fpc/compiler/m68k/cpubase.pas
2002-07-29 17:51:32 +00:00

632 lines
23 KiB
ObjectPascal

{
$Id$
Copyright (c) 1998-2002 by Florian Klaempfl
Contains the base types for the PowerPC
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
{ This Unit contains the base types for the PowerPC
}
unit cpubase;
{$i fpcdefs.inc}
interface
uses
strings,cutils,cclasses,aasmbase,cpuinfo,cginfo;
{*****************************************************************************
Assembler Opcodes
*****************************************************************************}
type
{ warning: CPU32 opcodes are not fully compatible with the MC68020. }
{ 68000 only opcodes }
tasmop = (a_abcd,
a_add,a_adda,a_addi,a_addq,a_addx,a_and,a_andi,
a_asl,a_asr,a_bcc,a_bcs,a_beq,a_bge,a_bgt,a_bhi,
a_ble,a_bls,a_blt,a_bmi,a_bne,a_bpl,a_bvc,a_bvs,
a_bchg,a_bclr,a_bra,a_bset,a_bsr,a_btst,a_chk,
a_clr,a_cmp,a_cmpa,a_cmpi,a_cmpm,a_dbcc,a_dbcs,a_dbeq,a_dbge,
a_dbgt,a_dbhi,a_dble,a_dbls,a_dblt,a_dbmi,a_dbne,a_dbra,
a_dbpl,a_dbt,a_dbvc,a_dbvs,a_dbf,a_divs,a_divu,
a_eor,a_eori,a_exg,a_illegal,a_ext,a_jmp,a_jsr,
a_lea,a_link,a_lsl,a_lsr,a_move,a_movea,a_movei,a_moveq,
a_movem,a_movep,a_muls,a_mulu,a_nbcd,a_neg,a_negx,
a_nop,a_not,a_or,a_ori,a_pea,a_rol,a_ror,a_roxl,
a_roxr,a_rtr,a_rts,a_sbcd,a_scc,a_scs,a_seq,a_sge,
a_sgt,a_shi,a_sle,a_sls,a_slt,a_smi,a_sne,
a_spl,a_st,a_svc,a_svs,a_sf,a_sub,a_suba,a_subi,a_subq,
a_subx,a_swap,a_tas,a_trap,a_trapv,a_tst,a_unlk,
a_rte,a_reset,a_stop,
{ mc68010 instructions }
a_bkpt,a_movec,a_moves,a_rtd,
{ mc68020 instructions }
a_bfchg,a_bfclr,a_bfexts,a_bfextu,a_bfffo,
a_bfins,a_bfset,a_bftst,a_callm,a_cas,a_cas2,
a_chk2,a_cmp2,a_divsl,a_divul,a_extb,a_pack,a_rtm,
a_trapcc,a_tracs,a_trapeq,a_trapf,a_trapge,a_trapgt,
a_traphi,a_traple,a_trapls,a_traplt,a_trapmi,a_trapne,
a_trappl,a_trapt,a_trapvc,a_trapvs,a_unpk,
{ fpu processor instructions - directly supported only. }
{ ieee aware and misc. condition codes not supported }
a_fabs,a_fadd,
a_fbeq,a_fbne,a_fbngt,a_fbgt,a_fbge,a_fbnge,
a_fblt,a_fbnlt,a_fble,a_fbgl,a_fbngl,a_fbgle,a_fbngle,
a_fdbeq,a_fdbne,a_fdbgt,a_fdbngt,a_fdbge,a_fdbnge,
a_fdblt,a_fdbnlt,a_fdble,a_fdbgl,a_fdbngl,a_fdbgle,a_fbdngle,
a_fseq,a_fsne,a_fsgt,a_fsngt,a_fsge,a_fsnge,
a_fslt,a_fsnlt,a_fsle,a_fsgl,a_fsngl,a_fsgle,a_fsngle,
a_fcmp,a_fdiv,a_fmove,a_fmovem,
a_fmul,a_fneg,a_fnop,a_fsqrt,a_fsub,a_fsgldiv,
a_fsflmul,a_ftst,
a_ftrapeq,a_ftrapne,a_ftrapgt,a_ftrapngt,a_ftrapge,a_ftrapnge,
a_ftraplt,a_ftrapnlt,a_ftraple,a_ftrapgl,a_ftrapngl,a_ftrapgle,a_ftrapngle,
{ protected instructions }
a_cprestore,a_cpsave,
{ fpu unit protected instructions }
{ and 68030/68851 common mmu instructions }
{ (this may include 68040 mmu instructions) }
a_frestore,a_fsave,a_pflush,a_pflusha,a_pload,a_pmove,a_ptest,
{ useful for assembly langage output }
a_label,a_none);
{# This should define the array of instructions as string }
op2strtable=array[tasmop] of string[8];
Const
{# First value of opcode enumeration }
firstop = low(tasmop);
{# Last value of opcode enumeration }
lastop = high(tasmop);
{*****************************************************************************
Registers
*****************************************************************************}
type
tregister = (
R_NO,R_D0,R_D1,R_D2,R_D3,R_D4,R_D5,R_D6,R_D7,
R_A0,R_A1,R_A2,R_A3,R_A4,R_A5,R_A6,R_SP,
{ PUSH/PULL- quick and dirty hack }
R_SPPUSH,R_SPPULL,
{ misc. }
R_CCR,R_FP0,R_FP1,R_FP2,R_FP3,R_FP4,R_FP5,R_FP6,
R_FP7,R_FPCR,R_SR,R_SSP,R_DFC,R_SFC,R_VBR,R_FPSR,
{ other - not used in reg2str }
R_DEFAULT_SEG);
{# Set type definition for registers }
tregisterset = set of tregister;
{ A type to store register locations for 64 Bit values. }
tregister64 = packed record
reglo,reghi : tregister;
end;
{ alias for compact code }
treg64 = tregister64;
{# Type definition for the array of string of register nnames }
reg2strtable = array[tregister] of string[5];
Const
{# First register in the tregister enumeration }
firstreg = low(tregister);
{# Last register in the tregister enumeration }
lastreg = high(tregister);
(*
gas_reg2str : reg2strtable =
('', '%d0','%d1','%d2','%d3','%d4','%d5','%d6','%d7',
'%a0','%a1','%a2','%a3','%a4','%a5','%a6','%sp',
'-(%sp)','(%sp)+',
'%ccr','%fp0','%fp1','%fp2','%fp3','%fp4','%fp5',
'%fp6','%fp7','%fpcr','%sr','%ssp','%dfc',
'%sfc','%vbr','%fpsr');
*)
std_reg2str : reg2strtable =
('', 'd0','d1','d2','d3','d4','d5','d6','d7',
'a0','a1','a2','a3','a4','a5','a6','sp',
'-(sp)','(sp)+',
'ccr','fp0','fp1','fp2','fp3','fp4','fp5',
'fp6','fp7','fpcr','sr','ssp','dfc',
'sfc','vbr','fpsr');
mit_reg2str : reg2strtable =
('', 'd0','d1','d2','d3','d4','d5','d6','d7',
'a0','a1','a2','a3','a4','a5','a6','sp',
'sp@-','sp@+',
'ccr','fp0','fp1','fp2','fp3','fp4','fp5',
'fp6','fp7','fpcr','sr','ssp','dfc',
'sfc','vbr','fpsr');
{*****************************************************************************
Conditions
*****************************************************************************}
type
TAsmCondFlag = (C_None { unconditional jumps },
{ conditions when not using ctr decrement etc }
C_LT,C_LE,C_EQ,C_GE,C_GT,C_NL,C_NE,C_NG,C_SO,C_NS,C_UN,C_NU,
{ conditions when using ctr decrement etc }
C_T,C_F,C_DNZ,C_DNZT,C_DNZF,C_DZ,C_DZT,C_DZF);
const
{ these are in the XER, but when moved to CR_x they correspond with the }
{ bits below (still needs to be verified!!!) }
C_OV = C_EQ;
C_CA = C_GT;
type
TAsmCond = packed record
case simple: boolean of
false: (BO, BI: byte);
true: (
cond: TAsmCondFlag;
case byte of
0: ();
{ specifies in which part of the cr the bit has to be }
{ tested for blt,bgt,beq,..,bnu }
1: (cr: R_CR0..R_CR7);
{ specifies the bit to test for bt,bf,bdz,..,bdzf }
2: (crbit: byte)
);
end;
const
AsmCondFlag2BO: Array[C_T..C_DZF] of Byte =
(12,4,16,8,0,18,10,2);
AsmCondFlag2BI: Array[C_LT..C_NU] of Byte =
(0,1,2,0,1,0,2,1,3,3,3,3);
AsmCondFlagTF: Array[TAsmCondFlag] of Boolean =
(false,true,false,true,false,true,false,false,false,true,false,true,false,
true,false,false,true,false,false,true,false);
AsmCondFlag2Str: Array[TAsmCondFlag] of string[4] = ({cf_none}'',
{ conditions when not using ctr decrement etc}
'lt','le','eq','ge','gt','nl','ne','ng','so','ns','un','nu',
't','f','dnz','dzt','dnzf','dz','dzt','dzf');
const
CondAsmOps=3;
CondAsmOp:array[0..CondAsmOps-1] of TasmOp=(
A_BC, A_TW, A_TWI
);
{*****************************************************************************
Flags
*****************************************************************************}
type
TResFlagsEnum = (F_EQ,F_NE,F_LT,F_LE,F_GT,F_GE,F_SO,F_FX,F_FEX,F_VX,F_OX);
TResFlags = record
cr: R_CR0..R_CR7;
flag: TResFlagsEnum;
end;
(*
const
{ arrays for boolean location conversions }
flag_2_cond : array[TResFlags] of TAsmCond =
(C_E,C_NE,C_LT,C_LE,C_GT,C_GE,???????????????);
*)
{*****************************************************************************
Reference
*****************************************************************************}
type
trefoptions=(ref_none,ref_parafixup,ref_localfixup,ref_selffixup);
{ direction of address register : }
{ (An) (An)+ -(An) }
tdirection = (dir_none,dir_inc,dir_dec);
{ reference record }
preference = ^treference;
treference = packed record
segment,
base,
index : tregister;
scalefactor : byte;
offset : longint;
symbol : tasmsymbol;
offsetfixup : longint;
options : trefoptions;
{ indexed increment and decrement mode }
{ (An)+ and -(An) }
direction : tdirection;
end;
{ reference record }
pparareference = ^tparareference;
tparareference = packed record
index : tregister;
offset : aword;
end;
{*****************************************************************************
Operands
*****************************************************************************}
{ Types of operand }
toptype=(top_none,top_reg,top_ref,top_const,top_symbol);
toper=record
ot : longint;
case typ : toptype of
top_none : ();
top_reg : (reg:tregister);
top_ref : (ref:preference);
top_const : (val:aword);
top_symbol : (sym:tasmsymbol;symofs:longint);
end;
{*****************************************************************************
Generic Location
*****************************************************************************}
type
TLoc=(
LOC_INVALID, { added for tracking problems}
LOC_CONSTANT, { constant value }
LOC_JUMP, { boolean results only, jump to false or true label }
LOC_FLAGS, { boolean results only, flags are set }
LOC_CREFERENCE, { in memory constant value reference (cannot change) }
LOC_REFERENCE, { in memory value }
LOC_REGISTER, { in a processor register }
LOC_CREGISTER, { Constant register which shouldn't be modified }
LOC_FPUREGISTER, { FPU stack }
LOC_CFPUREGISTER, { if it is a FPU register variable on the fpu stack }
LOC_MMXREGISTER, { MMX register }
LOC_CMMXREGISTER, { MMX register variable }
);
{ tparamlocation describes where a parameter for a procedure is stored.
References are given from the caller's point of view. The usual
TLocation isn't used, because contains a lot of unnessary fields.
}
tparalocation = packed record
loc : TLoc;
sp_fixup : longint;
case TLoc of
LOC_REFERENCE : (reference : tparareference);
{ segment in reference at the same place as in loc_register }
LOC_REGISTER,LOC_CREGISTER : (
case longint of
1 : (register,registerhigh : tregister);
{ overlay a registerlow }
2 : (registerlow : tregister);
{ overlay a 64 Bit register type }
3 : (reg64 : tregister64);
4 : (register64 : tregister64);
);
{ it's only for better handling }
LOC_MMXREGISTER,LOC_CMMXREGISTER : (mmxreg : tregister);
end;
tlocation = packed record
loc : TLoc;
size : TCGSize;
case TLoc of
LOC_FLAGS : (resflags : tresflags);
LOC_CONSTANT : (
case longint of
1 : (value : AWord);
2 : (valuelow, valuehigh:AWord);
{ overlay a complete 64 Bit value }
3 : (valueqword : qword);
);
LOC_CREFERENCE,
LOC_REFERENCE : (reference : treference);
{ segment in reference at the same place as in loc_register }
LOC_REGISTER,LOC_CREGISTER : (
case longint of
1 : (register,registerhigh,segment : tregister);
{ overlay a registerlow }
2 : (registerlow : tregister);
{ overlay a 64 Bit register type }
3 : (reg64 : tregister64);
4 : (register64 : tregister64);
);
{ it's only for better handling }
LOC_MMXREGISTER,LOC_CMMXREGISTER : (mmxreg : tregister);
end;
{*****************************************************************************
Operand
*****************************************************************************}
type
toptype=(top_none,top_reg,top_ref,top_const,top_symbol,top_bool);
toper=record
ot : longint;
case typ : toptype of
top_none : ();
top_reg : (reg:tregister);
top_ref : (ref:^treference);
top_const : (val:aword);
top_symbol : (sym:tasmsymbol;symofs:longint);
top_bool : (b: boolean);
end;
{*****************************************************************************
Operand Sizes
*****************************************************************************}
{ S_NO = No Size of operand }
{ S_B = 8-bit size operand }
{ S_W = 16-bit size operand }
{ S_L = 32-bit size operand }
{ Floating point types }
{ S_FS = single type (32 bit) }
{ S_FD = double/64bit integer }
{ S_FX = Extended type }
topsize = (S_NO,S_B,S_W,S_L,S_FS,S_FD,S_FX);
{*****************************************************************************
Constants
*****************************************************************************}
const
max_operands = 5;
lvaluelocations = [LOC_REFERENCE, LOC_CREGISTER, LOC_CFPUREGISTER,
LOC_CMMREGISTER];
{# Constant defining possibly all registers which might require saving }
ALL_REGISTERS = [R_D1..R_FPCR];
general_registers = [R_D0..R_D7];
{# low and high of the available maximum width integer general purpose }
{ registers }
LoGPReg = R_D0;
HiGPReg = R_D7;
{# low and high of every possible width general purpose register (same as }
{ above on most architctures apart from the 80x86) }
LoReg = LoGPReg;
HiReg = HighGPReg;
{ Table of registers which can be allocated by the code generator
internally, when generating the code.
legend:
xxxregs = set of all possibly used registers of that type in the code
generator
usableregsxxx = set of all 32bit components of registers that can be
possible allocated to a regvar or using getregisterxxx (this
excludes registers which can be only used for parameter
passing on ABI's that define this)
c_countusableregsxxx = amount of registers in the usableregsxxx set }
maxintregs = 8;
intregs = [R_D0..R_D7];
usableregsint = [R_D2..R_D7];
c_countusableregsint = 6;
maxfpuregs = 8;
fpuregs = [R_FP0..R_FP7];
usableregsfpu = [R_FP2..R_FP7];
c_countusableregsfpu = 6;
mmregs = [];
usableregsmm = [];
c_countusableregsmm = 0;
maxaddrregs = 8;
addrregs = [R_A0..R_SP];
usableregsaddr = [R_A2..R_A4];
c_countusableregsaddr = 3;
{ The first register in the usableregsint array }
firstsaveintreg = R_D2;
{ The last register in the usableregsint array }
lastsaveintreg = R_D7;
{ The first register in the usableregsfpu array }
firstsavefpureg = R_FP2;
{ The last register in the usableregsfpu array }
lastsavefpureg = R_FP7;
{ these constants are m68k specific }
{ The first register in the usableregsaddr array }
firstsaveaddrreg = R_A2;
{ The last register in the usableregsaddr array }
lastsaveaddrreg = R_A4;
firstsavemmreg = R_NO;
lastsavemmreg = R_NO;
{
Defines the maxinum number of integer registers which can be used as variable registers
}
maxvarregs = 6;
{ Array of integer registers which can be used as variable registers }
varregs : Array [1..maxvarregs] of Tregister =
(R_D2,R_D3,R_D4,R_D5,R_D6,R_D7);
{
Defines the maxinum number of float registers which can be used as variable registers
}
maxfpuvarregs = 6;
{ Array of float registers which can be used as variable registers }
fpuvarregs : Array [1..maxfpuvarregs] of Tregister =
(R_FP2,R_FP3,R_FP4,R_FP5,R_FP6,R_FP7);
{
Defines the number of integer registers which are used in the ABI to pass parameters
(might be empty on systems which use the stack to pass parameters)
}
max_param_regs_int = 0;
{param_regs_int: Array[1..max_param_regs_int] of tregister =
(R_3,R_4,R_5,R_6,R_7,R_8,R_9,R_10);}
{
Defines the number of float registers which are used in the ABI to pass parameters
(might be empty on systems which use the stack to pass parameters)
}
max_param_regs_fpu = 0;
{param_regs_fpu: Array[1..max_param_regs_fpu] of tregister =
(R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13);}
{
Defines the number of mmx registers which are used in the ABI to pass parameters
(might be empty on systems which use the stack to pass parameters)
}
max_param_regs_mm = 0;
{param_regs_mm: Array[1..max_param_regs_mm] of tregister =
(R_M1,R_M2,R_M3,R_M4,R_M5,R_M6,R_M7,R_M8,R_M9,R_M10,R_M11,R_M12,R_M13);}
{# Registers which are defined as scratch integer and no need to save across
routine calls or in assembler blocks.
}
max_scratch_regs = 2;
scratch_regs: Array[1..max_scratch_regs] of TRegister = (R_D0,R_D1);
{*****************************************************************************
Default generic sizes
*****************************************************************************}
{# Defines the default address size for a processor, }
OS_ADDR = OS_32;
{# the natural int size for a processor, }
OS_INT = OS_32;
{# the maximum float size for a processor, }
OS_FLOAT = OS_F64;
{# the size of a vector register for a processor }
OS_VECTOR = OS_M128;
{*****************************************************************************
Generic Register names
*****************************************************************************}
{# Stack pointer register }
stack_pointer_reg = R_SP;
{# Frame pointer register }
frame_pointer_reg = R_A6;
{# Self pointer register : contains the instance address of an
object or class. }
self_pointer_reg = R_A5;
{# Register for addressing absolute data in a position independant way,
such as in PIC code. The exact meaning is ABI specific }
pic_offset_reg = R_A5;
{# Results are returned in this register (32-bit values) }
accumulator = R_D0;
{# Hi-Results are returned in this register (64-bit value high register) }
accumulatorhigh = R_D1;
{ Floating point results will be placed into this register }
FPU_RESULT_REG = R_FP0;
mmresultreg = R_N0;
{*****************************************************************************
GCC /ABI linking information
*****************************************************************************}
{# Registers which must be saved when calling a routine declared as
cppdecl, cdecl, stdcall, safecall, palmossyscall. The registers
saved should be the ones as defined in the target ABI and / or GCC.
This value can be deduced from CALLED_USED_REGISTERS array in the
GCC source.
}
std_saved_registers = [R_D2..R_D7,R_A2..R_A5];
{# Required parameter alignment when calling a routine declared as
stdcall and cdecl. The alignment value should be the one defined
by GCC or the target ABI.
The value of this constant is equal to the constant
PARM_BOUNDARY / BITS_PER_UNIT in the GCC source.
}
std_param_align = 4; { for 32-bit version only }
{*****************************************************************************
CPU Dependent Constants
*****************************************************************************}
{*****************************************************************************
Helpers
*****************************************************************************}
function is_calljmp(o:tasmop):boolean;
procedure inverse_flags(var r : TResFlags);
procedure inverse_cond(const c: TAsmCond;var r : TAsmCond);
function flags_to_cond(const f: TResFlags) : TAsmCond;
procedure create_cond_imm(BO,BI:byte;var r : TAsmCond);
procedure create_cond_norm(cond: TAsmCondFlag; cr: byte;var r : TasmCond);
implementation
uses
verbose;
{*****************************************************************************
Helpers
*****************************************************************************}
function is_calljmp(o:tasmop):boolean;
begin
end;
procedure inverse_flags(var r: TResFlags);
begin
end;
procedure inverse_cond(const c: TAsmCond;var r : TAsmCond);
begin
end;
function flags_to_cond(const f: TResFlags) : TAsmCond;
begin
end;
procedure create_cond_imm(BO,BI:byte;var r : TAsmCond);
begin
end;
procedure create_cond_norm(cond: TAsmCondFlag; cr: byte;var r : TasmCond);
begin
end;
end.
{
$Log$
Revision 1.3 2002-07-29 17:51:32 carl
+ restart m68k support
}