fpc/compiler/tccnv.pas
florian 9083713fe4 * type casts pchar<->ansistring fixed
* ansistring[..] calls does now an unique call
1998-09-27 10:16:22 +00:00

917 lines
32 KiB
ObjectPascal
Raw Blame History

{
$Id$
Copyright (c) 1993-98 by Florian Klaempfl
Type checking and register allocation for type converting nodes
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
{$ifdef TP}
{$E+,F+,N+,D+,L+,Y+}
{$endif}
unit tccnv;
interface
uses
tree;
procedure arrayconstructor_to_set(var p:ptree);
procedure firsttypeconv(var p : ptree);
procedure firstas(var p : ptree);
procedure firstis(var p : ptree);
implementation
uses
cobjects,verbose,globals,systems,
symtable,aasm,types,
hcodegen,htypechk,pass_1
{$ifdef i386}
,i386
{$endif}
{$ifdef m68k}
,m68k
{$endif}
;
{*****************************************************************************
Array constructor to Set Conversion
*****************************************************************************}
procedure arrayconstructor_to_set(var p:ptree);
var
constp,
buildp,
p2,p3,p4 : ptree;
pd : pdef;
constset : pconstset;
constsetlo,
constsethi : longint;
procedure update_constsethi(p:pdef);
begin
if ((p^.deftype=orddef) and
(porddef(p)^.high>constsethi)) then
constsethi:=porddef(p)^.high
else
if ((p^.deftype=enumdef) and
(penumdef(p)^.max>constsethi)) then
constsethi:=penumdef(p)^.max;
end;
procedure do_set(pos : longint);
var
mask,l : longint;
begin
if (pos>255) or (pos<0) then
Message(parser_e_illegal_set_expr);
if pos>constsethi then
constsethi:=pos;
if pos<constsetlo then
constsetlo:=pos;
l:=pos shr 3;
mask:=1 shl (pos mod 8);
{ do we allow the same twice }
if (constset^[l] and mask)<>0 then
Message(parser_e_illegal_set_expr);
constset^[l]:=constset^[l] or mask;
end;
var
l : longint;
begin
new(constset);
FillChar(constset^,sizeof(constset^),0);
pd:=nil;
constsetlo:=0;
constsethi:=0;
constp:=gensinglenode(setconstn,nil);
constp^.value_set:=constset;
buildp:=constp;
if assigned(p^.left) then
begin
while assigned(p) do
begin
p4:=nil; { will contain the tree to create the set }
{ split a range into p2 and p3 }
if p^.left^.treetype=arrayconstructrangen then
begin
p2:=p^.left^.left;
p3:=p^.left^.right;
{ node is not used anymore }
putnode(p^.left);
end
else
begin
p2:=p^.left;
p3:=nil;
end;
firstpass(p2);
if codegenerror then
break;
case p2^.resulttype^.deftype of
enumdef,
orddef : begin
if (p2^.resulttype^.deftype=orddef) and
(porddef(p2^.resulttype)^.typ in [s8bit,s16bit,s32bit,u16bit,u32bit]) then
begin
p2:=gentypeconvnode(p2,u8bitdef);
firstpass(p2);
end;
{ set settype result }
if pd=nil then
pd:=p2^.resulttype;
if not(is_equal(pd,p2^.resulttype)) then
begin
Message(type_e_typeconflict_in_set);
disposetree(p2);
end
else
begin
if assigned(p3) then
begin
if (p3^.resulttype^.deftype=orddef) and
(porddef(p3^.resulttype)^.typ in [s8bit,s16bit,s32bit,u16bit,u32bit]) then
begin
p3:=gentypeconvnode(p3,u8bitdef);
firstpass(p3);
end;
if not(is_equal(pd,p3^.resulttype)) then
Message(type_e_typeconflict_in_set)
else
begin
if (p2^.treetype=ordconstn) and (p3^.treetype=ordconstn) then
begin
for l:=p2^.value to p3^.value do
do_set(l);
disposetree(p3);
disposetree(p2);
end
else
begin
update_constsethi(p3^.resulttype);
p4:=gennode(setelementn,p2,p3);
end;
end;
end
else
begin
{ Single value }
if p2^.treetype=ordconstn then
begin
do_set(p2^.value);
disposetree(p2);
end
else
begin
update_constsethi(p2^.resulttype);
p4:=gennode(setelementn,p2,nil);
end;
end;
end;
end;
stringdef : begin
if pd=nil then
pd:=cchardef;
if not(is_equal(pd,cchardef)) then
Message(type_e_typeconflict_in_set)
else
for l:=1 to length(pstring(p2^.value_str)^) do
do_set(ord(pstring(p2^.value_str)^[l]));
disposetree(p2);
end;
else
Internalerror(4234);
end;
{ insert the set creation tree }
if assigned(p4) then
buildp:=gennode(addn,buildp,p4);
{ load next and dispose current node }
p2:=p;
p:=p^.right;
putnode(p2);
end;
end
else
begin
{ empty set [], only remove node }
putnode(p);
end;
{ set the initial set type }
constp^.resulttype:=new(psetdef,init(pd,constsethi));
{ set the new tree }
p:=buildp;
end;
{*****************************************************************************
FirstTypeConv
*****************************************************************************}
type
tfirstconvproc = procedure(var p : ptree);
procedure first_bigger_smaller(var p : ptree);
begin
if (p^.left^.location.loc<>LOC_REGISTER) and (p^.registers32=0) then
p^.registers32:=1;
p^.location.loc:=LOC_REGISTER;
end;
procedure first_cstring_charpointer(var p : ptree);
begin
p^.registers32:=1;
p^.location.loc:=LOC_REGISTER;
end;
procedure first_string_chararray(var p : ptree);
begin
p^.registers32:=1;
p^.location.loc:=LOC_REGISTER;
end;
procedure first_string_string(var p : ptree);
begin
if pstringdef(p^.resulttype)^.string_typ<>
pstringdef(p^.left^.resulttype)^.string_typ then
begin
if p^.left^.treetype=stringconstn then
begin
p^.left^.stringtype:=pstringdef(p^.resulttype)^.string_typ;
{ we don't have to do anything, the const }
{ node generates an ansistring }
p^.convtyp:=tc_equal;
end
else
procinfo.flags:=procinfo.flags or pi_do_call;
end;
{ for simplicity lets first keep all ansistrings
as LOC_MEM, could also become LOC_REGISTER }
p^.location.loc:=LOC_MEM;
end;
procedure first_char_to_string(var p : ptree);
var
hp : ptree;
begin
if p^.left^.treetype=ordconstn then
begin
hp:=genstringconstnode(chr(p^.left^.value));
hp^.stringtype:=pstringdef(p^.resulttype)^.string_typ;
firstpass(hp);
disposetree(p);
p:=hp;
end
else
p^.location.loc:=LOC_MEM;
end;
procedure first_nothing(var p : ptree);
begin
p^.location.loc:=LOC_MEM;
end;
procedure first_array_to_pointer(var p : ptree);
begin
if p^.registers32<1 then
p^.registers32:=1;
p^.location.loc:=LOC_REGISTER;
end;
procedure first_int_real(var p : ptree);
var
t : ptree;
begin
if p^.left^.treetype=ordconstn then
begin
{ convert constants direct }
{ not because of type conversion }
t:=genrealconstnode(p^.left^.value);
{ do a first pass here
because firstpass of typeconv does
not redo it for left field !! }
firstpass(t);
{ the type can be something else than s64real !!}
t:=gentypeconvnode(t,p^.resulttype);
firstpass(t);
disposetree(p);
p:=t;
exit;
end
else
begin
if p^.registersfpu<1 then
p^.registersfpu:=1;
p^.location.loc:=LOC_FPU;
end;
end;
procedure first_int_fix(var p : ptree);
begin
if p^.left^.treetype=ordconstn then
begin
{ convert constants direct }
p^.treetype:=fixconstn;
p^.value_fix:=p^.left^.value shl 16;
p^.disposetyp:=dt_nothing;
disposetree(p^.left);
p^.location.loc:=LOC_MEM;
end
else
begin
if p^.registers32<1 then
p^.registers32:=1;
p^.location.loc:=LOC_REGISTER;
end;
end;
procedure first_real_fix(var p : ptree);
begin
if p^.left^.treetype=realconstn then
begin
{ convert constants direct }
p^.treetype:=fixconstn;
p^.value_fix:=round(p^.left^.value_real*65536);
p^.disposetyp:=dt_nothing;
disposetree(p^.left);
p^.location.loc:=LOC_MEM;
end
else
begin
{ at least one fpu and int register needed }
if p^.registers32<1 then
p^.registers32:=1;
if p^.registersfpu<1 then
p^.registersfpu:=1;
p^.location.loc:=LOC_REGISTER;
end;
end;
procedure first_fix_real(var p : ptree);
begin
if p^.left^.treetype=fixconstn then
begin
{ convert constants direct }
p^.treetype:=realconstn;
p^.value_real:=round(p^.left^.value_fix/65536.0);
p^.disposetyp:=dt_nothing;
disposetree(p^.left);
p^.location.loc:=LOC_MEM;
end
else
begin
if p^.registersfpu<1 then
p^.registersfpu:=1;
p^.location.loc:=LOC_FPU;
end;
end;
procedure first_real_real(var p : ptree);
begin
if p^.registersfpu<1 then
p^.registersfpu:=1;
p^.location.loc:=LOC_FPU;
end;
procedure first_pointer_to_array(var p : ptree);
begin
if p^.registers32<1 then
p^.registers32:=1;
p^.location.loc:=LOC_REFERENCE;
end;
procedure first_chararray_string(var p : ptree);
begin
{ the only important information is the location of the }
{ result }
{ other stuff is done by firsttypeconv }
p^.location.loc:=LOC_MEM;
end;
procedure first_cchar_charpointer(var p : ptree);
begin
p^.left:=gentypeconvnode(p^.left,cstringdef);
{ convert constant char to constant string }
firstpass(p^.left);
{ evalute tree }
firstpass(p);
end;
procedure first_locmem(var p : ptree);
begin
p^.location.loc:=LOC_MEM;
end;
procedure first_bool_int(var p : ptree);
begin
p^.location.loc:=LOC_REGISTER;
{ Florian I think this is overestimated
but I still do not really understand how to get this right (PM) }
{ Hmmm, I think we need only one reg to return the result of }
{ this node => so }
if p^.registers32<1 then
p^.registers32:=1;
{ should work (FK)
p^.registers32:=p^.left^.registers32+1;}
end;
procedure first_int_bool(var p : ptree);
begin
p^.location.loc:=LOC_REGISTER;
{ Florian I think this is overestimated
but I still do not really understand how to get this right (PM) }
{ Hmmm, I think we need only one reg to return the result of }
{ this node => so }
p^.left:=gentypeconvnode(p^.left,s32bitdef);
firstpass(p^.left);
if p^.registers32<1 then
p^.registers32:=1;
{ p^.resulttype:=booldef; }
{ should work (FK)
p^.registers32:=p^.left^.registers32+1;}
end;
procedure first_proc_to_procvar(var p : ptree);
begin
{ hmmm, I'am not sure if that is necessary (FK) }
firstpass(p^.left);
if codegenerror then
exit;
if (p^.left^.location.loc<>LOC_REFERENCE) then
CGMessage(cg_e_illegal_expression);
p^.registers32:=p^.left^.registers32;
if p^.registers32<1 then
p^.registers32:=1;
p^.location.loc:=LOC_REGISTER;
end;
procedure first_load_smallset(var p : ptree);
begin
end;
procedure first_pchar_to_string(var p : ptree);
begin
p^.location.loc:=LOC_MEM;
end;
procedure first_ansistring_to_pchar(var p : ptree);
begin
p^.location.loc:=LOC_REGISTER;
if p^.registers32<1 then
p^.registers32:=1;
end;
procedure first_arrayconstructor_to_set(var p:ptree);
var
hp : ptree;
begin
if p^.left^.treetype<>arrayconstructn then
internalerror(5546);
{ remove typeconv node }
hp:=p;
p:=p^.left;
putnode(hp);
{ create a set constructor tree }
arrayconstructor_to_set(p);
end;
procedure firsttypeconv(var p : ptree);
var
hp : ptree;
aprocdef : pprocdef;
proctype : tdeftype;
const
firstconvert : array[tconverttype] of
tfirstconvproc = (first_nothing,first_nothing,
first_bigger_smaller,first_nothing,first_bigger_smaller,
first_bigger_smaller,first_bigger_smaller,
first_bigger_smaller,first_bigger_smaller,
first_bigger_smaller,first_string_string,
first_cstring_charpointer,first_string_chararray,
first_array_to_pointer,first_pointer_to_array,
first_char_to_string,first_bigger_smaller,
first_bigger_smaller,first_bigger_smaller,
first_bigger_smaller,first_bigger_smaller,
first_bigger_smaller,first_bigger_smaller,
first_bigger_smaller,first_bigger_smaller,
first_bigger_smaller,first_bigger_smaller,
first_bigger_smaller,first_bigger_smaller,
first_bigger_smaller,first_bigger_smaller,
first_bigger_smaller,first_bigger_smaller,
first_bigger_smaller,first_bigger_smaller,
first_bool_int,first_int_bool,
first_int_real,first_real_fix,
first_fix_real,first_int_fix,first_real_real,
first_locmem,first_proc_to_procvar,
first_cchar_charpointer,
first_load_smallset,
first_ansistring_to_pchar,
first_pchar_to_string,
first_arrayconstructor_to_set);
begin
aprocdef:=nil;
{ if explicite type cast, then run firstpass }
if p^.explizit then
firstpass(p^.left);
if codegenerror then
begin
p^.resulttype:=generrordef;
exit;
end;
if not assigned(p^.left^.resulttype) then
begin
codegenerror:=true;
internalerror(52349);
exit;
end;
{ load the value_str from the left part }
p^.registers32:=p^.left^.registers32;
p^.registersfpu:=p^.left^.registersfpu;
{$ifdef SUPPORT_MMX}
p^.registersmmx:=p^.left^.registersmmx;
{$endif}
set_location(p^.location,p^.left^.location);
{ remove obsolete type conversions }
if is_equal(p^.left^.resulttype,p^.resulttype) then
begin
{ becuase is_equal only checks the basetype for sets we need to
check here if we are loading a smallset into a normalset }
if (p^.resulttype^.deftype=setdef) and
(p^.left^.resulttype^.deftype=setdef) and
(psetdef(p^.resulttype)^.settype<>smallset) and
(psetdef(p^.left^.resulttype)^.settype=smallset) then
begin
{ try to define the set as a normalset if it's a constant set }
if p^.left^.treetype=setconstn then
begin
p^.resulttype:=p^.left^.resulttype;
psetdef(p^.resulttype)^.settype:=normset
end
else
p^.convtyp:=tc_load_smallset;
exit;
end
else
begin
hp:=p;
p:=p^.left;
p^.resulttype:=hp^.resulttype;
putnode(hp);
exit;
end;
end;
if is_assignment_overloaded(p^.left^.resulttype,p^.resulttype) then
begin
procinfo.flags:=procinfo.flags or pi_do_call;
hp:=gencallnode(overloaded_operators[assignment],nil);
hp^.left:=gencallparanode(p^.left,nil);
putnode(p);
p:=hp;
firstpass(p);
exit;
end;
if (not(isconvertable(p^.left^.resulttype,p^.resulttype,
p^.convtyp,p^.left^.treetype,p^.explizit))) then
begin
{Procedures have a resulttype of voiddef and functions of their
own resulttype. They will therefore always be incompatible with
a procvar. Because isconvertable cannot check for procedures we
use an extra check for them.}
if (m_tp_procvar in aktmodeswitches) and
((is_procsym_load(p^.left) or is_procsym_call(p^.left)) and
(p^.resulttype^.deftype=procvardef)) then
begin
{ just a test: p^.explizit:=false; }
if is_procsym_call(p^.left) then
begin
if p^.left^.right=nil then
begin
p^.left^.treetype:=loadn;
{ are at same offset so this could be spared, but
it more secure to do it anyway }
p^.left^.symtableentry:=p^.left^.symtableprocentry;
p^.left^.resulttype:=pprocsym(p^.left^.symtableentry)^.definition;
aprocdef:=pprocdef(p^.left^.resulttype);
end
else
begin
p^.left^.right^.treetype:=loadn;
p^.left^.right^.symtableentry:=p^.left^.right^.symtableentry;
P^.left^.right^.resulttype:=pvarsym(p^.left^.symtableentry)^.definition;
hp:=p^.left^.right;
putnode(p^.left);
p^.left:=hp;
{ should we do that ? }
firstpass(p^.left);
if not is_equal(p^.left^.resulttype,p^.resulttype) then
begin
CGMessage(type_e_mismatch);
exit;
end
else
begin
hp:=p;
p:=p^.left;
p^.resulttype:=hp^.resulttype;
putnode(hp);
exit;
end;
end;
end
else
begin
if p^.left^.treetype=addrn then
begin
hp:=p^.left;
p^.left:=p^.left^.left;
putnode(p^.left);
end
else
aprocdef:=pprocsym(p^.left^.symtableentry)^.definition;
end;
p^.convtyp:=tc_proc2procvar;
{ Now check if the procedure we are going to assign to
the procvar, is compatible with the procvar's type.
Did the original procvar support do such a check?
I can't find any.}
{ answer : is_equal works for procvardefs !! }
{ but both must be procvardefs, so we cheet little }
if assigned(aprocdef) then
begin
proctype:=aprocdef^.deftype;
aprocdef^.deftype:=procvardef;
if not is_equal(aprocdef,p^.resulttype) then
begin
aprocdef^.deftype:=proctype;
CGMessage(type_e_mismatch);
end;
aprocdef^.deftype:=proctype;
firstconvert[p^.convtyp](p);
end
else
CGMessage(type_e_mismatch);
exit;
end
else
begin
if p^.explizit then
begin
{ boolean to byte are special because the
location can be different }
if (p^.resulttype^.deftype=orddef) and
(porddef(p^.resulttype)^.typ=u8bit) and
(p^.left^.resulttype^.deftype=orddef) and
(porddef(p^.left^.resulttype)^.typ=bool8bit) then
begin
p^.convtyp:=tc_bool_2_int;
firstconvert[p^.convtyp](p);
exit;
end;
if is_pchar(p^.resulttype) and
is_ansistring(p^.left^.resulttype) then
begin
p^.convtyp:=tc_ansistring_2_pchar;
firstconvert[p^.convtyp](p);
exit;
end;
{ normal tc_equal-Konvertierung durchf<68>hren }
p^.convtyp:=tc_equal;
{ wenn Aufz<66>hltyp nach Ordinal konvertiert werden soll }
{ dann Aufz<66>hltyp=s32bit }
if (p^.left^.resulttype^.deftype=enumdef) and
is_ordinal(p^.resulttype) then
begin
if p^.left^.treetype=ordconstn then
begin
hp:=genordinalconstnode(p^.left^.value,p^.resulttype);
disposetree(p);
firstpass(hp);
p:=hp;
exit;
end
else
begin
if not isconvertable(s32bitdef,p^.resulttype,p^.convtyp,
ordconstn { only Dummy},false ) then
CGMessage(cg_e_illegal_type_conversion);
end;
end
{ ordinal to enumeration }
else
if (p^.resulttype^.deftype=enumdef) and
is_ordinal(p^.left^.resulttype) then
begin
if p^.left^.treetype=ordconstn then
begin
hp:=genordinalconstnode(p^.left^.value,p^.resulttype);
disposetree(p);
firstpass(hp);
p:=hp;
exit;
end
else
begin
if not isconvertable(p^.left^.resulttype,s32bitdef,p^.convtyp,
ordconstn { nur Dummy},false ) then
CGMessage(cg_e_illegal_type_conversion);
end;
end
{Are we typecasting an ordconst to a char?}
else
if is_equal(p^.resulttype,cchardef) and
is_ordinal(p^.left^.resulttype) then
begin
if p^.left^.treetype=ordconstn then
begin
hp:=genordinalconstnode(p^.left^.value,p^.resulttype);
firstpass(hp);
disposetree(p);
p:=hp;
exit;
end
else
begin
{ this is wrong because it converts to a 4 byte long var !!
if not isconvertable(p^.left^.resulttype,s32bitdef,p^.convtyp,ordconstn nur Dummy ) then }
if not isconvertable(p^.left^.resulttype,u8bitdef,
p^.convtyp,ordconstn { nur Dummy},false ) then
CGMessage(cg_e_illegal_type_conversion);
end;
end
{ only if the same size or formal def }
{ why do we allow typecasting of voiddef ?? (PM) }
else
if not(
(p^.left^.resulttype^.deftype=formaldef) or
(p^.left^.resulttype^.size=p^.resulttype^.size) or
(is_equal(p^.left^.resulttype,voiddef) and
(p^.left^.treetype=derefn))
) then
CGMessage(cg_e_illegal_type_conversion);
{ the conversion into a strutured type is only }
{ possible, if the source is no register }
if ((p^.resulttype^.deftype in [recorddef,stringdef,arraydef]) or
((p^.resulttype^.deftype=objectdef) and not(pobjectdef(p^.resulttype)^.isclass))
) and (p^.left^.location.loc in [LOC_REGISTER,LOC_CREGISTER]) and
{it also works if the assignment is overloaded }
not is_assignment_overloaded(p^.left^.resulttype,p^.resulttype) then
CGMessage(cg_e_illegal_type_conversion);
end
else
CGMessage(type_e_mismatch);
end
end
else
begin
{ ordinal contants can be directly converted }
if (p^.left^.treetype=ordconstn) and is_ordinal(p^.resulttype) then
begin
{ perform range checking }
if not(p^.explizit and (m_tp in aktmodeswitches)) then
testrange(p^.resulttype,p^.left^.value);
hp:=genordinalconstnode(p^.left^.value,p^.resulttype);
disposetree(p);
firstpass(hp);
p:=hp;
exit;
end;
if p^.convtyp<>tc_equal then
firstconvert[p^.convtyp](p);
end;
end;
{*****************************************************************************
FirstIs
*****************************************************************************}
procedure firstis(var p : ptree);
begin
firstpass(p^.left);
firstpass(p^.right);
if codegenerror then
exit;
if (p^.right^.resulttype^.deftype<>classrefdef) then
CGMessage(type_e_mismatch);
left_right_max(p);
{ left must be a class }
if (p^.left^.resulttype^.deftype<>objectdef) or
not(pobjectdef(p^.left^.resulttype)^.isclass) then
CGMessage(type_e_mismatch);
{ the operands must be related }
if (not(pobjectdef(p^.left^.resulttype)^.isrelated(
pobjectdef(pclassrefdef(p^.right^.resulttype)^.definition)))) and
(not(pobjectdef(pclassrefdef(p^.right^.resulttype)^.definition)^.isrelated(
pobjectdef(p^.left^.resulttype)))) then
CGMessage(type_e_mismatch);
p^.location.loc:=LOC_FLAGS;
p^.resulttype:=booldef;
end;
{*****************************************************************************
FirstAs
*****************************************************************************}
procedure firstas(var p : ptree);
begin
firstpass(p^.right);
firstpass(p^.left);
if codegenerror then
exit;
if (p^.right^.resulttype^.deftype<>classrefdef) then
CGMessage(type_e_mismatch);
left_right_max(p);
{ left must be a class }
if (p^.left^.resulttype^.deftype<>objectdef) or
not(pobjectdef(p^.left^.resulttype)^.isclass) then
CGMessage(type_e_mismatch);
{ the operands must be related }
if (not(pobjectdef(p^.left^.resulttype)^.isrelated(
pobjectdef(pclassrefdef(p^.right^.resulttype)^.definition)))) and
(not(pobjectdef(pclassrefdef(p^.right^.resulttype)^.definition)^.isrelated(
pobjectdef(p^.left^.resulttype)))) then
CGMessage(type_e_mismatch);
set_location(p^.location,p^.left^.location);
p^.resulttype:=pclassrefdef(p^.right^.resulttype)^.definition;
end;
end.
{
$Log$
Revision 1.3 1998-09-27 10:16:26 florian
* type casts pchar<->ansistring fixed
* ansistring[..] calls does now an unique call
Revision 1.2 1998/09/24 23:49:22 peter
+ aktmodeswitches
Revision 1.1 1998/09/23 20:42:24 peter
* splitted pass_1
}