fpc/compiler/rgobj.pas
2005-03-25 21:55:43 +00:00

2033 lines
66 KiB
ObjectPascal

{
$Id$
Copyright (c) 1998-2002 by Florian Klaempfl
This unit implements the base class for the register allocator
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
{$i fpcdefs.inc}
{ Allow duplicate allocations, can be used to get the .s file written }
{ $define ALLOWDUPREG}
unit rgobj;
interface
uses
cutils, cpubase,
aasmbase,aasmtai,aasmcpu,
cclasses,globtype,cgbase,cgutils,
cpuinfo
;
type
{
The interference bitmap contains of 2 layers:
layer 1 - 256*256 blocks with pointers to layer 2 blocks
layer 2 - blocks of 32*256 (32 bytes = 256 bits)
}
Tinterferencebitmap2 = array[byte] of set of byte;
Pinterferencebitmap2 = ^Tinterferencebitmap2;
Tinterferencebitmap1 = array[byte] of Pinterferencebitmap2;
pinterferencebitmap1 = ^tinterferencebitmap1;
Tinterferencebitmap=class
private
maxx1,
maxy1 : byte;
fbitmap : pinterferencebitmap1;
function getbitmap(x,y:tsuperregister):boolean;
procedure setbitmap(x,y:tsuperregister;b:boolean);
public
constructor create;
destructor destroy;override;
property bitmap[x,y:tsuperregister]:boolean read getbitmap write setbitmap;default;
end;
Tmovelistheader=record
count,
maxcount,
sorted_until : cardinal;
end;
Tmovelist=record
header : Tmovelistheader;
data : array[tsuperregister] of Tlinkedlistitem;
end;
Pmovelist=^Tmovelist;
{In the register allocator we keep track of move instructions.
These instructions are moved between five linked lists. There
is also a linked list per register to keep track about the moves
it is associated with. Because we need to determine quickly in
which of the five lists it is we add anu enumeradtion to each
move instruction.}
Tmoveset=(ms_coalesced_moves,ms_constrained_moves,ms_frozen_moves,
ms_worklist_moves,ms_active_moves);
Tmoveins=class(Tlinkedlistitem)
moveset:Tmoveset;
x,y:Tsuperregister;
end;
Treginfoflag=(ri_coalesced,ri_selected);
Treginfoflagset=set of Treginfoflag;
Treginfo=record
live_start,
live_end : Tai;
subreg : tsubregister;
alias : Tsuperregister;
{ The register allocator assigns each register a colour }
colour : Tsuperregister;
movelist : Pmovelist;
adjlist : Psuperregisterworklist;
degree : TSuperregister;
flags : Treginfoflagset;
end;
Preginfo=^TReginfo;
tspillreginfo = record
spillreg : tregister;
orgreg : tsuperregister;
tempreg : tregister;
regread,regwritten, mustbespilled: boolean;
end;
tspillregsinfo = array[0..2] of tspillreginfo;
{#------------------------------------------------------------------
This class implements the default register allocator. It is used by the
code generator to allocate and free registers which might be valid
across nodes. It also contains utility routines related to registers.
Some of the methods in this class should be overriden
by cpu-specific implementations.
--------------------------------------------------------------------}
trgobj=class
preserved_by_proc : tcpuregisterset;
used_in_proc : tcpuregisterset;
constructor create(Aregtype:Tregistertype;
Adefaultsub:Tsubregister;
const Ausable:array of tsuperregister;
Afirst_imaginary:Tsuperregister;
Apreserved_by_proc:Tcpuregisterset);
destructor destroy;override;
{# Allocate a register. An internalerror will be generated if there is
no more free registers which can be allocated.}
function getregister(list:Taasmoutput;subreg:Tsubregister):Tregister;virtual;
{# Get the register specified.}
procedure getcpuregister(list:Taasmoutput;r:Tregister);virtual;
procedure ungetcpuregister(list:Taasmoutput;r:Tregister);virtual;
{# Get multiple registers specified.}
procedure alloccpuregisters(list:Taasmoutput;r:Tcpuregisterset);virtual;
{# Free multiple registers specified.}
procedure dealloccpuregisters(list:Taasmoutput;r:Tcpuregisterset);virtual;
function uses_registers:boolean;virtual;
procedure add_reg_instruction(instr:Tai;r:tregister);
procedure add_move_instruction(instr:Taicpu);
{# Do the register allocation.}
procedure do_register_allocation(list:Taasmoutput;headertai:tai);virtual;
{ Adds an interference edge.
don't move this to the protected section, the arm cg requires to access this (FK) }
procedure add_edge(u,v:Tsuperregister);
protected
regtype : Tregistertype;
{ default subregister used }
defaultsub : tsubregister;
live_registers:Tsuperregisterworklist;
{ can be overriden to add cpu specific interferences }
procedure add_cpu_interferences(p : tai);virtual;
procedure add_constraints(reg:Tregister);virtual;
function getregisterinline(list:Taasmoutput;subreg:Tsubregister):Tregister;
procedure ungetregisterinline(list:Taasmoutput;r:Tregister);
function get_spill_subreg(r : tregister) : tsubregister;virtual;
function do_spill_replace(list:Taasmoutput;instr:taicpu;orgreg:tsuperregister;const spilltemp:treference):boolean;virtual;
procedure do_spill_read(list:Taasmoutput;pos:tai;const spilltemp:treference;tempreg:tregister);virtual;
procedure do_spill_written(list:Taasmoutput;pos:tai;const spilltemp:treference;tempreg:tregister);virtual;
function instr_spill_register(list:Taasmoutput;
instr:taicpu;
const r:Tsuperregisterset;
const spilltemplist:Tspill_temp_list): boolean;virtual;
private
{# First imaginary register.}
first_imaginary : Tsuperregister;
{# Highest register allocated until now.}
reginfo : PReginfo;
maxreginfo,
maxreginfoinc,
maxreg : Tsuperregister;
usable_registers_cnt : word;
usable_registers : array[0..maxcpuregister-1] of tsuperregister;
ibitmap : Tinterferencebitmap;
spillednodes,
simplifyworklist,
freezeworklist,
spillworklist,
coalescednodes,
selectstack : tsuperregisterworklist;
worklist_moves,
active_moves,
frozen_moves,
coalesced_moves,
constrained_moves : Tlinkedlist;
{$ifdef EXTDEBUG}
procedure writegraph(loopidx:longint);
{$endif EXTDEBUG}
{# Disposes of the reginfo array.}
procedure dispose_reginfo;
{# Prepare the register colouring.}
procedure prepare_colouring;
{# Clean up after register colouring.}
procedure epilogue_colouring;
{# Colour the registers; that is do the register allocation.}
procedure colour_registers;
procedure insert_regalloc_info(list:Taasmoutput;u:tsuperregister);
procedure insert_regalloc_info_all(list:Taasmoutput);
procedure generate_interference_graph(list:Taasmoutput;headertai:tai);
procedure translate_registers(list:Taasmoutput);
function spill_registers(list:Taasmoutput;headertai:tai):boolean;virtual;
function getnewreg(subreg:tsubregister):tsuperregister;
procedure add_edges_used(u:Tsuperregister);
procedure add_to_movelist(u:Tsuperregister;data:Tlinkedlistitem);
function move_related(n:Tsuperregister):boolean;
procedure make_work_list;
procedure sort_simplify_worklist;
procedure enable_moves(n:Tsuperregister);
procedure decrement_degree(m:Tsuperregister);
procedure simplify;
function get_alias(n:Tsuperregister):Tsuperregister;
procedure add_worklist(u:Tsuperregister);
function adjacent_ok(u,v:Tsuperregister):boolean;
function conservative(u,v:Tsuperregister):boolean;
procedure combine(u,v:Tsuperregister);
procedure coalesce;
procedure freeze_moves(u:Tsuperregister);
procedure freeze;
procedure select_spill;
procedure assign_colours;
procedure clear_interferences(u:Tsuperregister);
end;
const
first_reg = 0;
last_reg = high(tsuperregister)-1;
maxspillingcounter = 20;
implementation
uses
systems,
globals,verbose,tgobj,procinfo;
procedure sort_movelist(ml:Pmovelist);
{Ok, sorting pointers is silly, but it does the job to make Trgobj.combine
faster.}
var h,i,p:word;
t:Tlinkedlistitem;
begin
with ml^ do
begin
if header.count<2 then
exit;
p:=1;
while 2*p<header.count do
p:=2*p;
while p<>0 do
begin
for h:=p to header.count-1 do
begin
i:=h;
t:=data[i];
repeat
if ptrint(data[i-p])<=ptrint(t) then
break;
data[i]:=data[i-p];
dec(i,p);
until i<p;
data[i]:=t;
end;
p:=p shr 1;
end;
header.sorted_until:=header.count-1;
end;
end;
{******************************************************************************
tinterferencebitmap
******************************************************************************}
constructor tinterferencebitmap.create;
begin
inherited create;
maxx1:=1;
getmem(fbitmap,sizeof(tinterferencebitmap1)*2);
fillchar(fbitmap^,sizeof(tinterferencebitmap1)*2,0);
end;
destructor tinterferencebitmap.destroy;
var i,j:byte;
begin
for i:=0 to maxx1 do
for j:=0 to maxy1 do
if assigned(fbitmap[i,j]) then
dispose(fbitmap[i,j]);
freemem(fbitmap);
end;
function tinterferencebitmap.getbitmap(x,y:tsuperregister):boolean;
var
page : pinterferencebitmap2;
begin
result:=false;
if (x shr 8>maxx1) then
exit;
page:=fbitmap[x shr 8,y shr 8];
result:=assigned(page) and
((x and $ff) in page^[y and $ff]);
end;
procedure tinterferencebitmap.setbitmap(x,y:tsuperregister;b:boolean);
var
x1,y1 : byte;
begin
x1:=x shr 8;
y1:=y shr 8;
if x1>maxx1 then
begin
reallocmem(fbitmap,sizeof(tinterferencebitmap1)*(x1+1));
fillchar(fbitmap[maxx1+1],sizeof(tinterferencebitmap1)*(x1-maxx1),0);
maxx1:=x1;
end;
if not assigned(fbitmap[x1,y1]) then
begin
if y1>maxy1 then
maxy1:=y1;
new(fbitmap[x1,y1]);
fillchar(fbitmap[x1,y1]^,sizeof(tinterferencebitmap2),0);
end;
if b then
include(fbitmap[x1,y1]^[y and $ff],(x and $ff))
else
exclude(fbitmap[x1,y1]^[y and $ff],(x and $ff));
end;
{******************************************************************************
trgobj
******************************************************************************}
constructor trgobj.create(Aregtype:Tregistertype;
Adefaultsub:Tsubregister;
const Ausable:array of tsuperregister;
Afirst_imaginary:Tsuperregister;
Apreserved_by_proc:Tcpuregisterset);
var
i : Tsuperregister;
begin
{ empty super register sets can cause very strange problems }
if high(Ausable)=0 then
internalerror(200210181);
first_imaginary:=Afirst_imaginary;
maxreg:=Afirst_imaginary;
regtype:=Aregtype;
defaultsub:=Adefaultsub;
preserved_by_proc:=Apreserved_by_proc;
used_in_proc:=[];
live_registers.init;
{ Get reginfo for CPU registers }
maxreginfo:=first_imaginary;
maxreginfoinc:=16;
worklist_moves:=Tlinkedlist.create;
reginfo:=allocmem(first_imaginary*sizeof(treginfo));
for i:=0 to first_imaginary-1 do
begin
reginfo[i].degree:=high(tsuperregister);
reginfo[i].alias:=RS_INVALID;
end;
{ Usable registers }
fillchar(usable_registers,sizeof(usable_registers),0);
for i:=low(Ausable) to high(Ausable) do
usable_registers[i]:=Ausable[i];
usable_registers_cnt:=high(Ausable)+1;
{ Initialize Worklists }
spillednodes.init;
simplifyworklist.init;
freezeworklist.init;
spillworklist.init;
coalescednodes.init;
selectstack.init;
end;
destructor trgobj.destroy;
begin
spillednodes.done;
simplifyworklist.done;
freezeworklist.done;
spillworklist.done;
coalescednodes.done;
selectstack.done;
live_registers.done;
worklist_moves.free;
dispose_reginfo;
end;
procedure Trgobj.dispose_reginfo;
var i:Tsuperregister;
begin
if reginfo<>nil then
begin
for i:=0 to maxreg-1 do
with reginfo[i] do
begin
if adjlist<>nil then
dispose(adjlist,done);
if movelist<>nil then
dispose(movelist);
end;
freemem(reginfo);
reginfo:=nil;
end;
end;
function trgobj.getnewreg(subreg:tsubregister):tsuperregister;
var
oldmaxreginfo : tsuperregister;
begin
result:=maxreg;
inc(maxreg);
if maxreg>=last_reg then
Message(parser_f_too_complex_proc);
if maxreg>=maxreginfo then
begin
oldmaxreginfo:=maxreginfo;
{ Prevent overflow }
if maxreginfoinc>last_reg-maxreginfo then
maxreginfo:=last_reg
else
begin
inc(maxreginfo,maxreginfoinc);
if maxreginfoinc<256 then
maxreginfoinc:=maxreginfoinc*2;
end;
reallocmem(reginfo,maxreginfo*sizeof(treginfo));
{ Do we really need it to clear it ? At least for 1.0.x (PFV) }
fillchar(reginfo[oldmaxreginfo],(maxreginfo-oldmaxreginfo)*sizeof(treginfo),0);
end;
reginfo[result].subreg:=subreg;
end;
function trgobj.getregister(list:Taasmoutput;subreg:Tsubregister):Tregister;
begin
{$ifdef EXTDEBUG}
if reginfo=nil then
InternalError(2004020901);
{$endif EXTDEBUG}
if defaultsub=R_SUBNONE then
result:=newreg(regtype,getnewreg(R_SUBNONE),R_SUBNONE)
else
result:=newreg(regtype,getnewreg(subreg),subreg);
end;
function trgobj.uses_registers:boolean;
begin
result:=(maxreg>first_imaginary);
end;
procedure trgobj.ungetcpuregister(list:Taasmoutput;r:Tregister);
begin
if (getsupreg(r)>=first_imaginary) then
InternalError(2004020901);
list.concat(Tai_regalloc.dealloc(r,nil));
end;
procedure trgobj.getcpuregister(list:Taasmoutput;r:Tregister);
var
supreg:Tsuperregister;
begin
supreg:=getsupreg(r);
if supreg>=first_imaginary then
internalerror(2003121503);
include(used_in_proc,supreg);
list.concat(Tai_regalloc.alloc(r,nil));
end;
procedure trgobj.alloccpuregisters(list:Taasmoutput;r:Tcpuregisterset);
var i:Tsuperregister;
begin
for i:=0 to first_imaginary-1 do
if i in r then
getcpuregister(list,newreg(regtype,i,defaultsub));
end;
procedure trgobj.dealloccpuregisters(list:Taasmoutput;r:Tcpuregisterset);
var i:Tsuperregister;
begin
for i:=0 to first_imaginary-1 do
if i in r then
ungetcpuregister(list,newreg(regtype,i,defaultsub));
end;
procedure trgobj.do_register_allocation(list:Taasmoutput;headertai:tai);
var
spillingcounter:byte;
endspill:boolean;
begin
{ Insert regalloc info for imaginary registers }
insert_regalloc_info_all(list);
ibitmap:=tinterferencebitmap.create;
generate_interference_graph(list,headertai);
{ Don't do the real allocation when -sr is passed }
if (cs_no_regalloc in aktglobalswitches) then
exit;
{Do register allocation.}
spillingcounter:=0;
repeat
prepare_colouring;
colour_registers;
epilogue_colouring;
endspill:=true;
if spillednodes.length<>0 then
begin
inc(spillingcounter);
if spillingcounter>maxspillingcounter then
exit;
if spillingcounter>maxspillingcounter then
internalerror(200309041);
endspill:=not spill_registers(list,headertai);
end;
until endspill;
ibitmap.free;
translate_registers(list);
dispose_reginfo;
end;
procedure trgobj.add_constraints(reg:Tregister);
begin
end;
procedure trgobj.add_edge(u,v:Tsuperregister);
{This procedure will add an edge to the virtual interference graph.}
procedure addadj(u,v:Tsuperregister);
begin
with reginfo[u] do
begin
if adjlist=nil then
new(adjlist,init);
adjlist^.add(v);
end;
end;
begin
if (u<>v) and not(ibitmap[v,u]) then
begin
ibitmap[v,u]:=true;
ibitmap[u,v]:=true;
{Precoloured nodes are not stored in the interference graph.}
if (u>=first_imaginary) then
addadj(u,v);
if (v>=first_imaginary) then
addadj(v,u);
end;
end;
procedure trgobj.add_edges_used(u:Tsuperregister);
var i:word;
begin
with live_registers do
if length>0 then
for i:=0 to length-1 do
add_edge(u,get_alias(buf^[i]));
end;
{$ifdef EXTDEBUG}
procedure trgobj.writegraph(loopidx:longint);
{This procedure writes out the current interference graph in the
register allocator.}
var f:text;
i,j:Tsuperregister;
begin
assign(f,'igraph'+tostr(loopidx));
rewrite(f);
writeln(f,'Interference graph');
writeln(f);
write(f,' ');
for i:=0 to 15 do
for j:=0 to 15 do
write(f,hexstr(i,1));
writeln(f);
write(f,' ');
for i:=0 to 15 do
write(f,'0123456789ABCDEF');
writeln(f);
for i:=0 to maxreg-1 do
begin
write(f,hexstr(i,2):4);
for j:=0 to maxreg-1 do
if ibitmap[i,j] then
write(f,'*')
else
write(f,'-');
writeln(f);
end;
close(f);
end;
{$endif EXTDEBUG}
procedure trgobj.add_to_movelist(u:Tsuperregister;data:Tlinkedlistitem);
begin
with reginfo[u] do
begin
if movelist=nil then
begin
getmem(movelist,sizeof(tmovelistheader)+60*sizeof(pointer));
movelist^.header.maxcount:=60;
movelist^.header.count:=0;
movelist^.header.sorted_until:=0;
end
else
begin
if movelist^.header.count>=movelist^.header.maxcount then
begin
movelist^.header.maxcount:=movelist^.header.maxcount*2;
reallocmem(movelist,sizeof(tmovelistheader)+movelist^.header.maxcount*sizeof(pointer));
end;
end;
movelist^.data[movelist^.header.count]:=data;
inc(movelist^.header.count);
end;
end;
procedure trgobj.add_reg_instruction(instr:Tai;r:tregister);
var
supreg : tsuperregister;
begin
supreg:=getsupreg(r);
{$ifdef extdebug}
if supreg>=maxreginfo then
internalerror(200411061);
{$endif extdebug}
if supreg>=first_imaginary then
with reginfo[supreg] do
begin
if not assigned(live_start) then
live_start:=instr;
live_end:=instr;
end;
end;
procedure trgobj.add_move_instruction(instr:Taicpu);
{This procedure notifies a certain as a move instruction so the
register allocator can try to eliminate it.}
var i:Tmoveins;
ssupreg,dsupreg:Tsuperregister;
begin
{$ifdef extdebug}
if (instr.oper[O_MOV_SOURCE]^.typ<>top_reg) or
(instr.oper[O_MOV_DEST]^.typ<>top_reg) then
internalerror(200311291);
{$endif}
i:=Tmoveins.create;
i.moveset:=ms_worklist_moves;
worklist_moves.insert(i);
ssupreg:=getsupreg(instr.oper[O_MOV_SOURCE]^.reg);
add_to_movelist(ssupreg,i);
dsupreg:=getsupreg(instr.oper[O_MOV_DEST]^.reg);
if ssupreg<>dsupreg then
{Avoid adding the same move instruction twice to a single register.}
add_to_movelist(dsupreg,i);
i.x:=ssupreg;
i.y:=dsupreg;
end;
function trgobj.move_related(n:Tsuperregister):boolean;
var i:cardinal;
begin
move_related:=false;
with reginfo[n] do
if movelist<>nil then
with movelist^ do
for i:=0 to header.count-1 do
if Tmoveins(data[i]).moveset in [ms_worklist_moves,ms_active_moves] then
begin
move_related:=true;
break;
end;
end;
procedure Trgobj.sort_simplify_worklist;
{Sorts the simplifyworklist by the number of interferences the
registers in it cause. This allows simplify to execute in
constant time.}
var p,h,i,leni,lent:word;
t:Tsuperregister;
adji,adjt:Psuperregisterworklist;
begin
with simplifyworklist do
begin
if length<2 then
exit;
p:=1;
while 2*p<length do
p:=2*p;
while p<>0 do
begin
for h:=p to length-1 do
begin
i:=h;
t:=buf^[i];
adjt:=reginfo[buf^[i]].adjlist;
lent:=0;
if adjt<>nil then
lent:=adjt^.length;
repeat
adji:=reginfo[buf^[i-p]].adjlist;
leni:=0;
if adji<>nil then
leni:=adji^.length;
if leni<=lent then
break;
buf^[i]:=buf^[i-p];
dec(i,p)
until i<p;
buf^[i]:=t;
end;
p:=p shr 1;
end;
end;
end;
procedure trgobj.make_work_list;
var n:Tsuperregister;
begin
{If we have 7 cpu registers, and the degree of a node is 7, we cannot
assign it to any of the registers, thus it is significant.}
for n:=first_imaginary to maxreg-1 do
with reginfo[n] do
begin
if adjlist=nil then
degree:=0
else
degree:=adjlist^.length;
if degree>=usable_registers_cnt then
spillworklist.add(n)
else if move_related(n) then
freezeworklist.add(n)
else
simplifyworklist.add(n);
end;
sort_simplify_worklist;
end;
procedure trgobj.prepare_colouring;
begin
make_work_list;
active_moves:=Tlinkedlist.create;
frozen_moves:=Tlinkedlist.create;
coalesced_moves:=Tlinkedlist.create;
constrained_moves:=Tlinkedlist.create;
selectstack.clear;
end;
procedure trgobj.enable_moves(n:Tsuperregister);
var m:Tlinkedlistitem;
i:cardinal;
begin
with reginfo[n] do
if movelist<>nil then
for i:=0 to movelist^.header.count-1 do
begin
m:=movelist^.data[i];
if Tmoveins(m).moveset in [ms_worklist_moves,ms_active_moves] then
if Tmoveins(m).moveset=ms_active_moves then
begin
{Move m from the set active_moves to the set worklist_moves.}
active_moves.remove(m);
Tmoveins(m).moveset:=ms_worklist_moves;
worklist_moves.concat(m);
end;
end;
end;
procedure Trgobj.decrement_degree(m:Tsuperregister);
var adj : Psuperregisterworklist;
n : tsuperregister;
d,i : word;
begin
with reginfo[m] do
begin
d:=degree;
if d=0 then
internalerror(200312151);
dec(degree);
if d=usable_registers_cnt then
begin
{Enable moves for m.}
enable_moves(m);
{Enable moves for adjacent.}
adj:=adjlist;
if adj<>nil then
for i:=1 to adj^.length do
begin
n:=adj^.buf^[i-1];
if reginfo[n].flags*[ri_selected,ri_coalesced]<>[] then
enable_moves(n);
end;
{Remove the node from the spillworklist.}
if not spillworklist.delete(m) then
internalerror(200310145);
if move_related(m) then
freezeworklist.add(m)
else
simplifyworklist.add(m);
end;
end;
end;
procedure trgobj.simplify;
var adj : Psuperregisterworklist;
m,n : Tsuperregister;
i : word;
begin
{We take the element with the least interferences out of the
simplifyworklist. Since the simplifyworklist is now sorted, we
no longer need to search, but we can simply take the first element.}
m:=simplifyworklist.get;
{Push it on the selectstack.}
selectstack.add(m);
with reginfo[m] do
begin
include(flags,ri_selected);
adj:=adjlist;
end;
if adj<>nil then
for i:=1 to adj^.length do
begin
n:=adj^.buf^[i-1];
if (n>=first_imaginary) and
(reginfo[n].flags*[ri_selected,ri_coalesced]=[]) then
decrement_degree(n);
end;
end;
function trgobj.get_alias(n:Tsuperregister):Tsuperregister;
begin
while ri_coalesced in reginfo[n].flags do
n:=reginfo[n].alias;
get_alias:=n;
end;
procedure trgobj.add_worklist(u:Tsuperregister);
begin
if (u>=first_imaginary) and
(not move_related(u)) and
(reginfo[u].degree<usable_registers_cnt) then
begin
if not freezeworklist.delete(u) then
internalerror(200308161); {must be found}
simplifyworklist.add(u);
end;
end;
function trgobj.adjacent_ok(u,v:Tsuperregister):boolean;
{Check wether u and v should be coalesced. u is precoloured.}
function ok(t,r:Tsuperregister):boolean;
begin
ok:=(t<first_imaginary) or
(reginfo[t].degree<usable_registers_cnt) or
ibitmap[r,t];
end;
var adj : Psuperregisterworklist;
i : word;
n : tsuperregister;
begin
with reginfo[v] do
begin
adjacent_ok:=true;
adj:=adjlist;
if adj<>nil then
for i:=1 to adj^.length do
begin
n:=adj^.buf^[i-1];
if (flags*[ri_coalesced,ri_selected]=[]) and not ok(n,u) then
begin
adjacent_ok:=false;
break;
end;
end;
end;
end;
function trgobj.conservative(u,v:Tsuperregister):boolean;
var adj : Psuperregisterworklist;
done : Tsuperregisterset; {To prevent that we count nodes twice.}
i,k:word;
n : tsuperregister;
begin
k:=0;
supregset_reset(done,false,maxreg);
with reginfo[u] do
begin
adj:=adjlist;
if adj<>nil then
for i:=1 to adj^.length do
begin
n:=adj^.buf^[i-1];
if flags*[ri_coalesced,ri_selected]=[] then
begin
supregset_include(done,n);
if reginfo[n].degree>=usable_registers_cnt then
inc(k);
end;
end;
end;
adj:=reginfo[v].adjlist;
if adj<>nil then
for i:=1 to adj^.length do
begin
n:=adj^.buf^[i-1];
if not supregset_in(done,n) and
(reginfo[n].degree>=usable_registers_cnt) and
(reginfo[u].flags*[ri_coalesced,ri_selected]=[]) then
inc(k);
end;
conservative:=(k<usable_registers_cnt);
end;
procedure trgobj.combine(u,v:Tsuperregister);
var adj : Psuperregisterworklist;
i,n,p,q:cardinal;
t : tsuperregister;
searched:Tlinkedlistitem;
label l1;
begin
if not freezeworklist.delete(v) then
spillworklist.delete(v);
coalescednodes.add(v);
include(reginfo[v].flags,ri_coalesced);
reginfo[v].alias:=u;
{Combine both movelists. Since the movelists are sets, only add
elements that are not already present. The movelists cannot be
empty by definition; nodes are only coalesced if there is a move
between them. To prevent quadratic time blowup (movelists of
especially machine registers can get very large because of moves
generated during calls) we need to go into disgusting complexity.
(See webtbs/tw2242 for an example that stresses this.)
We want to sort the movelist to be able to search logarithmically.
Unfortunately, sorting the movelist every time before searching
is counter-productive, since the movelist usually grows with a few
items at a time. Therefore, we split the movelist into a sorted
and an unsorted part and search through both. If the unsorted part
becomes too large, we sort.}
if assigned(reginfo[u].movelist) then
begin
{We have to weigh the cost of sorting the list against searching
the cost of the unsorted part. I use factor of 8 here; if the
number of items is less than 8 times the numer of unsorted items,
we'll sort the list.}
with reginfo[u].movelist^ do
if header.count<8*(header.count-header.sorted_until) then
sort_movelist(reginfo[u].movelist);
if assigned(reginfo[v].movelist) then
begin
for n:=0 to reginfo[v].movelist^.header.count-1 do
begin
{Binary search the sorted part of the list.}
searched:=reginfo[v].movelist^.data[n];
p:=0;
q:=reginfo[u].movelist^.header.sorted_until;
i:=0;
if q<>0 then
repeat
i:=(p+q) shr 1;
if ptrint(searched)>ptrint(reginfo[u].movelist^.data[i]) then
p:=i+1
else
q:=i;
until p=q;
with reginfo[u].movelist^ do
if searched<>data[i] then
begin
{Linear search the unsorted part of the list.}
for i:=header.sorted_until+1 to header.count-1 do
if searched=data[i] then
goto l1;
{Not found -> add}
add_to_movelist(u,searched);
l1:
end;
end;
end;
end;
enable_moves(v);
adj:=reginfo[v].adjlist;
if adj<>nil then
for i:=1 to adj^.length do
begin
t:=adj^.buf^[i-1];
with reginfo[t] do
if not(ri_coalesced in flags) then
begin
{t has a connection to v. Since we are adding v to u, we
need to connect t to u. However, beware if t was already
connected to u...}
if (ibitmap[t,u]) and not (ri_selected in flags) then
{... because in that case, we are actually removing an edge
and the degree of t decreases.}
decrement_degree(t)
else
begin
add_edge(t,u);
{We have added an edge to t and u. So their degree increases.
However, v is added to u. That means its neighbours will
no longer point to v, but to u instead. Therefore, only the
degree of u increases.}
if (u>=first_imaginary) and not (ri_selected in flags) then
inc(reginfo[u].degree);
end;
end;
end;
if (reginfo[u].degree>=usable_registers_cnt) and freezeworklist.delete(u) then
spillworklist.add(u);
end;
procedure trgobj.coalesce;
var m:Tmoveins;
x,y,u,v:Tsuperregister;
begin
m:=Tmoveins(worklist_moves.getfirst);
x:=get_alias(m.x);
y:=get_alias(m.y);
if (y<first_imaginary) then
begin
u:=y;
v:=x;
end
else
begin
u:=x;
v:=y;
end;
if (u=v) then
begin
m.moveset:=ms_coalesced_moves; {Already coalesced.}
coalesced_moves.insert(m);
add_worklist(u);
end
{Do u and v interfere? In that case the move is constrained. Two
precoloured nodes interfere allways. If v is precoloured, by the above
code u is precoloured, thus interference...}
else if (v<first_imaginary) or ibitmap[u,v] then
begin
m.moveset:=ms_constrained_moves; {Cannot coalesce yet...}
constrained_moves.insert(m);
add_worklist(u);
add_worklist(v);
end
{Next test: is it possible and a good idea to coalesce??}
else if ((u<first_imaginary) and adjacent_ok(u,v)) or
((u>=first_imaginary) and conservative(u,v)) then
begin
m.moveset:=ms_coalesced_moves; {Move coalesced!}
coalesced_moves.insert(m);
combine(u,v);
add_worklist(u);
end
else
begin
m.moveset:=ms_active_moves;
active_moves.insert(m);
end;
end;
procedure trgobj.freeze_moves(u:Tsuperregister);
var i:cardinal;
m:Tlinkedlistitem;
v,x,y:Tsuperregister;
begin
if reginfo[u].movelist<>nil then
for i:=0 to reginfo[u].movelist^.header.count-1 do
begin
m:=reginfo[u].movelist^.data[i];
if Tmoveins(m).moveset in [ms_worklist_moves,ms_active_moves] then
begin
x:=Tmoveins(m).x;
y:=Tmoveins(m).y;
if get_alias(y)=get_alias(u) then
v:=get_alias(x)
else
v:=get_alias(y);
{Move m from active_moves/worklist_moves to frozen_moves.}
if Tmoveins(m).moveset=ms_active_moves then
active_moves.remove(m)
else
worklist_moves.remove(m);
Tmoveins(m).moveset:=ms_frozen_moves;
frozen_moves.insert(m);
if (v>=first_imaginary) and not(move_related(v)) and
(reginfo[v].degree<usable_registers_cnt) then
begin
freezeworklist.delete(v);
simplifyworklist.add(v);
end;
end;
end;
end;
procedure trgobj.freeze;
var n:Tsuperregister;
begin
{ We need to take a random element out of the freezeworklist. We take
the last element. Dirty code! }
n:=freezeworklist.get;
{Add it to the simplifyworklist.}
simplifyworklist.add(n);
freeze_moves(n);
end;
procedure trgobj.select_spill;
var
n : tsuperregister;
adj : psuperregisterworklist;
max,p,i:word;
begin
{ We must look for the element with the most interferences in the
spillworklist. This is required because those registers are creating
the most conflicts and keeping them in a register will not reduce the
complexity and even can cause the help registers for the spilling code
to get too much conflicts with the result that the spilling code
will never converge (PFV) }
max:=0;
p:=0;
with spillworklist do
begin
{Safe: This procedure is only called if length<>0}
for i:=0 to length-1 do
begin
adj:=reginfo[buf^[i]].adjlist;
if assigned(adj) and (adj^.length>max) then
begin
p:=i;
max:=adj^.length;
end;
end;
n:=buf^[p];
deleteidx(p);
end;
simplifyworklist.add(n);
freeze_moves(n);
end;
procedure trgobj.assign_colours;
{Assign_colours assigns the actual colours to the registers.}
var adj : Psuperregisterworklist;
i,j,k : word;
n,a,c : Tsuperregister;
colourednodes : Tsuperregisterset;
adj_colours:set of 0..255;
found : boolean;
begin
spillednodes.clear;
{Reset colours}
for n:=0 to maxreg-1 do
reginfo[n].colour:=n;
{Colour the cpu registers...}
supregset_reset(colourednodes,false,maxreg);
for n:=0 to first_imaginary-1 do
supregset_include(colourednodes,n);
{Now colour the imaginary registers on the select-stack.}
for i:=selectstack.length downto 1 do
begin
n:=selectstack.buf^[i-1];
{Create a list of colours that we cannot assign to n.}
adj_colours:=[];
adj:=reginfo[n].adjlist;
if adj<>nil then
for j:=0 to adj^.length-1 do
begin
a:=get_alias(adj^.buf^[j]);
if supregset_in(colourednodes,a) and (reginfo[a].colour<=255) then
include(adj_colours,reginfo[a].colour);
end;
if regtype=R_INTREGISTER then
include(adj_colours,RS_STACK_POINTER_REG);
{Assume a spill by default...}
found:=false;
{Search for a colour not in this list.}
for k:=0 to usable_registers_cnt-1 do
begin
c:=usable_registers[k];
if not(c in adj_colours) then
begin
reginfo[n].colour:=c;
found:=true;
supregset_include(colourednodes,n);
include(used_in_proc,c);
break;
end;
end;
if not found then
spillednodes.add(n);
end;
{Finally colour the nodes that were coalesced.}
for i:=1 to coalescednodes.length do
begin
n:=coalescednodes.buf^[i-1];
k:=get_alias(n);
reginfo[n].colour:=reginfo[k].colour;
if reginfo[k].colour<maxcpuregister then
include(used_in_proc,reginfo[k].colour);
end;
end;
procedure trgobj.colour_registers;
begin
repeat
if simplifyworklist.length<>0 then
simplify
else if not(worklist_moves.empty) then
coalesce
else if freezeworklist.length<>0 then
freeze
else if spillworklist.length<>0 then
select_spill;
until (simplifyworklist.length=0) and
worklist_moves.empty and
(freezeworklist.length=0) and
(spillworklist.length=0);
assign_colours;
end;
procedure trgobj.epilogue_colouring;
var
i : Tsuperregister;
begin
worklist_moves.clear;
active_moves.destroy;
active_moves:=nil;
frozen_moves.destroy;
frozen_moves:=nil;
coalesced_moves.destroy;
coalesced_moves:=nil;
constrained_moves.destroy;
constrained_moves:=nil;
for i:=0 to maxreg-1 do
with reginfo[i] do
if movelist<>nil then
begin
dispose(movelist);
movelist:=nil;
end;
end;
procedure trgobj.clear_interferences(u:Tsuperregister);
{Remove node u from the interference graph and remove all collected
move instructions it is associated with.}
var i : word;
v : Tsuperregister;
adj,adj2 : Psuperregisterworklist;
begin
adj:=reginfo[u].adjlist;
if adj<>nil then
begin
for i:=1 to adj^.length do
begin
v:=adj^.buf^[i-1];
{Remove (u,v) and (v,u) from bitmap.}
ibitmap[u,v]:=false;
ibitmap[v,u]:=false;
{Remove (v,u) from adjacency list.}
adj2:=reginfo[v].adjlist;
if adj2<>nil then
begin
adj2^.delete(u);
if adj2^.length=0 then
begin
dispose(adj2,done);
reginfo[v].adjlist:=nil;
end;
end;
end;
{Remove ( u,* ) from adjacency list.}
dispose(adj,done);
reginfo[u].adjlist:=nil;
end;
end;
function trgobj.getregisterinline(list:Taasmoutput;subreg:Tsubregister):Tregister;
var
p : Tsuperregister;
begin
p:=getnewreg(subreg);
live_registers.add(p);
result:=newreg(regtype,p,subreg);
add_edges_used(p);
add_constraints(result);
end;
procedure trgobj.ungetregisterinline(list:Taasmoutput;r:Tregister);
var
supreg:Tsuperregister;
begin
supreg:=getsupreg(r);
live_registers.delete(supreg);
insert_regalloc_info(list,supreg);
end;
procedure trgobj.insert_regalloc_info(list:Taasmoutput;u:tsuperregister);
var
p : tai;
r : tregister;
palloc,
pdealloc : tai_regalloc;
begin
{ Insert regallocs for all imaginary registers }
with reginfo[u] do
begin
r:=newreg(regtype,u,subreg);
if assigned(live_start) then
begin
{ Generate regalloc and bind it to an instruction, this
is needed to find all live registers belonging to an
instruction during the spilling }
if live_start.typ=ait_instruction then
palloc:=tai_regalloc.alloc(r,live_start)
else
palloc:=tai_regalloc.alloc(r,nil);
if live_end.typ=ait_instruction then
pdealloc:=tai_regalloc.dealloc(r,live_end)
else
pdealloc:=tai_regalloc.dealloc(r,nil);
{ Insert live start allocation before the instruction/reg_a_sync }
list.insertbefore(palloc,live_start);
{ Insert live end deallocation before reg allocations
to reduce conflicts }
p:=live_end;
while assigned(p) and
assigned(p.previous) and
(tai(p.previous).typ=ait_regalloc) and
(tai_regalloc(p.previous).ratype=ra_alloc) and
(tai_regalloc(p.previous).reg<>r) do
p:=tai(p.previous);
{ , but add release after a reg_a_sync }
if assigned(p) and
(p.typ=ait_regalloc) and
(tai_regalloc(p).ratype=ra_sync) then
p:=tai(p.next);
if assigned(p) then
list.insertbefore(pdealloc,p)
else
list.concat(pdealloc);
end
{$ifdef EXTDEBUG}
else
Comment(V_Warning,'Register '+std_regname(r)+' not used');
{$endif EXTDEBUG}
end;
end;
procedure trgobj.insert_regalloc_info_all(list:Taasmoutput);
var
supreg : tsuperregister;
begin
{ Insert regallocs for all imaginary registers }
for supreg:=first_imaginary to maxreg-1 do
insert_regalloc_info(list,supreg);
end;
procedure trgobj.add_cpu_interferences(p : tai);
begin
end;
procedure trgobj.generate_interference_graph(list:Taasmoutput;headertai:tai);
var
p : tai;
{$ifdef EXTDEBUG}
i : integer;
{$endif EXTDEBUG}
supreg : tsuperregister;
begin
{ All allocations are available. Now we can generate the
interference graph. Walk through all instructions, we can
start with the headertai, because before the header tai is
only symbols. }
live_registers.clear;
p:=headertai;
while assigned(p) do
begin
if p.typ=ait_regalloc then
with Tai_regalloc(p) do
begin
if (getregtype(reg)=regtype) then
begin
supreg:=getsupreg(reg);
case ratype of
ra_alloc :
begin
live_registers.add(supreg);
add_edges_used(supreg);
end;
ra_dealloc :
begin
live_registers.delete(supreg);
add_edges_used(supreg);
end;
end;
{ constraints needs always to be updated }
add_constraints(reg);
end;
end;
add_cpu_interferences(p);
p:=Tai(p.next);
end;
{$ifdef EXTDEBUG}
if live_registers.length>0 then
begin
for i:=0 to live_registers.length-1 do
begin
{ Only report for imaginary registers }
if live_registers.buf^[i]>=first_imaginary then
Comment(V_Warning,'Register '+std_regname(newreg(R_INTREGISTER,live_registers.buf^[i],defaultsub))+' not released');
end;
end;
{$endif}
end;
procedure Trgobj.translate_registers(list:taasmoutput);
var
hp,p,q:Tai;
i:shortint;
{$ifdef arm}
so:pshifterop;
{$endif arm}
begin
{ Leave when no imaginary registers are used }
if maxreg<=first_imaginary then
exit;
p:=Tai(list.first);
while assigned(p) do
begin
case p.typ of
ait_regalloc:
with Tai_regalloc(p) do
begin
if (getregtype(reg)=regtype) then
begin
{ Only alloc/dealloc is needed for the optimizer, remove
other regalloc }
if not(ratype in [ra_alloc,ra_dealloc]) then
begin
q:=Tai(next);
list.remove(p);
p.free;
p:=q;
continue;
end
else
begin
setsupreg(reg,reginfo[getsupreg(reg)].colour);
{
Remove sequences of release and
allocation of the same register like. Other combinations
of release/allocate need to stay in the list.
# Register X released
# Register X allocated
}
if assigned(previous) and
(ratype=ra_alloc) and
(Tai(previous).typ=ait_regalloc) and
(Tai_regalloc(previous).reg=reg) and
(Tai_regalloc(previous).ratype=ra_dealloc) then
begin
q:=Tai(next);
hp:=tai(previous);
list.remove(hp);
hp.free;
list.remove(p);
p.free;
p:=q;
continue;
end;
end;
end;
end;
ait_instruction:
with Taicpu(p) do
begin
aktfilepos:=fileinfo;
for i:=0 to ops-1 do
with oper[i]^ do
case typ of
Top_reg:
if (getregtype(reg)=regtype) then
setsupreg(reg,reginfo[getsupreg(reg)].colour);
Top_ref:
begin
if regtype=R_INTREGISTER then
with ref^ do
begin
if base<>NR_NO then
setsupreg(base,reginfo[getsupreg(base)].colour);
if index<>NR_NO then
setsupreg(index,reginfo[getsupreg(index)].colour);
end;
end;
{$ifdef arm}
Top_shifterop:
begin
if regtype=R_INTREGISTER then
begin
so:=shifterop;
if so^.rs<>NR_NO then
setsupreg(so^.rs,reginfo[getsupreg(so^.rs)].colour);
end;
end;
{$endif arm}
end;
{ Maybe the operation can be removed when
it is a move and both arguments are the same }
if is_same_reg_move(regtype) then
begin
q:=Tai(p.next);
list.remove(p);
p.free;
p:=q;
continue;
end;
end;
end;
p:=Tai(p.next);
end;
aktfilepos:=current_procinfo.exitpos;
end;
function trgobj.spill_registers(list:Taasmoutput;headertai:tai):boolean;
{ Returns true if any help registers have been used }
var
i : word;
t : tsuperregister;
p,q : Tai;
regs_to_spill_set:Tsuperregisterset;
spill_temps : ^Tspill_temp_list;
supreg : tsuperregister;
templist : taasmoutput;
begin
spill_registers:=false;
live_registers.clear;
for i:=first_imaginary to maxreg-1 do
exclude(reginfo[i].flags,ri_selected);
spill_temps:=allocmem(sizeof(treference)*maxreg);
supregset_reset(regs_to_spill_set,false,$ffff);
{ Allocate temps and insert in front of the list }
templist:=taasmoutput.create;
{Safe: this procedure is only called if there are spilled nodes.}
with spillednodes do
for i:=0 to length-1 do
begin
t:=buf^[i];
{Alternative representation.}
supregset_include(regs_to_spill_set,t);
{Clear all interferences of the spilled register.}
clear_interferences(t);
{Get a temp for the spilled register, the size must at least equal a complete register,
take also care of the fact that subreg can be larger than a single register like doubles
that occupy 2 registers }
tg.gettemp(templist,
max(tcgsize2size[reg_cgsize(newreg(regtype,t,R_SUBWHOLE))],
tcgsize2size[reg_cgsize(newreg(regtype,t,reginfo[t].subreg))]),
tt_noreuse,spill_temps^[t]);
end;
list.insertlistafter(headertai,templist);
templist.free;
{ Walk through all instructions, we can start with the headertai,
because before the header tai is only symbols }
p:=headertai;
while assigned(p) do
begin
case p.typ of
ait_regalloc:
with Tai_regalloc(p) do
begin
if (getregtype(reg)=regtype) then
begin
{A register allocation of a spilled register can be removed.}
supreg:=getsupreg(reg);
if supregset_in(regs_to_spill_set,supreg) then
begin
q:=Tai(p.next);
list.remove(p);
p.free;
p:=q;
continue;
end
else
begin
case ratype of
ra_alloc :
live_registers.add(supreg);
ra_dealloc :
live_registers.delete(supreg);
end;
end;
end;
end;
ait_instruction:
with Taicpu(p) do
begin
aktfilepos:=fileinfo;
if instr_spill_register(list,taicpu(p),regs_to_spill_set,spill_temps^) then
spill_registers:=true;
end;
end;
p:=Tai(p.next);
end;
aktfilepos:=current_procinfo.exitpos;
{Safe: this procedure is only called if there are spilled nodes.}
with spillednodes do
for i:=0 to length-1 do
tg.ungettemp(list,spill_temps^[buf^[i]]);
freemem(spill_temps);
end;
function trgobj.do_spill_replace(list:Taasmoutput;instr:taicpu;orgreg:tsuperregister;const spilltemp:treference):boolean;
begin
result:=false;
end;
procedure Trgobj.do_spill_read(list:Taasmoutput;pos:tai;const spilltemp:treference;tempreg:tregister);
begin
list.insertafter(spilling_create_load(spilltemp,tempreg),pos);
end;
procedure Trgobj.do_spill_written(list:Taasmoutput;pos:tai;const spilltemp:treference;tempreg:tregister);
begin
list.insertafter(spilling_create_store(tempreg,spilltemp),pos);
end;
function trgobj.get_spill_subreg(r : tregister) : tsubregister;
begin
result:=defaultsub;
end;
function trgobj.instr_spill_register(list:Taasmoutput;
instr:taicpu;
const r:Tsuperregisterset;
const spilltemplist:Tspill_temp_list): boolean;
var
counter, regindex: longint;
regs: tspillregsinfo;
spilled: boolean;
procedure addreginfo(reg: tregister; operation: topertype);
var
i, tmpindex: longint;
supreg : tsuperregister;
begin
tmpindex := regindex;
supreg:=getsupreg(reg);
{ did we already encounter this register? }
for i := 0 to pred(regindex) do
if (regs[i].orgreg = supreg) then
begin
tmpindex := i;
break;
end;
if tmpindex > high(regs) then
internalerror(2003120301);
regs[tmpindex].orgreg := supreg;
regs[tmpindex].spillreg:=reg;
if supregset_in(r,supreg) then
begin
{ add/update info on this register }
regs[tmpindex].mustbespilled := true;
case operation of
operand_read:
regs[tmpindex].regread := true;
operand_write:
regs[tmpindex].regwritten := true;
operand_readwrite:
begin
regs[tmpindex].regread := true;
regs[tmpindex].regwritten := true;
end;
end;
spilled := true;
end;
inc(regindex,ord(regindex=tmpindex));
end;
procedure tryreplacereg(var reg: tregister);
var
i: longint;
supreg: tsuperregister;
begin
supreg:=getsupreg(reg);
for i:=0 to pred(regindex) do
if (regs[i].mustbespilled) and
(regs[i].orgreg=supreg) then
begin
{ Only replace supreg }
setsupreg(reg,getsupreg(regs[i].tempreg));
break;
end;
end;
var
loadpos,
storepos : tai;
oldlive_registers : tsuperregisterworklist;
begin
result := false;
fillchar(regs,sizeof(regs),0);
for counter := low(regs) to high(regs) do
regs[counter].orgreg := RS_INVALID;
spilled := false;
regindex := 0;
{ check whether and if so which and how (read/written) this instructions contains
registers that must be spilled }
for counter := 0 to instr.ops-1 do
with instr.oper[counter]^ do
begin
case typ of
top_reg:
begin
if (getregtype(reg) = regtype) then
addreginfo(reg,instr.spilling_get_operation_type(counter));
end;
top_ref:
begin
if regtype in [R_INTREGISTER,R_ADDRESSREGISTER] then
with ref^ do
begin
if (base <> NR_NO) then
addreginfo(base,instr.spilling_get_operation_type_ref(counter,base));
if (index <> NR_NO) then
addreginfo(index,instr.spilling_get_operation_type_ref(counter,index));
end;
end;
{$ifdef ARM}
top_shifterop:
begin
if regtype in [R_INTREGISTER,R_ADDRESSREGISTER] then
if shifterop^.rs<>NR_NO then
addreginfo(shifterop^.rs,operand_read);
end;
{$endif ARM}
end;
end;
{ if no spilling for this instruction we can leave }
if not spilled then
exit;
{$ifdef x86}
{ Try replacing the register with the spilltemp. This is usefull only
for the i386,x86_64 that support memory locations for several instructions }
for counter := 0 to pred(regindex) do
with regs[counter] do
begin
if mustbespilled then
begin
if do_spill_replace(list,instr,orgreg,spilltemplist[orgreg]) then
mustbespilled:=false;
end;
end;
{$endif x86}
{
There are registers that need are spilled. We generate the
following code for it. The used positions where code need
to be inserted are marked using #. Note that code is always inserted
before the positions using pos.previous. This way the position is always
the same since pos doesn't change, but pos.previous is modified everytime
new code is inserted.
[
- reg_allocs load spills
- load spills
]
[#loadpos
- reg_deallocs
- reg_allocs
]
[
- reg_deallocs for load-only spills
- reg_allocs for store-only spills
]
[#instr
- original instruction
]
[
- store spills
- reg_deallocs store spills
]
[#storepos
]
}
result := true;
oldlive_registers.copyfrom(live_registers);
{ Process all tai_regallocs belonging to this instruction, ignore explicit
inserted regallocs. These can happend for example in i386:
mov ref,ireg26
<regdealloc ireg26, instr=taicpu of lea>
<regalloc edi, insrt=nil>
lea [ireg26+ireg17],edi
All released registers are also added to the live_registers because
they can't be used during the spilling }
loadpos:=tai(instr.previous);
while assigned(loadpos) and
(loadpos.typ=ait_regalloc) and
((tai_regalloc(loadpos).instr=nil) or
(tai_regalloc(loadpos).instr=instr)) do
begin
if tai_regalloc(loadpos).ratype=ra_dealloc then
live_registers.add(getsupreg(tai_regalloc(loadpos).reg));
loadpos:=tai(loadpos.previous);
end;
loadpos:=tai(loadpos.next);
{ Load the spilled registers }
for counter := 0 to pred(regindex) do
with regs[counter] do
begin
if mustbespilled and regread then
begin
tempreg:=getregisterinline(list,get_spill_subreg(regs[counter].spillreg));
do_spill_read(list,tai(loadpos.previous),spilltemplist[orgreg],tempreg);
end;
end;
{ Release temp registers of read-only registers, and add reference of the instruction
to the reginfo }
for counter := 0 to pred(regindex) do
with regs[counter] do
begin
if mustbespilled and regread and (not regwritten) then
begin
{ The original instruction will be the next that uses this register }
add_reg_instruction(instr,tempreg);
ungetregisterinline(list,tempreg);
end;
end;
{ Allocate temp registers of write-only registers, and add reference of the instruction
to the reginfo }
for counter := 0 to pred(regindex) do
with regs[counter] do
begin
if mustbespilled and regwritten then
begin
{ When the register is also loaded there is already a register assigned }
if (not regread) then
tempreg:=getregisterinline(list,get_spill_subreg(regs[counter].spillreg));
{ The original instruction will be the next that uses this register, this
also needs to be done for read-write registers }
add_reg_instruction(instr,tempreg);
end;
end;
{ store the spilled registers }
storepos:=tai(instr.next);
for counter := 0 to pred(regindex) do
with regs[counter] do
begin
if mustbespilled and regwritten then
begin
do_spill_written(list,tai(storepos.previous),spilltemplist[orgreg],tempreg);
ungetregisterinline(list,tempreg);
end;
end;
{ now all spilling code is generated we can restore the live registers. This
must be done after the store because the store can need an extra register
that also needs to conflict with the registers of the instruction }
live_registers.done;
live_registers:=oldlive_registers;
{ substitute registers }
for counter:=0 to instr.ops-1 do
with instr.oper[counter]^ do
begin
case typ of
top_reg:
begin
if (getregtype(reg) = regtype) then
tryreplacereg(reg);
end;
top_ref:
begin
if regtype in [R_INTREGISTER,R_ADDRESSREGISTER] then
begin
tryreplacereg(ref^.base);
tryreplacereg(ref^.index);
end;
end;
{$ifdef ARM}
top_shifterop:
begin
if regtype in [R_INTREGISTER,R_ADDRESSREGISTER] then
tryreplacereg(shifterop^.rs);
end;
{$endif ARM}
end;
end;
end;
end.
{
$Log$
Revision 1.156 2005-03-25 21:55:43 jonas
* removed some unused variables
Revision 1.155 2005/03/20 19:47:46 peter
* fix spilling code when explicit cpu registers are used in an
instruction
Revision 1.154 2005/02/18 23:37:51 jonas
* fixed spilling for several ppc instructions which only read registers
+ added support for registers in references that get changed (load/store
with update)
Revision 1.153 2005/02/14 17:13:07 peter
* truncate log
}