fpc/rtl/inc/dynarr.inc

398 lines
12 KiB
PHP

{
This file is part of the Free Pascal run time library.
Copyright (c) 2000 by Florian Klaempfl
member of the Free Pascal development team.
This file implements the helper routines for dyn. Arrays in FPC
See the file COPYING.FPC, included in this distribution,
for details about the copyright.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
**********************************************************************
}
type
{ don't add new fields, the size is used }
{ to calculate memory requirements }
pdynarray = ^tdynarray;
tdynarray = packed record
refcount : ptrint;
high : tdynarrayindex;
end;
pdynarraytypedata = ^tdynarraytypedata;
tdynarraytypedata =
{$ifndef FPC_REQUIRES_PROPER_ALIGNMENT}
packed
{$endif FPC_REQUIRES_PROPER_ALIGNMENT}
record
elSize : SizeUInt;
elType2 : Pointer;
varType : Longint;
end;
procedure fpc_dynarray_rangecheck(p : pointer;i : tdynarrayindex);[Public,Alias:'FPC_DYNARRAY_RANGECHECK']; compilerproc;
begin
if not(assigned(p)) or (i<0) or (i>pdynarray(p-sizeof(tdynarray))^.high) then
HandleErrorAddrFrameInd(201,get_pc_addr,get_frame);
end;
function fpc_dynarray_length(p : pointer) : tdynarrayindex;[Public,Alias:'FPC_DYNARRAY_LENGTH']; compilerproc;
begin
if assigned(p) then
fpc_dynarray_length:=pdynarray(p-sizeof(tdynarray))^.high+1
else
fpc_dynarray_length:=0;
end;
function fpc_dynarray_high(p : pointer) : tdynarrayindex;[Public,Alias:'FPC_DYNARRAY_HIGH']; compilerproc;
begin
if assigned(p) then
fpc_dynarray_high:=pdynarray(p-sizeof(tdynarray))^.high
else
fpc_dynarray_high:=-1;
end;
procedure fpc_dynarray_clear(var p : pointer;ti : pointer); [Public,Alias:'FPC_DYNARRAY_CLEAR']; compilerproc;
var
realp : pdynarray;
begin
if (P=Nil) then
exit;
realp:=pdynarray(p-sizeof(tdynarray));
if realp^.refcount=0 then
HandleErrorAddrFrameInd(204,get_pc_addr,get_frame);
if declocked(realp^.refcount) then
begin
ti:=aligntoptr(ti+2+PByte(ti)[1]);
int_finalizearray(p,pdynarraytypedata(ti)^.elType2,realp^.high+1);
freemem(realp);
end;
p:=nil;
end;
{ alias for internal use }
Procedure fpc_dynarray_clear (var p : pointer;ti : pointer);[external name 'FPC_DYNARRAY_CLEAR'];
procedure fpc_dynarray_incr_ref(p : pointer);[Public,Alias:'FPC_DYNARRAY_INCR_REF']; compilerproc;
var
realp : pdynarray;
begin
if p=nil then
exit;
realp:=pdynarray(p-sizeof(tdynarray));
if realp^.refcount=0 then
HandleErrorAddrFrameInd(204,get_pc_addr,get_frame);
inclocked(realp^.refcount);
end;
{ provide local access to dynarr_decr_ref for dynarr_setlength }
procedure fpc_dynarray_incr_ref(p : pointer); [external name 'FPC_DYNARRAY_INCR_REF'];
procedure fpc_dynarray_assign(var dest: Pointer; src: Pointer; ti: pointer);[public,alias:'FPC_DYNARRAY_ASSIGN']; compilerproc;
begin
fpc_dynarray_incr_ref(src);
fpc_dynarray_clear(dest,ti);
Dest:=Src;
end;
procedure fpc_dynarray_assign(var dest: Pointer; src: Pointer; ti: pointer);[external name 'FPC_DYNARRAY_ASSIGN'];
{ provide local access to dynarr_setlength }
procedure int_dynarray_setlength(var p : pointer;pti : pointer;
dimcount : sizeint;dims : pdynarrayindex);[external name 'FPC_DYNARR_SETLENGTH'];
procedure fpc_dynarray_setlength(var p : pointer;pti : pointer;
dimcount : sizeint;dims : pdynarrayindex);[Public,Alias:'FPC_DYNARR_SETLENGTH']; compilerproc;
var
i : tdynarrayindex;
movelen,
size : sizeint;
{ contains the "fixed" pointers where the refcount }
{ and high are at positive offsets }
realp,newp : pdynarray;
ti : pointer;
updatep: boolean;
elesize : sizeint;
eletype : pointer;
movsize : sizeint;
begin
{ negative length is not allowed }
if dims[0]<0 then
HandleErrorAddrFrameInd(201,get_pc_addr,get_frame);
{ skip kind and name }
ti:=aligntoptr(Pointer(pti)+2+PByte(pti)[1]);
elesize:=pdynarraytypedata(ti)^.elSize;
eletype:=pdynarraytypedata(ti)^.elType2;
{ determine new memory size }
size:=elesize*dims[0]+sizeof(tdynarray);
updatep := false;
{ not assigned yet? }
if not(assigned(p)) then
begin
{ do we have to allocate memory? }
if dims[0] = 0 then
exit;
getmem(newp,size);
fillchar(newp^,size,0);
updatep := true;
end
else
begin
{ if the new dimension is 0, we've to release all data }
if dims[0]=0 then
begin
fpc_dynarray_clear(p,pti);
exit;
end;
realp:=pdynarray(p-sizeof(tdynarray));
newp := realp;
if realp^.refcount<>1 then
begin
updatep := true;
{ make an unique copy }
getmem(newp,size);
fillchar(newp^,sizeof(tdynarray),0);
if realp^.high < dims[0] then
movelen := realp^.high+1
else
movelen := dims[0];
movsize := elesize*movelen;
move(p^,(pointer(newp)+sizeof(tdynarray))^, movsize);
if size-sizeof(tdynarray)>movsize then
fillchar((pointer(newp)+sizeof(tdynarray)+movsize)^,size-sizeof(tdynarray)-movsize,0);
{ increment ref. count of members }
for i:= 0 to movelen-1 do
int_addref(pointer(newp)+sizeof(tdynarray)+elesize*i,eletype);
{ a declock(ref. count) isn't enough here }
{ it could be that the in MT environments }
{ in the mean time the refcount was }
{ decremented }
{ it is, because it doesn't really matter }
{ if the array is now removed }
fpc_dynarray_clear(p,pti);
end
else if dims[0]<>realp^.high+1 then
begin
{ range checking is quite difficult ... }
{ if size overflows then it is less than }
{ the values it was calculated from }
if (size<sizeof(tdynarray)) or
((elesize>0) and (size<elesize)) then
HandleErrorAddrFrameInd(201,get_pc_addr,get_frame);
{ resize? }
{ here, realp^.refcount has to be one, otherwise the previous }
{ if-statement would have been taken. Or is this also for MT }
{ code? (JM) }
if realp^.refcount=1 then
begin
{ shrink the array? }
if dims[0]<realp^.high+1 then
begin
int_finalizearray(pointer(realp)+sizeof(tdynarray)+
elesize*dims[0],
eletype,realp^.high-dims[0]+1);
reallocmem(realp,size);
end
else if dims[0]>realp^.high+1 then
begin
reallocmem(realp,size);
fillchar((pointer(realp)+sizeof(tdynarray)+elesize*(realp^.high+1))^,
(dims[0]-realp^.high-1)*elesize,0);
end;
newp := realp;
updatep := true;
end;
end;
end;
{ handle nested arrays }
if dimcount>1 then
begin
for i:=0 to dims[0]-1 do
int_dynarray_setlength(pointer((pointer(newp)+sizeof(tdynarray)+i*elesize)^),
eletype,dimcount-1,@dims[1]);
end;
if updatep then
begin
p:=pointer(newp)+sizeof(tdynarray);
newp^.refcount:=1;
newp^.high:=dims[0]-1;
end;
end;
{ provide local access to dynarr_copy }
function int_dynarray_copy(psrc : pointer;ti : pointer;
lowidx,count:tdynarrayindex) : fpc_stub_dynarray;[external name 'FPC_DYNARR_COPY'];
function fpc_dynarray_copy(psrc : pointer;ti : pointer;
lowidx,count:tdynarrayindex) : fpc_stub_dynarray;[Public,Alias:'FPC_DYNARR_COPY'];compilerproc;
var
realpsrc : pdynarray;
i,size : sizeint;
elesize : sizeint;
eletype : pointer;
begin
fpc_dynarray_clear(pointer(result),ti);
if psrc=nil then
exit;
{$ifndef FPC_DYNARRAYCOPY_FIXED}
if (lowidx=-1) and (count=-1) then
begin
lowidx:=0;
count:=high(tdynarrayindex);
end;
{$endif FPC_DYNARRAYCOPY_FIXED}
realpsrc:=pdynarray(psrc-sizeof(tdynarray));
if (lowidx<0) then
begin
{ Decrease count if index is negative, this is different from how copy()
works on strings. Checked against D7. }
if count<=0 then
exit; { may overflow when adding lowidx }
count:=count+lowidx;
lowidx:=0;
end;
if (count>realpsrc^.high-lowidx+1) then
count:=realpsrc^.high-lowidx+1;
if count<=0 then
exit;
{ skip kind and name }
ti:=aligntoptr(ti+2+PByte(ti)[1]);
elesize:=pdynarraytypedata(ti)^.elSize;
eletype:=pdynarraytypedata(ti)^.elType2;
{ create new array }
size:=elesize*count;
getmem(pointer(result),size+sizeof(tdynarray));
pdynarray(result)^.refcount:=1;
pdynarray(result)^.high:=count-1;
inc(pointer(result),sizeof(tdynarray));
{ copy data }
move(pointer(psrc+elesize*lowidx)^,pointer(result)^,size);
{ increment ref. count of members? }
if PByte(eletype)^ in tkManagedTypes then
for i:=0 to count-1 do
int_addref(pointer(pointer(result)+elesize*i),eletype);
end;
procedure DynArraySetLength(var a: Pointer; typeInfo: Pointer; dimCnt: SizeInt; lengthVec: PSizeInt);
external name 'FPC_DYNARR_SETLENGTH';
function DynArraySize(a : pointer): tdynarrayindex;
external name 'FPC_DYNARRAY_LENGTH';
procedure DynArrayClear(var a: Pointer; typeInfo: Pointer);
external name 'FPC_DYNARRAY_CLEAR';
function DynArrayDim(typeInfo: Pointer): Integer;
begin
result:=0;
while (typeInfo <> nil) and (pdynarraytypeinfo(typeInfo)^.kind = tkDynArray) do
begin
{ skip kind and name }
typeInfo:=aligntoptr(typeInfo+2+PByte(typeInfo)[1]);
{ element type info}
typeInfo:=pdynarraytypedata(typeInfo)^.elType2;
Inc(result);
end;
end;
function DynArrayBounds(a: Pointer; typeInfo: Pointer): TBoundArray;
var
i,dim: sizeint;
begin
dim:=DynArrayDim(typeInfo);
SetLength(result, dim);
for i:=0 to pred(dim) do
if a = nil then
exit
else
begin
result[i]:=DynArraySize(a)-1;
a:=PPointerArray(a)^[0];
end;
end;
function IsDynArrayRectangular(a: Pointer; typeInfo: Pointer): Boolean;
var
i,j: sizeint;
dim,count: sizeint;
begin
dim:=DynArrayDim(typeInfo);
for i:=1 to pred(dim) do
begin
count:=DynArraySize(PPointerArray(a)^[0]);
for j:=1 to Pred(DynArraySize(a)) do
if count<>DynArraySize(PPointerArray(a)^[j]) then
exit(false);
a:=PPointerArray(a)^[0];
end;
result:=true;
end;
function DynArrayIndex(a: Pointer; const indices: array of SizeInt; typeInfo: Pointer): Pointer;
var
i,h: sizeint;
begin
h:=High(indices);
for i:=0 to h do
begin
if i<h then
a := PPointerArray(a)^[indices[i]];
{ skip kind and name }
typeInfo:=(typeInfo+2+PByte(typeInfo)[1]);
{ element type info}
typeInfo:=pdynarraytypedata(typeInfo)^.elType2;
if typeInfo=nil then
exit(nil);
end;
{ skip kind and name }
typeInfo:=(typeInfo+2+PByte(typeInfo)[1]);
result:=@(PByte(a)[indices[h]*pdynarraytypedata(typeInfo)^.elSize]);
end;
{ obsolete but needed for bootstrapping }
procedure fpc_dynarray_decr_ref(var p : pointer;ti : pointer); [Public,Alias:'FPC_DYNARRAY_DECR_REF']; compilerproc;
begin
fpc_dynarray_clear(p,ti);
end;