fpc/packages/paszlib/crcasm.pas
peter 9198133711 * rename zlib.pas -> zbase.pas to overcome conflicting name with the
other zlib package
  * paszlib unit added as generic interface for all other units, this
    unit is partly compatible with the other zlib pacakge
2000-01-06 01:27:14 +00:00

278 lines
11 KiB
ObjectPascal

Unit CrcAsm;
{
crc32.c -- compute the CRC-32 of a data stream
Copyright (C) 1995-1998 Mark Adler
Pascal translation
Copyright (C) 1998 by Jacques Nomssi Nzali
For conditions of distribution and use, see copyright notice in readme.txt
Assembler for FPC by Marco van de Voort, originating from a Modula-2 port
which originated from either SWAG sources or the RA development kit. (not
tracable anymore)
}
interface
{$I zconf.inc}
{$IFNDEF FPC}
'CRC32 assembler version specific for the Free Pascal compiler'
{$ELSE}
{-- $DEFINE TightLoop}
{$ENDIF}
uses
zutil, zbase;
function crc32(crc : uLong; buf : pBytef; len : uInt) : uLong;
{ Update a running crc with the bytes buf[0..len-1] and return the updated
crc. If buf is NULL, this function returns the required initial value
for the crc. Pre- and post-conditioning (one's complement) is performed
within this function so it shouldn't be done by the application.
Usage example:
var
crc : uLong;
begin
crc := crc32(0, Z_NULL, 0);
while (read_buffer(buffer, length) <> EOF) do
crc := crc32(crc, buffer, length);
if (crc <> original_crc) then error();
end;
}
function get_crc_table : puLong; { can be used by asm versions of crc32() }
implementation
{$IFDEF DYNAMIC_CRC_TABLE}
{local}
const
crc_table_empty : boolean = TRUE;
{local}
var
crc_table : array[0..256-1] of uLongf;
{
Generate a table for a byte-wise 32-bit CRC calculation on the polynomial:
x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
Polynomials over GF(2) are represented in binary, one bit per coefficient,
with the lowest powers in the most significant bit. Then adding polynomials
is just exclusive-or, and multiplying a polynomial by x is a right shift by
one. If we call the above polynomial p, and represent a byte as the
polynomial q, also with the lowest power in the most significant bit (so the
byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
where a mod b means the remainder after dividing a by b.
This calculation is done using the shift-register method of multiplying and
taking the remainder. The register is initialized to zero, and for each
incoming bit, x^32 is added mod p to the register if the bit is a one (where
x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
x (which is shifting right by one and adding x^32 mod p if the bit shifted
out is a one). We start with the highest power (least significant bit) of
q and repeat for all eight bits of q.
The table is simply the CRC of all possible eight bit values. This is all
the information needed to generate CRC's on data a byte at a time for all
combinations of CRC register values and incoming bytes.
}
{local}
procedure make_crc_table;
var
c : uLong;
n,k : int;
poly : uLong; { polynomial exclusive-or pattern }
const
{ terms of polynomial defining this crc (except x^32): }
p: array [0..13] of Byte = (0,1,2,4,5,7,8,10,11,12,16,22,23,26);
begin
{ make exclusive-or pattern from polynomial ($EDB88320) }
poly := Long(0);
for n := 0 to (sizeof(p) div sizeof(Byte))-1 do
poly := poly or (Long(1) shl (31 - p[n]));
for n := 0 to 255 do
begin
c := uLong(n);
for k := 0 to 7 do
begin
if (c and 1) <> 0 then
c := poly xor (c shr 1)
else
c := (c shr 1);
end;
crc_table[n] := c;
end;
crc_table_empty := FALSE;
end;
{$ELSE}
{ ========================================================================
Table of CRC-32's of all single-byte values (made by make_crc_table) }
{local}
const
crc_table : array[0..256-1] of uLongf = (
$00000000, $77073096, $ee0e612c, $990951ba, $076dc419,
$706af48f, $e963a535, $9e6495a3, $0edb8832, $79dcb8a4,
$e0d5e91e, $97d2d988, $09b64c2b, $7eb17cbd, $e7b82d07,
$90bf1d91, $1db71064, $6ab020f2, $f3b97148, $84be41de,
$1adad47d, $6ddde4eb, $f4d4b551, $83d385c7, $136c9856,
$646ba8c0, $fd62f97a, $8a65c9ec, $14015c4f, $63066cd9,
$fa0f3d63, $8d080df5, $3b6e20c8, $4c69105e, $d56041e4,
$a2677172, $3c03e4d1, $4b04d447, $d20d85fd, $a50ab56b,
$35b5a8fa, $42b2986c, $dbbbc9d6, $acbcf940, $32d86ce3,
$45df5c75, $dcd60dcf, $abd13d59, $26d930ac, $51de003a,
$c8d75180, $bfd06116, $21b4f4b5, $56b3c423, $cfba9599,
$b8bda50f, $2802b89e, $5f058808, $c60cd9b2, $b10be924,
$2f6f7c87, $58684c11, $c1611dab, $b6662d3d, $76dc4190,
$01db7106, $98d220bc, $efd5102a, $71b18589, $06b6b51f,
$9fbfe4a5, $e8b8d433, $7807c9a2, $0f00f934, $9609a88e,
$e10e9818, $7f6a0dbb, $086d3d2d, $91646c97, $e6635c01,
$6b6b51f4, $1c6c6162, $856530d8, $f262004e, $6c0695ed,
$1b01a57b, $8208f4c1, $f50fc457, $65b0d9c6, $12b7e950,
$8bbeb8ea, $fcb9887c, $62dd1ddf, $15da2d49, $8cd37cf3,
$fbd44c65, $4db26158, $3ab551ce, $a3bc0074, $d4bb30e2,
$4adfa541, $3dd895d7, $a4d1c46d, $d3d6f4fb, $4369e96a,
$346ed9fc, $ad678846, $da60b8d0, $44042d73, $33031de5,
$aa0a4c5f, $dd0d7cc9, $5005713c, $270241aa, $be0b1010,
$c90c2086, $5768b525, $206f85b3, $b966d409, $ce61e49f,
$5edef90e, $29d9c998, $b0d09822, $c7d7a8b4, $59b33d17,
$2eb40d81, $b7bd5c3b, $c0ba6cad, $edb88320, $9abfb3b6,
$03b6e20c, $74b1d29a, $ead54739, $9dd277af, $04db2615,
$73dc1683, $e3630b12, $94643b84, $0d6d6a3e, $7a6a5aa8,
$e40ecf0b, $9309ff9d, $0a00ae27, $7d079eb1, $f00f9344,
$8708a3d2, $1e01f268, $6906c2fe, $f762575d, $806567cb,
$196c3671, $6e6b06e7, $fed41b76, $89d32be0, $10da7a5a,
$67dd4acc, $f9b9df6f, $8ebeeff9, $17b7be43, $60b08ed5,
$d6d6a3e8, $a1d1937e, $38d8c2c4, $4fdff252, $d1bb67f1,
$a6bc5767, $3fb506dd, $48b2364b, $d80d2bda, $af0a1b4c,
$36034af6, $41047a60, $df60efc3, $a867df55, $316e8eef,
$4669be79, $cb61b38c, $bc66831a, $256fd2a0, $5268e236,
$cc0c7795, $bb0b4703, $220216b9, $5505262f, $c5ba3bbe,
$b2bd0b28, $2bb45a92, $5cb36a04, $c2d7ffa7, $b5d0cf31,
$2cd99e8b, $5bdeae1d, $9b64c2b0, $ec63f226, $756aa39c,
$026d930a, $9c0906a9, $eb0e363f, $72076785, $05005713,
$95bf4a82, $e2b87a14, $7bb12bae, $0cb61b38, $92d28e9b,
$e5d5be0d, $7cdcefb7, $0bdbdf21, $86d3d2d4, $f1d4e242,
$68ddb3f8, $1fda836e, $81be16cd, $f6b9265b, $6fb077e1,
$18b74777, $88085ae6, $ff0f6a70, $66063bca, $11010b5c,
$8f659eff, $f862ae69, $616bffd3, $166ccf45, $a00ae278,
$d70dd2ee, $4e048354, $3903b3c2, $a7672661, $d06016f7,
$4969474d, $3e6e77db, $aed16a4a, $d9d65adc, $40df0b66,
$37d83bf0, $a9bcae53, $debb9ec5, $47b2cf7f, $30b5ffe9,
$bdbdf21c, $cabac28a, $53b39330, $24b4a3a6, $bad03605,
$cdd70693, $54de5729, $23d967bf, $b3667a2e, $c4614ab8,
$5d681b02, $2a6f2b94, $b40bbe37, $c30c8ea1, $5a05df1b,
$2d02ef8d);
{$ENDIF}
{ =========================================================================
This function can be used by asm versions of crc32() }
function get_crc_table : {const} puLong;
begin
{$ifdef DYNAMIC_CRC_TABLE}
if (crc_table_empty) then
make_crc_table;
{$endif}
get_crc_table := {const} puLong(@crc_table);
end;
{ ========================================================================= }
function crc32 (crc : uLong; buf : pBytef; len : uInt): uLong; ASSEMBLER;
// Original header, old procedure didn't normalize or check for NIL pointer
// (since open array), and check for table-existance.
//
// FUNCTION Crc32( crc : CARDINAL;var Buffer;BufSize:CARDINAL):CARDINAL;ASSEMBLER;
ASM
mov buf,%esi // Load source address
xor %ebx,%ebx
test %esi,%esi
je .LCalcAfterEndLoop // buf-pointer is NIL
mov crc,%ebx // load previous CRC
xor $-1,%ebx // normalize/invert CRC
call get_crc_table
mov %eax,%edi
mov len,%ecx // Counter.
{$IFNDEF TightLoop}
.LTightTest: test $-8,%ecx // Test if at least 8 bytes left in buffer
je .LCalcEndbigloop
lodsb // Yes, loop optimalisation
movzbl %bl,%edx
shrl $8,%ebx
xorb %al,%dl
xorl (%edi,%edx,4),%ebx
// the above base code is copied 7 times. So 7+1=8
lodsb // 2
movzbl %bl,%edx
shrl $8,%ebx
xorb %al,%dl
xorl (%edi,%edx,4),%ebx
lodsb // 3
movzbl %bl,%edx
shrl $8,%ebx
xorb %al,%dl
xorl (%edi,%edx,4),%ebx
lodsb // 4
movzbl %bl,%edx
shrl $8,%ebx
xorb %al,%dl
xorl (%edi,%edx,4),%ebx
lodsb // 5
movzbl %bl,%edx
shrl $8,%ebx
xorb %al,%dl
xorl (%edi,%edx,4),%ebx
lodsb // 6
movzbl %bl,%edx
shrl $8,%ebx
xorb %al,%dl
xorl (%edi,%edx,4),%ebx
lodsb // 7
movzbl %bl,%edx
shrl $8,%ebx
xorb %al,%dl
xorl (%edi,%edx,4),%ebx
lodsb // 8
movzbl %bl,%edx
shrl $8,%ebx
xorb %al,%dl
xorl (%edi,%edx,4),%ebx
subl $8,%ecx // 8 less to go
jmp .LTightTest
.LCalcEndbigloop: jecxz .LCalcNormalTerm
{$ENDIF}
.LCalcLoop: lodsb // Do (rest) buffer
movzbl %bl,%edx
shrl $8,%ebx
xorb %al,%dl
xorl (%edi,%edx,4),%ebx
loop .LCalcLoop
.LCalcNormalTerm: xor $-1,%ebx // normalize/invert CRC
.LCalcAfterEndLoop: mov %ebx,%eax
end['EAX','EBX','ECX','EDX','ESI','EDI'];
end.