fpc/compiler/nld.pas
svenbarth 963a4d7b23 Commit of a completely restructured helper implementation. Instead of changing objectdefs with odt_classhelper to odt_class, they'll have the odt_helper type assigned to and this will be kept. This also implies that the parent of a helper is its true parent while the extended type is set to a field in tobjectdef (extendeddef).
This change became necessary of the following reasons:
- Records don't support inheritance, thus for "record helpers" some creativity would have been necessary to implement them; with the new implementation this is more easily
- the new approach allows for easy checks regarding virtual methods and their overrides which would have been more complicated in the old variant
- if someone feels the need the types of helpers (object, interface) can be added rather easily
- unnecessary things like VMT generation can be disabled now

details:
- msg*: 
* moved some messages from parser to type
* adjusted a message ("class helper" => "helper")
- symdef.pas:
* renamed "helperparent" to "extendeddef" and changed its type from "tobjectdef" to "tabstractrecorddef", so records can be extended as well (somewhen in the near future)
* removed "finish_class_helper" method as it isn't necessary (luckily I haven't yet adjusted the ObjC variant)
* changed name of "is_objectpascal_classhelper" to "is_objectpascal_helper" to reflect that this function applies to all helper types
* tobjectdef.create: ImplementedInterfaces isn't created for odt_helper anymore
* tobjectdef.alignment: for helpers it's the same as for classes although this shouldn't be used anywhere...
* tobjectdef.vmtmethodoffset: set to 0 for helpers to be sure...
* tobjectdef.needs_inittable: not needed for helpers (no fields allowed)
* is_objectpascal_helper: only needs check for "odt_helper" object type
- symconst.pas:
* changed odt_classhelper to more general odt_helper
* added new type "thelpertype" which is used to check that "(record|class) helper" corresponds with the given extended type (as Delphi XE checks this as well this strict solution can be kept for modes Delphi and ObjFPC)
- symtable.pas:
* extended "searchsym_in_class" with the possibility to disable the search for helper methods (needed for inherited) => this implies changing all occurences of "searchsym_in_class" with a "true" except some special locations
* renamed "search_objectpascal_classhelper" to "search_objectpascal_helper"
* searchsym_in_class: 
** when an extended method is defined with "overload" it can be that a same named method of the extended class might be called (sadly this means that this search was unnecessary...)
** contextclassh is the def of the helper in the case of an inherited call inside the helper's implementation
** when methods inside a helper are searched, it must be searched in the extended type first
- ptype.pas:
* single_type is used to parse the parent of a helper as well, so allow a helper if the stoParseClassParent is given (needs check in pdecobj.pas/parse_class_parents for normal classes)
* read_named_type: currently the only case when something <> ht_none is passed to the modified parse_objdec (see below) is when the combination "class helper" is encountered ("record helper" will be another one)
- pinline.pas: adjustment for extended "searchsym_in_class"
- pexpr.pas:
* adjustments regarding "searchsym_in_class" and "is_objectpascal_helper"
* factor/factor_read_id: moved the check for "TSomeClassType.SomeMethod" outside of the "is_class" check
* factor: 
** in case of an inherited we need to search inside the extended type first (Note: this needs to be extended to find methods in the helper parent if no method is found in the extended type)
** we also need to disable the search for helper methods when searching for an inherited method (Note: it might be better to introduce a enum to decide whether a helper method should search before or after the methods of the extended type or even never)
- pdecsub.pas:
* insert_self_and_vmt_para: in a helper the type of Self is of the extended type
* pd_abstract, pd_final: more nice error message
* pd_override, pd_message, pd_reintroduce: adjusted checks because now "is_class" is no longer true for helpers
* proc_direcdata: allowed "abstract" for helpers (only to produce a more nice error message)
* parse_proc_direc: adjustment because of "is_objectpascal_helper"
- pdecobj.pas:
* adjustments regarding "is_objectpascal_helper"
* adjusted object_dec to take the type of the helper (class, record) as a parameter to be able to check whether the correct extended type was given
* struct_property_dec: properties are allowed in helpers
* parse_object_options: nothing to be parsed for helpers (at least I hope so ^^)
* parse_parent_classes: 
** the parent of a helper is now parsed as a normal parent, the extended type is parsed in an extra procedure
** check for "sealed" no longer needed
** added check that the parsed parent of a helper is indeed a helper
** allow to parse the closing ")" of the helper's parent
* parse_extended_class:
** new procedure that parses the type which is extended
** it checks that the extended type is a class for "class helper" and a record for "record helper"
** it checks that a helper extends the same class or a subclass for class helpers
** it checks that a helper extends the same record for record helpers
* parse_object_members:
** "type", "const", "var" is allowed in helpers
** don't exclude flags regarding virtual methods, they are needed for the checks in mode Delphi (this implies that VMT loading must be disabled for helpers)
* object_dec:
** don't change "odt_helper" to "odt_class", but still include the "oo_is_classhelper" flag
** allow the parsing of object options (there are none)
** parse the extended type for helpers
- pdecl.pas
* adjustment because of extension of object_dec
* types_dec: remove the call to finish_classhelper
- objcdef.pas
* objcaddencodedtype, objcdochecktype: add references to helpers as implicit pointers although that should not be used in any way...
- nld.pas
* tloadnode.pass_typecheck: self is a reference to the extended type
- nflw.pas
* create_for_in_loop: adjustment because of changed procedure and inheritance type
- ncgrtti.pas
* TRTTIWriter.write_rtti_data: disable for helpers for now (I need to check what Delphi does here)
- ncgld.pas
* tcgloadnode.pass_generate_code: virtual methods of helpers are treated as normal methods
- ncgcal.pas
* tcgcallnode.pass_generate_code: virtual methods of helpers are treated as normal methods
- ncal.pas
* tcallnode.pass_typecheck: adjust for extension of tcallcandidates constructor
- htypechk.pas
* tcallcandidates declaration: extend some methods to (dis)allow the search for helper methods (needed for inherited)
* tcallcandidates.collect_overloads_in_struct: 
** search first in helpers for methods and stop if none carries the "overload" flag
** move the addition of the procsyms to an extra nested procedure because it's used for helper methods and normal struct methods

git-svn-id: branches/svenbarth/classhelpers@16947 -
2011-02-20 11:41:55 +00:00

1193 lines
42 KiB
ObjectPascal

{
Copyright (c) 2000-2002 by Florian Klaempfl
Type checking and register allocation for load/assignment nodes
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit nld;
{$i fpcdefs.inc}
interface
uses
node,
{$ifdef state_tracking}
nstate,
{$endif}
symconst,symbase,symtype,symsym,symdef;
type
Trttidatatype=(rdt_normal,rdt_ord2str,rdt_str2ord);
tloadnode = class(tunarynode)
protected
fprocdef : tprocdef;
fprocdefderef : tderef;
public
symtableentry : tsym;
symtableentryderef : tderef;
symtable : TSymtable;
constructor create(v : tsym;st : TSymtable);virtual;
constructor create_procvar(v : tsym;d:tprocdef;st : TSymtable);virtual;
constructor ppuload(t:tnodetype;ppufile:tcompilerppufile);override;
procedure ppuwrite(ppufile:tcompilerppufile);override;
procedure buildderefimpl;override;
procedure derefimpl;override;
procedure set_mp(p:tnode);
function is_addr_param_load:boolean;
function dogetcopy : tnode;override;
function pass_1 : tnode;override;
function pass_typecheck:tnode;override;
procedure mark_write;override;
function docompare(p: tnode): boolean; override;
procedure printnodedata(var t:text);override;
procedure setprocdef(p : tprocdef);
property procdef: tprocdef read fprocdef write setprocdef;
end;
tloadnodeclass = class of tloadnode;
{ different assignment types }
tassigntype = (at_normal,at_plus,at_minus,at_star,at_slash);
tassignmentnode = class(tbinarynode)
assigntype : tassigntype;
constructor create(l,r : tnode);virtual;
constructor ppuload(t:tnodetype;ppufile:tcompilerppufile);override;
procedure ppuwrite(ppufile:tcompilerppufile);override;
function dogetcopy : tnode;override;
function pass_1 : tnode;override;
function pass_typecheck:tnode;override;
function simplify(forinline : boolean) : tnode;override;
{$ifdef state_tracking}
function track_state_pass(exec_known:boolean):boolean;override;
{$endif state_tracking}
function docompare(p: tnode): boolean; override;
end;
tassignmentnodeclass = class of tassignmentnode;
tarrayconstructorrangenode = class(tbinarynode)
constructor create(l,r : tnode);virtual;
function pass_1 : tnode;override;
function pass_typecheck:tnode;override;
end;
tarrayconstructorrangenodeclass = class of tarrayconstructorrangenode;
tarrayconstructornode = class(tbinarynode)
constructor create(l,r : tnode);virtual;
function dogetcopy : tnode;override;
function pass_1 : tnode;override;
function pass_typecheck:tnode;override;
function docompare(p: tnode): boolean; override;
procedure force_type(def:tdef);
procedure insert_typeconvs;
end;
tarrayconstructornodeclass = class of tarrayconstructornode;
ttypenode = class(tnode)
allowed : boolean;
typedef : tdef;
typedefderef : tderef;
constructor create(def:tdef);virtual;
constructor ppuload(t:tnodetype;ppufile:tcompilerppufile);override;
procedure ppuwrite(ppufile:tcompilerppufile);override;
procedure buildderefimpl;override;
procedure derefimpl;override;
function pass_1 : tnode;override;
function pass_typecheck:tnode;override;
function dogetcopy : tnode;override;
function docompare(p: tnode): boolean; override;
end;
ttypenodeclass = class of ttypenode;
trttinode = class(tnode)
l1,l2 : longint;
rttitype : trttitype;
rttidef : tstoreddef;
rttidefderef : tderef;
rttidatatype : Trttidatatype;
constructor create(def:tstoreddef;rt:trttitype;dt:Trttidatatype);virtual;
constructor ppuload(t:tnodetype;ppufile:tcompilerppufile);override;
procedure ppuwrite(ppufile:tcompilerppufile);override;
procedure buildderefimpl;override;
procedure derefimpl;override;
function dogetcopy : tnode;override;
function pass_1 : tnode;override;
function pass_typecheck:tnode;override;
function docompare(p: tnode): boolean; override;
end;
trttinodeclass = class of trttinode;
var
cloadnode : tloadnodeclass = tloadnode;
cassignmentnode : tassignmentnodeclass = tassignmentnode;
carrayconstructorrangenode : tarrayconstructorrangenodeclass = tarrayconstructorrangenode;
carrayconstructornode : tarrayconstructornodeclass = tarrayconstructornode;
ctypenode : ttypenodeclass = ttypenode;
crttinode : trttinodeclass = trttinode;
{ Current assignment node }
aktassignmentnode : tassignmentnode;
implementation
uses
cutils,verbose,globtype,globals,systems,
symnot,
defutil,defcmp,
htypechk,pass_1,procinfo,paramgr,
cpuinfo,
ncon,ninl,ncnv,nmem,ncal,nutils,nbas,
cgobj,cgbase
;
{*****************************************************************************
TLOADNODE
*****************************************************************************}
constructor tloadnode.create(v : tsym;st : TSymtable);
begin
inherited create(loadn,nil);
if not assigned(v) then
internalerror(200108121);
symtableentry:=v;
symtable:=st;
fprocdef:=nil;
end;
constructor tloadnode.create_procvar(v : tsym;d:tprocdef;st : TSymtable);
begin
inherited create(loadn,nil);
if not assigned(v) then
internalerror(200108122);
symtableentry:=v;
symtable:=st;
fprocdef:=d;
end;
constructor tloadnode.ppuload(t:tnodetype;ppufile:tcompilerppufile);
begin
inherited ppuload(t,ppufile);
ppufile.getderef(symtableentryderef);
symtable:=nil;
ppufile.getderef(fprocdefderef);
end;
procedure tloadnode.ppuwrite(ppufile:tcompilerppufile);
begin
inherited ppuwrite(ppufile);
ppufile.putderef(symtableentryderef);
ppufile.putderef(fprocdefderef);
end;
procedure tloadnode.buildderefimpl;
begin
inherited buildderefimpl;
symtableentryderef.build(symtableentry);
fprocdefderef.build(fprocdef);
end;
procedure tloadnode.derefimpl;
begin
inherited derefimpl;
symtableentry:=tsym(symtableentryderef.resolve);
symtable:=symtableentry.owner;
fprocdef:=tprocdef(fprocdefderef.resolve);
end;
procedure tloadnode.set_mp(p:tnode);
begin
{ typen nodes should not be set }
if p.nodetype=typen then
internalerror(200301042);
left:=p;
end;
function tloadnode.dogetcopy : tnode;
var
n : tloadnode;
begin
n:=tloadnode(inherited dogetcopy);
n.symtable:=symtable;
n.symtableentry:=symtableentry;
n.fprocdef:=fprocdef;
result:=n;
end;
function tloadnode.is_addr_param_load:boolean;
begin
result:=(symtable.symtabletype=parasymtable) and
(symtableentry.typ=paravarsym) and
not(vo_has_local_copy in tparavarsym(symtableentry).varoptions) and
not(nf_load_self_pointer in flags) and
paramanager.push_addr_param(tparavarsym(symtableentry).varspez,tparavarsym(symtableentry).vardef,tprocdef(symtable.defowner).proccalloption);
end;
function tloadnode.pass_typecheck:tnode;
begin
result:=nil;
case symtableentry.typ of
absolutevarsym :
resultdef:=tabsolutevarsym(symtableentry).vardef;
constsym:
begin
if tconstsym(symtableentry).consttyp=constresourcestring then
resultdef:=cansistringtype
else
internalerror(22799);
end;
staticvarsym :
begin
tabstractvarsym(symtableentry).IncRefCountBy(1);
{ static variables referenced in procedures or from finalization,
variable needs to be in memory.
It is too hard and the benefit is too small to detect whether a
variable is only used in the finalization to add support for it (PFV) }
if assigned(current_procinfo) and
(symtable.symtabletype=staticsymtable) and
(
(symtable.symtablelevel<>current_procinfo.procdef.localst.symtablelevel) or
(current_procinfo.procdef.proctypeoption=potype_unitfinalize)
) then
make_not_regable(self,[ra_addr_taken]);
resultdef:=tabstractvarsym(symtableentry).vardef;
end;
paravarsym,
localvarsym :
begin
tabstractvarsym(symtableentry).IncRefCountBy(1);
{ Nested variable? The we need to load the framepointer of
the parent procedure }
if assigned(current_procinfo) and
(symtable.symtabletype in [localsymtable,parasymtable]) and
(symtable.symtablelevel<>current_procinfo.procdef.parast.symtablelevel) then
begin
if assigned(left) then
internalerror(200309289);
left:=cloadparentfpnode.create(tprocdef(symtable.defowner));
{ we can't inline the referenced parent procedure }
exclude(tprocdef(symtable.defowner).procoptions,po_inline);
{ reference in nested procedures, variable needs to be in memory }
{ and behaves as if its address escapes its parent block }
make_not_regable(self,[ra_addr_taken]);
end;
{ fix self type which is declared as voidpointer in the
definition }
if vo_is_self in tabstractvarsym(symtableentry).varoptions then
begin
resultdef:=tprocdef(symtableentry.owner.defowner).struct;
if is_objectpascal_helper(resultdef) then
resultdef:=tobjectdef(resultdef).extendeddef;
if (po_classmethod in tprocdef(symtableentry.owner.defowner).procoptions) or
(po_staticmethod in tprocdef(symtableentry.owner.defowner).procoptions) then
resultdef:=tclassrefdef.create(resultdef)
else if (is_object(resultdef) or is_record(resultdef)) and
(nf_load_self_pointer in flags) then
resultdef:=tpointerdef.create(resultdef);
end
else if vo_is_vmt in tabstractvarsym(symtableentry).varoptions then
begin
resultdef:=tprocdef(symtableentry.owner.defowner).struct;
resultdef:=tclassrefdef.create(resultdef);
end
else
resultdef:=tabstractvarsym(symtableentry).vardef;
end;
procsym :
begin
{ Return the first procdef. In case of overloaded
procdefs the matching procdef will be choosen
when the expected procvardef is known, see get_information
in htypechk.pas (PFV) }
if not assigned(fprocdef) then
fprocdef:=tprocdef(tprocsym(symtableentry).ProcdefList[0])
else if po_kylixlocal in fprocdef.procoptions then
CGMessage(type_e_cant_take_address_of_local_subroutine);
{ the result is a fprocdef, addrn and proc_to_procvar
typeconvn need this as resultdef so they know
that the address needs to be returned }
resultdef:=fprocdef;
{ process methodpointer/framepointer }
if assigned(left) then
typecheckpass(left);
end;
labelsym:
resultdef:=voidtype;
else
internalerror(200104141);
end;
end;
procedure Tloadnode.mark_write;
begin
include(flags,nf_write);
end;
function tloadnode.pass_1 : tnode;
begin
result:=nil;
expectloc:=LOC_REFERENCE;
if (cs_create_pic in current_settings.moduleswitches) and
not(symtableentry.typ in [paravarsym,localvarsym]) then
include(current_procinfo.flags,pi_needs_got);
case symtableentry.typ of
absolutevarsym :
;
constsym:
begin
if tconstsym(symtableentry).consttyp=constresourcestring then
expectloc:=LOC_CREFERENCE;
end;
staticvarsym,
localvarsym,
paravarsym :
begin
if assigned(left) then
firstpass(left);
if not is_addr_param_load and
tabstractvarsym(symtableentry).is_regvar(is_addr_param_load) then
expectloc:=tvarregable2tcgloc[tabstractvarsym(symtableentry).varregable]
else
if (tabstractvarsym(symtableentry).varspez=vs_const) then
expectloc:=LOC_CREFERENCE;
if (target_info.system=system_powerpc_darwin) and
([vo_is_dll_var,vo_is_external] * tabstractvarsym(symtableentry).varoptions <> []) then
include(current_procinfo.flags,pi_needs_got);
{ call to get address of threadvar }
if (vo_is_thread_var in tabstractvarsym(symtableentry).varoptions) then
include(current_procinfo.flags,pi_do_call);
if nf_write in flags then
Tabstractvarsym(symtableentry).trigger_notifications(vn_onwrite)
else
Tabstractvarsym(symtableentry).trigger_notifications(vn_onread);
end;
procsym :
begin
{ initialise left for nested procs if necessary }
if (m_nested_procvars in current_settings.modeswitches) then
setprocdef(fprocdef);
{ method pointer or nested proc ? }
if assigned(left) then
begin
expectloc:=LOC_CREFERENCE;
firstpass(left);
end;
end;
labelsym :
;
else
internalerror(200104143);
end;
end;
function tloadnode.docompare(p: tnode): boolean;
begin
docompare :=
inherited docompare(p) and
(symtableentry = tloadnode(p).symtableentry) and
(fprocdef = tloadnode(p).fprocdef) and
(symtable = tloadnode(p).symtable);
end;
procedure tloadnode.printnodedata(var t:text);
begin
inherited printnodedata(t);
write(t,printnodeindention,'symbol = ',symtableentry.name);
if symtableentry.typ=procsym then
write(t,printnodeindention,'procdef = ',fprocdef.mangledname);
writeln(t,'');
end;
procedure tloadnode.setprocdef(p : tprocdef);
begin
fprocdef:=p;
resultdef:=p;
{ nested procedure? }
if assigned(p) and
is_nested_pd(p) then
begin
if not(m_nested_procvars in current_settings.modeswitches) then
CGMessage(type_e_cant_take_address_of_local_subroutine)
else
begin
{ parent frame pointer pointer as "self" }
left.free;
left:=cloadparentfpnode.create(tprocdef(p.owner.defowner));
end;
end
{ we should never go from nested to non-nested }
else if assigned(left) and
(left.nodetype=loadparentfpn) then
internalerror(2010072201);
end;
{*****************************************************************************
TASSIGNMENTNODE
*****************************************************************************}
constructor tassignmentnode.create(l,r : tnode);
begin
inherited create(assignn,l,r);
l.mark_write;
assigntype:=at_normal;
if r.nodetype = typeconvn then
ttypeconvnode(r).warn_pointer_to_signed:=false;
end;
constructor tassignmentnode.ppuload(t:tnodetype;ppufile:tcompilerppufile);
begin
inherited ppuload(t,ppufile);
assigntype:=tassigntype(ppufile.getbyte);
end;
procedure tassignmentnode.ppuwrite(ppufile:tcompilerppufile);
begin
inherited ppuwrite(ppufile);
ppufile.putbyte(byte(assigntype));
end;
function tassignmentnode.dogetcopy : tnode;
var
n : tassignmentnode;
begin
n:=tassignmentnode(inherited dogetcopy);
n.assigntype:=assigntype;
result:=n;
end;
function tassignmentnode.simplify(forinline : boolean) : tnode;
begin
result:=nil;
{ assignment nodes can perform several floating point }
{ type conversions directly, so no typeconversions }
{ are inserted in those cases. When inlining, a }
{ variable may be replaced by a constant which can be }
{ converted at compile time, so check for this case }
if is_real(left.resultdef) and
is_real(right.resultdef) and
is_constrealnode(right) and
not equal_defs(right.resultdef,left.resultdef) then
inserttypeconv(right,left.resultdef);
end;
function tassignmentnode.pass_typecheck:tnode;
var
hp : tnode;
useshelper : boolean;
begin
result:=nil;
resultdef:=voidtype;
{ must be made unique }
set_unique(left);
typecheckpass(left);
typecheckpass(right);
set_varstate(right,vs_read,[vsf_must_be_valid]);
set_varstate(left,vs_written,[]);
if codegenerror then
exit;
{ tp procvar support, when we don't expect a procvar
then we need to call the procvar }
if (left.resultdef.typ<>procvardef) then
maybe_call_procvar(right,true);
{ assignments to formaldefs and open arrays aren't allowed }
if (left.resultdef.typ=formaldef) or
is_open_array(left.resultdef) then
CGMessage(type_e_assignment_not_allowed);
{ test if node can be assigned, properties are allowed }
valid_for_assignment(left,true);
{ assigning nil to a dynamic array clears the array }
if is_dynamic_array(left.resultdef) and
(right.nodetype=niln) then
begin
{ remove property flag to avoid errors, see comments for }
{ tf_winlikewidestring assignments below }
exclude(left.flags,nf_isproperty);
hp:=ccallparanode.create(caddrnode.create_internal
(crttinode.create(tstoreddef(left.resultdef),initrtti,rdt_normal)),
ccallparanode.create(ctypeconvnode.create_internal(left,voidpointertype),nil));
result := ccallnode.createintern('fpc_dynarray_clear',hp);
left:=nil;
exit;
end;
{ shortstring helpers can do the conversion directly,
so treat them separatly }
if (is_shortstring(left.resultdef)) then
begin
{ insert typeconv, except for chars that are handled in
secondpass and except for ansi/wide string that can
be converted immediatly }
if not(is_char(right.resultdef) or
(right.resultdef.typ=stringdef)) then
inserttypeconv(right,left.resultdef);
if right.resultdef.typ=stringdef then
begin
useshelper:=true;
{ convert constant strings to shortstrings. But
skip empty constant strings, that will be handled
in secondpass }
if (right.nodetype=stringconstn) then
begin
{ verify if range fits within shortstring }
{ just emit a warning, delphi gives an }
{ error, only if the type definition of }
{ of the string is less < 255 characters }
if not is_open_string(left.resultdef) and
(tstringconstnode(right).len > tstringdef(left.resultdef).len) then
cgmessage(type_w_string_too_long);
inserttypeconv(right,left.resultdef);
if (right.nodetype=stringconstn) and
(tstringconstnode(right).len=0) then
useshelper:=false;
end;
{ rest is done in pass 1 (JM) }
if useshelper then
exit;
end
end
{ floating point assignments can also perform the conversion directly }
else if is_real(left.resultdef) and is_real(right.resultdef) and
not is_constrealnode(right)
{$ifdef cpufpemu}
{ the emulator can't do this obviously }
and not(current_settings.fputype in [fpu_libgcc,fpu_soft])
{$endif cpufpemu}
{$ifdef x86}
{ the assignment node code can't convert a double in an }
{ sse register to an extended value in memory more }
{ efficiently than a type conversion node, so don't }
{ bother implementing support for that }
and (use_vectorfpu(left.resultdef) or not(use_vectorfpu(right.resultdef)))
{$endif}
{$ifdef arm}
{ the assignment node code can't convert a single in
an interger register to a double in an mmregister or
vice versa }
and (use_vectorfpu(left.resultdef) and
use_vectorfpu(right.resultdef) and
(tfloatdef(left.resultdef).floattype=tfloatdef(right.resultdef).floattype))
{$endif}
then
begin
check_ranges(fileinfo,right,left.resultdef);
end
else
begin
{ check if the assignment may cause a range check error }
check_ranges(fileinfo,right,left.resultdef);
inserttypeconv(right,left.resultdef);
end;
{ call helpers for interface }
if is_interfacecom_or_dispinterface(left.resultdef) then
begin
{ Normal interface assignments are handled by the generic refcount incr/decr }
if not right.resultdef.is_related(left.resultdef) then
begin
{ remove property flag to avoid errors, see comments for }
{ tf_winlikewidestring assignments below }
exclude(left.flags,nf_isproperty);
hp:=
ccallparanode.create(
cguidconstnode.create(tobjectdef(left.resultdef).iidguid^),
ccallparanode.create(
ctypeconvnode.create_internal(right,voidpointertype),
ccallparanode.create(
ctypeconvnode.create_internal(left,voidpointertype),
nil)));
result:=ccallnode.createintern('fpc_intf_assign_by_iid',hp);
left:=nil;
right:=nil;
exit;
end;
end;
{ check if local proc/func is assigned to procvar }
if right.resultdef.typ=procvardef then
test_local_to_procvar(tprocvardef(right.resultdef),left.resultdef);
end;
function tassignmentnode.pass_1 : tnode;
var
hp: tnode;
oldassignmentnode : tassignmentnode;
begin
result:=nil;
expectloc:=LOC_VOID;
firstpass(left);
{ Optimize the reuse of the destination of the assingment in left.
Allow the use of the left inside the tree generated on the right.
This is especially useful for string routines where the destination
is pushed as a parameter. Using the final destination of left directly
save a temp allocation and copy of data (PFV) }
oldassignmentnode:=aktassignmentnode;
aktassignmentnode:=self;
firstpass(right);
aktassignmentnode:=oldassignmentnode;
if nf_assign_done_in_right in flags then
begin
result:=right;
right:=nil;
exit;
end;
if codegenerror then
exit;
{ assignment to refcounted variable -> inc/decref }
if is_managed_type(left.resultdef) then
include(current_procinfo.flags,pi_do_call);
if (is_shortstring(left.resultdef)) then
begin
if right.resultdef.typ=stringdef then
begin
if (right.nodetype<>stringconstn) or
(tstringconstnode(right).len<>0) then
begin
{ remove property flag to avoid errors, see comments for }
{ tf_winlikewidestring assignments below }
exclude(left.flags, nf_isproperty);
hp:=ccallparanode.create
(right,
ccallparanode.create(left,nil));
result:=ccallnode.createintern('fpc_'+tstringdef(right.resultdef).stringtypname+'_to_shortstr',hp);
firstpass(result);
left:=nil;
right:=nil;
exit;
end;
end;
end
{ call helpers for composite types containing automated types }
else if is_managed_type(left.resultdef) and
(left.resultdef.typ in [arraydef,objectdef,recorddef]) and
not is_interfacecom_or_dispinterface(left.resultdef) and
not is_dynamic_array(left.resultdef) then
begin
hp:=ccallparanode.create(caddrnode.create_internal(
crttinode.create(tstoreddef(left.resultdef),initrtti,rdt_normal)),
ccallparanode.create(ctypeconvnode.create_internal(
caddrnode.create_internal(left),voidpointertype),
ccallparanode.create(ctypeconvnode.create_internal(
caddrnode.create_internal(right),voidpointertype),
nil)));
result:=ccallnode.createintern('fpc_copy_proc',hp);
firstpass(result);
left:=nil;
right:=nil;
exit;
end
{ call helpers for variant, they can contain non ref. counted types like
vararrays which must be really copied }
else if left.resultdef.typ=variantdef then
begin
hp:=ccallparanode.create(ctypeconvnode.create_internal(
caddrnode.create_internal(right),voidpointertype),
ccallparanode.create(ctypeconvnode.create_internal(
caddrnode.create_internal(left),voidpointertype),
nil));
result:=ccallnode.createintern('fpc_variant_copy',hp);
firstpass(result);
left:=nil;
right:=nil;
exit;
end
{ call helpers for windows widestrings, they aren't ref. counted }
else if (tf_winlikewidestring in target_info.flags) and is_widestring(left.resultdef) then
begin
{ The first argument of fpc_widestr_assign is a var parameter. Properties cannot }
{ be passed to var or out parameters, because in that case setters/getters are not }
{ used. Further, if we would allow it in case there are no getters or setters, you }
{ would need source changes in case these are introduced later on, thus defeating }
{ part of the transparency advantages of properties. In this particular case, }
{ however: }
{ a) if there is a setter, this code will not be used since then the assignment }
{ will be converted to a procedure call }
{ b) the getter is irrelevant, because fpc_widestr_assign must always decrease }
{ the refcount of the field to which we are writing }
{ c) source code changes are not required if a setter is added/removed, because }
{ this transformation is handled at compile time }
{ -> we can remove the nf_isproperty flag (if any) from left, so that in case it }
{ is a property which refers to a field without a setter call, we will not get }
{ an error about trying to pass a property as a var parameter }
exclude(left.flags,nf_isproperty);
hp:=ccallparanode.create(ctypeconvnode.create_internal(right,voidpointertype),
ccallparanode.create(ctypeconvnode.create_internal(left,voidpointertype),
nil));
result:=ccallnode.createintern('fpc_widestr_assign',hp);
firstpass(result);
left:=nil;
right:=nil;
exit;
end;
end;
function tassignmentnode.docompare(p: tnode): boolean;
begin
docompare :=
inherited docompare(p) and
(assigntype = tassignmentnode(p).assigntype);
end;
{$ifdef state_tracking}
function Tassignmentnode.track_state_pass(exec_known:boolean):boolean;
var se:Tstate_entry;
begin
track_state_pass:=false;
if exec_known then
begin
track_state_pass:=right.track_state_pass(exec_known);
{Force a new resultdef pass.}
right.resultdef:=nil;
do_typecheckpass(right);
typecheckpass(right);
aktstate.store_fact(left.getcopy,right.getcopy);
end
else
aktstate.delete_fact(left);
end;
{$endif}
{*****************************************************************************
TARRAYCONSTRUCTORRANGENODE
*****************************************************************************}
constructor tarrayconstructorrangenode.create(l,r : tnode);
begin
inherited create(arrayconstructorrangen,l,r);
end;
function tarrayconstructorrangenode.pass_typecheck:tnode;
begin
result:=nil;
typecheckpass(left);
typecheckpass(right);
set_varstate(left,vs_read,[vsf_must_be_valid]);
set_varstate(right,vs_read,[vsf_must_be_valid]);
if codegenerror then
exit;
resultdef:=left.resultdef;
end;
function tarrayconstructorrangenode.pass_1 : tnode;
begin
result:=nil;
CGMessage(parser_e_illegal_expression);
end;
{****************************************************************************
TARRAYCONSTRUCTORNODE
*****************************************************************************}
constructor tarrayconstructornode.create(l,r : tnode);
begin
inherited create(arrayconstructorn,l,r);
end;
function tarrayconstructornode.dogetcopy : tnode;
var
n : tarrayconstructornode;
begin
n:=tarrayconstructornode(inherited dogetcopy);
result:=n;
end;
function tarrayconstructornode.pass_typecheck:tnode;
var
hdef : tdef;
hp : tarrayconstructornode;
len : longint;
varia : boolean;
eq : tequaltype;
hnodetype : tnodetype;
begin
result:=nil;
{ are we allowing array constructor? Then convert it to a set.
Do this only if we didn't convert the arrayconstructor yet. This
is needed for the cases where the resultdef is forced for a second
run }
if not(allow_array_constructor) then
begin
hp:=tarrayconstructornode(getcopy);
arrayconstructor_to_set(tnode(hp));
result:=hp;
exit;
end;
{ only pass left tree, right tree contains next construct if any }
hdef:=nil;
hnodetype:=errorn;
len:=0;
varia:=false;
if assigned(left) then
begin
hp:=self;
while assigned(hp) do
begin
typecheckpass(hp.left);
set_varstate(hp.left,vs_read,[vsf_must_be_valid]);
if (hdef=nil) then
begin
hdef:=hp.left.resultdef;
hnodetype:=hp.left.nodetype;
end
else
begin
{ If we got a niln we don't know the type yet and need to take the
type of the next array element.
This is to handle things like [nil,tclass,tclass], see also tw8371 (PFV) }
if hnodetype=niln then
begin
eq:=compare_defs(hp.left.resultdef,hdef,hnodetype);
if eq>te_incompatible then
begin
hdef:=hp.left.resultdef;
hnodetype:=hp.left.nodetype;
end;
end
else
eq:=compare_defs(hdef,hp.left.resultdef,hp.left.nodetype);
if (not varia) and (eq<te_equal) then
begin
{ If both are integers we need to take the type that can hold both
defs }
if is_integer(hdef) and is_integer(hp.left.resultdef) then
begin
if is_in_limit(hdef,hp.left.resultdef) then
hdef:=hp.left.resultdef;
end
else
if (nf_novariaallowed in flags) then
varia:=true;
end;
end;
inc(len);
hp:=tarrayconstructornode(hp.right);
end;
end;
{ Set the type of empty or varia arrays to void. Also
do this if the type is array of const/open array
because those can't be used with setelementdef }
if not assigned(hdef) or
varia or
is_array_of_const(hdef) or
is_open_array(hdef) then
hdef:=voidtype;
resultdef:=tarraydef.create(0,len-1,s32inttype);
tarraydef(resultdef).elementdef:=hdef;
include(tarraydef(resultdef).arrayoptions,ado_IsConstructor);
if varia then
include(tarraydef(resultdef).arrayoptions,ado_IsVariant);
end;
procedure tarrayconstructornode.force_type(def:tdef);
var
hp : tarrayconstructornode;
begin
tarraydef(resultdef).elementdef:=def;
include(tarraydef(resultdef).arrayoptions,ado_IsConstructor);
exclude(tarraydef(resultdef).arrayoptions,ado_IsVariant);
if assigned(left) then
begin
hp:=self;
while assigned(hp) do
begin
inserttypeconv(hp.left,def);
hp:=tarrayconstructornode(hp.right);
end;
end;
end;
procedure tarrayconstructornode.insert_typeconvs;
var
hp : tarrayconstructornode;
dovariant : boolean;
begin
dovariant:=(nf_forcevaria in flags) or (ado_isvariant in tarraydef(resultdef).arrayoptions);
{ only pass left tree, right tree contains next construct if any }
if assigned(left) then
begin
hp:=self;
while assigned(hp) do
begin
typecheckpass(hp.left);
{ Insert typeconvs for array of const }
if dovariant then
{ at this time C varargs are no longer an arrayconstructornode }
insert_varargstypeconv(hp.left,false);
hp:=tarrayconstructornode(hp.right);
end;
end;
end;
function tarrayconstructornode.pass_1 : tnode;
var
hp : tarrayconstructornode;
do_variant:boolean;
begin
do_variant:=(nf_forcevaria in flags) or (ado_isvariant in tarraydef(resultdef).arrayoptions);
result:=nil;
{ Insert required type convs, this must be
done in pass 1, because the call must be
typecheckpassed already }
if assigned(left) then
begin
insert_typeconvs;
{ call firstpass for all nodes }
hp:=self;
while assigned(hp) do
begin
if hp.left<>nil then
begin
{This check is pessimistic; a call will happen depending
on the location in which the elements will be found in
pass 2.}
if not do_variant then
include(current_procinfo.flags,pi_do_call);
firstpass(hp.left);
end;
hp:=tarrayconstructornode(hp.right);
end;
end;
expectloc:=LOC_CREFERENCE;
end;
function tarrayconstructornode.docompare(p: tnode): boolean;
begin
docompare:=inherited docompare(p);
end;
{*****************************************************************************
TTYPENODE
*****************************************************************************}
constructor ttypenode.create(def:tdef);
begin
inherited create(typen);
typedef:=def;
allowed:=false;
end;
constructor ttypenode.ppuload(t:tnodetype;ppufile:tcompilerppufile);
begin
inherited ppuload(t,ppufile);
ppufile.getderef(typedefderef);
allowed:=boolean(ppufile.getbyte);
end;
procedure ttypenode.ppuwrite(ppufile:tcompilerppufile);
begin
inherited ppuwrite(ppufile);
ppufile.putderef(typedefderef);
ppufile.putbyte(byte(allowed));
end;
procedure ttypenode.buildderefimpl;
begin
inherited buildderefimpl;
typedefderef.build(typedef);
end;
procedure ttypenode.derefimpl;
begin
inherited derefimpl;
typedef:=tdef(typedefderef.resolve);
end;
function ttypenode.pass_typecheck:tnode;
begin
result:=nil;
resultdef:=typedef;
{ check if it's valid }
if typedef.typ = errordef then
CGMessage(parser_e_illegal_expression);
end;
function ttypenode.pass_1 : tnode;
begin
result:=nil;
expectloc:=LOC_VOID;
{ a typenode can't generate code, so we give here
an error. Else it'll be an abstract error in pass_generate_code.
Only when the allowed flag is set we don't generate
an error }
if not allowed then
Message(parser_e_no_type_not_allowed_here);
end;
function ttypenode.dogetcopy : tnode;
var
n : ttypenode;
begin
n:=ttypenode(inherited dogetcopy);
n.allowed:=allowed;
n.typedef:=typedef;
result:=n;
end;
function ttypenode.docompare(p: tnode): boolean;
begin
docompare :=
inherited docompare(p);
end;
{*****************************************************************************
TRTTINODE
*****************************************************************************}
constructor trttinode.create(def:tstoreddef;rt:trttitype;dt:Trttidatatype);
begin
inherited create(rttin);
rttidef:=def;
rttitype:=rt;
rttidatatype:=dt;
end;
constructor trttinode.ppuload(t:tnodetype;ppufile:tcompilerppufile);
begin
inherited ppuload(t,ppufile);
ppufile.getderef(rttidefderef);
rttitype:=trttitype(ppufile.getbyte);
rttidatatype:=trttidatatype(ppufile.getbyte);
end;
procedure trttinode.ppuwrite(ppufile:tcompilerppufile);
begin
inherited ppuwrite(ppufile);
ppufile.putderef(rttidefderef);
ppufile.putbyte(byte(rttitype));
ppufile.putbyte(byte(rttidatatype));
end;
procedure trttinode.buildderefimpl;
begin
inherited buildderefimpl;
rttidefderef.build(rttidef);
end;
procedure trttinode.derefimpl;
begin
inherited derefimpl;
rttidef:=tstoreddef(rttidefderef.resolve);
end;
function trttinode.dogetcopy : tnode;
var
n : trttinode;
begin
n:=trttinode(inherited dogetcopy);
n.rttidef:=rttidef;
n.rttitype:=rttitype;
n.rttidatatype:=rttidatatype;
result:=n;
end;
function trttinode.pass_typecheck:tnode;
begin
{ rtti information will be returned as a void pointer }
result:=nil;
resultdef:=voidpointertype;
end;
function trttinode.pass_1 : tnode;
begin
result:=nil;
expectloc:=LOC_CREFERENCE;
end;
function trttinode.docompare(p: tnode): boolean;
begin
docompare :=
inherited docompare(p) and
(rttidef = trttinode(p).rttidef) and
(rttitype = trttinode(p).rttitype);
end;
end.