interface is a keyword
in all pascal modes }
if not(m_class in current_settings.modeswitches) then
Message(parser_f_need_objfpc_or_delphi_mode);
consume(token);
def:=object_dec(odt_dispinterface,name,newsym,genericdef,genericlist,nil,ht_none);
end;
_CLASS :
begin
consume(token);
{ Delphi only allows class of in type blocks }
if (token=_OF) and
(
not(m_delphi in current_settings.modeswitches) or
(block_type=bt_type)
) then
begin
consume(_OF);
single_type(hdef,SingleTypeOptionsInTypeBlock[block_type=bt_type]);
if is_class(hdef) or
is_objcclass(hdef) or
is_javaclass(hdef) then
def:=tclassrefdef.create(hdef)
else
if hdef.typ=forwarddef then
begin
def:=tclassrefdef.create(hdef);
current_module.checkforwarddefs.add(def);
end
else
Message1(type_e_class_or_objcclass_type_expected,hdef.typename);
end
else
if (idtoken=_HELPER) then
begin
consume(_HELPER);
def:=object_dec(odt_helper,name,newsym,genericdef,genericlist,nil,ht_class);
end
else
def:=object_dec(default_class_type,name,newsym,genericdef,genericlist,nil,ht_none);
end;
_CPPCLASS :
begin
consume(token);
def:=object_dec(odt_cppclass,name,newsym,genericdef,genericlist,nil,ht_none);
end;
_OBJCCLASS :
begin
if not(m_objectivec1 in current_settings.modeswitches) then
Message(parser_f_need_objc);
consume(token);
def:=object_dec(odt_objcclass,name,newsym,genericdef,genericlist,nil,ht_none);
end;
_INTERFACE :
begin
{ need extra check here since interface is a keyword
in all pascal modes }
if not(m_class in current_settings.modeswitches) then
Message(parser_f_need_objfpc_or_delphi_mode);
consume(token);
case current_settings.interfacetype of
it_interfacecom:
def:=object_dec(odt_interfacecom,name,newsym,genericdef,genericlist,nil,ht_none);
it_interfacecorba:
def:=object_dec(odt_interfacecorba,name,newsym,genericdef,genericlist,nil,ht_none);
it_interfacejava:
def:=object_dec(odt_interfacejava,name,newsym,genericdef,genericlist,nil,ht_none);
else
internalerror(2010122612);
end;
end;
_OBJCPROTOCOL :
begin
if not(m_objectivec1 in current_settings.modeswitches) then
Message(parser_f_need_objc);
consume(token);
def:=object_dec(odt_objcprotocol,name,newsym,genericdef,genericlist,nil,ht_none);
end;
_OBJCCATEGORY :
begin
if not(m_objectivec1 in current_settings.modeswitches) then
Message(parser_f_need_objc);
consume(token);
def:=object_dec(odt_objccategory,name,newsym,genericdef,genericlist,nil,ht_none);
end;
_OBJECT :
begin
consume(token);
def:=object_dec(odt_object,name,newsym,genericdef,genericlist,nil,ht_none);
end;
_PROCEDURE,
_FUNCTION:
begin
def:=procvar_dec(genericdef,genericlist);
{$ifdef jvm}
jvm_create_procvar_class(name,def);
{$endif}
end;
else
if (token=_KLAMMERAFFE) and (m_iso in current_settings.modeswitches) then
begin
consume(_KLAMMERAFFE);
single_type(tt2,SingleTypeOptionsInTypeBlock[block_type=bt_type]);
def:=tpointerdef.create(tt2);
if tt2.typ=forwarddef then
current_module.checkforwarddefs.add(def);
end
else
expr_type;
end;
if def=nil then
def:=generrordef;
end;
procedure read_anon_type(var def : tdef;parseprocvardir:boolean);
begin
read_named_type(def,nil,nil,nil,parseprocvardir);
end;
procedure write_persistent_type_info(st:tsymtable;is_global:boolean);
var
i : longint;
def : tdef;
vmtwriter : TVMTWriter;
begin
{$ifdef jvm}
{ no Delphi-style RTTI }
exit;
{$endif jvm}
for i:=0 to st.DefList.Count-1 do
begin
def:=tdef(st.DefList[i]);
case def.typ of
recorddef :
write_persistent_type_info(trecorddef(def).symtable,is_global);
objectdef :
begin
{ Skip generics and forward defs }
if (df_generic in def.defoptions) or
(oo_is_forward in tobjectdef(def).objectoptions) then
continue;
write_persistent_type_info(tobjectdef(def).symtable,is_global);
{ Write also VMT if not done yet }
if not(ds_vmt_written in def.defstates) then
begin
vmtwriter:=TVMTWriter.create(tobjectdef(def));
if is_interface(tobjectdef(def)) then
vmtwriter.writeinterfaceids;
if (oo_has_vmt in tobjectdef(def).objectoptions) then
vmtwriter.writevmt;
vmtwriter.free;
include(def.defstates,ds_vmt_written);
end;
end;
procdef :
begin
if assigned(tprocdef(def).localst) and
(tprocdef(def).localst.symtabletype=localsymtable) then
write_persistent_type_info(tprocdef(def).localst,false);
if assigned(tprocdef(def).parast) then
write_persistent_type_info(tprocdef(def).parast,false);
end;
end;
{ generate always persistent tables for types in the interface so it can
be reused in other units and give always the same pointer location. }
{ Init }
if (
assigned(def.typesym) and
is_global and
not is_objc_class_or_protocol(def)
) or
is_managed_type(def) or
(ds_init_table_used in def.defstates) then
RTTIWriter.write_rtti(def,initrtti);
{ RTTI }
if (
assigned(def.typesym) and
is_global and
not is_objc_class_or_protocol(def)
) or
(ds_rtti_table_used in def.defstates) then
RTTIWriter.write_rtti(def,fullrtti);
end;
end;
procedure add_typedconst_init_routine(def: tabstractrecorddef);
var
sstate: tscannerstate;
pd: tprocdef;
begin
replace_scanner('tcinit_routine',sstate);
{ the typed constant initialization code is called from the class
constructor by tnodeutils.wrap_proc_body; at this point, we don't
know yet whether that will be necessary, because there may be
typed constants inside method bodies -> always force the addition
of a class constructor.
We cannot directly add the typed constant initialisations to the
class constructor, because when it's parsed not all method bodies
are necessarily already parsed }
pd:=def.find_procdef_bytype(potype_class_constructor);
{ the class constructor }
if not assigned(pd) then
begin
if str_parse_method_dec('constructor fpc_init_typed_consts_class_constructor;',potype_class_constructor,true,def,pd) then
pd.synthetickind:=tsk_empty
else
internalerror(2011040206);
end;
{ the initialisation helper }
if str_parse_method_dec('procedure fpc_init_typed_consts_helper; static;',potype_procedure,true,def,pd) then
pd.synthetickind:=tsk_tcinit
else
internalerror(2011040207);
restore_scanner(sstate);
end;
end.