fpc/compiler/powerpc64/cgcpu.pas
Jonas Maebe a387be19a0 + a_call_ref for ppc32 and ppc64
git-svn-id: trunk@3392 -
2006-04-30 20:50:37 +00:00

2237 lines
79 KiB
ObjectPascal

{
Copyright (c) 1998-2002 by Florian Klaempfl
This unit implements the code generator for the PowerPC
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit cgcpu;
{$I fpcdefs.inc}
interface
uses
globtype, symtype, symdef, symsym,
cgbase, cgobj,cgppc,
aasmbase, aasmcpu, aasmtai,aasmdata,
cpubase, cpuinfo, cgutils, rgcpu,
parabase;
type
tcgppc = class(tcgppcgen)
procedure init_register_allocators; override;
procedure done_register_allocators; override;
{ passing parameters, per default the parameter is pushed }
{ nr gives the number of the parameter (enumerated from }
{ left to right), this allows to move the parameter to }
{ register, if the cpu supports register calling }
{ conventions }
procedure a_param_const(list: TAsmList; size: tcgsize; a: aint; const
paraloc: tcgpara); override;
procedure a_param_ref(list: TAsmList; size: tcgsize; const r: treference;
const paraloc: tcgpara); override;
procedure a_paramaddr_ref(list: TAsmList; const r: treference; const
paraloc: tcgpara); override;
procedure a_call_name(list: TAsmList; const s: string); override;
procedure a_call_reg(list: TAsmList; reg: tregister); override;
procedure a_op_const_reg(list: TAsmList; Op: TOpCG; size: TCGSize; a:
aint; reg: TRegister); override;
procedure a_op_reg_reg(list: TAsmList; Op: TOpCG; size: TCGSize; src,
dst: TRegister); override;
procedure a_op_const_reg_reg(list: TAsmList; op: TOpCg;
size: tcgsize; a: aint; src, dst: tregister); override;
procedure a_op_reg_reg_reg(list: TAsmList; op: TOpCg;
size: tcgsize; src1, src2, dst: tregister); override;
{ move instructions }
procedure a_load_const_reg(list: TAsmList; size: tcgsize; a: aint; reg:
tregister); override;
{ stores the contents of register reg to the memory location described by
ref }
procedure a_load_reg_ref(list: TAsmList; fromsize, tosize: tcgsize; reg:
tregister; const ref: treference); override;
{ loads the memory pointed to by ref into register reg }
procedure a_load_ref_reg(list: TAsmList; fromsize, tosize: tcgsize; const
Ref: treference; reg: tregister); override;
procedure a_load_reg_reg(list: TAsmList; fromsize, tosize: tcgsize; reg1,
reg2: tregister); override;
{ fpu move instructions }
procedure a_loadfpu_reg_reg(list: TAsmList; size: tcgsize; reg1, reg2:
tregister); override;
procedure a_loadfpu_ref_reg(list: TAsmList; size: tcgsize; const ref:
treference; reg: tregister); override;
procedure a_loadfpu_reg_ref(list: TAsmList; size: tcgsize; reg:
tregister; const ref: treference); override;
{ comparison operations }
procedure a_cmp_const_reg_label(list: TAsmList; size: tcgsize; cmp_op:
topcmp; a: aint; reg: tregister;
l: tasmlabel); override;
procedure a_cmp_reg_reg_label(list: TAsmList; size: tcgsize; cmp_op:
topcmp; reg1, reg2: tregister; l: tasmlabel); override;
procedure a_jmp_name(list: TAsmList; const s: string); override;
procedure a_jmp_always(list: TAsmList; l: tasmlabel); override;
procedure a_jmp_flags(list: TAsmList; const f: TResFlags; l: tasmlabel);
override;
procedure g_flags2reg(list: TAsmList; size: TCgSize; const f: TResFlags;
reg: TRegister); override;
procedure g_profilecode(list: TAsmList); override;
procedure g_proc_entry(list: TAsmList; localsize: longint; nostackframe:
boolean); override;
procedure g_proc_exit(list: TAsmList; parasize: longint; nostackframe:
boolean); override;
procedure g_save_standard_registers(list: TAsmList); override;
procedure g_restore_standard_registers(list: TAsmList); override;
procedure a_loadaddr_ref_reg(list: TAsmList; const ref: treference; r:
tregister); override;
procedure g_concatcopy(list: TAsmList; const source, dest: treference;
len: aint); override;
procedure g_overflowcheck(list: TAsmList; const l: tlocation; def: tdef);
override;
procedure a_jmp_cond(list: TAsmList; cond: TOpCmp; l: tasmlabel);
procedure g_intf_wrapper(list: TAsmList; procdef: tprocdef; const
labelname: string; ioffset: longint); override;
private
{ Make sure ref is a valid reference for the PowerPC and sets the }
{ base to the value of the index if (base = R_NO). }
{ Returns true if the reference contained a base, index and an }
{ offset or symbol, in which case the base will have been changed }
{ to a tempreg (which has to be freed by the caller) containing }
{ the sum of part of the original reference }
function fixref(list: TAsmList; var ref: treference; const size : TCgsize): boolean;
function load_got_symbol(list : TAsmList; symbol : string) : tregister;
{ returns whether a reference can be used immediately in a powerpc }
{ instruction }
function issimpleref(const ref: treference): boolean;
{ contains the common code of a_load_reg_ref and a_load_ref_reg }
procedure a_load_store(list: TAsmList; op: tasmop; reg: tregister;
ref: treference);
{ creates the correct branch instruction for a given combination }
{ of asmcondflags and destination addressing mode }
procedure a_jmp(list: TAsmList; op: tasmop;
c: tasmcondflag; crval: longint; l: tasmlabel);
{ returns the lowest numbered FP register in use, and the number of used FP registers
for the current procedure }
procedure calcFirstUsedFPR(out firstfpr : TSuperRegister; out fprcount : aint);
{ returns the lowest numbered GP register in use, and the number of used GP registers
for the current procedure }
procedure calcFirstUsedGPR(out firstgpr : TSuperRegister; out gprcount : aint);
{ returns true if the offset of the given reference can not be represented by a 16 bit
immediate as required by some PowerPC instructions }
function hasLargeOffset(const ref : TReference) : Boolean; inline;
{ generates code to call a method with the given string name. The boolean options
control code generation. If prependDot is true, a single dot character is prepended to
the string, if addNOP is true a single NOP instruction is added after the call, and
if includeCall is true, the method is marked as having a call, not if false. This
option is particularly useful to prevent generation of a larger stack frame for the
register save and restore helper functions. }
procedure a_call_name_direct(list: TAsmList; s: string; prependDot : boolean;
addNOP : boolean; includeCall : boolean = true);
{ emits code to store the given value a into the TOC (if not already in there), and load it from there
as well }
procedure loadConstantPIC(list : TAsmList; size : TCGSize; a : aint; reg : TRegister);
procedure profilecode_savepara(para : tparavarsym; list : TAsmList);
procedure profilecode_restorepara(para : tparavarsym; list : TAsmList);
end;
const
TShiftOpCG2AsmOpConst : array[boolean, OP_SAR..OP_SHR] of TAsmOp = (
(A_SRAWI, A_SLWI, A_SRWI), (A_SRADI, A_SLDI, A_SRDI)
);
TOpCmp2AsmCond: array[topcmp] of TAsmCondFlag = (C_NONE, C_EQ, C_GT,
C_LT, C_GE, C_LE, C_NE, C_LE, C_LT, C_GE, C_GT);
implementation
uses
sysutils, cclasses,
globals, verbose, systems, cutils,
symconst, fmodule,
rgobj, tgobj, cpupi, procinfo, paramgr, cpupara;
function ref2string(const ref : treference) : string;
begin
result := 'base : ' + inttostr(ord(ref.base)) + ' index : ' + inttostr(ord(ref.index)) + ' refaddr : ' + inttostr(ord(ref.refaddr)) + ' offset : ' + inttostr(ref.offset) + ' symbol : ';
if (assigned(ref.symbol)) then
result := result + ref.symbol.name;
end;
{ helper function which calculate "magic" values for replacement of unsigned
division by constant operation by multiplication. See the PowerPC compiler
developer manual for more information }
procedure getmagic_unsignedN(const N : byte; const d : aWord;
out magic_m : aWord; out magic_add : boolean; out magic_shift : byte);
var
p : aInt;
nc, delta, q1, r1, q2, r2, two_N_minus_1 : aWord;
begin
assert(d > 0);
two_N_minus_1 := aWord(1) shl (N-1);
magic_add := false;
nc := - 1 - (-d) mod d;
p := N-1; { initialize p }
q1 := two_N_minus_1 div nc; { initialize q1 = 2p/nc }
r1 := two_N_minus_1 - q1*nc; { initialize r1 = rem(2p,nc) }
q2 := (two_N_minus_1-1) div d; { initialize q2 = (2p-1)/d }
r2 := (two_N_minus_1-1) - q2*d; { initialize r2 = rem((2p-1),d) }
repeat
inc(p);
if (r1 >= (nc - r1)) then begin
q1 := 2 * q1 + 1; { update q1 }
r1 := 2*r1 - nc; { update r1 }
end else begin
q1 := 2*q1; { update q1 }
r1 := 2*r1; { update r1 }
end;
if ((r2 + 1) >= (d - r2)) then begin
if (q2 >= (two_N_minus_1-1)) then
magic_add := true;
q2 := 2*q2 + 1; { update q2 }
r2 := 2*r2 + 1 - d; { update r2 }
end else begin
if (q2 >= two_N_minus_1) then
magic_add := true;
q2 := 2*q2; { update q2 }
r2 := 2*r2 + 1; { update r2 }
end;
delta := d - 1 - r2;
until not ((p < (2*N)) and ((q1 < delta) or ((q1 = delta) and (r1 = 0))));
magic_m := q2 + 1; { resulting magic number }
magic_shift := p - N; { resulting shift }
end;
{ helper function which calculate "magic" values for replacement of signed
division by constant operation by multiplication. See the PowerPC compiler
developer manual for more information }
procedure getmagic_signedN(const N : byte; const d : aInt;
out magic_m : aInt; out magic_s : aInt);
var
p : aInt;
ad, anc, delta, q1, r1, q2, r2, t : aWord;
two_N_minus_1 : aWord;
begin
assert((d < -1) or (d > 1));
two_N_minus_1 := aWord(1) shl (N-1);
ad := abs(d);
t := two_N_minus_1 + (aWord(d) shr (N-1));
anc := t - 1 - t mod ad; { absolute value of nc }
p := (N-1); { initialize p }
q1 := two_N_minus_1 div anc; { initialize q1 = 2p/abs(nc) }
r1 := two_N_minus_1 - q1*anc; { initialize r1 = rem(2p,abs(nc)) }
q2 := two_N_minus_1 div ad; { initialize q2 = 2p/abs(d) }
r2 := two_N_minus_1 - q2*ad; { initialize r2 = rem(2p,abs(d)) }
repeat
inc(p);
q1 := 2*q1; { update q1 = 2p/abs(nc) }
r1 := 2*r1; { update r1 = rem(2p/abs(nc)) }
if (r1 >= anc) then begin { must be unsigned comparison }
inc(q1);
dec(r1, anc);
end;
q2 := 2*q2; { update q2 = 2p/abs(d) }
r2 := 2*r2; { update r2 = rem(2p/abs(d)) }
if (r2 >= ad) then begin { must be unsigned comparison }
inc(q2);
dec(r2, ad);
end;
delta := ad - r2;
until not ((q1 < delta) or ((q1 = delta) and (r1 = 0)));
magic_m := q2 + 1;
if (d < 0) then begin
magic_m := -magic_m; { resulting magic number }
end;
magic_s := p - N; { resulting shift }
end;
{ finds positive and negative powers of two of the given value, returning the
power and whether it's a negative power or not in addition to the actual result
of the function }
function ispowerof2(value : aInt; out power : byte; out neg : boolean) : boolean;
var
i : longint;
hl : aInt;
begin
neg := false;
{ also try to find negative power of two's by negating if the
value is negative. low(aInt) is special because it can not be
negated. Simply return the appropriate values for it }
if (value < 0) then begin
neg := true;
if (value = low(aInt)) then begin
power := sizeof(aInt)*8-1;
result := true;
exit;
end;
value := -value;
end;
if ((value and (value-1)) <> 0) then begin
result := false;
exit;
end;
hl := 1;
for i := 0 to (sizeof(aInt)*8-1) do begin
if (hl = value) then begin
result := true;
power := i;
exit;
end;
hl := hl shl 1;
end;
end;
{ returns the number of instruction required to load the given integer into a register.
This is basically a stripped down version of a_load_const_reg, increasing a counter
instead of emitting instructions. }
function getInstructionLength(a : aint) : longint;
function get32bitlength(a : longint; var length : longint) : boolean; inline;
var
is_half_signed : byte;
begin
{ if the lower 16 bits are zero, do a single LIS }
if (smallint(a) = 0) and ((a shr 16) <> 0) then begin
inc(length);
get32bitlength := longint(a) < 0;
end else begin
is_half_signed := ord(smallint(lo(a)) < 0);
inc(length);
if smallint(hi(a) + is_half_signed) <> 0 then
inc(length);
get32bitlength := (smallint(a) < 0) or (a < 0);
end;
end;
var
extendssign : boolean;
begin
result := 0;
if (lo(a) = 0) and (hi(a) <> 0) then begin
get32bitlength(hi(a), result);
inc(result);
end else begin
extendssign := get32bitlength(lo(a), result);
if (extendssign) and (hi(a) = 0) then
inc(result)
else if (not
((extendssign and (longint(hi(a)) = -1)) or
((not extendssign) and (hi(a)=0)))
) then begin
get32bitlength(hi(a), result);
inc(result);
end;
end;
end;
procedure tcgppc.init_register_allocators;
begin
inherited init_register_allocators;
rg[R_INTREGISTER] := trgcpu.create(R_INTREGISTER, R_SUBWHOLE,
[RS_R3, RS_R4, RS_R5, RS_R6, RS_R7, RS_R8,
RS_R9, RS_R10, RS_R11, RS_R12, RS_R31, RS_R30, RS_R29,
RS_R28, RS_R27, RS_R26, RS_R25, RS_R24, RS_R23, RS_R22,
RS_R21, RS_R20, RS_R19, RS_R18, RS_R17, RS_R16, RS_R15,
RS_R14, RS_R13], first_int_imreg, []);
rg[R_FPUREGISTER] := trgcpu.create(R_FPUREGISTER, R_SUBNONE,
[RS_F0, RS_F1, RS_F2, RS_F3, RS_F4, RS_F5, RS_F6, RS_F7, RS_F8, RS_F9,
RS_F10, RS_F11, RS_F12, RS_F13, RS_F31, RS_F30, RS_F29, RS_F28, RS_F27,
RS_F26, RS_F25, RS_F24, RS_F23, RS_F22, RS_F21, RS_F20, RS_F19, RS_F18,
RS_F17, RS_F16, RS_F15, RS_F14], first_fpu_imreg, []);
{$WARNING FIX ME}
rg[R_MMREGISTER] := trgcpu.create(R_MMREGISTER, R_SUBNONE,
[RS_M0, RS_M1, RS_M2], first_mm_imreg, []);
end;
procedure tcgppc.done_register_allocators;
begin
rg[R_INTREGISTER].free;
rg[R_FPUREGISTER].free;
rg[R_MMREGISTER].free;
inherited done_register_allocators;
end;
procedure tcgppc.a_param_const(list: TAsmList; size: tcgsize; a: aint; const
paraloc: tcgpara);
var
ref: treference;
begin
paraloc.check_simple_location;
case paraloc.location^.loc of
LOC_REGISTER, LOC_CREGISTER:
a_load_const_reg(list, size, a, paraloc.location^.register);
LOC_REFERENCE:
begin
reference_reset(ref);
ref.base := paraloc.location^.reference.index;
ref.offset := paraloc.location^.reference.offset;
a_load_const_ref(list, size, a, ref);
end;
else
internalerror(2002081101);
end;
end;
procedure tcgppc.a_param_ref(list: TAsmList; size: tcgsize; const r:
treference; const paraloc: tcgpara);
var
tmpref, ref: treference;
location: pcgparalocation;
sizeleft: aint;
adjusttail : boolean;
begin
location := paraloc.location;
tmpref := r;
sizeleft := paraloc.intsize;
adjusttail := false;
while assigned(location) do begin
case location^.loc of
LOC_REGISTER, LOC_CREGISTER:
begin
if (size <> OS_NO) then
a_load_ref_reg(list, size, location^.size, tmpref,
location^.register)
else
{$IFDEF extdebug}
list.concat(tai_comment.create(strpnew('a_param_ref with OS_NO, sizeleft ' + inttostr(sizeleft))));
{$ENDIF extdebug}
{ load non-integral sized memory location into register. This
memory location be 1-sizeleft byte sized.
Always assume that this memory area is properly aligned, eg. start
loading the larger quantities for "odd" quantities first }
case sizeleft of
1,2,4,8 :
a_load_ref_reg(list, int_cgsize(sizeleft), location^.size, tmpref,
location^.register);
3 : begin
a_reg_alloc(list, NR_R12);
a_load_ref_reg(list, OS_16, location^.size, tmpref,
NR_R12);
inc(tmpref.offset, tcgsize2size[OS_16]);
a_load_ref_reg(list, OS_8, location^.size, tmpref,
location^.register);
list.concat(taicpu.op_reg_reg_const_const(A_RLDIMI, location^.register, NR_R12, 8, 40));
a_reg_dealloc(list, NR_R12);
end;
5 : begin
a_reg_alloc(list, NR_R12);
a_load_ref_reg(list, OS_32, location^.size, tmpref, NR_R12);
inc(tmpref.offset, tcgsize2size[OS_32]);
a_load_ref_reg(list, OS_8, location^.size, tmpref, location^.register);
list.concat(taicpu.op_reg_reg_const_const(A_RLDIMI, location^.register, NR_R12, 8, 24));
a_reg_dealloc(list, NR_R12);
end;
6 : begin
a_reg_alloc(list, NR_R12);
a_load_ref_reg(list, OS_32, location^.size, tmpref, NR_R12);
inc(tmpref.offset, tcgsize2size[OS_32]);
a_load_ref_reg(list, OS_16, location^.size, tmpref, location^.register);
list.concat(taicpu.op_reg_reg_const_const(A_RLDIMI, location^.register, NR_R12, 16, 16));
a_reg_dealloc(list, NR_R12);
end;
7 : begin
a_reg_alloc(list, NR_R12);
a_reg_alloc(list, NR_R0);
a_load_ref_reg(list, OS_32, location^.size, tmpref, NR_R12);
inc(tmpref.offset, tcgsize2size[OS_32]);
a_load_ref_reg(list, OS_16, location^.size, tmpref, NR_R0);
inc(tmpref.offset, tcgsize2size[OS_16]);
a_load_ref_reg(list, OS_8, location^.size, tmpref, location^.register);
list.concat(taicpu.op_reg_reg_const_const(A_RLDIMI, NR_R0, NR_R12, 16, 16));
list.concat(taicpu.op_reg_reg_const_const(A_RLDIMI, location^.register, NR_R0, 8, 8));
a_reg_dealloc(list, NR_R0);
a_reg_dealloc(list, NR_R12);
end;
else
{ still > 8 bytes to load, so load data single register now }
a_load_ref_reg(list, location^.size, location^.size, tmpref,
location^.register);
{ the block is > 8 bytes, so we have to store any bytes not
a multiple of the register size beginning with the MSB }
adjusttail := true;
end;
if (adjusttail) and (sizeleft < tcgsize2size[OS_INT]) then
a_op_const_reg(list, OP_SHL, OS_INT,
(tcgsize2size[OS_INT] - sizeleft) * tcgsize2size[OS_INT],
location^.register);
end;
LOC_REFERENCE:
begin
reference_reset_base(ref, location^.reference.index,
location^.reference.offset);
g_concatcopy(list, tmpref, ref, sizeleft);
if assigned(location^.next) then
internalerror(2005010710);
end;
LOC_FPUREGISTER, LOC_CFPUREGISTER:
case location^.size of
OS_F32, OS_F64:
a_loadfpu_ref_reg(list, location^.size, tmpref, location^.register);
else
internalerror(2002072801);
end;
LOC_VOID:
{ nothing to do }
;
else
internalerror(2002081103);
end;
inc(tmpref.offset, tcgsize2size[location^.size]);
dec(sizeleft, tcgsize2size[location^.size]);
location := location^.next;
end;
end;
procedure tcgppc.a_paramaddr_ref(list: TAsmList; const r: treference; const
paraloc: tcgpara);
var
ref: treference;
tmpreg: tregister;
begin
paraloc.check_simple_location;
case paraloc.location^.loc of
LOC_REGISTER, LOC_CREGISTER:
a_loadaddr_ref_reg(list, r, paraloc.location^.register);
LOC_REFERENCE:
begin
reference_reset(ref);
ref.base := paraloc.location^.reference.index;
ref.offset := paraloc.location^.reference.offset;
tmpreg := rg[R_INTREGISTER].getregister(list, R_SUBWHOLE);
a_loadaddr_ref_reg(list, r, tmpreg);
a_load_reg_ref(list, OS_ADDR, OS_ADDR, tmpreg, ref);
end;
else
internalerror(2002080701);
end;
end;
{ calling a procedure by name }
procedure tcgppc.a_call_name(list: TAsmList; const s: string);
begin
a_call_name_direct(list, s, true, true);
end;
procedure tcgppc.a_call_name_direct(list: TAsmList; s: string; prependDot : boolean; addNOP : boolean; includeCall : boolean);
begin
if (prependDot) then
s := '.' + s;
list.concat(taicpu.op_sym(A_BL, current_asmdata.RefAsmSymbol(s)));
if (addNOP) then
list.concat(taicpu.op_none(A_NOP));
if (includeCall) then
include(current_procinfo.flags, pi_do_call);
end;
{ calling a procedure by address }
procedure tcgppc.a_call_reg(list: TAsmList; reg: tregister);
var
tmpref: treference;
begin
if (not (cs_opt_size in aktoptimizerswitches)) then begin
{ load actual function entry (reg contains the reference to the function descriptor)
into R0 }
reference_reset_base(tmpref, reg, 0);
a_load_ref_reg(list, OS_ADDR, OS_ADDR, tmpref, NR_R0);
{ save TOC pointer in stackframe }
reference_reset_base(tmpref, NR_STACK_POINTER_REG, LA_RTOC_ELF);
a_load_reg_ref(list, OS_ADDR, OS_ADDR, NR_RTOC, tmpref);
{ move actual function pointer to CTR register }
list.concat(taicpu.op_reg(A_MTCTR, NR_R0));
{ load new TOC pointer from function descriptor into RTOC register }
reference_reset_base(tmpref, reg, tcgsize2size[OS_ADDR]);
a_load_ref_reg(list, OS_ADDR, OS_ADDR, tmpref, NR_RTOC);
{ load new environment pointer from function descriptor into R11 register }
reference_reset_base(tmpref, reg, 2*tcgsize2size[OS_ADDR]);
a_load_ref_reg(list, OS_ADDR, OS_ADDR, tmpref, NR_R11);
{ call function }
list.concat(taicpu.op_none(A_BCTRL));
end else begin
{ call ptrgl helper routine which expects the pointer to the function descriptor
in R11 }
a_load_reg_reg(list, OS_ADDR, OS_ADDR, reg, NR_R11);
a_call_name_direct(list, '.ptrgl', false, false);
end;
{ we need to load the old RTOC from stackframe because we changed it}
reference_reset_base(tmpref, NR_STACK_POINTER_REG, LA_RTOC_ELF);
a_load_ref_reg(list, OS_ADDR, OS_ADDR, tmpref, NR_RTOC);
include(current_procinfo.flags, pi_do_call);
end;
{********************** load instructions ********************}
procedure tcgppc.a_load_const_reg(list: TAsmList; size: TCGSize; a: aint;
reg: TRegister);
{ loads a 32 bit constant into the given register, using an optimal instruction sequence.
This is either LIS, LI or LI+ADDIS.
Returns true if during these operations the upper 32 bits were filled with 1 bits (e.g.
sign extension was performed) }
function load32bitconstant(list : TAsmList; size : TCGSize; a : longint;
reg : TRegister) : boolean;
var
is_half_signed : byte;
begin
{ if the lower 16 bits are zero, do a single LIS }
if (smallint(a) = 0) and ((a shr 16) <> 0) then begin
list.concat(taicpu.op_reg_const(A_LIS, reg, smallint(hi(a))));
load32bitconstant := longint(a) < 0;
end else begin
is_half_signed := ord(smallint(lo(a)) < 0);
list.concat(taicpu.op_reg_const(A_LI, reg, smallint(a and $ffff)));
if smallint(hi(a) + is_half_signed) <> 0 then begin
list.concat(taicpu.op_reg_reg_const(A_ADDIS, reg, reg, smallint(hi(a) + is_half_signed)));
end;
load32bitconstant := (smallint(a) < 0) or (a < 0);
end;
end;
{ loads a 32 bit constant into R0, using an optimal instruction sequence.
This is either LIS, LI or LI+ORIS.
Returns true if during these operations the upper 32 bits were filled with 1 bits (e.g.
sign extension was performed) }
function load32bitconstantR0(list : TAsmList; size : TCGSize; a : longint) : boolean;
begin
{ if it's a value we can load with a single LI, do it }
if (a >= low(smallint)) and (a <= high(smallint)) then begin
list.concat(taicpu.op_reg_const(A_LI, NR_R0, smallint(a)));
end else begin
{ if the lower 16 bits are zero, do a single LIS }
list.concat(taicpu.op_reg_const(A_LIS, NR_R0, smallint(a shr 16)));
if (smallint(a) <> 0) then begin
list.concat(taicpu.op_reg_reg_const(A_ORI, NR_R0, NR_R0, word(a)));
end;
end;
load32bitconstantR0 := a < 0;
end;
{ emits the code to load a constant by emitting various instructions into the output
code}
procedure loadConstantNormal(list: TAsmList; size : TCgSize; a: aint; reg: TRegister);
var
extendssign : boolean;
instr : taicpu;
begin
if (lo(a) = 0) and (hi(a) <> 0) then begin
{ load only upper 32 bits, and shift }
load32bitconstant(list, size, hi(a), reg);
list.concat(taicpu.op_reg_reg_const(A_SLDI, reg, reg, 32));
end else begin
{ load lower 32 bits }
extendssign := load32bitconstant(list, size, lo(a), reg);
if (extendssign) and (hi(a) = 0) then
{ if upper 32 bits are zero, but loading the lower 32 bit resulted in automatic
sign extension, clear those bits }
a_load_reg_reg(list, OS_32, OS_64, reg, reg)
else if (not
((extendssign and (longint(hi(a)) = -1)) or
((not extendssign) and (hi(a)=0)))
) then begin
{ only load the upper 32 bits, if the automatic sign extension is not okay,
that is, _not_ if
- loading the lower 32 bits resulted in -1 in the upper 32 bits, and the upper
32 bits should contain -1
- loading the lower 32 bits resulted in 0 in the upper 32 bits, and the upper
32 bits should contain 0 }
load32bitconstantR0(list, size, hi(a));
{ combine both registers }
list.concat(taicpu.op_reg_reg_const_const(A_RLDIMI, reg, NR_R0, 32, 0));
end;
end;
end;
{$IFDEF EXTDEBUG}
var
astring : string;
{$ENDIF EXTDEBUG}
begin
{$IFDEF EXTDEBUG}
astring := 'a_load_const reg ' + inttostr(hi(a)) + ' ' + inttostr(lo(a)) + ' ' + inttostr(ord(size)) + ' ' + inttostr(tcgsize2size[size]);
list.concat(tai_comment.create(strpnew(astring)));
{$ENDIF EXTDEBUG}
if not (size in [OS_8, OS_S8, OS_16, OS_S16, OS_32, OS_S32, OS_64, OS_S64]) then
internalerror(2002090902);
{ if PIC or basic optimizations are enabled, and the number of instructions which would be
required to load the value is greater than 2, store (and later load) the value from there }
if (false) {(((cs_opt_peephole in aktoptimizerswitches in aktglobalswitches) or (cs_create_pic in aktmoduleswitches)) and
(getInstructionLength(a) > 2))} then
loadConstantPIC(list, size, a, reg)
else
loadConstantNormal(list, size, a, reg);
end;
procedure tcgppc.a_load_reg_ref(list: TAsmList; fromsize, tosize: TCGSize;
reg: tregister; const ref: treference);
const
StoreInstr: array[OS_8..OS_64, boolean, boolean] of TAsmOp =
{ indexed? updating?}
(((A_STB, A_STBU), (A_STBX, A_STBUX)),
((A_STH, A_STHU), (A_STHX, A_STHUX)),
((A_STW, A_STWU), (A_STWX, A_STWUX)),
((A_STD, A_STDU), (A_STDX, A_STDUX))
);
var
op: TAsmOp;
ref2: TReference;
begin
if not (fromsize in [OS_8, OS_S8, OS_16, OS_S16, OS_32, OS_S32, OS_64, OS_S64]) then
internalerror(2002090903);
if not (tosize in [OS_8, OS_S8, OS_16, OS_S16, OS_32, OS_S32, OS_64, OS_S64]) then
internalerror(2002090905);
ref2 := ref;
fixref(list, ref2, tosize);
if tosize in [OS_S8..OS_S64] then
{ storing is the same for signed and unsigned values }
tosize := tcgsize(ord(tosize) - (ord(OS_S8) - ord(OS_8)));
op := storeinstr[tcgsize2unsigned[tosize], ref2.index <> NR_NO, false];
a_load_store(list, op, reg, ref2);
end;
procedure tcgppc.a_load_ref_reg(list: TAsmList; fromsize, tosize: tcgsize;
const ref: treference; reg: tregister);
const
LoadInstr: array[OS_8..OS_S64, boolean, boolean] of TAsmOp =
{ indexed? updating? }
(((A_LBZ, A_LBZU), (A_LBZX, A_LBZUX)),
((A_LHZ, A_LHZU), (A_LHZX, A_LHZUX)),
((A_LWZ, A_LWZU), (A_LWZX, A_LWZUX)),
((A_LD, A_LDU), (A_LDX, A_LDUX)),
{ 128bit stuff too }
((A_NONE, A_NONE), (A_NONE, A_NONE)),
{ there's no load-byte-with-sign-extend :( }
((A_LBZ, A_LBZU), (A_LBZX, A_LBZUX)),
((A_LHA, A_LHAU), (A_LHAX, A_LHAUX)),
{ there's no load-word-arithmetic-indexed with update, simulate it in code :( }
((A_LWA, A_NOP), (A_LWAX, A_LWAUX)),
((A_LD, A_LDU), (A_LDX, A_LDUX))
);
var
op: tasmop;
ref2: treference;
begin
{$IFDEF EXTDEBUG}
list.concat(tai_comment.create(strpnew('a_load_ref_reg ' + ref2string(ref))));
{$ENDIF EXTDEBUG}
if not (fromsize in [OS_8, OS_S8, OS_16, OS_S16, OS_32, OS_S32, OS_64, OS_S64]) then
internalerror(2002090904);
ref2 := ref;
fixref(list, ref2, tosize);
{ the caller is expected to have adjusted the reference already
in this case }
if (TCGSize2Size[fromsize] >= TCGSize2Size[tosize]) then
fromsize := tosize;
op := loadinstr[fromsize, ref2.index <> NR_NO, false];
{ there is no LWAU instruction, simulate using ADDI and LWA }
if (op = A_NOP) then begin
list.concat(taicpu.op_reg_reg_const(A_ADDI, reg, reg, ref2.offset));
ref2.offset := 0;
op := A_LWA;
end;
a_load_store(list, op, reg, ref2);
{ sign extend shortint if necessary, since there is no
load instruction that does that automatically (JM) }
if fromsize = OS_S8 then
list.concat(taicpu.op_reg_reg(A_EXTSB, reg, reg));
end;
procedure tcgppc.a_load_reg_reg(list: TAsmList; fromsize, tosize: tcgsize;
reg1, reg2: tregister);
const
movemap : array[OS_8..OS_S128, OS_8..OS_S128] of tasmop = (
{ to -> OS_8 OS_16 OS_32 OS_64 OS_128 OS_S8 OS_S16 OS_S32 OS_S64 OS_S128 }
{ from }
{ OS_8 } (A_MR, A_RLDICL, A_RLDICL, A_RLDICL, A_NONE, A_RLDICL, A_RLDICL, A_RLDICL, A_RLDICL, A_NOP ),
{ OS_16 } (A_RLDICL, A_MR, A_RLDICL, A_RLDICL, A_NONE, A_RLDICL, A_RLDICL, A_RLDICL, A_RLDICL, A_NOP ),
{ OS_32 } (A_RLDICL, A_RLDICL, A_MR, A_RLDICL, A_NONE, A_RLDICL, A_RLDICL, A_RLDICL, A_RLDICL, A_NOP ),
{ OS_64 } (A_RLDICL, A_RLDICL, A_RLDICL, A_MR, A_NONE, A_RLDICL, A_RLDICL, A_RLDICL, A_RLDICL, A_NOP ),
{ OS_128 } (A_NONE, A_NONE, A_NONE, A_NONE, A_NONE, A_NONE, A_NONE, A_NONE, A_NONE, A_NOP ),
{ OS_S8 } (A_EXTSB, A_EXTSB, A_EXTSB, A_EXTSB, A_NONE, A_MR, A_EXTSB, A_EXTSB, A_EXTSB, A_NOP ),
{ OS_S16 } (A_RLDICL, A_EXTSH, A_EXTSH, A_EXTSH, A_NONE, A_EXTSB, A_MR, A_EXTSH, A_EXTSH, A_NOP ),
{ OS_S32 } (A_RLDICL, A_RLDICL, A_EXTSW, A_EXTSW, A_NONE, A_EXTSB, A_EXTSH, A_MR, A_EXTSW, A_NOP ),
{ OS_S64 } (A_RLDICL, A_RLDICL, A_RLDICL, A_MR, A_NONE, A_EXTSB, A_EXTSH, A_EXTSW, A_MR, A_NOP ),
{ OS_S128 } (A_NONE, A_NONE, A_NONE, A_NONE, A_NONE, A_NONE, A_NONE, A_NONE, A_NONE, A_NOP )
);
var
instr: taicpu;
op : tasmop;
begin
op := movemap[fromsize, tosize];
case op of
A_MR, A_EXTSB, A_EXTSH, A_EXTSW : instr := taicpu.op_reg_reg(op, reg2, reg1);
A_RLDICL : instr := taicpu.op_reg_reg_const_const(A_RLDICL, reg2, reg1, 0, (8-tcgsize2size[fromsize])*8);
else
internalerror(2002090901);
end;
list.concat(instr);
rg[R_INTREGISTER].add_move_instruction(instr);
end;
procedure tcgppc.a_loadfpu_reg_reg(list: TAsmList; size: tcgsize;
reg1, reg2: tregister);
var
instr: taicpu;
begin
instr := taicpu.op_reg_reg(A_FMR, reg2, reg1);
list.concat(instr);
rg[R_FPUREGISTER].add_move_instruction(instr);
end;
procedure tcgppc.a_loadfpu_ref_reg(list: TAsmList; size: tcgsize;
const ref: treference; reg: tregister);
const
FpuLoadInstr: array[OS_F32..OS_F64, boolean, boolean] of TAsmOp =
{ indexed? updating?}
(((A_LFS, A_LFSU), (A_LFSX, A_LFSUX)),
((A_LFD, A_LFDU), (A_LFDX, A_LFDUX)));
var
op: tasmop;
ref2: treference;
begin
{ several functions call this procedure with OS_32 or OS_64
so this makes life easier (FK) }
case size of
OS_32, OS_F32:
size := OS_F32;
OS_64, OS_F64, OS_C64:
size := OS_F64;
else
internalerror(200201121);
end;
ref2 := ref;
fixref(list, ref2, size);
op := fpuloadinstr[size, ref2.index <> NR_NO, false];
a_load_store(list, op, reg, ref2);
end;
procedure tcgppc.a_loadfpu_reg_ref(list: TAsmList; size: tcgsize; reg:
tregister; const ref: treference);
const
FpuStoreInstr: array[OS_F32..OS_F64, boolean, boolean] of TAsmOp =
{ indexed? updating? }
(((A_STFS, A_STFSU), (A_STFSX, A_STFSUX)),
((A_STFD, A_STFDU), (A_STFDX, A_STFDUX)));
var
op: tasmop;
ref2: treference;
begin
if not (size in [OS_F32, OS_F64]) then
internalerror(200201122);
ref2 := ref;
fixref(list, ref2, size);
op := fpustoreinstr[size, ref2.index <> NR_NO, false];
a_load_store(list, op, reg, ref2);
end;
procedure tcgppc.a_op_const_reg(list: TAsmList; Op: TOpCG; size: TCGSize; a:
aint; reg: TRegister);
begin
a_op_const_reg_reg(list, op, size, a, reg, reg);
end;
procedure tcgppc.a_op_reg_reg(list: TAsmList; Op: TOpCG; size: TCGSize; src,
dst: TRegister);
begin
a_op_reg_reg_reg(list, op, size, src, dst, dst);
end;
procedure tcgppc.a_op_const_reg_reg(list: TAsmList; op: TOpCg;
size: tcgsize; a: aint; src, dst: tregister);
var
useReg : boolean;
procedure do_lo_hi(loOp, hiOp : TAsmOp);
begin
{ Optimization for logical ops (excluding AND), trying to do this as efficiently
as possible by only generating code for the affected halfwords. Note that all
the instructions handled here must have "X op 0 = X" for every halfword. }
usereg := false;
if (aword(a) > high(dword)) then begin
usereg := true;
end else begin
if (word(a) <> 0) then begin
list.concat(taicpu.op_reg_reg_const(loOp, dst, src, word(a)));
if (word(a shr 16) <> 0) then
list.concat(taicpu.op_reg_reg_const(hiOp, dst, dst, word(a shr 16)));
end else if (word(a shr 16) <> 0) then
list.concat(taicpu.op_reg_reg_const(hiOp, dst, src, word(a shr 16)));
end;
end;
procedure do_lo_hi_and;
begin
{ optimization logical and with immediate: only use "andi." for 16 bit
ands, otherwise use register method. Doing this for 32 bit constants
would not give any advantage to the register method (via useReg := true),
requiring a scratch register and three instructions. }
usereg := false;
if (aword(a) > high(word)) then
usereg := true
else
list.concat(taicpu.op_reg_reg_const(A_ANDI_, dst, src, word(a)));
end;
procedure do_constant_div(list : TAsmList; size : TCgSize; a : aint; src, dst : TRegister;
signed : boolean);
const
negops : array[boolean] of tasmop = (A_NEG, A_NEGO);
var
magic, shift : int64;
u_magic : qword;
u_shift : byte;
u_add : boolean;
power : byte;
isNegPower : boolean;
divreg : tregister;
begin
if (a = 0) then begin
internalerror(2005061701);
end else if (a = 1) then begin
cg.a_load_reg_reg(current_asmdata.CurrAsmList, OS_INT, OS_INT, src, dst);
end else if (a = -1) and (signed) then begin
{ note: only in the signed case possible..., may overflow }
current_asmdata.CurrAsmList.concat(taicpu.op_reg_reg(negops[cs_check_overflow in aktlocalswitches], dst, src));
end else if (ispowerof2(a, power, isNegPower)) then begin
if (signed) then begin
{ From "The PowerPC Compiler Writer's Guide", pg. 52ff }
cg.a_op_const_reg_reg(current_asmdata.CurrAsmList, OP_SAR, OS_INT, power,
src, dst);
current_asmdata.CurrAsmList.concat(taicpu.op_reg_reg(A_ADDZE, dst, dst));
if (isNegPower) then
current_asmdata.CurrAsmList.concat(taicpu.op_reg_reg(A_NEG, dst, dst));
end else begin
cg.a_op_const_reg_reg(current_asmdata.CurrAsmList, OP_SHR, OS_INT, power, src, dst)
end;
end else begin
{ replace division by multiplication, both implementations }
{ from "The PowerPC Compiler Writer's Guide" pg. 53ff }
divreg := cg.getintregister(current_asmdata.CurrAsmList, OS_INT);
if (signed) then begin
getmagic_signedN(sizeof(aInt)*8, a, magic, shift);
{ load magic value }
cg.a_load_const_reg(current_asmdata.CurrAsmList, OS_INT, magic, divreg);
{ multiply }
current_asmdata.CurrAsmList.concat(taicpu.op_reg_reg_reg(A_MULHD, dst, src, divreg));
{ add/subtract numerator }
if (a > 0) and (magic < 0) then begin
cg.a_op_reg_reg_reg(current_asmdata.CurrAsmList, OP_ADD, OS_INT, src, dst, dst);
end else if (a < 0) and (magic > 0) then begin
cg.a_op_reg_reg_reg(current_asmdata.CurrAsmList, OP_SUB, OS_INT, src, dst, dst);
end;
{ shift shift places to the right (arithmetic) }
cg.a_op_const_reg_reg(current_asmdata.CurrAsmList, OP_SAR, OS_INT, shift, dst, dst);
{ extract and add sign bit }
if (a >= 0) then begin
cg.a_op_const_reg_reg(current_asmdata.CurrAsmList, OP_SHR, OS_INT, 63, src, divreg);
end else begin
cg.a_op_const_reg_reg(current_asmdata.CurrAsmList, OP_SHR, OS_INT, 63, dst, divreg);
end;
cg.a_op_reg_reg_reg(current_asmdata.CurrAsmList, OP_ADD, OS_INT, dst, divreg, dst);
end else begin
getmagic_unsignedN(sizeof(aWord)*8, a, u_magic, u_add, u_shift);
{ load magic in divreg }
cg.a_load_const_reg(current_asmdata.CurrAsmList, OS_INT, u_magic, divreg);
current_asmdata.CurrAsmList.concat(taicpu.op_reg_reg_reg(A_MULHDU, dst, src, divreg));
if (u_add) then begin
cg.a_op_reg_reg_reg(current_asmdata.CurrAsmList, OP_SUB, OS_INT, dst, src, divreg);
cg.a_op_const_reg_reg(current_asmdata.CurrAsmList, OP_SHR, OS_INT, 1, divreg, divreg);
cg.a_op_reg_reg_reg(current_asmdata.CurrAsmList, OP_ADD, OS_INT, divreg, dst, divreg);
cg.a_op_const_reg_reg(current_asmdata.CurrAsmList, OP_SHR, OS_INT, u_shift-1, divreg, dst);
end else begin
cg.a_op_const_reg_reg(current_asmdata.CurrAsmList, OP_SHR, OS_INT, u_shift, dst, dst);
end;
end;
end;
end;
var
scratchreg: tregister;
shift : byte;
shiftmask : longint;
isneg : boolean;
begin
{ subtraction is the same as addition with negative constant }
if op = OP_SUB then begin
a_op_const_reg_reg(list, OP_ADD, size, -a, src, dst);
exit;
end;
{ This case includes some peephole optimizations for the various operations,
(e.g. AND, OR, XOR, ..) - can't this be done at some higher level,
independent of architecture? }
{ assume that we do not need a scratch register for the operation }
useReg := false;
case (op) of
OP_DIV, OP_IDIV:
if (cs_opt_level1 in aktoptimizerswitches) then
do_constant_div(list, size, a, src, dst, op = OP_IDIV)
else
usereg := true;
OP_IMUL, OP_MUL:
{ idea: factorize constant multiplicands and use adds/shifts with few factors;
however, even a 64 bit multiply is already quite fast on PPC64 }
if (a = 0) then
a_load_const_reg(list, size, 0, dst)
else if (a = -1) then
list.concat(taicpu.op_reg_reg(A_NEG, dst, dst))
else if (a = 1) then
a_load_reg_reg(list, OS_INT, OS_INT, src, dst)
else if ispowerof2(a, shift, isneg) then begin
list.concat(taicpu.op_reg_reg_const(A_SLDI, dst, src, shift));
if (isneg) then
current_asmdata.CurrAsmList.concat(taicpu.op_reg_reg(A_NEG, dst, dst));
end else if (a >= low(smallint)) and (a <= high(smallint)) then
list.concat(taicpu.op_reg_reg_const(A_MULLI, dst, src,
smallint(a)))
else
usereg := true;
OP_ADD:
if (a = 0) then
a_load_reg_reg(list, size, size, src, dst)
else if (a >= low(smallint)) and (a <= high(smallint)) then
list.concat(taicpu.op_reg_reg_const(A_ADDI, dst, src, smallint(a)))
else
useReg := true;
OP_OR:
if (a = 0) then
a_load_reg_reg(list, size, size, src, dst)
else if (a = -1) then
a_load_const_reg(list, size, -1, dst)
else
do_lo_hi(A_ORI, A_ORIS);
OP_AND:
if (a = 0) then
a_load_const_reg(list, size, 0, dst)
else if (a = -1) then
a_load_reg_reg(list, size, size, src, dst)
else
do_lo_hi_and;
OP_XOR:
if (a = 0) then
a_load_reg_reg(list, size, size, src, dst)
else if (a = -1) then
list.concat(taicpu.op_reg_reg(A_NOT, dst, src))
else
do_lo_hi(A_XORI, A_XORIS);
OP_SHL, OP_SHR, OP_SAR:
begin
if (size in [OS_64, OS_S64]) then
shift := 6
else
shift := 5;
shiftmask := (1 shl shift)-1;
if (a and shiftmask) <> 0 then
list.concat(taicpu.op_reg_reg_const(
TShiftOpCG2AsmOpConst[size in [OS_64, OS_S64], op], dst, src, a and shiftmask))
else
a_load_reg_reg(list, size, size, src, dst);
if ((a shr shift) <> 0) then
internalError(68991);
end
else
internalerror(200109091);
end;
{ if all else failed, load the constant in a register and then
perform the operation }
if (useReg) then begin
scratchreg := rg[R_INTREGISTER].getregister(list, R_SUBWHOLE);
a_load_const_reg(list, size, a, scratchreg);
a_op_reg_reg_reg(list, op, size, scratchreg, src, dst);
end;
end;
procedure tcgppc.a_op_reg_reg_reg(list: TAsmList; op: TOpCg;
size: tcgsize; src1, src2, dst: tregister);
const
op_reg_reg_opcg2asmop32: array[TOpCG] of tasmop =
(A_NONE, A_MR, A_ADD, A_AND, A_DIVWU, A_DIVW, A_MULLW, A_MULLW, A_NEG, A_NOT, A_OR,
A_SRAW, A_SLW, A_SRW, A_SUB, A_XOR);
op_reg_reg_opcg2asmop64: array[TOpCG] of tasmop =
(A_NONE, A_MR, A_ADD, A_AND, A_DIVDU, A_DIVD, A_MULLD, A_MULLD, A_NEG, A_NOT, A_OR,
A_SRAD, A_SLD, A_SRD, A_SUB, A_XOR);
begin
case op of
OP_NEG, OP_NOT:
begin
list.concat(taicpu.op_reg_reg(op_reg_reg_opcg2asmop64[op], dst, src1));
if (op = OP_NOT) and not (size in [OS_64, OS_S64]) then
{ zero/sign extend result again, fromsize is not important here }
a_load_reg_reg(list, OS_S64, size, dst, dst)
end;
else
if (size in [OS_64, OS_S64]) then begin
list.concat(taicpu.op_reg_reg_reg(op_reg_reg_opcg2asmop64[op], dst, src2,
src1));
end else begin
list.concat(taicpu.op_reg_reg_reg(op_reg_reg_opcg2asmop32[op], dst, src2,
src1));
end;
end;
end;
{*************** compare instructructions ****************}
procedure tcgppc.a_cmp_const_reg_label(list: TAsmList; size: tcgsize;
cmp_op: topcmp; a: aint; reg: tregister; l: tasmlabel);
var
scratch_register: TRegister;
signed: boolean;
begin
signed := cmp_op in [OC_GT, OC_LT, OC_GTE, OC_LTE];
{ in the following case, we generate more efficient code when }
{ signed is true }
if (cmp_op in [OC_EQ, OC_NE]) and
(aword(a) > $FFFF) then
signed := true;
if signed then
if (a >= low(smallint)) and (a <= high(smallint)) then
list.concat(taicpu.op_reg_reg_const(A_CMPDI, NR_CR0, reg, a))
else begin
scratch_register := rg[R_INTREGISTER].getregister(list, R_SUBWHOLE);
a_load_const_reg(list, OS_64, a, scratch_register);
list.concat(taicpu.op_reg_reg_reg(A_CMPD, NR_CR0, reg, scratch_register));
end
else if (aword(a) <= $FFFF) then
list.concat(taicpu.op_reg_reg_const(A_CMPLDI, NR_CR0, reg, aword(a)))
else begin
scratch_register := rg[R_INTREGISTER].getregister(list, R_SUBWHOLE);
a_load_const_reg(list, OS_64, a, scratch_register);
list.concat(taicpu.op_reg_reg_reg(A_CMPLD, NR_CR0, reg,
scratch_register));
end;
a_jmp(list, A_BC, TOpCmp2AsmCond[cmp_op], 0, l);
end;
procedure tcgppc.a_cmp_reg_reg_label(list: TAsmList; size: tcgsize;
cmp_op: topcmp; reg1, reg2: tregister; l: tasmlabel);
var
op: tasmop;
begin
if cmp_op in [OC_GT, OC_LT, OC_GTE, OC_LTE] then
if (size in [OS_64, OS_S64]) then
op := A_CMPD
else
op := A_CMPW
else
if (size in [OS_64, OS_S64]) then
op := A_CMPLD
else
op := A_CMPLW;
list.concat(taicpu.op_reg_reg_reg(op, NR_CR0, reg2, reg1));
a_jmp(list, A_BC, TOpCmp2AsmCond[cmp_op], 0, l);
end;
procedure tcgppc.a_jmp_cond(list: TAsmList; cond: TOpCmp; l: tasmlabel);
begin
a_jmp(list, A_BC, TOpCmp2AsmCond[cond], 0, l);
end;
procedure tcgppc.a_jmp_name(list: TAsmList; const s: string);
var
p: taicpu;
begin
p := taicpu.op_sym(A_B, current_asmdata.RefAsmSymbol(s));
p.is_jmp := true;
list.concat(p)
end;
procedure tcgppc.a_jmp_always(list: TAsmList; l: tasmlabel);
begin
a_jmp(list, A_B, C_None, 0, l);
end;
procedure tcgppc.a_jmp_flags(list: TAsmList; const f: TResFlags; l:
tasmlabel);
var
c: tasmcond;
begin
c := flags_to_cond(f);
a_jmp(list, A_BC, c.cond, c.cr - RS_CR0, l);
end;
procedure tcgppc.g_flags2reg(list: TAsmList; size: TCgSize; const f:
TResFlags; reg: TRegister);
var
testbit: byte;
bitvalue: boolean;
begin
{ get the bit to extract from the conditional register + its requested value (0 or 1) }
testbit := ((f.cr - RS_CR0) * 4);
case f.flag of
F_EQ, F_NE:
begin
inc(testbit, 2);
bitvalue := f.flag = F_EQ;
end;
F_LT, F_GE:
begin
bitvalue := f.flag = F_LT;
end;
F_GT, F_LE:
begin
inc(testbit);
bitvalue := f.flag = F_GT;
end;
else
internalerror(200112261);
end;
{ load the conditional register in the destination reg }
list.concat(taicpu.op_reg(A_MFCR, reg));
{ we will move the bit that has to be tested to bit 0 by rotating left }
testbit := (testbit + 1) and 31;
{ extract bit }
list.concat(taicpu.op_reg_reg_const_const_const(
A_RLWINM,reg,reg,testbit,31,31));
{ if we need the inverse, xor with 1 }
if not bitvalue then
list.concat(taicpu.op_reg_reg_const(A_XORI, reg, reg, 1));
end;
{ *********** entry/exit code and address loading ************ }
procedure tcgppc.g_save_standard_registers(list: TAsmList);
begin
{ this work is done in g_proc_entry; additionally it is not safe
to use it because it is called at some weird time }
end;
procedure tcgppc.g_restore_standard_registers(list: TAsmList);
begin
{ this work is done in g_proc_exit; mainly because it is not safe to
put the register restore code here because it is called at some weird time }
end;
procedure tcgppc.calcFirstUsedFPR(out firstfpr : TSuperRegister; out fprcount : aint);
var
reg : TSuperRegister;
begin
fprcount := 0;
firstfpr := RS_F31;
if not (po_assembler in current_procinfo.procdef.procoptions) then
for reg := RS_F14 to RS_F31 do
if reg in rg[R_FPUREGISTER].used_in_proc then begin
fprcount := ord(RS_F31)-ord(reg)+1;
firstfpr := reg;
break;
end;
end;
procedure tcgppc.calcFirstUsedGPR(out firstgpr : TSuperRegister; out gprcount : aint);
var
reg : TSuperRegister;
begin
gprcount := 0;
firstgpr := RS_R31;
if not (po_assembler in current_procinfo.procdef.procoptions) then
for reg := RS_R14 to RS_R31 do
if reg in rg[R_INTREGISTER].used_in_proc then begin
gprcount := ord(RS_R31)-ord(reg)+1;
firstgpr := reg;
break;
end;
end;
procedure tcgppc.profilecode_savepara(para : tparavarsym; list : TAsmList);
begin
case (para.paraloc[calleeside].location^.loc) of
LOC_REGISTER, LOC_CREGISTER:
a_load_reg_ref(list, OS_INT, para.paraloc[calleeside].Location^.size,
para.paraloc[calleeside].Location^.register, para.localloc.reference);
LOC_FPUREGISTER, LOC_CFPUREGISTER:
a_loadfpu_reg_ref(list, para.paraloc[calleeside].Location^.size,
para.paraloc[calleeside].Location^.register, para.localloc.reference);
LOC_MMREGISTER, LOC_CMMREGISTER:
// not supported
internalerror(2006041801);
end;
end;
procedure tcgppc.profilecode_restorepara(para : tparavarsym; list : TAsmList);
begin
case (para.paraloc[calleeside].Location^.loc) of
LOC_REGISTER, LOC_CREGISTER:
a_load_ref_reg(list, para.paraloc[calleeside].Location^.size, OS_INT,
para.localloc.reference, para.paraloc[calleeside].Location^.register);
LOC_FPUREGISTER, LOC_CFPUREGISTER:
a_loadfpu_ref_reg(list, para.paraloc[calleeside].Location^.size,
para.localloc.reference, para.paraloc[calleeside].Location^.register);
LOC_MMREGISTER, LOC_CMMREGISTER:
// not supported
internalerror(2006041802);
end;
end;
procedure tcgppc.g_profilecode(list: TAsmList);
begin
current_procinfo.procdef.paras.ForEachCall(TObjectListCallback(@profilecode_savepara), list);
a_call_name_direct(list, '_mcount', false, true);
current_procinfo.procdef.paras.ForEachCall(TObjectListCallback(@profilecode_restorepara), list);
end;
{ Generates the entry code of a procedure/function.
This procedure may be called before, as well as after g_return_from_proc
is called. localsize is the sum of the size necessary for local variables
and the maximum possible combined size of ALL the parameters of a procedure
called by the current one
IMPORTANT: registers are not to be allocated through the register
allocator here, because the register colouring has already occured !!
}
procedure tcgppc.g_proc_entry(list: TAsmList; localsize: longint;
nostackframe: boolean);
var
firstregfpu, firstreggpr: TSuperRegister;
needslinkreg: boolean;
fprcount, gprcount : aint;
{ Save standard registers, both FPR and GPR; does not support VMX/Altivec }
procedure save_standard_registers;
var
regcount : TSuperRegister;
href : TReference;
mayNeedLRStore : boolean;
begin
{ there are two ways to do this: manually, by generating a few "std" instructions,
or via the restore helper functions. The latter are selected by the -Og switch,
i.e. "optimize for size" }
if (cs_opt_size in aktoptimizerswitches) then begin
mayNeedLRStore := false;
if ((fprcount > 0) and (gprcount > 0)) then begin
a_op_const_reg_reg(list, OP_SUB, OS_INT, 8 * fprcount, NR_R1, NR_R12);
a_call_name_direct(list, '_savegpr1_' + intToStr(32-gprcount), false, false, false);
a_call_name_direct(list, '_savefpr_' + intToStr(32-fprcount), false, false, false);
end else if (gprcount > 0) then
a_call_name_direct(list, '_savegpr0_' + intToStr(32-gprcount), false, false, false)
else if (fprcount > 0) then
a_call_name_direct(list, '_savefpr_' + intToStr(32-fprcount), false, false, false)
else
mayNeedLRStore := true;
end else begin
{ save registers, FPU first, then GPR }
reference_reset_base(href, NR_STACK_POINTER_REG, -8);
if (fprcount > 0) then
for regcount := RS_F31 downto firstregfpu do begin
a_loadfpu_reg_ref(list, OS_FLOAT, newreg(R_FPUREGISTER, regcount,
R_SUBNONE), href);
dec(href.offset, tcgsize2size[OS_FLOAT]);
end;
if (gprcount > 0) then
for regcount := RS_R31 downto firstreggpr do begin
a_load_reg_ref(list, OS_INT, OS_INT, newreg(R_INTREGISTER, regcount,
R_SUBNONE), href);
dec(href.offset, tcgsize2size[OS_INT]);
end;
{ VMX registers not supported by FPC atm }
{ in this branch we always need to store LR ourselves}
mayNeedLRStore := true;
end;
{ we may need to store R0 (=LR) ourselves }
if ((cs_profile in initmoduleswitches) or (mayNeedLRStore)) and (needslinkreg) then begin
reference_reset_base(href, NR_STACK_POINTER_REG, LA_LR_ELF);
list.concat(taicpu.op_reg_ref(A_STD, NR_R0, href));
end;
end;
var
href: treference;
begin
calcFirstUsedFPR(firstregfpu, fprcount);
calcFirstUsedGPR(firstreggpr, gprcount);
{ calculate real stack frame size }
localsize := tppcprocinfo(current_procinfo).calc_stackframe_size(
gprcount, fprcount);
{ determine whether we need to save the link register }
needslinkreg :=
((not (po_assembler in current_procinfo.procdef.procoptions)) and
((pi_do_call in current_procinfo.flags) or (cs_profile in initmoduleswitches))) or
((cs_opt_size in aktoptimizerswitches) and ((fprcount > 0) or (gprcount > 0))) or
([cs_lineinfo, cs_debuginfo] * aktmoduleswitches <> []);
a_reg_alloc(list, NR_STACK_POINTER_REG);
a_reg_alloc(list, NR_R0);
{ move link register to r0 }
if (needslinkreg) then
list.concat(taicpu.op_reg(A_MFLR, NR_R0));
save_standard_registers;
{ save old stack frame pointer }
if (tppcprocinfo(current_procinfo).needs_frame_pointer) then begin
a_reg_alloc(list, NR_OLD_STACK_POINTER_REG);
list.concat(taicpu.op_reg_reg(A_MR, NR_OLD_STACK_POINTER_REG, NR_STACK_POINTER_REG));
end;
{ create stack frame }
if (not nostackframe) and (localsize > 0) then begin
if (localsize <= high(smallint)) then begin
reference_reset_base(href, NR_STACK_POINTER_REG, -localsize);
a_load_store(list, A_STDU, NR_STACK_POINTER_REG, href);
end else begin
reference_reset_base(href, NR_NO, -localsize);
{ Use R0 for loading the constant (which is definitely > 32k when entering
this branch).
Inlined at this position because it must not use temp registers because
register allocations have already been done }
{ Code template:
lis r0,ofs@highest
ori r0,r0,ofs@higher
sldi r0,r0,32
oris r0,r0,ofs@h
ori r0,r0,ofs@l
}
list.concat(taicpu.op_reg_const(A_LIS, NR_R0, word(href.offset shr 48)));
list.concat(taicpu.op_reg_reg_const(A_ORI, NR_R0, NR_R0, word(href.offset shr 32)));
list.concat(taicpu.op_reg_reg_const(A_SLDI, NR_R0, NR_R0, 32));
list.concat(taicpu.op_reg_reg_const(A_ORIS, NR_R0, NR_R0, word(href.offset shr 16)));
list.concat(taicpu.op_reg_reg_const(A_ORI, NR_R0, NR_R0, word(href.offset)));
list.concat(taicpu.op_reg_reg_reg(A_STDUX, NR_R1, NR_R1, NR_R0));
end;
end;
{ CR register not used by FPC atm }
{ keep R1 allocated??? }
a_reg_dealloc(list, NR_R0);
end;
{ Generates the exit code for a method.
This procedure may be called before, as well as after g_stackframe_entry
is called.
IMPORTANT: registers are not to be allocated through the register
allocator here, because the register colouring has already occured !!
}
procedure tcgppc.g_proc_exit(list: TAsmList; parasize: longint; nostackframe:
boolean);
var
firstregfpu, firstreggpr: TSuperRegister;
needslinkreg : boolean;
fprcount, gprcount: aint;
{ Restore standard registers, both FPR and GPR; does not support VMX/Altivec }
procedure restore_standard_registers;
var
{ flag indicating whether we need to manually add the exit code (e.g. blr instruction)
or not }
needsExitCode : Boolean;
href : treference;
regcount : TSuperRegister;
begin
{ there are two ways to do this: manually, by generating a few "ld" instructions,
or via the restore helper functions. The latter are selected by the -Og switch,
i.e. "optimize for size" }
if (cs_opt_size in aktoptimizerswitches) then begin
needsExitCode := false;
if ((fprcount > 0) and (gprcount > 0)) then begin
a_op_const_reg_reg(list, OP_SUB, OS_INT, 8 * fprcount, NR_R1, NR_R12);
a_call_name_direct(list, '_restgpr1_' + intToStr(32-gprcount), false, false, false);
a_jmp_name(list, '_restfpr_' + intToStr(32-fprcount));
end else if (gprcount > 0) then
a_jmp_name(list, '_restgpr0_' + intToStr(32-gprcount))
else if (fprcount > 0) then
a_jmp_name(list, '_restfpr_' + intToStr(32-fprcount))
else
needsExitCode := true;
end else begin
needsExitCode := true;
{ restore registers, FPU first, GPR next }
reference_reset_base(href, NR_STACK_POINTER_REG, -tcgsize2size[OS_FLOAT]);
if (fprcount > 0) then
for regcount := RS_F31 downto firstregfpu do begin
a_loadfpu_ref_reg(list, OS_FLOAT, href, newreg(R_FPUREGISTER, regcount,
R_SUBNONE));
dec(href.offset, tcgsize2size[OS_FLOAT]);
end;
if (gprcount > 0) then
for regcount := RS_R31 downto firstreggpr do begin
a_load_ref_reg(list, OS_INT, OS_INT, href, newreg(R_INTREGISTER, regcount,
R_SUBNONE));
dec(href.offset, tcgsize2size[OS_INT]);
end;
{ VMX not supported by FPC atm }
end;
if (needsExitCode) then begin
{ restore LR (if needed) }
if (needslinkreg) then begin
reference_reset_base(href, NR_STACK_POINTER_REG, LA_LR_ELF);
list.concat(taicpu.op_reg_ref(A_LD, NR_R0, href));
list.concat(taicpu.op_reg(A_MTLR, NR_R0));
end;
{ generate return instruction }
list.concat(taicpu.op_none(A_BLR));
end;
end;
var
href: treference;
localsize : aint;
begin
calcFirstUsedFPR(firstregfpu, fprcount);
calcFirstUsedGPR(firstreggpr, gprcount);
{ determine whether we need to restore the link register }
needslinkreg :=
((not (po_assembler in current_procinfo.procdef.procoptions)) and
((pi_do_call in current_procinfo.flags) or (cs_profile in initmoduleswitches))) or
((cs_opt_size in aktoptimizerswitches) and ((fprcount > 0) or (gprcount > 0))) or
([cs_lineinfo, cs_debuginfo] * aktmoduleswitches <> []);
{ calculate stack frame }
localsize := tppcprocinfo(current_procinfo).calc_stackframe_size(
gprcount, fprcount);
{ CR register not supported }
{ restore stack pointer }
if (not nostackframe) and (localsize > 0) then begin
if (localsize <= high(smallint)) then begin
list.concat(taicpu.op_reg_reg_const(A_ADDI, NR_STACK_POINTER_REG, NR_STACK_POINTER_REG, localsize));
end else begin
reference_reset_base(href, NR_NO, localsize);
{ use R0 for loading the constant (which is definitely > 32k when entering
this branch)
Inlined because it must not use temp registers because register allocations
have already been done
}
{ Code template:
lis r0,ofs@highest
ori r0,ofs@higher
sldi r0,r0,32
oris r0,r0,ofs@h
ori r0,r0,ofs@l
}
list.concat(taicpu.op_reg_const(A_LIS, NR_R0, word(href.offset shr 48)));
list.concat(taicpu.op_reg_reg_const(A_ORI, NR_R0, NR_R0, word(href.offset shr 32)));
list.concat(taicpu.op_reg_reg_const(A_SLDI, NR_R0, NR_R0, 32));
list.concat(taicpu.op_reg_reg_const(A_ORIS, NR_R0, NR_R0, word(href.offset shr 16)));
list.concat(taicpu.op_reg_reg_const(A_ORI, NR_R0, NR_R0, word(href.offset)));
list.concat(taicpu.op_reg_reg_reg(A_ADD, NR_R1, NR_R1, NR_R0));
end;
end;
restore_standard_registers;
end;
procedure tcgppc.a_loadaddr_ref_reg(list: TAsmList; const ref: treference; r:
tregister);
var
ref2, tmpref: treference;
{ register used to construct address }
tempreg : TRegister;
begin
ref2 := ref;
fixref(list, ref2, OS_64);
{ load a symbol }
if (assigned(ref2.symbol) or (hasLargeOffset(ref2))) then begin
{ add the symbol's value to the base of the reference, and if the }
{ reference doesn't have a base, create one }
reference_reset(tmpref);
tmpref.offset := ref2.offset;
tmpref.symbol := ref2.symbol;
tmpref.relsymbol := ref2.relsymbol;
{ load 64 bit reference into r. If the reference already has a base register,
first load the 64 bit value into a temp register, then add it to the result
register rD }
if (ref2.base <> NR_NO) then begin
{ already have a base register, so allocate a new one }
tempreg := rg[R_INTREGISTER].getregister(list, R_SUBWHOLE);
end else begin
tempreg := r;
end;
{ code for loading a reference from a symbol into a register rD }
(*
lis rX,SYM@highest
ori rX,SYM@higher
sldi rX,rX,32
oris rX,rX,SYM@h
ori rX,rX,SYM@l
*)
{$IFDEF EXTDEBUG}
list.concat(tai_comment.create(strpnew('loadaddr_ref_reg ')));
{$ENDIF EXTDEBUG}
if (assigned(tmpref.symbol)) then begin
tmpref.refaddr := addr_highest;
list.concat(taicpu.op_reg_ref(A_LIS, tempreg, tmpref));
tmpref.refaddr := addr_higher;
list.concat(taicpu.op_reg_reg_ref(A_ORI, tempreg, tempreg, tmpref));
list.concat(taicpu.op_reg_reg_const(A_SLDI, tempreg, tempreg, 32));
tmpref.refaddr := addr_high;
list.concat(taicpu.op_reg_reg_ref(A_ORIS, tempreg, tempreg, tmpref));
tmpref.refaddr := addr_low;
list.concat(taicpu.op_reg_reg_ref(A_ORI, tempreg, tempreg, tmpref));
end else
a_load_const_reg(list, OS_ADDR, tmpref.offset, tempreg);
{ if there's already a base register, add the temp register contents to
the base register }
if (ref2.base <> NR_NO) then begin
list.concat(taicpu.op_reg_reg_reg(A_ADD, r, tempreg, ref2.base));
end;
end else if (ref2.offset <> 0) then begin
{ no symbol, but offset <> 0 }
if (ref2.base <> NR_NO) then begin
a_op_const_reg_reg(list, OP_ADD, OS_64, ref2.offset, ref2.base, r)
{ FixRef makes sure that "(ref.index <> R_NO) and (ref.offset <> 0)" never
occurs, so now only ref.offset has to be loaded }
end else begin
a_load_const_reg(list, OS_64, ref2.offset, r);
end;
end else if (ref2.index <> NR_NO) then begin
list.concat(taicpu.op_reg_reg_reg(A_ADD, r, ref2.base, ref2.index))
end else if (ref2.base <> NR_NO) and
(r <> ref2.base) then begin
a_load_reg_reg(list, OS_ADDR, OS_ADDR, ref2.base, r)
//list.concat(taicpu.op_reg_reg(A_MR, ref2.base, r));
end else begin
list.concat(taicpu.op_reg_const(A_LI, r, 0));
end;
end;
{ ************* concatcopy ************ }
const
maxmoveunit = 8;
procedure tcgppc.g_concatcopy(list: TAsmList; const source, dest: treference;
len: aint);
var
countreg, tempreg: TRegister;
src, dst: TReference;
lab: tasmlabel;
count, count2: longint;
size: tcgsize;
begin
{$IFDEF extdebug}
if len > high(aint) then
internalerror(2002072704);
list.concat(tai_comment.create(strpnew('g_concatcopy1 ' + inttostr(len) + ' bytes left ')));
{$ENDIF extdebug}
{ if the references are equal, exit, there is no need to copy anything }
if (references_equal(source, dest)) then
exit;
{ make sure short loads are handled as optimally as possible;
note that the data here never overlaps, so we can do a forward
copy at all times.
NOTE: maybe use some scratch registers to pair load/store instructions
}
if (len <= maxmoveunit) then begin
src := source; dst := dest;
{$IFDEF extdebug}
list.concat(tai_comment.create(strpnew('g_concatcopy3 ' + inttostr(src.offset) + ' ' + inttostr(dst.offset))));
{$ENDIF extdebug}
while (len <> 0) do begin
if (len = 8) then begin
a_load_ref_ref(list, OS_64, OS_64, src, dst);
dec(len, 8);
end else if (len >= 4) then begin
a_load_ref_ref(list, OS_32, OS_32, src, dst);
inc(src.offset, 4); inc(dst.offset, 4);
dec(len, 4);
end else if (len >= 2) then begin
a_load_ref_ref(list, OS_16, OS_16, src, dst);
inc(src.offset, 2); inc(dst.offset, 2);
dec(len, 2);
end else begin
a_load_ref_ref(list, OS_8, OS_8, src, dst);
inc(src.offset, 1); inc(dst.offset, 1);
dec(len, 1);
end;
end;
exit;
end;
{$IFDEF extdebug}
list.concat(tai_comment.create(strpnew('g_concatcopy2 ' + inttostr(len) + ' bytes left ')));
{$ENDIF extdebug}
count := len div maxmoveunit;
reference_reset(src);
reference_reset(dst);
{ load the address of source into src.base }
if (count > 4) or
not issimpleref(source) or
((source.index <> NR_NO) and
((source.offset + len) > high(smallint))) then begin
src.base := rg[R_INTREGISTER].getregister(list, R_SUBWHOLE);
a_loadaddr_ref_reg(list, source, src.base);
end else begin
src := source;
end;
{ load the address of dest into dst.base }
if (count > 4) or
not issimpleref(dest) or
((dest.index <> NR_NO) and
((dest.offset + len) > high(smallint))) then begin
dst.base := rg[R_INTREGISTER].getregister(list, R_SUBWHOLE);
a_loadaddr_ref_reg(list, dest, dst.base);
end else begin
dst := dest;
end;
{ generate a loop }
if count > 4 then begin
{ the offsets are zero after the a_loadaddress_ref_reg and just
have to be set to 8. I put an Inc there so debugging may be
easier (should offset be different from zero here, it will be
easy to notice in the generated assembler }
inc(dst.offset, 8);
inc(src.offset, 8);
list.concat(taicpu.op_reg_reg_const(A_SUBI, src.base, src.base, 8));
list.concat(taicpu.op_reg_reg_const(A_SUBI, dst.base, dst.base, 8));
countreg := rg[R_INTREGISTER].getregister(list, R_SUBWHOLE);
a_load_const_reg(list, OS_64, count, countreg);
{ explicitely allocate F0 since it can be used safely here
(for holding date that's being copied) }
a_reg_alloc(list, NR_F0);
current_asmdata.getjumplabel(lab);
a_label(list, lab);
list.concat(taicpu.op_reg_reg_const(A_SUBIC_, countreg, countreg, 1));
list.concat(taicpu.op_reg_ref(A_LFDU, NR_F0, src));
list.concat(taicpu.op_reg_ref(A_STFDU, NR_F0, dst));
a_jmp(list, A_BC, C_NE, 0, lab);
a_reg_dealloc(list, NR_F0);
len := len mod 8;
end;
count := len div 8;
{ unrolled loop }
if count > 0 then begin
a_reg_alloc(list, NR_F0);
for count2 := 1 to count do begin
a_loadfpu_ref_reg(list, OS_F64, src, NR_F0);
a_loadfpu_reg_ref(list, OS_F64, NR_F0, dst);
inc(src.offset, 8);
inc(dst.offset, 8);
end;
a_reg_dealloc(list, NR_F0);
len := len mod 8;
end;
if (len and 4) <> 0 then begin
a_reg_alloc(list, NR_R0);
a_load_ref_reg(list, OS_32, OS_32, src, NR_R0);
a_load_reg_ref(list, OS_32, OS_32, NR_R0, dst);
inc(src.offset, 4);
inc(dst.offset, 4);
a_reg_dealloc(list, NR_R0);
end;
{ copy the leftovers }
if (len and 2) <> 0 then begin
a_reg_alloc(list, NR_R0);
a_load_ref_reg(list, OS_16, OS_16, src, NR_R0);
a_load_reg_ref(list, OS_16, OS_16, NR_R0, dst);
inc(src.offset, 2);
inc(dst.offset, 2);
a_reg_dealloc(list, NR_R0);
end;
if (len and 1) <> 0 then begin
a_reg_alloc(list, NR_R0);
a_load_ref_reg(list, OS_8, OS_8, src, NR_R0);
a_load_reg_ref(list, OS_8, OS_8, NR_R0, dst);
a_reg_dealloc(list, NR_R0);
end;
end;
procedure tcgppc.g_overflowcheck(list: TAsmList; const l: tlocation; def:
tdef);
var
hl: tasmlabel;
flags : TResFlags;
begin
if not (cs_check_overflow in aktlocalswitches) then
exit;
current_asmdata.getjumplabel(hl);
if not ((def.deftype = pointerdef) or
((def.deftype = orddef) and
(torddef(def).typ in [u64bit, u16bit, u32bit, u8bit, uchar,
bool8bit, bool16bit, bool32bit]))) then
begin
{ ... instructions setting overflow flag ...
mfxerf R0
mtcrf 128, R0
ble cr0, label }
list.concat(taicpu.op_reg(A_MFXER, NR_R0));
list.concat(taicpu.op_const_reg(A_MTCRF, 128, NR_R0));
flags.cr := RS_CR0;
flags.flag := F_LE;
a_jmp_flags(list, flags, hl);
end else
a_jmp_cond(list, OC_AE, hl);
a_call_name(list, 'FPC_OVERFLOW');
a_label(list, hl);
end;
procedure tcgppc.g_intf_wrapper(list: TAsmList; procdef: tprocdef; const
labelname: string; ioffset: longint);
procedure loadvmttor11;
var
href: treference;
begin
reference_reset_base(href, NR_R3, 0);
cg.a_load_ref_reg(list, OS_ADDR, OS_ADDR, href, NR_R11);
end;
procedure op_onr11methodaddr;
var
href: treference;
begin
if (procdef.extnumber = $FFFF) then
Internalerror(200006139);
{ call/jmp vmtoffs(%eax) ; method offs }
reference_reset_base(href, NR_R11,
procdef._class.vmtmethodoffset(procdef.extnumber));
if not (hasLargeOffset(href)) then begin
list.concat(taicpu.op_reg_reg_const(A_ADDIS, NR_R11, NR_R11,
smallint((href.offset shr 16) + ord(smallint(href.offset and $FFFF) <
0))));
href.offset := smallint(href.offset and $FFFF);
end else
{ add support for offsets > 16 bit }
internalerror(200510201);
list.concat(taicpu.op_reg_ref(A_LD, NR_R11, href));
{ the loaded reference is a function descriptor reference, so deref again
(at ofs 0 there's the real pointer) }
{$warning ts:TODO: update GOT reference}
reference_reset_base(href, NR_R11, 0);
list.concat(taicpu.op_reg_ref(A_LD, NR_R11, href));
list.concat(taicpu.op_reg(A_MTCTR, NR_R11));
list.concat(taicpu.op_none(A_BCTR));
{ NOP needed for the linker...? }
list.concat(taicpu.op_none(A_NOP));
end;
var
make_global: boolean;
begin
if (not (procdef.proctypeoption in [potype_function, potype_procedure])) then
Internalerror(200006137);
if not assigned(procdef._class) or
(procdef.procoptions * [po_classmethod, po_staticmethod,
po_methodpointer, po_interrupt, po_iocheck] <> []) then
Internalerror(200006138);
if procdef.owner.symtabletype <> objectsymtable then
Internalerror(200109191);
make_global := false;
if (not current_module.is_unit) or
(cs_create_smart in aktmoduleswitches) or
(procdef.owner.defowner.owner.symtabletype = globalsymtable) then
make_global := true;
if make_global then
List.concat(Tai_symbol.Createname_global(labelname, AT_FUNCTION, 0))
else
List.concat(Tai_symbol.Createname(labelname, AT_FUNCTION, 0));
{ set param1 interface to self }
g_adjust_self_value(list, procdef, ioffset);
if po_virtualmethod in procdef.procoptions then begin
loadvmttor11;
op_onr11methodaddr;
end else
{$note ts:todo add GOT change?? - think not needed :) }
list.concat(taicpu.op_sym(A_B,current_asmdata.RefAsmSymbol('.' + procdef.mangledname)));
List.concat(Tai_symbol_end.Createname(labelname));
end;
{***************** This is private property, keep out! :) *****************}
function tcgppc.issimpleref(const ref: treference): boolean;
begin
if (ref.base = NR_NO) and
(ref.index <> NR_NO) then
internalerror(200208101);
result :=
not (assigned(ref.symbol)) and
(((ref.index = NR_NO) and
(ref.offset >= low(smallint)) and
(ref.offset <= high(smallint))) or
((ref.index <> NR_NO) and
(ref.offset = 0)));
end;
function tcgppc.load_got_symbol(list: TAsmList; symbol : string) : tregister;
var
l: tasmsymbol;
ref: treference;
symname : string;
begin
maybe_new_object_file(current_asmdata.asmlists[al_picdata]);
symname := '_$' + current_asmdata.name + '$got$' + symbol;
l:=current_asmdata.getasmsymbol(symname);
if not(assigned(l)) then begin
l:=current_asmdata.DefineAsmSymbol(symname, AB_COMMON, AT_DATA);
current_asmdata.asmlists[al_picdata].concat(tai_section.create(sec_toc, '.toc', 8));
current_asmdata.asmlists[al_picdata].concat(tai_symbol.create_global(l,0));
current_asmdata.asmlists[al_picdata].concat(tai_directive.create(asd_toc_entry, symbol + '[TC], ' + symbol));
end;
reference_reset_symbol(ref,l,0);
ref.base := NR_R2;
ref.refaddr := addr_pic;
result := rg[R_INTREGISTER].getregister(list, R_SUBWHOLE);
{$IFDEF EXTDEBUG}
list.concat(tai_comment.create(strpnew('loading got reference for ' + symbol)));
{$ENDIF EXTDEBUG}
// cg.a_load_ref_reg(list,OS_ADDR,OS_ADDR,ref,result);
list.concat(taicpu.op_reg_ref(A_LD, result, ref));
end;
function tcgppc.fixref(list: TAsmList; var ref: treference; const size : TCgsize): boolean;
var
tmpreg: tregister;
name : string;
begin
result := false;
{ Avoids recursion. }
if (ref.refaddr = addr_pic) then exit;
{$IFDEF EXTDEBUG}
list.concat(tai_comment.create(strpnew('fixref0 ' + ref2string(ref))));
{$ENDIF EXTDEBUG}
{ if we have to create PIC, add the symbol to the TOC/GOT }
if (cs_create_pic in aktmoduleswitches) and (assigned(ref.symbol)) then begin
tmpreg := load_got_symbol(list, ref.symbol.name);
if (ref.base = NR_NO) then
ref.base := tmpreg
else if (ref.index = NR_NO) then
ref.index := tmpreg
else begin
a_op_reg_reg_reg(list, OP_ADD, OS_ADDR, ref.base, tmpreg, tmpreg);
ref.base := tmpreg;
end;
ref.symbol := nil;
{$IFDEF EXTDEBUG}
list.concat(tai_comment.create(strpnew('fixref-pic ' + ref2string(ref))));
{$ENDIF EXTDEBUG}
end;
if (ref.base = NR_NO) then begin
ref.base := ref.index;
ref.index := NR_NO;
end;
if (ref.base <> NR_NO) and (ref.index <> NR_NO) and
((ref.offset <> 0) or assigned(ref.symbol)) then begin
result := true;
tmpreg := rg[R_INTREGISTER].getregister(list, R_SUBWHOLE);
a_op_reg_reg_reg(list, OP_ADD, size, ref.base, ref.index, tmpreg);
ref.base := tmpreg;
ref.index := NR_NO;
end;
if (ref.index <> NR_NO) and (assigned(ref.symbol) or (ref.offset <> 0)) then
internalerror(2006010506);
{$IFDEF EXTDEBUG}
list.concat(tai_comment.create(strpnew('fixref1 ' + ref2string(ref))));
{$ENDIF EXTDEBUG}
end;
procedure tcgppc.a_load_store(list: TAsmList; op: tasmop; reg: tregister;
ref: treference);
var
tmpreg, tmpreg2: tregister;
tmpref: treference;
largeOffset: Boolean;
begin
{ at this point there must not be a combination of values in the ref treference
which is not possible to directly map to instructions of the PowerPC architecture }
if (ref.index <> NR_NO) and ((ref.offset <> 0) or (assigned(ref.symbol))) then
internalerror(200310131);
{ if this is a PIC'ed address, handle it and exit }
if (ref.refaddr = addr_pic) then begin
if (ref.offset <> 0) then
internalerror(2006010501);
if (ref.index <> NR_NO) then
internalerror(2006010502);
if (not assigned(ref.symbol)) then
internalerror(200601050);
list.concat(taicpu.op_reg_ref(op, reg, ref));
exit;
end;
{ for some instructions we need to check that the offset is divisible by at
least four. If not, add the bytes which are "off" to the base register and
adjust the offset accordingly }
case op of
A_LD, A_LDU, A_STD, A_STDU, A_LWA :
if ((ref.offset mod 4) <> 0) then begin
tmpreg := rg[R_INTREGISTER].getregister(list, R_SUBWHOLE);
if (ref.base <> NR_NO) then begin
a_op_const_reg_reg(list, OP_ADD, OS_ADDR, ref.offset mod 4, ref.base, tmpreg);
ref.base := tmpreg;
end else begin
list.concat(taicpu.op_reg_const(A_LI, tmpreg, ref.offset mod 4));
ref.base := tmpreg;
end;
ref.offset := (ref.offset div 4) * 4;
end;
end;
{$IFDEF EXTDEBUG}
list.concat(tai_comment.create(strpnew('a_load_store1 ' + BoolToStr(ref.refaddr = addr_pic))));
{$ENDIF EXTDEBUG}
{ if we have to load/store from a symbol or large addresses, use a temporary register
containing the address }
if (assigned(ref.symbol) or (hasLargeOffset(ref))) then begin
tmpreg := rg[R_INTREGISTER].getregister(list, R_SUBWHOLE);
if (hasLargeOffset(ref) and (ref.base = NR_NO)) then begin
ref.base := rg[R_INTREGISTER].getregister(list, R_SUBWHOLE);
a_load_const_reg(list, OS_ADDR, ref.offset, ref.base);
ref.offset := 0;
end;
reference_reset(tmpref);
tmpref.symbol := ref.symbol;
tmpref.relsymbol := ref.relsymbol;
tmpref.offset := ref.offset;
if (ref.base <> NR_NO) then begin
{ As long as the TOC isn't working we try to achieve highest speed (in this
case by allowing instructions execute in parallel) as possible at the cost
of using another temporary register. So the code template when there is
a base register and an offset is the following:
lis rT1, SYM+offs@highest
ori rT1, rT1, SYM+offs@higher
lis rT2, SYM+offs@hi
ori rT2, SYM+offs@lo
rldimi rT2, rT1, 32
<op>X reg, base, rT2
}
tmpreg2 := rg[R_INTREGISTER].getregister(list, R_SUBWHOLE);
if (assigned(tmpref.symbol)) then begin
tmpref.refaddr := addr_highest;
list.concat(taicpu.op_reg_ref(A_LIS, tmpreg, tmpref));
tmpref.refaddr := addr_higher;
list.concat(taicpu.op_reg_reg_ref(A_ORI, tmpreg, tmpreg, tmpref));
tmpref.refaddr := addr_high;
list.concat(taicpu.op_reg_ref(A_LIS, tmpreg2, tmpref));
tmpref.refaddr := addr_low;
list.concat(taicpu.op_reg_reg_ref(A_ORI, tmpreg2, tmpreg2, tmpref));
list.concat(taicpu.op_reg_reg_const_const(A_RLDIMI, tmpreg2, tmpreg, 32, 0));
end else
a_load_const_reg(list, OS_ADDR, tmpref.offset, tmpreg2);
reference_reset(tmpref);
tmpref.base := ref.base;
tmpref.index := tmpreg2;
case op of
{ the code generator doesn't generate update instructions anyway, so
error out on those instructions }
A_LBZ : op := A_LBZX;
A_LHZ : op := A_LHZX;
A_LWZ : op := A_LWZX;
A_LD : op := A_LDX;
A_LHA : op := A_LHAX;
A_LWA : op := A_LWAX;
A_LFS : op := A_LFSX;
A_LFD : op := A_LFDX;
A_STB : op := A_STBX;
A_STH : op := A_STHX;
A_STW : op := A_STWX;
A_STD : op := A_STDX;
A_STFS : op := A_STFSX;
A_STFD : op := A_STFDX;
else
{ unknown load/store opcode }
internalerror(2005101302);
end;
list.concat(taicpu.op_reg_ref(op, reg, tmpref));
end else begin
{ when accessing value from a reference without a base register, use the
following code template:
lis rT,SYM+offs@highesta
ori rT,SYM+offs@highera
sldi rT,rT,32
oris rT,rT,SYM+offs@ha
ld rD,SYM+offs@l(rT)
}
tmpref.refaddr := addr_highesta;
list.concat(taicpu.op_reg_ref(A_LIS, tmpreg, tmpref));
tmpref.refaddr := addr_highera;
list.concat(taicpu.op_reg_reg_ref(A_ORI, tmpreg, tmpreg, tmpref));
list.concat(taicpu.op_reg_reg_const(A_SLDI, tmpreg, tmpreg, 32));
tmpref.refaddr := addr_higha;
list.concat(taicpu.op_reg_reg_ref(A_ORIS, tmpreg, tmpreg, tmpref));
tmpref.base := tmpreg;
tmpref.refaddr := addr_low;
list.concat(taicpu.op_reg_ref(op, reg, tmpref));
end;
end else begin
list.concat(taicpu.op_reg_ref(op, reg, ref));
end;
end;
procedure tcgppc.a_jmp(list: TAsmList; op: tasmop; c: tasmcondflag;
crval: longint; l: tasmlabel);
var
p: taicpu;
begin
p := taicpu.op_sym(op, current_asmdata.RefAsmSymbol(l.name));
if op <> A_B then
create_cond_norm(c, crval, p.condition);
p.is_jmp := true;
list.concat(p)
end;
function tcgppc.hasLargeOffset(const ref : TReference) : Boolean; {$ifdef ver2_0}inline;{$endif}
begin
{ this rather strange calculation is required because offsets of TReferences are unsigned }
result := aword(ref.offset-low(smallint)) > high(smallint)-low(smallint);
end;
procedure tcgppc.loadConstantPIC(list : TAsmList; size : TCGSize; a : aint; reg : TRegister);
var
l: tasmsymbol;
ref: treference;
symname : string;
begin
maybe_new_object_file(current_asmdata.asmlists[al_picdata]);
symname := '_$' + current_asmdata.name + '$toc$' + hexstr(a, sizeof(a)*2);
l:=current_asmdata.getasmsymbol(symname);
if not(assigned(l)) then begin
l:=current_asmdata.DefineAsmSymbol(symname,AB_GLOBAL, AT_DATA);
current_asmdata.asmlists[al_picdata].concat(tai_section.create(sec_toc, '.toc', 8));
current_asmdata.asmlists[al_picdata].concat(tai_symbol.create_global(l,0));
current_asmdata.asmlists[al_picdata].concat(tai_directive.create(asd_toc_entry, symname + '[TC], ' + inttostr(a)));
end;
reference_reset_symbol(ref,l,0);
ref.base := NR_R2;
ref.refaddr := addr_pic;
{$IFDEF EXTDEBUG}
list.concat(tai_comment.create(strpnew('loading value from TOC reference for ' + symname)));
{$ENDIF EXTDEBUG}
cg.a_load_ref_reg(list, OS_INT, OS_INT, ref, reg);
end;
begin
cg := tcgppc.create;
end.