fpc/packages/numlib/typ.pas
2000-07-13 06:29:38 +00:00

574 lines
16 KiB
ObjectPascal
Raw Blame History

{
$Id$
This file is part of the Numlib package.
Copyright (c) 1986-2000 by
Kees van Ginneken, Wil Kortsmit and Loek van Reij of the
Computational centre of the Eindhoven University of Technology
FPC port Code by Marco van de Voort (marco@freepascal.org)
documentation by Michael van Canneyt (Michael@freepascal.org)
This is the most basic unit from NumLib.
The most important items this unit defines are matrix types and machine
constants
See the file COPYING.FPC, included in this distribution,
for details about the copyright.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
**********************************************************************}
{
In the FPC revision, instead of picking a certain floating point type,
a new type "ArbFloat" is defined, which is used as floating point type
throughout the entire library. If you change the floating point type, you
should only have to change ArbFloat, and the machineconstants belonging to
the type you want.
However for IEEE Double (64bit) and Extended(80bit) these constants are
already defined, and autoselected by the library. (the library tests the
size of the float type in bytes for 8 and 10 and picks the appropiate
constants
Also some stuff had to be added to get ipf running (vector object and
complex.inp and scale methods)
}
unit typ;
{$I DIRECT.INC} {Contains "global" compilerswitches which
are imported into every unit of the library }
{$DEFINE ArbExtended}
interface
CONST numlib_version=2; {used to detect version conflicts between
header unit and dll}
highestelement=20000; {Maximal n x m dimensions of matrix.
+/- highestelement*SIZEOF(arbfloat) is
minimal size of matrix.}
type {Definition of base types}
{$IFDEF ArbExtended}
ArbFloat = extended;
{$ELSE}
ArbFloat = double;
{$ENDIF}
ArbInt = LONGINT;
Float8Arb =ARRAY[0..7] OF BYTE;
Float10Arb =ARRAY[0..9] OF BYTE;
CONST {Some constants for the variables below, in binary formats.}
{$IFNDEF ArbExtended}
{First for REAL/Double}
TC1 : Float8Arb = ($00,$00,$00,$00,$00,$00,$B0,$3C);
TC2 : Float8Arb = ($FF,$FF,$FF,$FF,$FF,$FF,$EF,$7F);
TC3 : Float8Arb = ($00,$00,$00,$00,$01,$00,$10,$00);
TC4 : Float8Arb = ($00,$00,$00,$00,$00,$00,$F0,$7F);
TC5 : Float8Arb = ($EF,$39,$FA,$FE,$42,$2E,$86,$40);
TC6 : Float8Arb = ($D6,$BC,$FA,$BC,$2B,$23,$86,$C0);
TC7 : Float8Arb = ($FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF);
{$ENDIF}
{For Extended}
{$IFDEF ArbExtended}
TC1 : Float10Arb = (0,0,$00,$00,$00,$00,0,128,192,63); {Eps}
TC2 : Float10Arb = ($FF,$FF,$FF,$FF,$FF,$FF,$FF,$D6,$FE,127); {9.99188560553925115E+4931}
TC3 : Float10Arb = (1,0,0,0,0,0,0,0,0,0); {3.64519953188247460E-4951}
TC4 : Float10Arb = (0,0,0,0,0,0,0,$80,$FF,$7F); {Inf}
TC5 : Float10Arb = (18,25,219,91,61,101,113,177,12,64); {1.13563488668777920E+0004}
TC6 : Float10Arb = (108,115,3,170,182,56,27,178,12,192); {-1.13988053843083006E+0004}
TC7 : Float10Arb = ($FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF); {NaN}
{$ENDIF}
{ numdig is the number of useful (safe) decimal places of an "ArbFloat"
for display.
minform is the number of decimal places shown by the rtls
write(x:ArbFloat)
maxform is the maximal number of decimal positions
}
numdig = 25;
minform = 10;
maxform = 26;
var
macheps : ArbFloat absolute TC1; { macheps = r - 1, with r
the smallest ArbFloat > 1}
giant : ArbFloat absolute TC2; { the largest ArbFloat}
midget : ArbFloat absolute TC3; { the smallest positive ArbFloat}
infinity : ArbFloat absolute TC4; { INF as defined in IEEE-754(double)
or intel (for extended)}
LnGiant : ArbFloat absolute TC5; {ln of giant}
LnMidget : ArbFloat absolute TC6; {ln of midget}
NaN : ArbFloat absolute TC7; {Not A Number}
{Copied from Det. Needs ArbExtended conditional}
const { og = 8^-maxexp, og<6F>>=midget,
bg = 8^maxexp, bg<62><=giant
midget and giant are defined in typ.pas}
{$IFDEF ArbExtended}
ogx: Float10Arb = (51,158,223,249,51,243,4,181,224,31);
bgx: Float10Arb = (108,119,117,92,70,38,155,234,254,95);
maxexpx : ArbInt = 2740;
{$ELSE}
ogx: Float8Arb= (84, 254, 32, 128, 32, 0, 0, 32);
bgx: Float8Arb= (149, 255, 255, 255, 255, 255, 239, 95);
maxexpx : ArbInt = 170;
{$ENDIF}
{Like standard EXP(), but for very small values (near lowest possible
ArbFloat this version returns 0}
Function exp(x: ArbFloat): ArbFloat;
type
Complex = object {Crude complex record. For me an example of
useless OOP, specially if you have operator overloading}
xreal, imag : ArbFloat;
procedure Init (r, i: ArbFloat);
procedure Add (c: complex);
procedure Sub (c: complex);
function Inp(z:complex):ArbFloat;
procedure Conjugate;
procedure Scale(s: ArbFloat);
Function Norm : ArbFloat;
Function Size : ArbFloat;
Function Re : ArbFloat;
procedure Unary;
Function Im : ArbFloat;
Function Arg : ArbFloat;
procedure MinC(c: complex);
procedure MaxC(c: complex);
Procedure TransF(var t: complex);
end;
vector = object
i, j, k: ArbFloat;
procedure Init (vii, vjj, vkk: ArbFloat);
procedure Unary;
procedure Add (c: vector);
procedure Sub (c: vector);
function Vi : ArbFloat;
function Vj : ArbFloat;
function Vk : ArbFloat;
function Norm : ArbFloat;
Function Norm8 : ArbFloat;
function Size : ArbFloat;
function InProd(c: vector): ArbFloat;
procedure Uitprod(c: vector; var e: vector);
procedure Scale(s: ArbFloat);
procedure DScale(s: ArbFloat);
procedure Normalize;
procedure Rotate(calfa, salfa: ArbFloat; axe: vector);
procedure Show(p,q: ArbInt);
end;
transformorg = record offset: complex; ss, sc: real end;
transform = record
offsetx, offsety, scalex, scaley: ArbFloat
end;
{Standard Functions used in NumLib}
rfunc1r = Function(x : ArbFloat): ArbFloat;
rfunc2r = Function(x, y : ArbFloat): ArbFloat;
{Complex version}
rfunc1z = Function(z: complex): ArbFloat;
{Special Functions}
oderk1n = procedure(x: ArbFloat; var y, f: ArbFloat);
roofnrfunc = procedure(var x, fx: ArbFloat; var deff: boolean);
{Definition of matrix types in NumLib. First some vectors.
The high boundery is a maximal number only. Vectors can be smaller, but
not bigger. The difference is the starting number}
arfloat0 = array[0..highestelement] of ArbFloat;
arfloat1 = array[1..highestelement] of ArbFloat;
arfloat2 = array[2..highestelement] of ArbFloat;
arfloat_1 = array[-1..highestelement] of ArbFloat;
{A matrix is an array of floats}
ar2dr = array[0..highestelement] of ^arfloat0;
ar2dr1 = array[1..highestelement] of ^arfloat1;
{Matrices can get big, so we mosttimes allocate them on the heap.}
par2dr1 = ^ar2dr1;
{Integer vectors}
arint0 = array[0..highestelement] of ArbInt;
arint1 = array[1..highestelement] of ArbInt;
{Boolean (true/false) vectors}
arbool1 = array[1..highestelement] of boolean;
{Complex vectors}
arcomp0 = array[0..highestelement] of complex;
arcomp1 = array[1..highestelement] of complex;
arvect0 = array[0..highestelement] of vector;
vectors = array[1..highestelement] of vector;
parcomp = ^arcomp1;
{(de) Allocate mxn matrix to A}
procedure AllocateAr2dr(m, n: integer; var a: par2dr1);
procedure DeAllocateAr2dr(m, n: integer; var a: par2dr1);
{(de) allocate below-left triangle matrix for (de)convolution
(a 3x3 matrix looks like this
x
x x
x x x)
}
procedure AllocateL2dr(n: integer; var a: par2dr1);
procedure DeAllocateL2dr(n: integer; var a: par2dr1);
{Get the Re and Im parts of a complex type}
Function Re(z: complex): ArbFloat;
Function Im(z: complex): ArbFloat;
{ Creates a string from a floatingpoint value}
Function R2S(x: ArbFloat; p, q: integer): string;
{Calculate inproduct of V1 and V2, which are vectors with N elements;
I1 and I2 are the SIZEOF the datatypes of V1 and V2
MvdV: Change this to "V1,V2:array of ArbFloat and forget the i1 and i2
parameters?}
Function Inprod(var V1, V2; n, i1, i2: ArbInt): ArbFloat;
{Return certain special machine constants.(macheps=1, Nan=7)}
Function MachCnst(n: ArbInt): ArbFloat;
function dllversion:LONGINT;
implementation
Function MachCnst(n: ArbInt): ArbFloat;
begin
case n of
1: MachCnst := macheps;
2: MachCnst := giant;
3: MachCnst := midget;
4: MachCnst := infinity;
5: MachCnst := LnGiant;
6: MachCnst := LnMidget;
7: MachCnst := Nan;
end
end;
{ Are used in many of the example programs}
Function Re(z: complex): ArbFloat;
begin
Re := z.xreal
end;
Function Im(z: complex): ArbFloat;
begin
Im := z.imag
end;
{Kind of Sysutils.TrimRight and TrimLeft called after eachother}
procedure Compress(var s: string);
var i, j: LONGINT;
begin
j := length(s);
while (j>0) and (s[j]=' ') do dec(j);
i := 1;
while (i<=j) and (s[i]=' ') do Inc(i);
s := copy(s, i, j+1-i)
end;
Function R2S(x: ArbFloat; p, q: integer): string;
var s: string;
i, j, k: integer;
begin
if q=-1 then
begin
Str(x:p, s);
i := Pos('E', s)-1; k := i+1;
j := i+3; while (j<length(s)) and (s[j]='0') do inc(j);
while s[i]='0' do dec(i); if s[i]='.' then dec(i);
if s[j]='0' then s := copy(s,1,i) else
if s[k]='-' then
s := copy(s, 1, i)+'E-'+Copy(s, j, length(s)+1-j)
else
s := copy(s, 1, i)+'E'+Copy(s, j, length(s)+1-j)
end
else
Str(x:p:q, s);
Compress(s);
R2S := s
end;
procedure AllocateAr2dr(m, n: integer; var a: par2dr1);
var i: integer;
begin
GetMem(a, m*SizeOf(pointer));
for i:=1 to m do GetMem(a^[i], n*SizeOf(ArbFloat))
end;
procedure DeAllocateAr2dr(m, n: integer; var a: par2dr1);
var i: integer;
begin
for i:=m downto 1 do FreeMem(a^[i], n*SizeOf(ArbFloat));
FreeMem(a, m*SizeOf(pointer));
a := Nil
end;
procedure AllocateL2dr(n: integer; var a: par2dr1);
var i: integer;
begin
GetMem(a, n*SizeOf(pointer));
for i:=1 to n do GetMem(a^[i], i*SizeOf(ArbFloat))
end;
procedure DeAllocateL2dr(n: integer; var a: par2dr1);
var i: integer;
begin
for i:=n downto 1 do FreeMem(a^[i], i*SizeOf(ArbFloat));
FreeMem(a, n*SizeOf(pointer));
a := Nil
end;
var h, r, i: ArbFloat;
procedure Complex.Init(r, i: ArbFloat);
begin
xreal:= r;
imag := i
end;
procedure Complex.Conjugate;
begin
imag := -imag
end;
function Complex.Inp(z:complex):ArbFloat;
begin
Inp := xreal*z.xreal + imag*z.imag
end;
procedure Complex.MinC(c: complex);
begin if c.xreal<xreal then xreal := c.xreal;
if c.imag<imag then imag := c.imag
end;
procedure Complex.Maxc(c: complex);
begin if c.xreal>xreal then xreal := c.xreal;
if c.imag>imag then imag := c.imag
end;
procedure Complex.Add(c: complex);
begin
xreal := xreal + c.xreal; imag := imag + c.imag
end;
procedure Complex.Sub(c: complex);
begin
xreal := xreal - c.xreal; imag := imag - c.imag
end;
Function Complex.Norm: ArbFloat;
begin
Norm := Sqr(xreal) + Sqr(imag)
end;
Function Complex.Size: ArbFloat;
begin
Size := Sqrt(Norm)
end;
Function Complex.Re: ArbFloat;
begin
Re := xreal;
end;
Function Complex.Im: ArbFloat;
begin
Im := imag
end;
Procedure Complex.TransF(var t: complex);
var w: complex;
tt: transformorg absolute t;
begin
w := Self; Conjugate;
with tt do
begin
w.scale(ss);
scale(sc);
Add(offset)
end;
Add(w)
end;
procedure Complex.Unary;
begin
xreal := -xreal;
imag := -imag
end;
procedure Complex.Scale(s:ArbFloat);
begin
xreal := xreal*s; imag := imag*s
end;
Function Complex.Arg: ArbFloat;
begin
if xreal=0 then
if imag>0 then Arg := 0.5*pi else
if imag=0 then Arg := 0 else Arg := -0.5*pi else
if xReal>0 then Arg := ArcTan(imag/xReal)
else if imag>=0 then Arg := ArcTan(imag/xReal) + pi
else Arg := ArcTan(imag/xReal) - pi
end;
Function exp(x: ArbFloat): ArbFloat;
begin
if x<LnMidget then exp := 0 else exp := system.exp(x)
end;
{ procedure berekent: v1 = v1 + r*v2 i1 en i2 geven de
increments in bytes voor v1 en v2 }
Function Inprod(var V1, V2; n, i1, i2: ArbInt): ArbFloat;
VAR i: LONGINT;
p1, p2: ^ArbFloat;
s: ArbFloat;
begin
IF I1 <>SIZEOF(ArbFloat) THEN
BEGIN
WRITELN('1 Something went probably wrong while porting!');
HALT;
END;
p1 := @v1; p2 := @v2; s := 0;
for i:=1 to n do
begin
s := s + p1^*p2^;
Inc(longint(p1), i1);
Inc(longint(p2), i2)
end;
Inprod := s
end;
procedure Vector.Init(vii, vjj, vkk: ArbFloat);
begin
i := vii; j := vjj; k := vkk
end;
procedure Vector.Unary;
begin i := -i; j := -j; k := -k end;
procedure Vector.Add(c: vector);
begin
i := i + c.i; j := j + c.j; k := k + c.k
end;
procedure Vector.Sub(c: vector);
begin
i := i - c.i; j := j - c.j; k := k - c.k
end;
function Vector.Vi : ArbFloat; begin Vi := i end;
function Vector.Vj : ArbFloat; begin Vj := j end;
function Vector.Vk : ArbFloat; begin Vk := k end;
function Vector.Norm:ArbFloat;
begin
Norm := Sqr(i) + Sqr(j) + Sqr(k)
end;
function Vector.Norm8:ArbFloat;
var r: ArbFloat;
begin
r := abs(i);
if abs(j)>r then r := abs(j);
if abs(k)>r then r := abs(k);
Norm8 := r
end;
function Vector.Size: ArbFloat;
begin
Size := Sqrt(Norm)
end;
function Vector.InProd(c: vector): ArbFloat;
begin
InProd := i*c.i + j*c.j + k*c.k
end;
procedure Vector.Uitprod(c: vector; var e: vector);
begin
e.i := j*c.k - k*c.j;
e.j := k*c.i - i*c.k;
e.k := i*c.j - j*c.i
end;
procedure Vector.Scale(s: ArbFloat);
begin
i := i*s; j := j*s; k := k*s
end;
procedure Vector.DScale(s: ArbFloat);
begin
i := i/s; j := j/s; k := k/s
end;
procedure Vector.Normalize;
begin
DScale(Size)
end;
procedure Vector.Show(p,q:ArbInt);
begin writeln(i:p:q, 'I', j:p:q, 'J', k:p:q, 'K') end;
procedure Vector.Rotate(calfa, salfa: arbfloat; axe: vector);
var qv : vector;
begin
Uitprod(axe, qv); qv.scale(salfa);
axe.scale((1-calfa)*Inprod(axe));
scale(calfa); sub(qv); add(axe)
end;
function dllversion:LONGINT;
BEGIN
dllversion:=numlib_version;
END;
END.
{
$Log$
Revision 1.1 2000-07-13 06:34:16 michael
+ Initial import
Revision 1.2 2000/01/25 20:21:41 marco
* small updates, crlf fix, and RTE 207 problem
Revision 1.1 2000/01/24 22:08:58 marco
* initial version
}