fpc/compiler/ninl.pas
florian 19e97e4da2 + use sse for sqrt if possible
* same optimization for sqrt as for sqr

git-svn-id: trunk@1266 -
2005-10-03 12:47:05 +00:00

2515 lines
96 KiB
ObjectPascal

{
Copyright (c) 1998-2002 by Florian Klaempfl
Type checking and register allocation for inline nodes
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit ninl;
{$i fpcdefs.inc}
interface
uses
node,htypechk,cpuinfo,symtype;
{$i compinnr.inc}
type
tinlinenode = class(tunarynode)
inlinenumber : byte;
constructor create(number : byte;is_const:boolean;l : tnode);virtual;
constructor ppuload(t:tnodetype;ppufile:tcompilerppufile);override;
procedure ppuwrite(ppufile:tcompilerppufile);override;
function _getcopy : tnode;override;
function pass_1 : tnode;override;
function det_resulttype:tnode;override;
function docompare(p: tnode): boolean; override;
{ All the following routines currently
call compilerprocs, unless they are
overriden in which case, the code
generator handles them.
}
function first_pi: tnode ; virtual;
function first_arctan_real: tnode; virtual;
function first_abs_real: tnode; virtual;
function first_sqr_real: tnode; virtual;
function first_sqrt_real: tnode; virtual;
function first_ln_real: tnode; virtual;
function first_cos_real: tnode; virtual;
function first_sin_real: tnode; virtual;
function first_exp_real: tnode; virtual;
function first_frac_real: tnode; virtual;
function first_round_real: tnode; virtual;
function first_trunc_real: tnode; virtual;
function first_int_real: tnode; virtual;
private
function handle_str: tnode;
function handle_reset_rewrite_typed: tnode;
function handle_read_write: tnode;
function handle_val: tnode;
end;
tinlinenodeclass = class of tinlinenode;
var
cinlinenode : tinlinenodeclass;
function geninlinenode(number : byte;is_const:boolean;l : tnode) : tinlinenode;
implementation
uses
verbose,globals,systems,
globtype, cutils,
symconst,symdef,symsym,symtable,paramgr,defutil,
pass_1,
ncal,ncon,ncnv,nadd,nld,nbas,nflw,nmem,nmat,nutils,
cgbase,procinfo
;
function geninlinenode(number : byte;is_const:boolean;l : tnode) : tinlinenode;
begin
geninlinenode:=cinlinenode.create(number,is_const,l);
end;
{*****************************************************************************
TINLINENODE
*****************************************************************************}
constructor tinlinenode.create(number : byte;is_const:boolean;l : tnode);
begin
inherited create(inlinen,l);
if is_const then
include(flags,nf_inlineconst);
inlinenumber:=number;
end;
constructor tinlinenode.ppuload(t:tnodetype;ppufile:tcompilerppufile);
begin
inherited ppuload(t,ppufile);
inlinenumber:=ppufile.getbyte;
end;
procedure tinlinenode.ppuwrite(ppufile:tcompilerppufile);
begin
inherited ppuwrite(ppufile);
ppufile.putbyte(inlinenumber);
end;
function tinlinenode._getcopy : tnode;
var
n : tinlinenode;
begin
n:=tinlinenode(inherited _getcopy);
n.inlinenumber:=inlinenumber;
result:=n;
end;
function tinlinenode.handle_str : tnode;
var
lenpara,
fracpara,
newparas,
dest,
source : tcallparanode;
procname: string;
is_real : boolean;
begin
result := cerrornode.create;
{ make sure we got at least two parameters (if we got only one, }
{ this parameter may not be encapsulated in a callparan) }
if not assigned(left) or
(left.nodetype <> callparan) then
begin
CGMessage(parser_e_wrong_parameter_size);
exit;
end;
{ get destination string }
dest := tcallparanode(left);
{ get source para (number) }
source := dest;
while assigned(source.right) do
source := tcallparanode(source.right);
{ destination parameter must be a normal (not a colon) parameter, this
check is needed because str(v:len) also has 2 parameters }
if (source=dest) or
(cpf_is_colon_para in tcallparanode(dest).callparaflags) then
begin
CGMessage(parser_e_wrong_parameter_size);
exit;
end;
is_real := source.resulttype.def.deftype = floatdef;
if ((dest.left.resulttype.def.deftype<>stringdef) and
not(is_chararray(dest.left.resulttype.def))) or
not(is_real or
(source.left.resulttype.def.deftype = orddef)) then
begin
CGMessagePos(fileinfo,parser_e_illegal_expression);
exit;
end;
{ get len/frac parameters }
lenpara := nil;
fracpara := nil;
if (cpf_is_colon_para in tcallparanode(dest.right).callparaflags) then
begin
lenpara := tcallparanode(dest.right);
{ we can let the callnode do the type checking of these parameters too, }
{ but then the error messages aren't as nice }
if not is_integer(lenpara.resulttype.def) then
begin
CGMessagePos1(lenpara.fileinfo,
type_e_integer_expr_expected,lenpara.resulttype.def.typename);
exit;
end;
if (cpf_is_colon_para in tcallparanode(lenpara.right).callparaflags) then
begin
{ parameters are in reverse order! }
fracpara := lenpara;
lenpara := tcallparanode(lenpara.right);
if not is_real then
begin
CGMessagePos(lenpara.fileinfo,parser_e_illegal_colon_qualifier);
exit
end;
if not is_integer(lenpara.resulttype.def) then
begin
CGMessagePos1(lenpara.fileinfo,
type_e_integer_expr_expected,lenpara.resulttype.def.typename);
exit;
end;
end;
end;
{ generate the parameter list for the compilerproc }
newparas := dest;
{ if we have a float parameter, insert the realtype, len and fracpara parameters }
if is_real then
begin
{ insert realtype parameter }
newparas.right := ccallparanode.create(cordconstnode.create(
ord(tfloatdef(source.left.resulttype.def).typ),s32inttype,true),
newparas.right);
{ if necessary, insert a fraction parameter }
if not assigned(fracpara) then
begin
tcallparanode(newparas.right).right := ccallparanode.create(
cordconstnode.create(-1,s32inttype,false),
tcallparanode(newparas.right).right);
fracpara := tcallparanode(tcallparanode(newparas.right).right);
end;
{ if necessary, insert a length para }
if not assigned(lenpara) then
fracpara.right := ccallparanode.create(
cordconstnode.create(-32767,s32inttype,false),
fracpara.right);
end
else
{ for a normal parameter, insert a only length parameter if one is missing }
if not assigned(lenpara) then
newparas.right := ccallparanode.create(cordconstnode.create(-1,s32inttype,false),
newparas.right);
{ remove the parameters from the original node so they won't get disposed, }
{ since they're reused }
left := nil;
{ create procedure name }
if is_chararray(dest.resulttype.def) then
procname:='fpc_chararray_'
else
procname := 'fpc_' + tstringdef(dest.resulttype.def).stringtypname+'_';
if is_real then
procname := procname + 'float'
else
case torddef(source.resulttype.def).typ of
{$ifdef cpu64bit}
u64bit:
procname := procname + 'uint';
{$else}
u32bit:
procname := procname + 'uint';
u64bit:
procname := procname + 'qword';
scurrency,
s64bit:
procname := procname + 'int64';
{$endif}
else
procname := procname + 'sint';
end;
{ free the errornode we generated in the beginning }
result.free;
{ create the call node, }
result := ccallnode.createintern(procname,newparas);
end;
function tinlinenode.handle_reset_rewrite_typed: tnode;
begin
{ since this is a "in_xxxx_typedfile" node, we can be sure we have }
{ a typed file as argument and we don't have to check it again (JM) }
{ add the recsize parameter }
{ note: for some reason, the parameter of intern procedures with only one }
{ parameter is gets lifted out of its original tcallparanode (see round }
{ line 1306 of ncal.pas), so recreate a tcallparanode here (JM) }
left := ccallparanode.create(cordconstnode.create(
tfiledef(left.resulttype.def).typedfiletype.def.size,s32inttype,true),
ccallparanode.create(left,nil));
{ create the correct call }
if inlinenumber=in_reset_typedfile then
result := ccallnode.createintern('fpc_reset_typed',left)
else
result := ccallnode.createintern('fpc_rewrite_typed',left);
{ make sure left doesn't get disposed, since we use it in the new call }
left := nil;
end;
function tinlinenode.handle_read_write: tnode;
const
procnames: array[boolean,boolean] of string[11] =
(('write_text_','read_text_'),('typed_write','typed_read'));
var
filepara,
lenpara,
fracpara,
nextpara,
para : tcallparanode;
newstatement : tstatementnode;
newblock : tblocknode;
p1 : tnode;
filetemp,
temp : ttempcreatenode;
procprefix,
name : string[31];
textsym : ttypesym;
readfunctype : ttype;
is_typed,
do_read,
is_real,
error_para,
found_error : boolean;
begin
filepara := nil;
is_typed := false;
filetemp := nil;
do_read := inlinenumber in [in_read_x,in_readln_x];
{ if we fail, we can quickly exit this way. We must generate something }
{ instead of the inline node, because firstpass will bomb with an }
{ internalerror if it encounters a read/write }
result := cerrornode.create;
{ reverse the parameters (needed to get the colon parameters in the }
{ correct order when processing write(ln) }
left := reverseparameters(tcallparanode(left));
if assigned(left) then
begin
{ check if we have a file parameter and if yes, what kind it is }
filepara := tcallparanode(left);
if (filepara.resulttype.def.deftype=filedef) then
begin
if (tfiledef(filepara.resulttype.def).filetyp=ft_untyped) then
begin
CGMessagePos(fileinfo,type_e_no_read_write_for_untyped_file);
exit;
end
else
begin
if (tfiledef(filepara.resulttype.def).filetyp=ft_typed) then
begin
if (inlinenumber in [in_readln_x,in_writeln_x]) then
begin
CGMessagePos(fileinfo,type_e_no_readln_writeln_for_typed_file);
exit;
end;
is_typed := true;
end
end;
end
else
filepara := nil;
end;
{ create a blocknode in which the successive write/read statements will be }
{ put, since they belong together. Also create a dummy statement already to }
{ make inserting of additional statements easier }
newblock:=internalstatements(newstatement);
{ if we don't have a filepara, create one containing the default }
if not assigned(filepara) then
begin
{ since the input/output variables are threadvars loading them into
a temp once is faster. Create a temp which will hold a pointer to the file }
filetemp := ctempcreatenode.create(voidpointertype,voidpointertype.def.size,tt_persistent,true);
addstatement(newstatement,filetemp);
{ make sure the resulttype of the temp (and as such of the }
{ temprefs coming after it) is set (necessary because the }
{ temprefs will be part of the filepara, of which we need }
{ the resulttype later on and temprefs can only be }
{ resulttypepassed if the resulttype of the temp is known) }
resulttypepass(tnode(filetemp));
{ assign the address of the file to the temp }
if do_read then
name := 'input'
else
name := 'output';
addstatement(newstatement,
cassignmentnode.create(ctemprefnode.create(filetemp),
ccallnode.createintern('fpc_get_'+name,nil)));
{ create a new fileparameter as follows: file_type(temp^) }
{ (so that we pass the value and not the address of the temp }
{ to the read/write routine) }
if not searchsystype('TEXT',textsym) then
internalerror(200108313);
filepara := ccallparanode.create(ctypeconvnode.create_internal(
cderefnode.create(ctemprefnode.create(filetemp)),textsym.restype),nil);
end
else
{ remove filepara from the parameter chain }
begin
left := filepara.right;
filepara.right := nil;
{ the file para is a var parameter, but it must be valid already }
set_varstate(filepara.left,vs_used,[vsf_must_be_valid]);
{ check if we should make a temp to store the result of a complex }
{ expression (better heuristics, anyone?) (JM) }
if (filepara.left.nodetype <> loadn) then
begin
{ create a temp which will hold a pointer to the file }
filetemp := ctempcreatenode.create(voidpointertype,voidpointertype.def.size,tt_persistent,true);
{ add it to the statements }
addstatement(newstatement,filetemp);
{ make sure the resulttype of the temp (and as such of the }
{ temprefs coming after it) is set (necessary because the }
{ temprefs will be part of the filepara, of which we need }
{ the resulttype later on and temprefs can only be }
{ resulttypepassed if the resulttype of the temp is known) }
resulttypepass(tnode(filetemp));
{ assign the address of the file to the temp }
addstatement(newstatement,
cassignmentnode.create(ctemprefnode.create(filetemp),
caddrnode.create_internal(filepara.left)));
resulttypepass(newstatement.left);
{ create a new fileparameter as follows: file_type(temp^) }
{ (so that we pass the value and not the address of the temp }
{ to the read/write routine) }
nextpara := ccallparanode.create(ctypeconvnode.create_internal(
cderefnode.create(ctemprefnode.create(filetemp)),filepara.left.resulttype),nil);
{ replace the old file para with the new one }
filepara.left := nil;
filepara.free;
filepara := nextpara;
end;
end;
{ the resulttype of the filepara must be set since it's }
{ used below }
filepara.get_paratype;
{ now, filepara is nowhere referenced anymore, so we can safely dispose it }
{ if something goes wrong or at the end of the procedure }
{ choose the correct procedure prefix }
procprefix := 'fpc_'+procnames[is_typed,do_read];
{ we're going to reuse the paranodes, so make sure they don't get freed }
{ twice }
para := tcallparanode(left);
left := nil;
{ no errors found yet... }
found_error := false;
if is_typed then
begin
{ add the typesize to the filepara }
if filepara.resulttype.def.deftype=filedef then
filepara.right := ccallparanode.create(cordconstnode.create(
tfiledef(filepara.resulttype.def).typedfiletype.def.size,s32inttype,true),nil);
{ check for "no parameters" (you need at least one extra para for typed files) }
if not assigned(para) then
begin
CGMessage(parser_e_wrong_parameter_size);
found_error := true;
end;
{ process all parameters }
while assigned(para) do
begin
{ check if valid parameter }
if para.left.nodetype=typen then
begin
CGMessagePos(para.left.fileinfo,type_e_cant_read_write_type);
found_error := true;
end;
{ support writeln(procvar) }
if (para.left.resulttype.def.deftype=procvardef) then
begin
p1:=ccallnode.create_procvar(nil,para.left);
resulttypepass(p1);
para.left:=p1;
end;
if filepara.resulttype.def.deftype=filedef then
inserttypeconv(para.left,tfiledef(filepara.resulttype.def).typedfiletype);
if assigned(para.right) and
(cpf_is_colon_para in tcallparanode(para.right).callparaflags) then
begin
CGMessagePos(para.right.fileinfo,parser_e_illegal_colon_qualifier);
{ skip all colon para's }
nextpara := tcallparanode(tcallparanode(para.right).right);
while assigned(nextpara) and
(cpf_is_colon_para in nextpara.callparaflags) do
nextpara := tcallparanode(nextpara.right);
found_error := true;
end
else
{ get next parameter }
nextpara := tcallparanode(para.right);
{ When we have a call, we have a problem: you can't pass the }
{ result of a call as a formal const parameter. Solution: }
{ assign the result to a temp and pass this temp as parameter }
{ This is not very efficient, but write(typedfile,x) is }
{ already slow by itself anyway (no buffering) (JM) }
{ Actually, thge same goes for every non-simple expression }
{ (such as an addition, ...) -> put everything but load nodes }
{ into temps (JM) }
{ of course, this must only be allowed for writes!!! (JM) }
if not(do_read) and
(para.left.nodetype <> loadn) then
begin
{ create temp for result }
temp := ctempcreatenode.create(para.left.resulttype,
para.left.resulttype.def.size,tt_persistent,false);
addstatement(newstatement,temp);
{ assign result to temp }
addstatement(newstatement,
cassignmentnode.create(ctemprefnode.create(temp),
para.left));
{ replace (reused) paranode with temp }
para.left := ctemprefnode.create(temp);
end;
{ add fileparameter }
para.right := filepara.getcopy;
{ create call statment }
{ since the parameters are in the correct order, we have to insert }
{ the statements always at the end of the current block }
addstatement(newstatement,ccallnode.createintern(procprefix,para));
{ if we used a temp, free it }
if para.left.nodetype = temprefn then
addstatement(newstatement,ctempdeletenode.create(temp));
{ process next parameter }
para := nextpara;
end;
{ free the file parameter }
filepara.free;
end
else
{ text read/write }
begin
while assigned(para) do
begin
{ is this parameter faulty? }
error_para := false;
{ is this parameter a real? }
is_real:=false;
{ type used for the read(), this is used to check
whether a temp is needed for range checking }
readfunctype.reset;
{ can't read/write types }
if para.left.nodetype=typen then
begin
CGMessagePos(para.fileinfo,type_e_cant_read_write_type);
error_para := true;
end;
{ support writeln(procvar) }
if (para.left.resulttype.def.deftype=procvardef) then
begin
p1:=ccallnode.create_procvar(nil,para.left);
resulttypepass(p1);
para.left:=p1;
end;
{ Currency will be written using the bestreal }
if is_currency(para.left.resulttype.def) then
inserttypeconv(para.left,pbestrealtype^);
case para.left.resulttype.def.deftype of
stringdef :
begin
name := procprefix+tstringdef(para.left.resulttype.def).stringtypname;
end;
pointerdef :
begin
if (not is_pchar(para.left.resulttype.def)) or do_read then
begin
CGMessagePos(para.fileinfo,type_e_cant_read_write_type);
error_para := true;
end
else
name := procprefix+'pchar_as_pointer';
end;
floatdef :
begin
is_real:=true;
name := procprefix+'float';
readfunctype:=pbestrealtype^;
end;
orddef :
begin
case torddef(para.left.resulttype.def).typ of
{$ifdef cpu64bit}
s64bit,
{$endif cpu64bit}
s8bit,
s16bit,
s32bit :
begin
name := procprefix+'sint';
readfunctype:=sinttype;
end;
{$ifdef cpu64bit}
u64bit,
{$endif cpu64bit}
u8bit,
u16bit,
u32bit :
begin
name := procprefix+'uint';
readfunctype:=uinttype;
end;
uchar :
begin
name := procprefix+'char';
readfunctype:=cchartype;
end;
uwidechar :
begin
name := procprefix+'widechar';
readfunctype:=cwidechartype;
end;
{$ifndef cpu64bit}
s64bit :
begin
name := procprefix+'int64';
readfunctype:=s64inttype;
end;
u64bit :
begin
name := procprefix+'qword';
readfunctype:=u64inttype;
end;
{$endif cpu64bit}
bool8bit,
bool16bit,
bool32bit :
begin
if do_read then
begin
CGMessagePos(para.fileinfo,type_e_cant_read_write_type);
error_para := true;
end
else
begin
name := procprefix+'boolean';
readfunctype:=booltype;
end;
end
else
begin
CGMessagePos(para.fileinfo,type_e_cant_read_write_type);
error_para := true;
end;
end;
end;
variantdef :
name:=procprefix+'variant';
arraydef :
begin
if is_chararray(para.left.resulttype.def) then
name := procprefix+'pchar_as_array'
else
begin
CGMessagePos(para.fileinfo,type_e_cant_read_write_type);
error_para := true;
end
end
else
begin
CGMessagePos(para.fileinfo,type_e_cant_read_write_type);
error_para := true;
end
end;
{ check for length/fractional colon para's }
fracpara := nil;
lenpara := nil;
if assigned(para.right) and
(cpf_is_colon_para in tcallparanode(para.right).callparaflags) then
begin
lenpara := tcallparanode(para.right);
if assigned(lenpara.right) and
(cpf_is_colon_para in tcallparanode(lenpara.right).callparaflags) then
fracpara:=tcallparanode(lenpara.right);
end;
{ get the next parameter now already, because we're going }
{ to muck around with the pointers }
if assigned(fracpara) then
nextpara := tcallparanode(fracpara.right)
else if assigned(lenpara) then
nextpara := tcallparanode(lenpara.right)
else
nextpara := tcallparanode(para.right);
{ check if a fracpara is allowed }
if assigned(fracpara) and not is_real then
begin
CGMessagePos(fracpara.fileinfo,parser_e_illegal_colon_qualifier);
error_para := true;
end
else if assigned(lenpara) and do_read then
begin
{ I think this is already filtered out by parsing, but I'm not sure (JM) }
CGMessagePos(lenpara.fileinfo,parser_e_illegal_colon_qualifier);
error_para := true;
end;
{ adjust found_error }
found_error := found_error or error_para;
if not error_para then
begin
{ create dummy frac/len para's if necessary }
if not do_read then
begin
{ difference in default value for floats and the rest :( }
if not is_real then
begin
if not assigned(lenpara) then
lenpara := ccallparanode.create(
cordconstnode.create(0,sinttype,false),nil)
else
{ make sure we don't pass the successive }
{ parameters too. We also already have a }
{ reference to the next parameter in }
{ nextpara }
lenpara.right := nil;
end
else
begin
if not assigned(lenpara) then
lenpara := ccallparanode.create(
cordconstnode.create(-32767,sinttype,false),nil);
{ also create a default fracpara if necessary }
if not assigned(fracpara) then
fracpara := ccallparanode.create(
cordconstnode.create(-1,sinttype,false),nil);
{ add it to the lenpara }
lenpara.right := fracpara;
{ and add the realtype para (this also removes the link }
{ to any parameters coming after it) }
fracpara.right := ccallparanode.create(
cordconstnode.create(ord(tfloatdef(para.left.resulttype.def).typ),
sinttype,true),nil);
end;
end;
{ special handling of reading small numbers, because the helpers }
{ expect a longint/card/bestreal var parameter. Use a temp. can't }
{ use functions because then the call to FPC_IOCHECK destroys }
{ their result before we can store it }
if do_read and
assigned(readfunctype.def) and
(para.left.resulttype.def<>readfunctype.def) then
begin
{ create the parameter list: the temp ... }
temp := ctempcreatenode.create(readfunctype,readfunctype.def.size,tt_persistent,false);
addstatement(newstatement,temp);
{ ... and the file }
p1 := ccallparanode.create(ctemprefnode.create(temp),
filepara.getcopy);
{ create the call to the helper }
addstatement(newstatement,
ccallnode.createintern(name,tcallparanode(p1)));
{ assign the result to the original var (this automatically }
{ takes care of range checking) }
addstatement(newstatement,
cassignmentnode.create(para.left,
ctemprefnode.create(temp)));
{ release the temp location }
addstatement(newstatement,ctempdeletenode.create(temp));
{ statement of para is used }
para.left := nil;
{ free the enclosing tcallparanode, but not the }
{ parameters coming after it }
para.right := nil;
para.free;
end
else
{ read of non s/u-8/16bit, or a write }
begin
{ add the filepara to the current parameter }
para.right := filepara.getcopy;
{ add the lenpara (fracpara and realtype are already linked }
{ with it if necessary) }
tcallparanode(para.right).right := lenpara;
{ create the call statement }
addstatement(newstatement,
ccallnode.createintern(name,para));
end
end
else
{ error_para = true }
begin
{ free the parameter, since it isn't referenced anywhere anymore }
para.right := nil;
para.free;
if assigned(lenpara) then
begin
lenpara.right := nil;
lenpara.free;
end;
if assigned(fracpara) then
begin
fracpara.right := nil;
fracpara.free;
end;
end;
{ process next parameter }
para := nextpara;
end;
{ if no error, add the write(ln)/read(ln) end calls }
if not found_error then
begin
case inlinenumber of
in_read_x:
name:='fpc_read_end';
in_write_x:
name:='fpc_write_end';
in_readln_x:
name:='fpc_readln_end';
in_writeln_x:
name:='fpc_writeln_end';
end;
addstatement(newstatement,ccallnode.createintern(name,filepara));
end;
end;
{ if we found an error, simply delete the generated blocknode }
if found_error then
newblock.free
else
begin
{ deallocate the temp for the file para if we used one }
if assigned(filetemp) then
addstatement(newstatement,ctempdeletenode.create(filetemp));
{ otherwise return the newly generated block of instructions, }
{ but first free the errornode we generated at the beginning }
result.free;
result := newblock
end;
end;
function tinlinenode.handle_val: tnode;
var
procname,
suffix : string[31];
sourcepara,
destpara,
codepara,
sizepara,
newparas : tcallparanode;
orgcode : tnode;
newstatement : tstatementnode;
newblock : tblocknode;
tempcode : ttempcreatenode;
begin
{ for easy exiting if something goes wrong }
result := cerrornode.create;
{ check the amount of parameters }
if not(assigned(left)) or
not(assigned(tcallparanode(left).right)) then
begin
CGMessage(parser_e_wrong_parameter_size);
exit;
end;
{ reverse parameters for easier processing }
left := reverseparameters(tcallparanode(left));
{ get the parameters }
tempcode := nil;
orgcode := nil;
sizepara := nil;
sourcepara := tcallparanode(left);
destpara := tcallparanode(sourcepara.right);
codepara := tcallparanode(destpara.right);
{ check if codepara is valid }
if assigned(codepara) and
(
(codepara.resulttype.def.deftype <> orddef)
{$ifndef cpu64bit}
or is_64bitint(codepara.resulttype.def)
{$endif cpu64bit}
) then
begin
CGMessagePos1(codepara.fileinfo,type_e_integer_expr_expected,codepara.resulttype.def.typename);
exit;
end;
{ check if dest para is valid }
if not(destpara.resulttype.def.deftype in [orddef,floatdef]) then
begin
CGMessagePos(destpara.fileinfo,type_e_integer_or_real_expr_expected);
exit;
end;
{ we're going to reuse the exisiting para's, so make sure they }
{ won't be disposed }
left := nil;
{ create the blocknode which will hold the generated statements + }
{ an initial dummy statement }
newblock:=internalstatements(newstatement);
{ do we need a temp for code? Yes, if no code specified, or if }
{ code is not a 32bit parameter (we already checked whether the }
{ the code para, if specified, was an orddef) }
if not assigned(codepara) or
(codepara.resulttype.def.size<>sinttype.def.size) then
begin
tempcode := ctempcreatenode.create(sinttype,sinttype.def.size,tt_persistent,false);
addstatement(newstatement,tempcode);
{ set the resulttype of the temp (needed to be able to get }
{ the resulttype of the tempref used in the new code para) }
resulttypepass(tnode(tempcode));
{ create a temp codepara, but save the original code para to }
{ assign the result to later on }
if assigned(codepara) then
begin
orgcode := codepara.left;
codepara.left := ctemprefnode.create(tempcode);
end
else
codepara := ccallparanode.create(ctemprefnode.create(tempcode),nil);
{ we need its resulttype later on }
codepara.get_paratype;
end
else if (torddef(codepara.resulttype.def).typ = torddef(sinttype.def).typ) then
{ because code is a var parameter, it must match types exactly }
{ however, since it will return values in [0..255], both longints }
{ and cardinals are fine. Since the formal code para type is }
{ longint, insert a typecoversion to longint for cardinal para's }
begin
codepara.left := ctypeconvnode.create_internal(codepara.left,sinttype);
{ make it explicit, oterwise you may get a nonsense range }
{ check error if the cardinal already contained a value }
{ > $7fffffff }
codepara.get_paratype;
end;
{ create the procedure name }
procname := 'fpc_val_';
case destpara.resulttype.def.deftype of
orddef:
begin
case torddef(destpara.resulttype.def).typ of
{$ifdef cpu64bit}
scurrency,
s64bit,
{$endif cpu64bit}
s8bit,
s16bit,
s32bit:
begin
suffix := 'sint_';
{ we also need a destsize para in this case }
sizepara := ccallparanode.create(cordconstnode.create
(destpara.resulttype.def.size,s32inttype,true),nil);
end;
{$ifdef cpu64bit}
u64bit,
{$endif cpu64bit}
u8bit,
u16bit,
u32bit:
suffix := 'uint_';
{$ifndef cpu64bit}
scurrency,
s64bit: suffix := 'int64_';
u64bit: suffix := 'qword_';
{$endif cpu64bit}
else
internalerror(200304225);
end;
end;
floatdef:
begin
suffix := 'real_';
end;
end;
procname := procname + suffix;
{ play a trick to have tcallnode handle invalid source parameters: }
{ the shortstring-longint val routine by default }
if (sourcepara.resulttype.def.deftype = stringdef) then
procname := procname + tstringdef(sourcepara.resulttype.def).stringtypname
else
procname := procname + 'shortstr';
{ set up the correct parameters for the call: the code para... }
newparas := codepara;
{ and the source para }
codepara.right := sourcepara;
{ sizepara either contains nil if none is needed (which is ok, since }
{ then the next statement severes any possible links with other paras }
{ that sourcepara may have) or it contains the necessary size para and }
{ its right field is nil }
sourcepara.right := sizepara;
{ create the call and assign the result to dest }
{ (val helpers are functions) }
{ the assignment will take care of rangechecking }
addstatement(newstatement,cassignmentnode.create(
destpara.left,ccallnode.createintern(procname,newparas)));
{ dispose of the enclosing paranode of the destination }
destpara.left := nil;
destpara.right := nil;
destpara.free;
{ check if we used a temp for code and whether we have to store }
{ it to the real code parameter }
if assigned(orgcode) then
addstatement(newstatement,cassignmentnode.create(
orgcode,
ctemprefnode.create(tempcode)));
{ release the temp if we allocated one }
if assigned(tempcode) then
addstatement(newstatement,ctempdeletenode.create(tempcode));
{ free the errornode }
result.free;
{ and return it }
result := newblock;
end;
{$ifdef fpc}
{$maxfpuregisters 0}
{$endif fpc}
function getpi : bestreal;
begin
{$ifdef x86}
{ x86 has pi in hardware }
result:=pi;
{$else x86}
{$ifdef cpuextended}
result:=extended(MathPiExtended);
{$else cpuextended}
result:=double(MathPi);
{$endif cpuextended}
{$endif x86}
end;
function tinlinenode.det_resulttype:tnode;
function do_lowhigh(const t:ttype) : tnode;
var
v : tconstexprint;
enum : tenumsym;
hp : tnode;
begin
case t.def.deftype of
orddef:
begin
if inlinenumber=in_low_x then
v:=torddef(t.def).low
else
v:=torddef(t.def).high;
{ low/high of torddef are longints, so we need special }
{ handling for cardinal and 64bit types (JM) }
{ 1.0.x doesn't support int64($ffffffff) correct, it'll expand
to -1 instead of staying $ffffffff. Therefor we use $ffff with
shl twice (PFV) }
case torddef(t.def).typ of
s64bit,scurrency :
begin
if (inlinenumber=in_low_x) then
v := int64($80000000) shl 32
else
v := (int64($7fffffff) shl 32) or int64($ffff) shl 16 or int64($ffff)
end;
u64bit :
begin
{ we have to use a dirty trick for high(qword), }
{ because it's bigger than high(tconstexprint) (JM) }
v := 0
end
else
begin
if not is_signed(t.def) then
v := cardinal(v);
end;
end;
hp:=cordconstnode.create(v,t,true);
resulttypepass(hp);
{ fix high(qword) }
if (torddef(t.def).typ=u64bit) and
(inlinenumber = in_high_x) then
tordconstnode(hp).value := -1; { is the same as qword($ffffffffffffffff) }
do_lowhigh:=hp;
end;
enumdef:
begin
enum:=tenumsym(tenumdef(t.def).firstenum);
v:=tenumdef(t.def).maxval;
if inlinenumber=in_high_x then
while assigned(enum) and (enum.value <> v) do
enum:=enum.nextenum;
if not assigned(enum) then
internalerror(309993)
else
hp:=genenumnode(enum);
do_lowhigh:=hp;
end;
else
internalerror(87);
end;
end;
function getconstrealvalue : bestreal;
begin
case left.nodetype of
ordconstn:
getconstrealvalue:=tordconstnode(left).value;
realconstn:
getconstrealvalue:=trealconstnode(left).value_real;
else
internalerror(309992);
end;
end;
procedure setconstrealvalue(r : bestreal);
begin
result:=crealconstnode.create(r,pbestrealtype^);
end;
function handle_ln_const(r : bestreal) : tnode;
begin
if r<=0.0 then
if (cs_check_range in aktlocalswitches) or
(cs_check_overflow in aktlocalswitches) then
begin
result:=crealconstnode.create(0,pbestrealtype^);
CGMessage(type_e_wrong_math_argument)
end
else
begin
if r=0.0 then
result:=crealconstnode.create(double(MathQNaN),pbestrealtype^)
else
result:=crealconstnode.create(double(MathNegInf),pbestrealtype^)
end
else
result:=crealconstnode.create(ln(r),pbestrealtype^)
end;
function handle_sqrt_const(r : bestreal) : tnode;
begin
if r<0.0 then
if (cs_check_range in aktlocalswitches) or
(cs_check_overflow in aktlocalswitches) then
begin
result:=crealconstnode.create(0,pbestrealtype^);
CGMessage(type_e_wrong_math_argument)
end
else
result:=crealconstnode.create(double(MathQNaN),pbestrealtype^)
else
result:=crealconstnode.create(sqrt(r),pbestrealtype^)
end;
procedure setfloatresulttype;
begin
if (left.resulttype.def.deftype=floatdef) and
(tfloatdef(left.resulttype.def).typ in [s32real,s64real,s80real,s128real]) then
resulttype:=left.resulttype
else
begin
inserttypeconv(left,pbestrealtype^);
resulttype:=pbestrealtype^;
end;
end;
var
vl,vl2 : TConstExprInt;
vr : bestreal;
hightree,
hp : tnode;
srsym : tsym;
checkrange : boolean;
label
myexit;
begin
result:=nil;
{ if we handle writeln; left contains no valid address }
if assigned(left) then
begin
if left.nodetype=callparan then
tcallparanode(left).get_paratype
else
resulttypepass(left);
end;
inc(parsing_para_level);
{ handle intern constant functions in separate case }
if nf_inlineconst in flags then
begin
{ no parameters? }
if not assigned(left) then
internalerror(200501231)
else
begin
vl:=0;
vl2:=0; { second parameter Ex: ptr(vl,vl2) }
case left.nodetype of
realconstn :
begin
{ Real functions are all handled with internproc below }
CGMessage1(type_e_integer_expr_expected,left.resulttype.def.typename)
end;
ordconstn :
vl:=tordconstnode(left).value;
callparan :
begin
{ both exists, else it was not generated }
vl:=tordconstnode(tcallparanode(left).left).value;
vl2:=tordconstnode(tcallparanode(tcallparanode(left).right).left).value;
end;
else
CGMessage(parser_e_illegal_expression);
end;
case inlinenumber of
in_const_abs :
hp:=genintconstnode(abs(vl));
in_const_sqr :
hp:=genintconstnode(sqr(vl));
in_const_odd :
hp:=cordconstnode.create(byte(odd(vl)),booltype,true);
in_const_swap_word :
hp:=cordconstnode.create((vl and $ff) shl 8+(vl shr 8),left.resulttype,true);
in_const_swap_long :
hp:=cordconstnode.create((vl and $ffff) shl 16+(vl shr 16),left.resulttype,true);
in_const_swap_qword :
hp:=cordconstnode.create((vl and $ffff) shl 32+(vl shr 32),left.resulttype,true);
in_const_ptr :
hp:=cpointerconstnode.create((vl2 shl 4)+vl,voidfarpointertype);
else
internalerror(88);
end;
end;
if hp=nil then
hp:=cerrornode.create;
result:=hp;
goto myexit;
end
else
begin
case inlinenumber of
in_lo_long,
in_hi_long,
in_lo_qword,
in_hi_qword,
in_lo_word,
in_hi_word :
begin
{ give warning for incompatibility with tp and delphi }
if (inlinenumber in [in_lo_long,in_hi_long,in_lo_qword,in_hi_qword]) and
((m_tp7 in aktmodeswitches) or
(m_delphi in aktmodeswitches)) then
CGMessage(type_w_maybe_wrong_hi_lo);
{ constant folding }
if left.nodetype=ordconstn then
begin
case inlinenumber of
in_lo_word :
hp:=cordconstnode.create(tordconstnode(left).value and $ff,left.resulttype,true);
in_hi_word :
hp:=cordconstnode.create(tordconstnode(left).value shr 8,left.resulttype,true);
in_lo_long :
hp:=cordconstnode.create(tordconstnode(left).value and $ffff,left.resulttype,true);
in_hi_long :
hp:=cordconstnode.create(tordconstnode(left).value shr 16,left.resulttype,true);
in_lo_qword :
hp:=cordconstnode.create(tordconstnode(left).value and $ffffffff,left.resulttype,true);
in_hi_qword :
hp:=cordconstnode.create(tordconstnode(left).value shr 32,left.resulttype,true);
end;
result:=hp;
goto myexit;
end;
set_varstate(left,vs_used,[vsf_must_be_valid]);
if not is_integer(left.resulttype.def) then
CGMessage1(type_e_integer_expr_expected,left.resulttype.def.typename);
case inlinenumber of
in_lo_word,
in_hi_word :
resulttype:=u8inttype;
in_lo_long,
in_hi_long :
resulttype:=u16inttype;
in_lo_qword,
in_hi_qword :
resulttype:=u32inttype;
end;
end;
in_sizeof_x:
begin
set_varstate(left,vs_used,[]);
if paramanager.push_high_param(vs_value,left.resulttype.def,current_procinfo.procdef.proccalloption) then
begin
hightree:=load_high_value_node(tparavarsym(tloadnode(left).symtableentry));
if assigned(hightree) then
begin
hp:=caddnode.create(addn,hightree,
cordconstnode.create(1,sinttype,false));
if (left.resulttype.def.deftype=arraydef) and
(tarraydef(left.resulttype.def).elesize<>1) then
hp:=caddnode.create(muln,hp,cordconstnode.create(tarraydef(
left.resulttype.def).elesize,sinttype,true));
result:=hp;
end;
end
else
resulttype:=sinttype;
end;
in_typeof_x:
begin
set_varstate(left,vs_used,[]);
resulttype:=voidpointertype;
end;
in_ord_x:
begin
if (left.nodetype=ordconstn) then
begin
hp:=cordconstnode.create(
tordconstnode(left).value,sinttype,true);
result:=hp;
goto myexit;
end;
set_varstate(left,vs_used,[vsf_must_be_valid]);
case left.resulttype.def.deftype of
orddef :
begin
case torddef(left.resulttype.def).typ of
bool8bit,
uchar:
begin
{ change to byte() }
hp:=ctypeconvnode.create_internal(left,u8inttype);
left:=nil;
result:=hp;
end;
bool16bit,
uwidechar :
begin
{ change to word() }
hp:=ctypeconvnode.create_internal(left,u16inttype);
left:=nil;
result:=hp;
end;
bool32bit :
begin
{ change to dword() }
hp:=ctypeconvnode.create_internal(left,u32inttype);
left:=nil;
result:=hp;
end;
uvoid :
CGMessage1(type_e_ordinal_expr_expected,left.resulttype.def.typename);
else
begin
{ all other orddef need no transformation }
hp:=left;
left:=nil;
result:=hp;
end;
end;
end;
enumdef :
begin
hp:=ctypeconvnode.create_internal(left,s32inttype);
left:=nil;
result:=hp;
end;
pointerdef :
begin
if m_mac in aktmodeswitches then
begin
hp:=ctypeconvnode.create_internal(left,ptrinttype);
left:=nil;
result:=hp;
end
else
CGMessage1(type_e_ordinal_expr_expected,left.resulttype.def.typename);
end
else
CGMessage1(type_e_ordinal_expr_expected,left.resulttype.def.typename);
end;
end;
in_chr_byte:
begin
{ convert to explicit char() }
set_varstate(left,vs_used,[vsf_must_be_valid]);
hp:=ctypeconvnode.create_internal(left,cchartype);
left:=nil;
result:=hp;
end;
in_length_x:
begin
set_varstate(left,vs_used,[vsf_must_be_valid]);
case left.resulttype.def.deftype of
variantdef:
begin
inserttypeconv(left,cansistringtype);
end;
stringdef :
begin
{ we don't need string convertions here }
if (left.nodetype=typeconvn) and
(ttypeconvnode(left).left.resulttype.def.deftype=stringdef) then
begin
hp:=ttypeconvnode(left).left;
ttypeconvnode(left).left:=nil;
left.free;
left:=hp;
end;
{ evaluates length of constant strings direct }
if (left.nodetype=stringconstn) then
begin
hp:=cordconstnode.create(
tstringconstnode(left).len,s32inttype,true);
result:=hp;
goto myexit;
end;
end;
orddef :
begin
{ length of char is one allways }
if is_char(left.resulttype.def) or
is_widechar(left.resulttype.def) then
begin
hp:=cordconstnode.create(1,s32inttype,false);
result:=hp;
goto myexit;
end
else
CGMessage(type_e_mismatch);
end;
pointerdef :
begin
if is_pchar(left.resulttype.def) then
begin
hp := ccallparanode.create(left,nil);
result := ccallnode.createintern('fpc_pchar_length',hp);
{ make sure the left node doesn't get disposed, since it's }
{ reused in the new node (JM) }
left:=nil;
goto myexit;
end
else if is_pwidechar(left.resulttype.def) then
begin
hp := ccallparanode.create(left,nil);
result := ccallnode.createintern('fpc_pwidechar_length',hp);
{ make sure the left node doesn't get disposed, since it's }
{ reused in the new node (JM) }
left:=nil;
goto myexit;
end
else
CGMessage(type_e_mismatch);
end;
arraydef :
begin
if is_open_array(left.resulttype.def) or
is_array_of_const(left.resulttype.def) then
begin
hightree:=load_high_value_node(tparavarsym(tloadnode(left).symtableentry));
if assigned(hightree) then
begin
hp:=caddnode.create(addn,hightree,
cordconstnode.create(1,s32inttype,false));
result:=hp;
end;
goto myexit;
end
else
if not is_dynamic_array(left.resulttype.def) then
begin
hp:=cordconstnode.create(tarraydef(left.resulttype.def).highrange-
tarraydef(left.resulttype.def).lowrange+1,
s32inttype,true);
result:=hp;
goto myexit;
end
else
begin
hp := ccallparanode.create(ctypeconvnode.create_internal(left,voidpointertype),nil);
result := ccallnode.createintern('fpc_dynarray_length',hp);
{ make sure the left node doesn't get disposed, since it's }
{ reused in the new node (JM) }
left:=nil;
goto myexit;
end;
end;
else
CGMessage(type_e_mismatch);
end;
{ shortstring return an 8 bit value as the length
is the first byte of the string }
if is_shortstring(left.resulttype.def) then
resulttype:=u8inttype
else
resulttype:=sinttype;
end;
in_typeinfo_x:
begin
set_varstate(left,vs_used,[vsf_must_be_valid]);
resulttype:=voidpointertype;
end;
in_assigned_x:
begin
{ the parser has already made sure the expression is valid }
{ handle constant expressions }
if is_constnode(tcallparanode(left).left) or
(tcallparanode(left).left.nodetype = pointerconstn) then
begin
{ let an add node figure it out }
result := caddnode.create(unequaln,tcallparanode(left).left,cnilnode.create);
tcallparanode(left).left := nil;
{ free left, because otherwise some code at 'myexit' tries }
{ to run get_paratype for it, which crashes since left.left }
{ is now nil }
left.free;
left := nil;
goto myexit;
end;
{ otherwise handle separately, because there could be a procvar, which }
{ is 2*sizeof(pointer), while we must only check the first pointer }
set_varstate(tcallparanode(left).left,vs_used,[vsf_must_be_valid]);
resulttype:=booltype;
end;
in_ofs_x :
internalerror(2000101001);
in_seg_x :
begin
set_varstate(left,vs_used,[]);
result:=cordconstnode.create(0,s32inttype,false);
goto myexit;
end;
in_pred_x,
in_succ_x:
begin
set_varstate(left,vs_used,[vsf_must_be_valid]);
resulttype:=left.resulttype;
if not is_ordinal(resulttype.def) then
CGMessage(type_e_ordinal_expr_expected)
else
begin
if (resulttype.def.deftype=enumdef) and
(tenumdef(resulttype.def).has_jumps) then
CGMessage(type_e_succ_and_pred_enums_with_assign_not_possible);
end;
{ only if the result is an enum do we do range checking }
if (resulttype.def.deftype=enumdef) then
checkrange := true
else
checkrange := false;
{ do constant folding after check for jumps }
if left.nodetype=ordconstn then
begin
if inlinenumber=in_succ_x then
result:=cordconstnode.create(tordconstnode(left).value+1,left.resulttype,checkrange)
else
result:=cordconstnode.create(tordconstnode(left).value-1,left.resulttype,checkrange);
end;
end;
in_initialize_x,
in_finalize_x,
in_setlength_x:
begin
{ inlined from pinline }
internalerror(200204231);
end;
in_inc_x,
in_dec_x:
begin
resulttype:=voidtype;
if assigned(left) then
begin
{ first param must be var }
valid_for_var(tcallparanode(left).left);
set_varstate(tcallparanode(left).left,vs_used,[vsf_must_be_valid]);
if (left.resulttype.def.deftype in [enumdef,pointerdef]) or
is_ordinal(left.resulttype.def) or
is_currency(left.resulttype.def) then
begin
{ value of left gets changed -> must be unique }
set_unique(tcallparanode(left).left);
{ two paras ? }
if assigned(tcallparanode(left).right) then
begin
set_varstate(tcallparanode(tcallparanode(left).right).left,vs_used,[vsf_must_be_valid]);
inserttypeconv_internal(tcallparanode(tcallparanode(left).right).left,tcallparanode(left).left.resulttype);
if assigned(tcallparanode(tcallparanode(left).right).right) then
CGMessage(parser_e_illegal_expression);
end;
end
else
CGMessage(type_e_ordinal_expr_expected);
end
else
CGMessage(type_e_mismatch);
end;
in_read_x,
in_readln_x,
in_write_x,
in_writeln_x :
begin
result := handle_read_write;
end;
in_settextbuf_file_x :
begin
resulttype:=voidtype;
{ now we know the type of buffer }
srsym:=searchsymonlyin(systemunit,'SETTEXTBUF');
hp:=ccallparanode.create(cordconstnode.create(
tcallparanode(left).left.resulttype.def.size,s32inttype,true),left);
result:=ccallnode.create(hp,tprocsym(srsym),systemunit,nil,[]);
left:=nil;
end;
{ the firstpass of the arg has been done in firstcalln ? }
in_reset_typedfile,
in_rewrite_typedfile :
begin
result := handle_reset_rewrite_typed;
end;
in_str_x_string :
begin
result := handle_str;
end;
in_val_x :
begin
result := handle_val;
end;
in_include_x_y,
in_exclude_x_y:
begin
resulttype:=voidtype;
{ the parser already checks whether we have two (and exectly two) }
{ parameters (JM) }
{ first param must be var }
valid_for_var(tcallparanode(left).left);
set_varstate(tcallparanode(left).left,vs_used,[vsf_must_be_valid]);
{ check type }
if (left.resulttype.def.deftype=setdef) then
begin
{ insert a type conversion }
{ to the type of the set elements }
set_varstate(tcallparanode(tcallparanode(left).right).left,vs_used,[vsf_must_be_valid]);
inserttypeconv(tcallparanode(tcallparanode(left).right).left,
tsetdef(left.resulttype.def).elementtype);
end
else
CGMessage(type_e_mismatch);
end;
in_low_x,
in_high_x:
begin
case left.resulttype.def.deftype of
orddef,
enumdef:
begin
result:=do_lowhigh(left.resulttype);
end;
setdef:
begin
result:=do_lowhigh(tsetdef(left.resulttype.def).elementtype);
end;
arraydef:
begin
if inlinenumber=in_low_x then
begin
result:=cordconstnode.create(tarraydef(
left.resulttype.def).lowrange,tarraydef(left.resulttype.def).rangetype,true);
end
else
begin
if is_open_array(left.resulttype.def) or
is_array_of_const(left.resulttype.def) then
begin
set_varstate(left,vs_used,[vsf_must_be_valid]);
result:=load_high_value_node(tparavarsym(tloadnode(left).symtableentry));
end
else
if is_dynamic_array(left.resulttype.def) then
begin
set_varstate(left,vs_used,[vsf_must_be_valid]);
{ can't use inserttypeconv because we need }
{ an explicit type conversion (JM) }
hp := ccallparanode.create(ctypeconvnode.create_internal(left,voidpointertype),nil);
result := ccallnode.createintern('fpc_dynarray_high',hp);
{ make sure the left node doesn't get disposed, since it's }
{ reused in the new node (JM) }
left:=nil;
end
else
begin
result:=cordconstnode.create(tarraydef(
left.resulttype.def).highrange,tarraydef(left.resulttype.def).rangetype,true);
end;
end;
end;
stringdef:
begin
if inlinenumber=in_low_x then
begin
result:=cordconstnode.create(0,u8inttype,false);
end
else
begin
if is_open_string(left.resulttype.def) then
begin
set_varstate(left,vs_used,[vsf_must_be_valid]);
result:=load_high_value_node(tparavarsym(tloadnode(left).symtableentry))
end
else
result:=cordconstnode.create(tstringdef(left.resulttype.def).len,u8inttype,true);
end;
end;
else
CGMessage(type_e_mismatch);
end;
end;
in_exp_real :
begin
if left.nodetype in [ordconstn,realconstn] then
begin
result:=crealconstnode.create(exp(getconstrealvalue),pbestrealtype^);
if (trealconstnode(result).value_real=double(MathInf)) and
((cs_check_range in aktlocalswitches) or
(cs_check_overflow in aktlocalswitches)) then
begin
result:=crealconstnode.create(0,pbestrealtype^);
CGMessage(parser_e_range_check_error);
end;
end
else
begin
set_varstate(left,vs_used,[vsf_must_be_valid]);
inserttypeconv(left,pbestrealtype^);
resulttype:=pbestrealtype^;
end;
end;
in_trunc_real :
begin
if left.nodetype in [ordconstn,realconstn] then
begin
vr:=getconstrealvalue;
if (vr>=9223372036854775807.5) or (vr<=-9223372036854775808.5) then
begin
CGMessage(parser_e_range_check_error);
result:=cordconstnode.create(1,s64inttype,false)
end
else
result:=cordconstnode.create(trunc(vr),s64inttype,true)
end
else
begin
set_varstate(left,vs_used,[vsf_must_be_valid]);
inserttypeconv(left,pbestrealtype^);
resulttype:=s64inttype;
end;
end;
in_round_real :
begin
if left.nodetype in [ordconstn,realconstn] then
begin
vr:=getconstrealvalue;
if (vr>=9223372036854775807.5) or (vr<=-9223372036854775808.5) then
begin
CGMessage(parser_e_range_check_error);
result:=cordconstnode.create(1,s64inttype,false)
end
else
result:=cordconstnode.create(round(vr),s64inttype,true)
end
else
begin
set_varstate(left,vs_used,[vsf_must_be_valid]);
inserttypeconv(left,pbestrealtype^);
resulttype:=s64inttype;
end;
end;
in_frac_real :
begin
if left.nodetype in [ordconstn,realconstn] then
setconstrealvalue(frac(getconstrealvalue))
else
begin
set_varstate(left,vs_used,[vsf_must_be_valid]);
inserttypeconv(left,pbestrealtype^);
resulttype:=pbestrealtype^;
end;
end;
in_int_real :
begin
if left.nodetype in [ordconstn,realconstn] then
setconstrealvalue(int(getconstrealvalue))
else
begin
set_varstate(left,vs_used,[vsf_must_be_valid]);
inserttypeconv(left,pbestrealtype^);
resulttype:=pbestrealtype^;
end;
end;
in_pi_real :
begin
if block_type=bt_const then
setconstrealvalue(getpi)
else
resulttype:=pbestrealtype^;
end;
in_cos_real :
begin
if left.nodetype in [ordconstn,realconstn] then
setconstrealvalue(cos(getconstrealvalue))
else
begin
set_varstate(left,vs_used,[vsf_must_be_valid]);
inserttypeconv(left,pbestrealtype^);
resulttype:=pbestrealtype^;
end;
end;
in_sin_real :
begin
if left.nodetype in [ordconstn,realconstn] then
setconstrealvalue(sin(getconstrealvalue))
else
begin
set_varstate(left,vs_used,[vsf_must_be_valid]);
inserttypeconv(left,pbestrealtype^);
resulttype:=pbestrealtype^;
end;
end;
in_arctan_real :
begin
if left.nodetype in [ordconstn,realconstn] then
setconstrealvalue(arctan(getconstrealvalue))
else
begin
set_varstate(left,vs_used,[vsf_must_be_valid]);
inserttypeconv(left,pbestrealtype^);
resulttype:=pbestrealtype^;
end;
end;
in_abs_real :
begin
if left.nodetype in [ordconstn,realconstn] then
setconstrealvalue(abs(getconstrealvalue))
else
begin
set_varstate(left,vs_used,[vsf_must_be_valid]);
inserttypeconv(left,pbestrealtype^);
resulttype:=pbestrealtype^;
end;
end;
in_sqr_real :
begin
if left.nodetype in [ordconstn,realconstn] then
setconstrealvalue(sqr(getconstrealvalue))
else
begin
set_varstate(left,vs_used,[vsf_must_be_valid]);
setfloatresulttype;
end;
end;
in_sqrt_real :
begin
if left.nodetype in [ordconstn,realconstn] then
begin
vr:=getconstrealvalue;
if vr<0.0 then
result:=handle_sqrt_const(vr)
else
setconstrealvalue(sqrt(vr));
end
else
begin
set_varstate(left,vs_used,[vsf_must_be_valid]);
setfloatresulttype;
end;
end;
in_ln_real :
begin
if left.nodetype in [ordconstn,realconstn] then
begin
vr:=getconstrealvalue;
if vr<=0.0 then
result:=handle_ln_const(vr)
else
setconstrealvalue(ln(vr));
end
else
begin
set_varstate(left,vs_used,[vsf_must_be_valid]);
inserttypeconv(left,pbestrealtype^);
resulttype:=pbestrealtype^;
end;
end;
{$ifdef SUPPORT_MMX}
in_mmx_pcmpeqb..in_mmx_pcmpgtw:
begin
end;
{$endif SUPPORT_MMX}
in_prefetch_var:
begin
resulttype:=voidtype;
end;
in_assert_x_y :
begin
resulttype:=voidtype;
if assigned(left) then
begin
set_varstate(tcallparanode(left).left,vs_used,[vsf_must_be_valid]);
{ check type }
if is_boolean(left.resulttype.def) then
begin
set_varstate(tcallparanode(tcallparanode(left).right).left,vs_used,[vsf_must_be_valid]);
{ must always be a string }
inserttypeconv(tcallparanode(tcallparanode(left).right).left,cshortstringtype);
end
else
CGMessage1(type_e_boolean_expr_expected,left.resulttype.def.typename);
end
else
CGMessage(type_e_mismatch);
{ We've checked the whole statement for correctness, now we
can remove it if assertions are off }
if not(cs_do_assertion in aktlocalswitches) then
begin
{ we need a valid node, so insert a nothingn }
result:=cnothingnode.create;
end
else
include(current_procinfo.flags,pi_do_call);
end;
else
internalerror(8);
end;
end;
myexit:
{ Run get_paratype again to update maybe inserted typeconvs }
if not codegenerror then
begin
if assigned(left) and
(left.nodetype=callparan) then
tcallparanode(left).get_paratype;
end;
dec(parsing_para_level);
end;
function tinlinenode.pass_1 : tnode;
var
hp,hpp : tnode;
shiftconst: longint;
tempnode: ttempcreatenode;
newstatement: tstatementnode;
newblock: tblocknode;
begin
result:=nil;
{ if we handle writeln; left contains no valid address }
if assigned(left) then
begin
if left.nodetype=callparan then
tcallparanode(left).firstcallparan
else
firstpass(left);
left_max;
end;
inc(parsing_para_level);
{ intern const should already be handled }
if nf_inlineconst in flags then
internalerror(200104044);
case inlinenumber of
in_lo_qword,
in_hi_qword,
in_lo_long,
in_hi_long,
in_lo_word,
in_hi_word:
begin
shiftconst := 0;
case inlinenumber of
in_hi_qword:
shiftconst := 32;
in_hi_long:
shiftconst := 16;
in_hi_word:
shiftconst := 8;
end;
if shiftconst <> 0 then
result := ctypeconvnode.create_internal(cshlshrnode.create(shrn,left,
cordconstnode.create(shiftconst,u32inttype,false)),resulttype)
else
result := ctypeconvnode.create_internal(left,resulttype);
left := nil;
firstpass(result);
end;
in_sizeof_x:
begin
if registersint<1 then
registersint:=1;
expectloc:=LOC_REGISTER;
end;
in_typeof_x:
begin
if registersint<1 then
registersint:=1;
expectloc:=LOC_REGISTER;
end;
in_length_x:
begin
if is_shortstring(left.resulttype.def) then
expectloc:=left.expectloc
else
begin
{ ansi/wide string }
if registersint<1 then
registersint:=1;
expectloc:=LOC_REGISTER;
end;
end;
in_typeinfo_x:
begin
expectloc:=LOC_REGISTER;
registersint:=1;
end;
in_assigned_x:
begin
expectloc := LOC_JUMP;
registersint:=1;
end;
in_pred_x,
in_succ_x:
begin
if is_64bit(resulttype.def) then
begin
if (registersint<2) then
registersint:=2
end
else
begin
if (registersint<1) then
registersint:=1;
end;
expectloc:=LOC_REGISTER;
end;
in_setlength_x,
in_initialize_x,
in_finalize_x:
begin
expectloc:=LOC_VOID;
end;
in_inc_x,
in_dec_x:
begin
expectloc:=LOC_VOID;
{ check type }
if
{$ifndef cpu64bit}
is_64bit(left.resulttype.def) or
{$endif cpu64bit}
{ range/overflow checking doesn't work properly }
{ with the inc/dec code that's generated (JM) }
(
(((left.resulttype.def.deftype = orddef) and
not(is_char(left.resulttype.def)) and
not(is_boolean(left.resulttype.def))) or
(left.resulttype.def.deftype = pointerdef)) and
(aktlocalswitches * [cs_check_overflow,cs_check_range] <> [])
) then
{ convert to simple add (JM) }
begin
newblock := internalstatements(newstatement);
{ extra parameter? }
if assigned(tcallparanode(left).right) then
begin
{ Yes, use for add node }
hpp := tcallparanode(tcallparanode(left).right).left;
tcallparanode(tcallparanode(left).right).left := nil;
if assigned(tcallparanode(tcallparanode(left).right).right) then
CGMessage(parser_e_illegal_expression);
end
else
begin
{ no, create constant 1 }
hpp := cordconstnode.create(1,tcallparanode(left).left.resulttype,false);
end;
resulttypepass(hpp);
{$ifndef cpu64bit}
if not((hpp.resulttype.def.deftype=orddef) and
(torddef(hpp.resulttype.def).typ<>u32bit)) then
{$endif cpu64bit}
inserttypeconv_internal(hpp,sinttype);
{ No overflow check for pointer operations, because inc(pointer,-1) will always
trigger an overflow. For uint32 it works because then the operation is done
in 64bit }
if (tcallparanode(left).left.resulttype.def.deftype=pointerdef) then
exclude(aktlocalswitches,cs_check_overflow);
{ make sure we don't call functions part of the left node twice (and generally }
{ optimize the code generation) }
if node_complexity(tcallparanode(left).left) > 1 then
begin
tempnode := ctempcreatenode.create(voidpointertype,voidpointertype.def.size,tt_persistent,true);
addstatement(newstatement,tempnode);
addstatement(newstatement,cassignmentnode.create(ctemprefnode.create(tempnode),
caddrnode.create_internal(tcallparanode(left).left.getcopy)));
hp := cderefnode.create(ctemprefnode.create(tempnode));
inserttypeconv_internal(hp,tcallparanode(left).left.resulttype);
end
else
begin
hp := tcallparanode(left).left.getcopy;
tempnode := nil;
end;
{ addition/substraction depending on inc/dec }
if inlinenumber = in_inc_x then
hpp := caddnode.create(addn,hp,hpp)
else
hpp := caddnode.create(subn,hp,hpp);
{ assign result of addition }
inserttypeconv_internal(hpp,hp.resulttype);
addstatement(newstatement,cassignmentnode.create(hp.getcopy,hpp));
{ deallocate the temp }
if assigned(tempnode) then
addstatement(newstatement,ctempdeletenode.create(tempnode));
{ firstpass it }
firstpass(newblock);
{ return new node }
result := newblock;
end
else if (left.resulttype.def.deftype in [enumdef,pointerdef]) or
is_ordinal(left.resulttype.def) then
begin
{ two paras ? }
if assigned(tcallparanode(left).right) then
begin
{ need we an additional register ? }
if not(is_constintnode(tcallparanode(tcallparanode(left).right).left)) and
(tcallparanode(tcallparanode(left).right).left.expectloc in [LOC_CREFERENCE,LOC_REFERENCE]) and
(tcallparanode(tcallparanode(left).right).left.registersint<=1) then
inc(registersint);
{ do we need an additional register to restore the first parameter? }
if tcallparanode(tcallparanode(left).right).left.registersint>=registersint then
inc(registersint);
end;
end;
end;
in_include_x_y,
in_exclude_x_y:
begin
expectloc:=LOC_VOID;
registersint:=left.registersint;
registersfpu:=left.registersfpu;
{$ifdef SUPPORT_MMX}
registersmmx:=left.registersmmx;
{$endif SUPPORT_MMX}
end;
in_exp_real:
begin
result:= first_exp_real;
end;
in_round_real:
begin
result:= first_round_real;
end;
in_trunc_real:
begin
result:= first_trunc_real;
end;
in_int_real:
begin
result:= first_int_real;
end;
in_frac_real:
begin
result:= first_frac_real;
end;
in_cos_real:
begin
result:= first_cos_real;
end;
in_sin_real:
begin
result := first_sin_real;
end;
in_arctan_real:
begin
result := first_arctan_real;
end;
in_pi_real :
begin
result := first_pi;
end;
in_abs_real:
begin
result := first_abs_real;
end;
in_sqr_real:
begin
result := first_sqr_real;
end;
in_sqrt_real:
begin
result := first_sqrt_real;
end;
in_ln_real:
begin
result := first_ln_real;
end;
{$ifdef SUPPORT_MMX}
in_mmx_pcmpeqb..in_mmx_pcmpgtw:
begin
end;
{$endif SUPPORT_MMX}
in_assert_x_y :
begin
expectloc:=LOC_VOID;
registersint:=left.registersint;
registersfpu:=left.registersfpu;
{$ifdef SUPPORT_MMX}
registersmmx:=left.registersmmx;
{$endif SUPPORT_MMX}
end;
in_low_x,
in_high_x:
internalerror(200104047);
in_ord_x,
in_chr_byte:
begin
{ should not happend as it's converted to typeconv }
internalerror(200104045);
end;
in_ofs_x :
internalerror(2000101001);
in_seg_x :
internalerror(200104046);
in_settextbuf_file_x,
in_reset_typedfile,
in_rewrite_typedfile,
in_str_x_string,
in_val_x,
in_read_x,
in_readln_x,
in_write_x,
in_writeln_x :
begin
{ should be handled by det_resulttype }
internalerror(200108234);
end;
in_prefetch_var:
begin
expectloc:=LOC_VOID;
end;
else
internalerror(8);
end;
dec(parsing_para_level);
end;
{$ifdef fpc}
{$maxfpuregisters default}
{$endif fpc}
function tinlinenode.docompare(p: tnode): boolean;
begin
docompare :=
inherited docompare(p) and
(inlinenumber = tinlinenode(p).inlinenumber);
end;
function tinlinenode.first_pi : tnode;
begin
result:=crealconstnode.create(getpi,pbestrealtype^);
end;
function tinlinenode.first_arctan_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
first_arctan_real := ccallnode.createintern('fpc_arctan_real',
ccallparanode.create(left,nil));
left := nil;
end;
function tinlinenode.first_abs_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
first_abs_real := ccallnode.createintern('fpc_abs_real',
ccallparanode.create(left,nil));
left := nil;
end;
function tinlinenode.first_sqr_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
first_sqr_real := ccallnode.createintern('fpc_sqr_real',
ccallparanode.create(left,nil));
left := nil;
end;
function tinlinenode.first_sqrt_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
first_sqrt_real := ccallnode.createintern('fpc_sqrt_real',
ccallparanode.create(left,nil));
left := nil;
end;
function tinlinenode.first_ln_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
first_ln_real := ccallnode.createintern('fpc_ln_real',
ccallparanode.create(left,nil));
left := nil;
end;
function tinlinenode.first_cos_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
first_cos_real := ccallnode.createintern('fpc_cos_real',
ccallparanode.create(left,nil));
left := nil;
end;
function tinlinenode.first_sin_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
first_sin_real := ccallnode.createintern('fpc_sin_real',
ccallparanode.create(left,nil));
left := nil;
end;
function tinlinenode.first_exp_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
result := ccallnode.createintern('fpc_exp_real',ccallparanode.create(left,nil));
left := nil;
end;
function tinlinenode.first_int_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
result := ccallnode.createintern('fpc_int_real',ccallparanode.create(left,nil));
left := nil;
end;
function tinlinenode.first_frac_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
result := ccallnode.createintern('fpc_frac_real',ccallparanode.create(left,nil));
left := nil;
end;
function tinlinenode.first_round_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
result := ccallnode.createintern('fpc_round_real',ccallparanode.create(left,nil));
left := nil;
end;
function tinlinenode.first_trunc_real : tnode;
begin
{ create the call to the helper }
{ on entry left node contains the parameter }
result := ccallnode.createintern('fpc_trunc_real',ccallparanode.create(left,nil));
left := nil;
end;
begin
cinlinenode:=tinlinenode;
end.