fpc/compiler/x86_64/cpupara.pas
sergei c40b8d92c7 * Revert r17695 because it breaks cycling.
git-svn-id: trunk@17698 -
2011-06-08 19:19:24 +00:00

1252 lines
47 KiB
ObjectPascal

{
Copyright (c) 2002 by Florian Klaempfl
Generates the argument location information for x86-64 target
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit cpupara;
{$i fpcdefs.inc}
interface
uses
globtype,
cpubase,cgbase,cgutils,
symconst,symtype,symsym,symdef,
aasmtai,aasmdata,
parabase,paramgr;
type
tx86_64paramanager = class(tparamanager)
private
procedure create_funcretloc_info(p : tabstractprocdef; side: tcallercallee);
procedure create_paraloc_info_intern(p : tabstractprocdef; side: tcallercallee;paras:tparalist;
var intparareg,mmparareg,parasize:longint;varargsparas: boolean);
public
function param_use_paraloc(const cgpara:tcgpara):boolean;override;
function push_addr_param(varspez:tvarspez;def : tdef;calloption : tproccalloption) : boolean;override;
function ret_in_param(def : tdef;calloption : tproccalloption) : boolean;override;
procedure getintparaloc(calloption : tproccalloption; nr : longint;var cgpara:TCGPara);override;
function get_volatile_registers_int(calloption : tproccalloption):tcpuregisterset;override;
function get_volatile_registers_mm(calloption : tproccalloption):tcpuregisterset;override;
function get_volatile_registers_fpu(calloption : tproccalloption):tcpuregisterset;override;
function create_paraloc_info(p : tabstractprocdef; side: tcallercallee):longint;override;
function create_varargs_paraloc_info(p : tabstractprocdef; varargspara:tvarargsparalist):longint;override;
function get_funcretloc(p : tabstractprocdef; side: tcallercallee; def: tdef): tcgpara;override;
end;
implementation
uses
cutils,verbose,
systems,
defutil,
symtable;
const
paraintsupregs : array[0..5] of tsuperregister = (RS_RDI,RS_RSI,RS_RDX,RS_RCX,RS_R8,RS_R9);
parammsupregs : array[0..7] of tsuperregister = (RS_XMM0,RS_XMM1,RS_XMM2,RS_XMM3,RS_XMM4,RS_XMM5,RS_XMM6,RS_XMM7);
paraintsupregs_winx64 : array[0..3] of tsuperregister = (RS_RCX,RS_RDX,RS_R8,RS_R9);
parammsupregs_winx64 : array[0..3] of tsuperregister = (RS_XMM0,RS_XMM1,RS_XMM2,RS_XMM3);
{
The argument classification code largely comes from libffi:
ffi64.c - Copyright (c) 2002, 2007 Bo Thorsen <bo@suse.de>
Copyright (c) 2008 Red Hat, Inc.
x86-64 Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- *)
}
const
MAX_PARA_CLASSES = 4;
type
tx64paraclass = (
X86_64_NO_CLASS,
X86_64_INTEGER_CLASS,X86_64_INTEGERSI_CLASS,
X86_64_SSE_CLASS,X86_64_SSESF_CLASS,X86_64_SSEDF_CLASS,X86_64_SSEUP_CLASS,
X86_64_X87_CLASS,X86_64_X87UP_CLASS,
X86_64_COMPLEX_X87_CLASS,
X86_64_MEMORY_CLASS
);
tx64paraclasses = array[0..MAX_PARA_CLASSES-1] of tx64paraclass;
{ Win64-specific helper }
function aggregate_in_registers_win64(varspez:tvarspez;size:longint):boolean;
begin
{ TODO: Temporary hack: vs_const parameters are always passed by reference for win64}
result:=(varspez=vs_value) and (size in [1,2,4,8])
end;
(* x86-64 register passing implementation. See x86-64 ABI for details. Goal
of this code is to classify each 8bytes of incoming argument by the register
class and assign registers accordingly. *)
(* Return the union class of CLASS1 and CLASS2.
See the x86-64 PS ABI for details. *)
function merge_classes(class1, class2: tx64paraclass): tx64paraclass;
begin
(* Rule #1: If both classes are equal, this is the resulting class. *)
if (class1=class2) then
exit(class1);
(* Rule #2: If one of the classes is NO_CLASS, the resulting class is
the other class. *)
if (class1=X86_64_NO_CLASS) then
exit(class2);
if (class2=X86_64_NO_CLASS) then
exit(class1);
(* Rule #3: If one of the classes is MEMORY, the result is MEMORY. *)
if (class1=X86_64_MEMORY_CLASS) or
(class2=X86_64_MEMORY_CLASS) then
exit(X86_64_MEMORY_CLASS);
(* Rule #4: If one of the classes is INTEGER, the result is INTEGER. *)
{ 32 bit }
if ((class1=X86_64_INTEGERSI_CLASS) and
(class2=X86_64_SSESF_CLASS)) or
((class2=X86_64_INTEGERSI_CLASS) and
(class1=X86_64_SSESF_CLASS)) then
exit(X86_64_INTEGERSI_CLASS);
{ 64 bit }
if (class1 in [X86_64_INTEGER_CLASS,X86_64_INTEGERSI_CLASS]) or
(class2 in [X86_64_INTEGER_CLASS,X86_64_INTEGERSI_CLASS]) then
exit(X86_64_INTEGER_CLASS);
(* Rule #5: If one of the classes is X87, X87UP, or COMPLEX_X87 class,
MEMORY is used. *)
if (class1 in [X86_64_X87_CLASS,X86_64_X87UP_CLASS,X86_64_COMPLEX_X87_CLASS]) or
(class2 in [X86_64_X87_CLASS,X86_64_X87UP_CLASS,X86_64_COMPLEX_X87_CLASS]) then
exit(X86_64_MEMORY_CLASS);
(* Rule #6: Otherwise class SSE is used. *)
result:=X86_64_SSE_CLASS;
end;
(* Classify the argument of type TYPE and mode MODE.
CLASSES will be filled by the register class used to pass each word
of the operand. The number of words is returned. In case the parameter
should be passed in memory, 0 is returned. As a special case for zero
sized containers, classes[0] will be NO_CLASS and 1 is returned.
real_size contains either def.size, or a value derived from
def.bitpackedsize and the field offset denoting the number of bytes
spanned by a bitpacked field
See the x86-64 PS ABI for details.
*)
function classify_as_integer_argument(real_size: aint; var classes: tx64paraclasses; byte_offset: aint): longint;
var
size: aint;
begin
size:=byte_offset+real_size;
if size<=4 then
classes[0]:=X86_64_INTEGERSI_CLASS
else
classes[0]:=X86_64_INTEGER_CLASS;
if size<=8 then
result:=1
else
begin
if size<=12 then
classes[1]:=X86_64_INTEGERSI_CLASS
else if (size<=16) then
classes[1]:=X86_64_INTEGER_CLASS
else
internalerror(2010021401);
result:=2;
end
end;
function classify_argument(def: tdef; varspez: tvarspez; real_size: aint; var classes: tx64paraclasses; byte_offset: aint): longint; forward;
function init_aggregate_classification(def: tdef; varspez: tvarspez; out words: longint; out classes: tx64paraclasses): longint;
var
i: longint;
begin
words:=0;
{ win64 follows a different convention here }
if (target_info.system=system_x86_64_win64) then
begin
if aggregate_in_registers_win64(varspez,def.size) then
begin
classes[0]:=X86_64_INTEGER_CLASS;
result:=1;
end
else
result:=0;
exit;
end;
(* If the struct is larger than 32 bytes, pass it on the stack. *)
if def.size > 32 then
exit(0);
words:=(def.size+7) div 8;
(* Zero sized arrays or structures are NO_CLASS. We return 0 to
signal memory class, so handle it as special case. *)
if (words=0) then
begin
classes[0]:=X86_64_NO_CLASS;
exit(1);
end;
{ we'll be merging the classes elements with the subclasses
elements, so initialise them first }
for i:=low(classes) to high(classes) do
classes[i]:=X86_64_NO_CLASS;
result:=words;
end;
function classify_aggregate_element(def: tdef; varspez: tvarspez; real_size: aint; var classes: tx64paraclasses; new_byte_offset: aint): longint;
var
subclasses: tx64paraclasses;
i,
pos: longint;
begin
result:=classify_argument(def,varspez,real_size,subclasses,new_byte_offset mod 8);
if (result=0) then
exit;
pos:=new_byte_offset div 8;
if result-1+pos>high(classes) then
internalerror(2010053108);
for i:=0 to result-1 do
begin
classes[i+pos] :=
merge_classes(subclasses[i],classes[i+pos]);
end;
end;
function finalize_aggregate_classification(def: tdef; words: longint; var classes: tx64paraclasses): longint;
var
i: longint;
begin
if (words>2) then
begin
(* When size > 16 bytes, if the first one isn't
X86_64_SSE_CLASS or any other ones aren't
X86_64_SSEUP_CLASS, everything should be passed in
memory. *)
if (classes[0]<>X86_64_SSE_CLASS) then
exit(0);
for i:=1 to words-1 do
if (classes[i]<>X86_64_SSEUP_CLASS) then
exit(0);
end;
(* Final merger cleanup. *)
(* The first one must never be X86_64_SSEUP_CLASS or
X86_64_X87UP_CLASS. *)
if (classes[0]=X86_64_SSEUP_CLASS) or
(classes[0]=X86_64_X87UP_CLASS) then
internalerror(2010021402);
for i:=0 to words-1 do
begin
(* If one class is MEMORY, everything should be passed in
memory. *)
if (classes[i]=X86_64_MEMORY_CLASS) then
exit(0);
(* The X86_64_SSEUP_CLASS should be always preceded by
X86_64_SSE_CLASS or X86_64_SSEUP_CLASS. *)
if (classes[i]=X86_64_SSEUP_CLASS) and
(classes[i-1]<>X86_64_SSE_CLASS) and
(classes[i-1]<>X86_64_SSEUP_CLASS) then
classes[i]:=X86_64_SSE_CLASS;
(* If X86_64_X87UP_CLASS isn't preceded by X86_64_X87_CLASS,
everything should be passed in memory. *)
if (classes[i]=X86_64_X87UP_CLASS) and
(classes[i-1]<>X86_64_X87_CLASS) then
exit(0);
end;
{ FIXME: in case a record contains empty padding space, e.g. a
"single" field followed by a "double", then we have a problem
because the cgpara helpers cannot figure out that they should
skip 4 bytes after storing the single (LOC_MMREGISTER with size
OS_F32) to memory before storing the double -> for now scale
such locations always up to 64 bits, although this loads/stores
some superfluous data }
{ 1) the first part is 32 bit while there is still a second part }
if (classes[1]<>X86_64_NO_CLASS) then
case classes[0] of
X86_64_INTEGERSI_CLASS:
classes[0]:=X86_64_INTEGER_CLASS;
X86_64_SSESF_CLASS:
classes[0]:=X86_64_SSE_CLASS;
end;
{ 2) the second part is 32 bit, but the total size is > 12 bytes }
if (def.size>12) then
case classes[1] of
X86_64_INTEGERSI_CLASS:
classes[1]:=X86_64_INTEGER_CLASS;
X86_64_SSESF_CLASS:
classes[1]:=X86_64_SSE_CLASS;
end;
result:=words;
end;
function classify_record(def: tdef; varspez: tvarspez; var classes: tx64paraclasses; byte_offset: aint): longint;
var
vs: tfieldvarsym;
size,
new_byte_offset: aint;
i,
words,
num: longint;
begin
result:=init_aggregate_classification(def,varspez,words,classes);
if (words=0) then
exit;
(* Merge the fields of the structure. *)
for i:=0 to tabstractrecorddef(def).symtable.symlist.count-1 do
begin
if tsym(tabstractrecorddef(def).symtable.symlist[i]).typ<>fieldvarsym then
continue;
vs:=tfieldvarsym(tabstractrecorddef(def).symtable.symlist[i]);
num:=-1;
if not tabstractrecordsymtable(tabstractrecorddef(def).symtable).is_packed then
begin
new_byte_offset:=byte_offset+vs.fieldoffset;
size:=vs.vardef.size;
end
else
begin
new_byte_offset:=byte_offset+vs.fieldoffset div 8;
if (vs.vardef.typ in [orddef,enumdef]) then
{ calculate the number of bytes spanned by
this bitpacked field }
size:=((vs.fieldoffset+vs.vardef.packedbitsize+7) div 8)-(vs.fieldoffset div 8)
else
size:=vs.vardef.size
end;
num:=classify_aggregate_element(vs.vardef,varspez,size,classes,new_byte_offset);
if (num=0) then
exit(0);
end;
result:=finalize_aggregate_classification(def,words,classes);
end;
function classify_normal_array(def: tarraydef; varspez: tvarspez; var classes: tx64paraclasses; byte_offset: aint): longint;
var
i, elecount: aword;
size,
elesize,
new_byte_offset,
bitoffset: aint;
words,
num: longint;
isbitpacked: boolean;
begin
result:=init_aggregate_classification(def,varspez,words,classes);
if (words=0) then
exit;
isbitpacked:=is_packed_array(def);
if not isbitpacked then
begin
elesize:=def.elesize;
size:=elesize;
end
else
begin
elesize:=def.elepackedbitsize;
bitoffset:=0;
end;
(* Merge the elements of the array. *)
i:=0;
elecount:=def.elecount;
repeat
if not isbitpacked then
begin
{ size does not change }
new_byte_offset:=byte_offset+i*elesize;
end
else
begin
{ calculate the number of bytes spanned by this bitpacked
element }
size:=((bitoffset+elesize+7) div 8)-(bitoffset div 8);
new_byte_offset:=byte_offset+(elesize*i) div 8;
{ bit offset of next element }
inc(bitoffset,elesize);
end;
num:=classify_aggregate_element(def.elementdef,varspez,size,classes,new_byte_offset);
if (num=0) then
exit(0);
inc(i);
until (i=elecount);
result:=finalize_aggregate_classification(def,words,classes);
end;
function classify_argument(def: tdef; varspez: tvarspez; real_size: aint; var classes: tx64paraclasses; byte_offset: aint): longint;
begin
case def.typ of
orddef,
enumdef,
pointerdef,
classrefdef:
result:=classify_as_integer_argument(real_size,classes,byte_offset);
formaldef:
result:=classify_as_integer_argument(voidpointertype.size,classes,byte_offset);
floatdef:
begin
case tfloatdef(def).floattype of
s32real:
begin
if byte_offset=0 then
classes[0]:=X86_64_SSESF_CLASS
else
{ if we have e.g. a record with two successive "single"
fields, we need a 64 bit rather than a 32 bit load }
classes[0]:=X86_64_SSE_CLASS;
result:=1;
end;
s64real:
begin
classes[0]:=X86_64_SSEDF_CLASS;
result:=1;
end;
s80real,
sc80real:
begin
classes[0]:=X86_64_X87_CLASS;
classes[1]:=X86_64_X87UP_CLASS;
result:=2;
end;
s64comp,
s64currency:
begin
classes[0]:=X86_64_INTEGER_CLASS;
result:=1;
end;
s128real:
begin
classes[0]:=X86_64_SSE_CLASS;
classes[1]:=X86_64_SSEUP_CLASS;
result:=2;
end;
else
internalerror(2010060301);
end;
end;
recorddef:
result:=classify_record(def,varspez,classes,byte_offset);
objectdef:
begin
if is_object(def) then
{ pass by reference, like ppc and i386 }
result:=0
else
{ all kinds of pointer types: class, objcclass, interface, ... }
result:=classify_as_integer_argument(voidpointertype.size,classes,byte_offset);
end;
setdef:
begin
if is_smallset(def) then
result:=classify_as_integer_argument(def.size,classes,byte_offset)
else
result:=0;
end;
stringdef:
begin
if (tstringdef(def).stringtype in [st_shortstring,st_longstring]) then
result:=0
else
result:=classify_as_integer_argument(def.size,classes,byte_offset);
end;
arraydef:
begin
{ a dynamic array is treated like a pointer }
if is_dynamic_array(def) then
result:=classify_as_integer_argument(voidpointertype.size,classes,byte_offset)
{ other special arrays are passed on the stack }
else if is_open_array(def) or
is_array_of_const(def) then
result:=0
else
{ normal array }
result:=classify_normal_array(tarraydef(def),varspez,classes,byte_offset);
end;
{ the file record is definitely too big }
filedef:
result:=0;
procvardef:
begin
if (po_methodpointer in tprocvardef(def).procoptions) then
begin
{ treat as TMethod record }
def:=search_system_type('TMETHOD').typedef;
result:=classify_argument(def,varspez,def.size,classes,byte_offset);
end
else
{ pointer }
result:=classify_as_integer_argument(def.size,classes,byte_offset);
end;
variantdef:
begin
{ same as tvardata record }
def:=search_system_type('TVARDATA').typedef;
result:=classify_argument(def,varspez,def.size,classes,byte_offset);
end;
else
internalerror(2010021405);
end;
end;
procedure getvalueparaloc(varspez:tvarspez;def:tdef;var loc1,loc2:tx64paraclass);
var
size: aint;
i: longint;
classes: tx64paraclasses;
numclasses: longint;
begin
{ init the classes array, because even if classify_argument inits only
one element we copy both to loc1/loc2 in case "1" is returned }
for i:=low(classes) to high(classes) do
classes[i]:=X86_64_NO_CLASS;
{ def.size internalerrors for open arrays and dynamic arrays, since
their size cannot be determined at compile-time.
classify_argument does not look at the realsize argument for arrays
cases, but we obviously do have to pass something... }
if is_special_array(def) then
size:=-1
else
size:=def.size;
numclasses:=classify_argument(def,varspez,size,classes,0);
case numclasses of
0:
begin
loc1:=X86_64_MEMORY_CLASS;
loc2:=X86_64_NO_CLASS;
end;
1,2:
begin
{ If the class is X87, X87UP or COMPLEX_X87, it is passed in memory }
if classes[0] in [X86_64_X87_CLASS,X86_64_X87UP_CLASS,X86_64_COMPLEX_X87_CLASS] then
classes[0]:=X86_64_MEMORY_CLASS;
if classes[1] in [X86_64_X87_CLASS,X86_64_X87UP_CLASS,X86_64_COMPLEX_X87_CLASS] then
classes[1]:=X86_64_MEMORY_CLASS;
loc1:=classes[0];
loc2:=classes[1];
end
else
{ 4 can only happen for _m256 vectors, not yet supported }
internalerror(2010021501);
end;
end;
function tx86_64paramanager.ret_in_param(def : tdef;calloption : tproccalloption) : boolean;
var
classes: tx64paraclasses;
numclasses: longint;
begin
if (tf_safecall_exceptions in target_info.flags) and
(calloption=pocall_safecall) then
begin
result := true;
exit;
end;
case def.typ of
{ for records it depends on their contents and size }
recorddef,
{ make sure we handle 'procedure of object' correctly }
procvardef:
begin
numclasses:=classify_argument(def,vs_value,def.size,classes,0);
result:=(numclasses=0);
end;
else
result:=inherited ret_in_param(def,calloption);
end;
end;
function tx86_64paramanager.param_use_paraloc(const cgpara:tcgpara):boolean;
var
paraloc : pcgparalocation;
begin
if not assigned(cgpara.location) then
internalerror(200410102);
result:=true;
{ All locations are LOC_REFERENCE }
paraloc:=cgpara.location;
while assigned(paraloc) do
begin
if (paraloc^.loc<>LOC_REFERENCE) then
begin
result:=false;
exit;
end;
paraloc:=paraloc^.next;
end;
end;
{ true if a parameter is too large to copy and only the address is pushed }
function tx86_64paramanager.push_addr_param(varspez:tvarspez;def : tdef;calloption : tproccalloption) : boolean;
var
classes: tx64paraclasses;
numclasses: longint;
begin
result:=false;
{ var,out,constref always require address }
if varspez in [vs_var,vs_out,vs_constref] then
begin
result:=true;
exit;
end;
{ Only vs_const, vs_value here }
case def.typ of
formaldef :
result:=true;
recorddef :
begin
{ MetroWerks Pascal: const records always passed by reference
(for Mac OS X interfaces) }
if (calloption=pocall_mwpascal) and
(varspez=vs_const) then
result:=true
{ Win ABI depends on size to pass it in a register or not }
else if (target_info.system=system_x86_64_win64) then
result:=not aggregate_in_registers_win64(varspez,def.size)
{ pass constant parameters that would be passed via memory by
reference for non-cdecl/cppdecl, and make sure that the tmethod
record (size=16) is passed the same way as a complex procvar }
else if ((varspez=vs_const) and
not(calloption in [pocall_cdecl,pocall_cppdecl])) or
(def.size=16) then
begin
numclasses:=classify_argument(def,vs_value,def.size,classes,0);
result:=numclasses=0;
end
else
{ SysV ABI always passes it as value parameter }
result:=false;
end;
arraydef :
begin
{ cdecl array of const need to be ignored and therefor be puhsed
as value parameter with length 0 }
if ((calloption in [pocall_cdecl,pocall_cppdecl]) and
is_array_of_const(def)) or
is_dynamic_array(def) then
result:=false
else
{ pass all arrays by reference to be compatible with C (passing
an array by value (= copying it on the stack) does not exist,
because an array is the same as a pointer there }
result:=true
end;
objectdef :
begin
{ don't treat objects like records, because we only know wheter
or not they'll have a VMT after the entire object is parsed
-> if they are used as function result from one of their own
methods, their size can still change after we've determined
whether this function result should be returned by reference or
by value }
if is_object(def) then
result:=true;
end;
variantdef,
stringdef,
procvardef,
setdef :
begin
numclasses:=classify_argument(def,vs_value,def.size,classes,0);
result:=numclasses=0;
end;
end;
end;
function tx86_64paramanager.get_volatile_registers_int(calloption : tproccalloption):tcpuregisterset;
begin
if target_info.system=system_x86_64_win64 then
result:=[RS_RAX,RS_RCX,RS_RDX,RS_R8,RS_R9,RS_R10,RS_R11]
else
result:=[RS_RAX,RS_RCX,RS_RDX,RS_RSI,RS_RDI,RS_R8,RS_R9,RS_R10,RS_R11];
end;
function tx86_64paramanager.get_volatile_registers_mm(calloption : tproccalloption):tcpuregisterset;
begin
if target_info.system=system_x86_64_win64 then
result:=[RS_XMM0..RS_XMM5]
else
result:=[RS_XMM0..RS_XMM15];
end;
function tx86_64paramanager.get_volatile_registers_fpu(calloption : tproccalloption):tcpuregisterset;
begin
result:=[RS_ST0..RS_ST7];
end;
procedure tx86_64paramanager.getintparaloc(calloption : tproccalloption; nr : longint;var cgpara:TCGPara);
var
paraloc : pcgparalocation;
begin
cgpara.reset;
cgpara.size:=OS_ADDR;
cgpara.intsize:=sizeof(pint);
cgpara.alignment:=get_para_align(calloption);
paraloc:=cgpara.add_location;
with paraloc^ do
begin
size:=OS_INT;
if target_info.system=system_x86_64_win64 then
begin
if nr<1 then
internalerror(200304303)
else if nr<=high(paraintsupregs_winx64)+1 then
begin
loc:=LOC_REGISTER;
register:=newreg(R_INTREGISTER,paraintsupregs_winx64[nr-1],R_SUBWHOLE);
end
else
begin
loc:=LOC_REFERENCE;
reference.index:=NR_STACK_POINTER_REG;
reference.offset:=(nr-6)*sizeof(aint);
end;
end
else
begin
if nr<1 then
internalerror(200304303)
else if nr<=high(paraintsupregs)+1 then
begin
loc:=LOC_REGISTER;
register:=newreg(R_INTREGISTER,paraintsupregs[nr-1],R_SUBWHOLE);
end
else
begin
loc:=LOC_REFERENCE;
reference.index:=NR_STACK_POINTER_REG;
reference.offset:=(nr-6)*sizeof(aint);
end;
end;
end;
end;
procedure tx86_64paramanager.create_funcretloc_info(p : tabstractprocdef; side: tcallercallee);
begin
p.funcretloc[side]:=get_funcretloc(p,side,p.returndef);
end;
function tx86_64paramanager.get_funcretloc(p : tabstractprocdef; side: tcallercallee; def: tdef): tcgpara;
const
intretregs: array[0..1] of tregister = (NR_FUNCTION_RETURN_REG,NR_FUNCTION_RETURN_REG_HIGH);
mmretregs: array[0..1] of tregister = (NR_MM_RESULT_REG,NR_MM_RESULT_REG_HIGH);
var
classes: tx64paraclasses;
i,
numclasses: longint;
intretregidx,
mmretregidx: longint;
retcgsize : tcgsize;
paraloc : pcgparalocation;
begin
result.init;
result.alignment:=get_para_align(p.proccalloption);
{ void has no location }
if is_void(def) then
begin
paraloc:=result.add_location;
result.size:=OS_NO;
result.intsize:=0;
paraloc^.size:=OS_NO;
paraloc^.loc:=LOC_VOID;
exit;
end;
{ Constructors return self instead of a boolean }
if (p.proctypeoption=potype_constructor) then
begin
retcgsize:=OS_ADDR;
result.intsize:=sizeof(pint);
end
else
begin
retcgsize:=def_cgsize(def);
{ integer sizes < 32 bit have to be sign/zero extended to 32 bit on
the callee side (caller can expect those bits are valid) }
if (side=calleeside) and
(retcgsize in [OS_8,OS_S8,OS_16,OS_S16]) then
begin
retcgsize:=OS_S32;
result.intsize:=4;
end
else
result.intsize:=def.size;
end;
result.size:=retcgsize;
{ Return is passed as var parameter }
if ret_in_param(def,p.proccalloption) then
begin
paraloc:=result.add_location;
paraloc^.loc:=LOC_REFERENCE;
paraloc^.size:=retcgsize;
exit;
end;
{ Return in FPU register? -> don't use classify_argument(), because
currency and comp need special treatment here (they are integer class
when passing as parameter, but LOC_FPUREGISTER as function result) }
if def.typ=floatdef then
begin
paraloc:=result.add_location;
case tfloatdef(def).floattype of
s32real:
begin
paraloc^.loc:=LOC_MMREGISTER;
paraloc^.register:=newreg(R_MMREGISTER,RS_MM_RESULT_REG,R_SUBMMS);
paraloc^.size:=OS_F32;
end;
s64real:
begin
paraloc^.loc:=LOC_MMREGISTER;
paraloc^.register:=newreg(R_MMREGISTER,RS_MM_RESULT_REG,R_SUBMMD);
paraloc^.size:=OS_F64;
end;
{ the first two only exist on targets with an x87, on others
they are replace by int64 }
s64currency,
s64comp,
s80real,
sc80real:
begin
paraloc^.loc:=LOC_FPUREGISTER;
paraloc^.register:=NR_FPU_RESULT_REG;
paraloc^.size:=retcgsize;
end;
else
internalerror(200405034);
end;
end
else
{ Return in register }
begin
numclasses:=classify_argument(def,vs_value,def.size,classes,0);
{ this would mean a memory return }
if (numclasses=0) then
internalerror(2010021502);
{ this would mean an _m256 vector (valid, but not yet supported) }
if (numclasses>2) then
internalerror(2010021503);
intretregidx:=0;
mmretregidx:=0;
for i:=0 to numclasses-1 do
begin
paraloc:=result.add_location;
case classes[i] of
X86_64_INTEGERSI_CLASS,
X86_64_INTEGER_CLASS:
begin
paraloc^.loc:=LOC_REGISTER;
paraloc^.register:=intretregs[intretregidx];
if classes[i]=X86_64_INTEGER_CLASS then
paraloc^.size:=OS_64
else if result.intsize in [1,2,4] then
paraloc^.size:=retcgsize
else
paraloc^.size:=OS_32;
setsubreg(paraloc^.register,cgsize2subreg(R_INTREGISTER,paraloc^.size));
inc(intretregidx);
end;
X86_64_SSE_CLASS,
X86_64_SSEUP_CLASS,
X86_64_SSESF_CLASS,
X86_64_SSEDF_CLASS:
begin
paraloc^.loc:=LOC_MMREGISTER;
paraloc^.register:=mmretregs[mmretregidx];
case classes[i] of
X86_64_SSESF_CLASS:
begin
setsubreg(paraloc^.register,R_SUBMMS);
paraloc^.size:=OS_F32;
end;
X86_64_SSEDF_CLASS:
begin
setsubreg(paraloc^.register,R_SUBMMD);
paraloc^.size:=OS_F64;
end;
else
begin
setsubreg(paraloc^.register,R_SUBMMWHOLE);
paraloc^.size:=OS_M64;
end;
end;
inc(mmretregidx);
end;
X86_64_NO_CLASS:
begin
{ empty record/array }
if (i<>0) or
(numclasses<>1) then
internalerror(2010060302);
paraloc^.loc:=LOC_VOID;
end;
else
internalerror(2010021504);
end;
end;
end;
end;
procedure tx86_64paramanager.create_paraloc_info_intern(p : tabstractprocdef; side: tcallercallee;paras:tparalist;
var intparareg,mmparareg,parasize:longint;varargsparas: boolean);
var
hp : tparavarsym;
paraloc : pcgparalocation;
subreg : tsubregister;
pushaddr : boolean;
paracgsize : tcgsize;
loc : array[1..2] of tx64paraclass;
needintloc,
needmmloc,
paralen,
locidx,
i,
varalign,
paraalign : longint;
begin
paraalign:=get_para_align(p.proccalloption);
{ Register parameters are assigned from left to right }
for i:=0 to paras.count-1 do
begin
hp:=tparavarsym(paras[i]);
pushaddr:=push_addr_param(hp.varspez,hp.vardef,p.proccalloption);
if pushaddr then
begin
loc[1]:=X86_64_INTEGER_CLASS;
loc[2]:=X86_64_NO_CLASS;
paracgsize:=OS_ADDR;
paralen:=sizeof(pint);
end
else
begin
getvalueparaloc(hp.varspez,hp.vardef,loc[1],loc[2]);
paralen:=push_size(hp.varspez,hp.vardef,p.proccalloption);
paracgsize:=def_cgsize(hp.vardef);
{ integer sizes < 32 bit have to be sign/zero extended to 32 bit
on the caller side }
if (side=callerside) and
(paracgsize in [OS_8,OS_S8,OS_16,OS_S16]) then
begin
paracgsize:=OS_S32;
paralen:=4;
end;
end;
{ cheat for now, we should copy the value to an mm reg as well (FK) }
if varargsparas and
(target_info.system = system_x86_64_win64) and
(hp.vardef.typ = floatdef) then
begin
loc[2]:=X86_64_NO_CLASS;
if paracgsize=OS_F64 then
begin
loc[1]:=X86_64_INTEGER_CLASS;
paracgsize:=OS_64
end
else
begin
loc[1]:=X86_64_INTEGERSI_CLASS;
paracgsize:=OS_32;
end;
end;
hp.paraloc[side].reset;
hp.paraloc[side].size:=paracgsize;
hp.paraloc[side].intsize:=paralen;
hp.paraloc[side].Alignment:=paraalign;
if paralen>0 then
begin
{ Enough registers free? }
needintloc:=0;
needmmloc:=0;
for locidx:=low(loc) to high(loc) do
case loc[locidx] of
X86_64_INTEGER_CLASS,
X86_64_INTEGERSI_CLASS:
inc(needintloc);
X86_64_SSE_CLASS,
X86_64_SSESF_CLASS,
X86_64_SSEDF_CLASS,
X86_64_SSEUP_CLASS:
inc(needmmloc);
end;
{ the "-1" is because we can also use the current register }
if ((target_info.system=system_x86_64_win64) and
((intparareg+needintloc-1 > high(paraintsupregs_winx64)) or
(mmparareg+needmmloc-1 > high(parammsupregs_winx64)))) or
((target_info.system<>system_x86_64_win64) and
((intparareg+needintloc-1 > high(paraintsupregs)) or
(mmparareg+needmmloc-1 > high(parammsupregs)))) then
begin
{ If there are no registers available for any
eightbyte of an argument, the whole argument is
passed on the stack. }
loc[low(loc)]:=X86_64_MEMORY_CLASS;
for locidx:=succ(low(loc)) to high(loc) do
loc[locidx]:=X86_64_NO_CLASS;
end;
locidx:=1;
while (paralen>0) do
begin
if locidx>2 then
internalerror(200501283);
{ Allocate }
case loc[locidx] of
X86_64_INTEGER_CLASS,
X86_64_INTEGERSI_CLASS:
begin
paraloc:=hp.paraloc[side].add_location;
paraloc^.loc:=LOC_REGISTER;
if (paracgsize=OS_NO) or (loc[2]<>X86_64_NO_CLASS) then
begin
if loc[locidx]=X86_64_INTEGER_CLASS then
begin
paraloc^.size:=OS_INT;
subreg:=R_SUBWHOLE;
end
else
begin
paraloc^.size:=OS_32;
subreg:=R_SUBD;
end;
end
else
begin
paraloc^.size:=paracgsize;
{ s64comp is pushed in an int register }
if paraloc^.size=OS_C64 then
paraloc^.size:=OS_64;
subreg:=cgsize2subreg(R_INTREGISTER,paraloc^.size);
end;
{ winx64 uses different registers }
if target_info.system=system_x86_64_win64 then
paraloc^.register:=newreg(R_INTREGISTER,paraintsupregs_winx64[intparareg],subreg)
else
paraloc^.register:=newreg(R_INTREGISTER,paraintsupregs[intparareg],subreg);
{ matching mm register must be skipped }
if target_info.system=system_x86_64_win64 then
inc(mmparareg);
inc(intparareg);
dec(paralen,tcgsize2size[paraloc^.size]);
end;
X86_64_SSE_CLASS,
X86_64_SSESF_CLASS,
X86_64_SSEDF_CLASS,
X86_64_SSEUP_CLASS:
begin
paraloc:=hp.paraloc[side].add_location;
paraloc^.loc:=LOC_MMREGISTER;
case loc[locidx] of
X86_64_SSESF_CLASS:
begin
subreg:=R_SUBMMS;
paraloc^.size:=OS_F32;
end;
X86_64_SSEDF_CLASS:
begin
subreg:=R_SUBMMD;
paraloc^.size:=OS_F64;
end;
else
begin
subreg:=R_SUBMMWHOLE;
paraloc^.size:=OS_M64;
end;
end;
{ winx64 uses different registers }
if target_info.system=system_x86_64_win64 then
paraloc^.register:=newreg(R_MMREGISTER,parammsupregs_winx64[mmparareg],subreg)
else
paraloc^.register:=newreg(R_MMREGISTER,parammsupregs[mmparareg],subreg);
{ matching int register must be skipped }
if target_info.system=system_x86_64_win64 then
inc(intparareg);
inc(mmparareg);
dec(paralen,tcgsize2size[paraloc^.size]);
end;
X86_64_MEMORY_CLASS :
begin
paraloc:=hp.paraloc[side].add_location;
paraloc^.loc:=LOC_REFERENCE;
{Hack alert!!! We should modify int_cgsize to handle OS_128,
however, since int_cgsize is called in many places in the
compiler where only a few can already handle OS_128, fixing it
properly is out of the question to release 2.2.0 in time. (DM)}
if paracgsize=OS_128 then
if paralen=8 then
paraloc^.size:=OS_64
else if paralen=16 then
paraloc^.size:=OS_128
else
internalerror(200707143)
else if paracgsize in [OS_F32,OS_F64,OS_F80,OS_F128] then
paraloc^.size:=int_float_cgsize(paralen)
else
paraloc^.size:=int_cgsize(paralen);
if side=callerside then
paraloc^.reference.index:=NR_STACK_POINTER_REG
else
paraloc^.reference.index:=NR_FRAME_POINTER_REG;
varalign:=used_align(size_2_align(paralen),paraalign,paraalign);
paraloc^.reference.offset:=parasize;
parasize:=align(parasize+paralen,varalign);
paralen:=0;
end;
else
internalerror(2010053113);
end;
if (locidx<2) and
(loc[locidx+1]<>X86_64_NO_CLASS) then
inc(locidx);
end;
end
else
begin
paraloc:=hp.paraloc[side].add_location;
paraloc^.loc:=LOC_VOID;
end;
end;
{ Register parameters are assigned from left-to-right, but the
offsets on the stack are right-to-left. There is no need
to reverse the offset, only adapt the calleeside with the
start offset of the first param on the stack }
if side=calleeside then
begin
for i:=0 to paras.count-1 do
begin
hp:=tparavarsym(paras[i]);
paraloc:=hp.paraloc[side].location;
while paraloc<>nil do
begin
with paraloc^ do
if (loc=LOC_REFERENCE) then
inc(reference.offset,target_info.first_parm_offset);
paraloc:=paraloc^.next;
end;
end;
end;
end;
function tx86_64paramanager.create_varargs_paraloc_info(p : tabstractprocdef; varargspara:tvarargsparalist):longint;
var
intparareg,mmparareg,
parasize : longint;
begin
intparareg:=0;
mmparareg:=0;
if target_info.system=system_x86_64_win64 then
parasize:=4*8
else
parasize:=0;
{ calculate the registers for the normal parameters }
create_paraloc_info_intern(p,callerside,p.paras,intparareg,mmparareg,parasize,false);
{ append the varargs }
create_paraloc_info_intern(p,callerside,varargspara,intparareg,mmparareg,parasize,true);
{ store used no. of SSE registers, that needs to be passed in %AL }
varargspara.mmregsused:=mmparareg;
result:=parasize;
end;
function tx86_64paramanager.create_paraloc_info(p : tabstractprocdef; side: tcallercallee):longint;
var
intparareg,mmparareg,
parasize : longint;
begin
intparareg:=0;
mmparareg:=0;
if target_info.system=system_x86_64_win64 then
parasize:=4*8
else
parasize:=0;
create_paraloc_info_intern(p,side,p.paras,intparareg,mmparareg,parasize,false);
{ Create Function result paraloc }
create_funcretloc_info(p,side);
{ We need to return the size allocated on the stack }
result:=parasize;
end;
begin
paramanager:=tx86_64paramanager.create;
end.