mirror of
https://gitlab.com/freepascal.org/fpc/source.git
synced 2025-05-16 21:22:36 +02:00
1049 lines
31 KiB
ObjectPascal
1049 lines
31 KiB
ObjectPascal
Unit JIDct2D;
|
|
|
|
{ This file contains a fast, not so accurate integer implementation of the
|
|
inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
|
|
must also perform dequantization of the input coefficients.
|
|
|
|
|
|
A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
|
|
on each row (or vice versa, but it's more convenient to emit a row at
|
|
a time). Direct algorithms are also available, but they are much more
|
|
complex and seem not to be any faster when reduced to code.
|
|
|
|
The Feig direct 2D scaled Discrete Cosine Transform extends Arai, Agui
|
|
and Nakajima fast scaled DCT to 2D (464 adds and 80 mult.) with further
|
|
computational saving (462 adds, 54 mults and 6 shits).
|
|
|
|
The forward DCT is described with flow diagrams from the Pennebaker&
|
|
Mitchell JPEG book. The inverse DCT flow diagrams are obtained
|
|
from the inverse matrices. Scaling must be done accordingly.
|
|
|
|
Jacques NOMSSI NZALI, May 16th 1995 }
|
|
|
|
|
|
interface
|
|
|
|
uses
|
|
jmorecfg,
|
|
jinclude,
|
|
jpeglib,
|
|
jdct; { Private declarations for DCT subsystem }
|
|
|
|
{$I jconfig.inc}
|
|
|
|
{ Perform dequantization and inverse DCT on one block of coefficients. }
|
|
|
|
{GLOBAL}
|
|
procedure jpeg_idct_i2d (cinfo : j_decompress_ptr;
|
|
compptr : jpeg_component_info_ptr;
|
|
coef_block : JCOEFPTR;
|
|
output_buf : JSAMPARRAY;
|
|
output_col : JDIMENSION);
|
|
|
|
implementation
|
|
|
|
{ This module is specialized to the case DCTSIZE = 8. }
|
|
|
|
{$ifndef DCTSIZE_IS_8}
|
|
Sorry, this code only copes with 8x8 DCTs. { deliberate syntax err }
|
|
{$endif}
|
|
|
|
{ Scaling decisions are generally the same as in the LL&M algorithm;
|
|
see jidctint.c for more details. However, we choose to descale
|
|
(right shift) multiplication products as soon as they are formed,
|
|
rather than carrying additional fractional bits into subsequent additions.
|
|
This compromises accuracy slightly, but it lets us save a few shifts.
|
|
More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
|
|
everywhere except in the multiplications proper; this saves a good deal
|
|
of work on 16-bit-int machines.
|
|
|
|
The dequantized coefficients are not integers because the AA&N scaling
|
|
factors have been incorporated. We represent them scaled up by PASS1_BITS,
|
|
so that the first and second IDCT rounds have the same input scaling.
|
|
For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
|
|
avoid a descaling shift; this compromises accuracy rather drastically
|
|
for small quantization table entries, but it saves a lot of shifts.
|
|
For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
|
|
so we use a much larger scaling factor to preserve accuracy.
|
|
|
|
A final compromise is to represent the multiplicative constants to only
|
|
8 fractional bits, rather than 13. This saves some shifting work on some
|
|
machines, and may also reduce the cost of multiplication (since there
|
|
are fewer one-bits in the constants). }
|
|
|
|
{$ifdef BITS_IN_JSAMPLE_IS_8}
|
|
const
|
|
CONST_BITS = 8;
|
|
PASS1_BITS = 2;
|
|
{$else}
|
|
CONST_BITS = 8;
|
|
PASS1_BITS = 1; { lose a little precision to avoid overflow }
|
|
{$endif}
|
|
|
|
|
|
{ Convert a positive real constant to an integer scaled by CONST_SCALE. }
|
|
const
|
|
CONST_SCALE = (INT32(1) shl CONST_BITS);
|
|
const
|
|
FIX_1_082392200 = INT32(Round(CONST_SCALE*1.082392200)); {277}
|
|
FIX_1_414213562 = INT32(Round(CONST_SCALE*1.414213562)); {362}
|
|
FIX_1_847759065 = INT32(Round(CONST_SCALE*1.847759065)); {473}
|
|
FIX_2_613125930 = INT32(Round(CONST_SCALE*2.613125930)); {669}
|
|
|
|
|
|
{ Descale and correctly round an INT32 value that's scaled by N bits.
|
|
We assume RIGHT_SHIFT rounds towards minus infinity, so adding
|
|
the fudge factor is correct for either sign of X. }
|
|
|
|
function DESCALE(x : INT32; n : int) : INT32;
|
|
var
|
|
shift_temp : INT32;
|
|
begin
|
|
{$ifdef USE_ACCURATE_ROUNDING}
|
|
shift_temp := x + (INT32(1) shl (n-1));
|
|
{$else}
|
|
{ We can gain a little more speed, with a further compromise in accuracy,
|
|
by omitting the addition in a descaling shift. This yields an incorrectly
|
|
rounded result half the time... }
|
|
shift_temp := x;
|
|
{$endif}
|
|
|
|
{$ifdef RIGHT_SHIFT_IS_UNSIGNED}
|
|
if shift_temp < 0 then
|
|
Descale := (shift_temp shr n) or ((not INT32(0)) shl (32-n))
|
|
else
|
|
{$endif}
|
|
Descale := (shift_temp shr n);
|
|
|
|
end;
|
|
|
|
|
|
{ Multiply a DCTELEM variable by an INT32 constant, and immediately
|
|
descale to yield a DCTELEM result. }
|
|
|
|
{(DCTELEM( DESCALE((var) * (const), CONST_BITS))}
|
|
function Multiply(Avar, Aconst: Integer): DCTELEM;
|
|
begin
|
|
Multiply := DCTELEM( Avar*INT32(Aconst) div CONST_SCALE);
|
|
end;
|
|
|
|
|
|
|
|
{ Dequantize a coefficient by multiplying it by the multiplier-table
|
|
entry; produce a DCTELEM result. For 8-bit data a 16x16->16
|
|
multiplication will do. For 12-bit data, the multiplier table is
|
|
declared INT32, so a 32-bit multiply will be used. }
|
|
|
|
{$ifdef BITS_IN_JSAMPLE_IS_8}
|
|
function DEQUANTIZE(coef,quantval : int) : int;
|
|
begin
|
|
Dequantize := ( IFAST_MULT_TYPE(coef) * quantval);
|
|
end;
|
|
|
|
{$else}
|
|
#define DEQUANTIZE(coef,quantval) \
|
|
DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
|
|
{$endif}
|
|
|
|
|
|
{ Like DESCALE, but applies to a DCTELEM and produces an int.
|
|
We assume that int right shift is unsigned if INT32 right shift is. }
|
|
|
|
function IDESCALE(x : DCTELEM; n : int) : int;
|
|
{$ifdef BITS_IN_JSAMPLE_IS_8}
|
|
const
|
|
DCTELEMBITS = 16; { DCTELEM may be 16 or 32 bits }
|
|
{$else}
|
|
const
|
|
DCTELEMBITS = 32; { DCTELEM must be 32 bits }
|
|
{$endif}
|
|
var
|
|
ishift_temp : DCTELEM;
|
|
begin
|
|
{$ifndef USE_ACCURATE_ROUNDING}
|
|
ishift_temp := x + (INT32(1) shl (n-1));
|
|
{$else}
|
|
{ We can gain a little more speed, with a further compromise in accuracy,
|
|
by omitting the addition in a descaling shift. This yields an incorrectly
|
|
rounded result half the time... }
|
|
ishift_temp := x;
|
|
{$endif}
|
|
|
|
{$ifdef RIGHT_SHIFT_IS_UNSIGNED}
|
|
if ishift_temp < 0 then
|
|
IDescale := (ishift_temp shr n)
|
|
or ((not DCTELEM(0)) shl (DCTELEMBITS-n))
|
|
else
|
|
{$endif}
|
|
IDescale := (ishift_temp shr n);
|
|
end;
|
|
|
|
|
|
|
|
{ Perform dequantization and inverse DCT on one block of coefficients. }
|
|
|
|
{GLOBAL}
|
|
procedure jpeg_idct_i2d (cinfo : j_decompress_ptr;
|
|
compptr : jpeg_component_info_ptr;
|
|
coef_block : JCOEFPTR;
|
|
output_buf : JSAMPARRAY;
|
|
output_col : JDIMENSION);
|
|
Const
|
|
CONST_IC4 = 1.414213562; { 1/0.707106781; }
|
|
FP_IC4 = FIX_1_414213562;
|
|
FP_I_C4_2 = FP_IC4;
|
|
|
|
type
|
|
PWorkspace = ^TWorkspace;
|
|
TWorkspace = coef_bits_field; { buffers data between passes }
|
|
|
|
Procedure N1(var x, y : integer); { rotator 1 }
|
|
Const
|
|
FP_a5 = FIX_1_847759065;
|
|
FP_a4 = FIX_2_613125930;
|
|
FP_a2 = FIX_1_082392200;
|
|
var
|
|
z5, tmp : integer;
|
|
begin
|
|
tmp := x;
|
|
|
|
z5 := Multiply(tmp + y, FP_a5); { c6 }
|
|
x := Multiply(y, FP_a2) - z5; { c2-c6 }
|
|
y := Multiply(tmp, -FP_a4) + z5; { c2+c6 }
|
|
end;
|
|
|
|
Procedure N2(var x, y : integer); { N1 scaled by c4 }
|
|
Const
|
|
FP_b5 = Integer(Round(CONST_SCALE*1.847759065*CONST_IC4));
|
|
FP_b4 = Integer(Round(CONST_SCALE*2.613125930*CONST_IC4));
|
|
FP_b2 = Integer(Round(CONST_SCALE*1.082392200*CONST_IC4));
|
|
var
|
|
z5, tmp : integer;
|
|
begin
|
|
tmp := x;
|
|
|
|
z5 := Multiply(tmp + y, FP_b5);
|
|
x := Multiply(y, FP_b2) - z5;
|
|
y := Multiply(tmp,-FP_b4) + z5;
|
|
end;
|
|
|
|
var
|
|
column, row : byte;
|
|
|
|
var
|
|
tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7 : DCTELEM;
|
|
tmp10, tmp11, tmp12, tmp13 : DCTELEM;
|
|
z10, z11, z12, z13 : DCTELEM;
|
|
inptr : JCOEFPTR;
|
|
|
|
quantptr : IFAST_MULT_TYPE_FIELD_PTR;
|
|
wsptr : PWorkspace;
|
|
outptr : JSAMPROW;
|
|
range_limit : JSAMPROW;
|
|
ctr : int;
|
|
workspace : TWorkspace; { buffers data between passes }
|
|
{SHIFT_TEMPS { for DESCALE }
|
|
{ISHIFT_TEMPS { for IDESCALE }
|
|
var
|
|
dcval : int;
|
|
var
|
|
dcval_ : JSAMPLE;
|
|
begin
|
|
{ Each IDCT routine is responsible for range-limiting its results and
|
|
converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
|
|
be quite far out of range if the input data is corrupt, so a bulletproof
|
|
range-limiting step is required. We use a mask-and-table-lookup method
|
|
to do the combined operations quickly. See the comments with
|
|
prepare_range_limit_table (in jdmaster.c) for more info. }
|
|
|
|
range_limit := JSAMPROW(@(cinfo^.sample_range_limit^[CENTERJSAMPLE]));
|
|
{ Pass 1: process columns from input, store into work array. }
|
|
|
|
inptr := coef_block;
|
|
quantptr := IFAST_MULT_TYPE_FIELD_PTR(compptr^.dct_table);
|
|
wsptr := @workspace;
|
|
for ctr := pred(DCTSIZE) downto 0 do
|
|
begin
|
|
{ short-circuiting is not easily done here }
|
|
// bbo := @outptr;
|
|
for num := 0 to Pred(count) do
|
|
begin
|
|
{ R1 x R1 }
|
|
for column := 7 downto 0 do
|
|
BEGIN
|
|
tmp5 := inptr^[1*RowSize + column];
|
|
|
|
inptr^[1*RowSize + column] := inptr^[4*RowSize + column];
|
|
|
|
tmp7 := inptr^[3*RowSize + column];
|
|
|
|
a := inptr^[2*RowSize + column];
|
|
b := inptr^[6*RowSize + column];
|
|
inptr^[2*RowSize + column] := a - b;
|
|
inptr^[3*RowSize + column] := a + b;
|
|
|
|
a := inptr^[5*RowSize + column];
|
|
inptr^[4*RowSize + column] := a - tmp7;
|
|
z13 := a + tmp7;
|
|
|
|
b := inptr^[7*RowSize + column];
|
|
inptr^[6*RowSize + column] := tmp5 - b;
|
|
z11 := tmp5 + b;
|
|
|
|
inptr^[5*RowSize + column] := z11 - z13;
|
|
inptr^[7*RowSize + column] := z11 + z13;
|
|
END;
|
|
|
|
{ Even part }
|
|
|
|
tmp0 := DEQUANTIZE(inptr^[DCTSIZE*0], quantptr^[DCTSIZE*0]);
|
|
tmp1 := DEQUANTIZE(inptr^[DCTSIZE*2], quantptr^[DCTSIZE*2]);
|
|
tmp2 := DEQUANTIZE(inptr^[DCTSIZE*4], quantptr^[DCTSIZE*4]);
|
|
tmp3 := DEQUANTIZE(inptr^[DCTSIZE*6], quantptr^[DCTSIZE*6]);
|
|
|
|
tmp10 := tmp0 + tmp2; { phase 3 }
|
|
tmp11 := tmp0 - tmp2;
|
|
|
|
tmp13 := tmp1 + tmp3; { phases 5-3 }
|
|
tmp12 := MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; { 2*c4 }
|
|
|
|
tmp0 := tmp10 + tmp13; { phase 2 }
|
|
tmp3 := tmp10 - tmp13;
|
|
tmp1 := tmp11 + tmp12;
|
|
tmp2 := tmp11 - tmp12;
|
|
|
|
{ Odd part }
|
|
|
|
tmp4 := DEQUANTIZE(inptr^[DCTSIZE*1], quantptr^[DCTSIZE*1]);
|
|
tmp5 := DEQUANTIZE(inptr^[DCTSIZE*3], quantptr^[DCTSIZE*3]);
|
|
tmp6 := DEQUANTIZE(inptr^[DCTSIZE*5], quantptr^[DCTSIZE*5]);
|
|
tmp7 := DEQUANTIZE(inptr^[DCTSIZE*7], quantptr^[DCTSIZE*7]);
|
|
|
|
z13 := tmp6 + tmp5; { phase 6 }
|
|
z10 := tmp6 - tmp5;
|
|
z11 := tmp4 + tmp7;
|
|
z12 := tmp4 - tmp7;
|
|
|
|
tmp7 := z11 + z13; { phase 5 }
|
|
tmp11 := MULTIPLY(z11 - z13, FIX_1_414213562); { 2*c4 }
|
|
|
|
z5 := MULTIPLY(z10 + z12, FIX_1_847759065); { 2*c2 }
|
|
tmp10 := MULTIPLY(z12, FIX_1_082392200) - z5; { 2*(c2-c6) }
|
|
tmp12 := MULTIPLY(z10, - FIX_2_613125930) + z5; { -2*(c2+c6) }
|
|
|
|
tmp6 := tmp12 - tmp7; { phase 2 }
|
|
tmp5 := tmp11 - tmp6;
|
|
tmp4 := tmp10 + tmp5;
|
|
|
|
wsptr^[DCTSIZE*0] := int (tmp0 + tmp7);
|
|
wsptr^[DCTSIZE*7] := int (tmp0 - tmp7);
|
|
wsptr^[DCTSIZE*1] := int (tmp1 + tmp6);
|
|
wsptr^[DCTSIZE*6] := int (tmp1 - tmp6);
|
|
wsptr^[DCTSIZE*2] := int (tmp2 + tmp5);
|
|
wsptr^[DCTSIZE*5] := int (tmp2 - tmp5);
|
|
wsptr^[DCTSIZE*4] := int (tmp3 + tmp4);
|
|
wsptr^[DCTSIZE*3] := int (tmp3 - tmp4);
|
|
|
|
Inc(JCOEF_PTR(inptr)); { advance pointers to next column }
|
|
Inc(IFAST_MULT_TYPE_PTR(quantptr));
|
|
Inc(int_ptr(wsptr));
|
|
end;
|
|
|
|
{ Pass 2: process rows from work array, store into output array. }
|
|
{ Note that we must descale the results by a factor of 8 == 2**3, }
|
|
{ and also undo the PASS1_BITS scaling. }
|
|
|
|
wsptr := @workspace;
|
|
for ctr := 0 to pred(DCTSIZE) do
|
|
begin
|
|
outptr := JSAMPROW(@output_buf^[ctr]^[output_col]);
|
|
{ Rows of zeroes can be exploited in the same way as we did with columns.
|
|
However, the column calculation has created many nonzero AC terms, so
|
|
the simplification applies less often (typically 5% to 10% of the time).
|
|
On machines with very fast multiplication, it's possible that the
|
|
test takes more time than it's worth. In that case this section
|
|
may be commented out. }
|
|
|
|
{$ifndef NO_ZERO_ROW_TEST}
|
|
if ((wsptr^[1]) or (wsptr^[2]) or (wsptr^[3]) or (wsptr^[4]) or (wsptr^[5]) or
|
|
(wsptr^[6]) or (wsptr^[7]) = 0) then
|
|
begin
|
|
{ AC terms all zero }
|
|
JSAMPLE(dcval_) := range_limit^[IDESCALE(wsptr^[0], PASS1_BITS+3)
|
|
and RANGE_MASK];
|
|
|
|
outptr^[0] := dcval_;
|
|
outptr^[1] := dcval_;
|
|
outptr^[2] := dcval_;
|
|
outptr^[3] := dcval_;
|
|
outptr^[4] := dcval_;
|
|
outptr^[5] := dcval_;
|
|
outptr^[6] := dcval_;
|
|
outptr^[7] := dcval_;
|
|
|
|
Inc(int_ptr(wsptr), DCTSIZE); { advance pointer to next row }
|
|
continue;
|
|
end;
|
|
{$endif}
|
|
|
|
{ Even part }
|
|
|
|
tmp10 := (DCTELEM(wsptr^[0]) + DCTELEM(wsptr^[4]));
|
|
tmp11 := (DCTELEM(wsptr^[0]) - DCTELEM(wsptr^[4]));
|
|
|
|
tmp13 := (DCTELEM(wsptr^[2]) + DCTELEM(wsptr^[6]));
|
|
tmp12 := MULTIPLY(DCTELEM(wsptr^[2]) - DCTELEM(wsptr^[6]), FIX_1_414213562)
|
|
- tmp13;
|
|
|
|
tmp0 := tmp10 + tmp13;
|
|
tmp3 := tmp10 - tmp13;
|
|
tmp1 := tmp11 + tmp12;
|
|
tmp2 := tmp11 - tmp12;
|
|
|
|
{ Odd part }
|
|
|
|
z13 := DCTELEM(wsptr^[5]) + DCTELEM(wsptr^[3]);
|
|
z10 := DCTELEM(wsptr^[5]) - DCTELEM(wsptr^[3]);
|
|
z11 := DCTELEM(wsptr^[1]) + DCTELEM(wsptr^[7]);
|
|
z12 := DCTELEM(wsptr^[1]) - DCTELEM(wsptr^[7]);
|
|
|
|
tmp7 := z11 + z13; { phase 5 }
|
|
tmp11 := MULTIPLY(z11 - z13, FIX_1_414213562); { 2*c4 }
|
|
|
|
z5 := MULTIPLY(z10 + z12, FIX_1_847759065); { 2*c2 }
|
|
tmp10 := MULTIPLY(z12, FIX_1_082392200) - z5; { 2*(c2-c6) }
|
|
tmp12 := MULTIPLY(z10, - FIX_2_613125930) + z5; { -2*(c2+c6) }
|
|
|
|
tmp6 := tmp12 - tmp7; { phase 2 }
|
|
tmp5 := tmp11 - tmp6;
|
|
tmp4 := tmp10 + tmp5;
|
|
|
|
{ Final output stage: scale down by a factor of 8 and range-limit }
|
|
|
|
outptr^[0] := range_limit^[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
|
|
and RANGE_MASK];
|
|
outptr^[7] := range_limit^[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
|
|
and RANGE_MASK];
|
|
outptr^[1] := range_limit^[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
|
|
and RANGE_MASK];
|
|
outptr^[6] := range_limit^[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
|
|
and RANGE_MASK];
|
|
outptr^[2] := range_limit^[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
|
|
and RANGE_MASK];
|
|
outptr^[5] := range_limit^[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
|
|
and RANGE_MASK];
|
|
outptr^[4] := range_limit^[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
|
|
and RANGE_MASK];
|
|
outptr^[3] := range_limit^[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
|
|
and RANGE_MASK];
|
|
|
|
Inc(int_ptr(wsptr), DCTSIZE); { advance pointer to next row }
|
|
end;
|
|
end;
|
|
|
|
end.
|
|
----------------------------------------------------------
|
|
type
|
|
matasm = array[0..DCTSIZE2-1] of integer;
|
|
bmatrix = array[0..DCTSIZE2-1] of byte;
|
|
bmatrixptr = ^bmatrix;
|
|
procedure ANN_IDCT(var coef_block :matasm;
|
|
var outptr :bmatrix);
|
|
|
|
var coeffs :matasm; = coef_block
|
|
var outptr :bmatrix); output_buf
|
|
|
|
Const
|
|
CONST_IC4 = 1.414213562; { 1/0.707106781; }
|
|
FP_IC4 = FIX_1_414213562;
|
|
FP_I_C4_2 = FP_IC4;
|
|
|
|
Function Descale(x : integer):byte;
|
|
var y : integer;
|
|
begin
|
|
y := (x + (1 shl (16-1))+ (4 shl PASS_BITS)) div (8 shl PASS_BITS);
|
|
{ DeScale := x sar (3 + PASS_BITS);
|
|
Borland Pascal SHR is unsigned }
|
|
if y < 0 then
|
|
descale := 0
|
|
else
|
|
if y > $ff then
|
|
descale := $ff
|
|
else
|
|
descale := y;
|
|
end;
|
|
|
|
function Multiply(X, Y: Integer): integer; assembler;
|
|
asm
|
|
mov ax, X
|
|
imul Y
|
|
mov al, ah
|
|
mov ah, dl
|
|
end;
|
|
|
|
|
|
Const
|
|
RowSize = 8;
|
|
var
|
|
a, b : integer;
|
|
|
|
inptr : JCOEFPTR;
|
|
|
|
outptr : bmatrixptr;
|
|
|
|
num : integer;
|
|
begin
|
|
{ Each IDCT routine is responsible for range-limiting its results and
|
|
converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
|
|
be quite far out of range if the input data is corrupt, so a bulletproof
|
|
range-limiting step is required. We use a mask-and-table-lookup method
|
|
to do the combined operations quickly. See the comments with
|
|
prepare_range_limit_table (in jdmaster.c) for more info. }
|
|
|
|
range_limit := JSAMPROW(@(cinfo^.sample_range_limit^[CENTERJSAMPLE]));
|
|
{ Pass 1: process columns from input, store into work array. }
|
|
|
|
inptr := @coef_block; + ctr*RowSize
|
|
quantptr := IFAST_MULT_TYPE_FIELD_PTR(compptr^.dct_table);
|
|
|
|
for ctr := pred(DCTSIZE) downto 0 do
|
|
BEGIN
|
|
tmp5 := inptr^[1];
|
|
|
|
inptr^[1] := inptr^[4];
|
|
|
|
tmp7 := inptr^[3];
|
|
|
|
a := inptr^[2];
|
|
b := inptr^[6];
|
|
inptr^[2] := a - b;
|
|
inptr^[3] := a + b;
|
|
|
|
a := inptr^[5];
|
|
inptr^[+ 4] := a - tmp7;
|
|
z13 := a + tmp7;
|
|
|
|
b := inptr^[7];
|
|
inptr^[6] := tmp5 - b;
|
|
z11 := tmp5 + b;
|
|
|
|
inptr^[5] := z11 - z13;
|
|
inptr^[7] := z11 + z13;
|
|
END;
|
|
|
|
{ M x M tensor }
|
|
for row := 0 to 7 do
|
|
Case row of
|
|
0,1,3,7: { M1 }
|
|
begin
|
|
inptr^[row*RowSize + 2] := Multiply(inptr^[row*RowSize + 2], FP_IC4); { 2/c4 }
|
|
inptr^[row*RowSize + 5] := Multiply(inptr^[row*RowSize + 5], FP_IC4); { 2/c4 }
|
|
|
|
N1(inptr^[row*RowSize + 4], inptr^[row*RowSize + 6]);
|
|
end;
|
|
2,5: { M2 }
|
|
begin
|
|
inptr^[row*RowSize + 0] := Multiply(inptr^[row*RowSize + 0], FP_IC4);
|
|
inptr^[row*RowSize + 1] := Multiply(inptr^[row*RowSize + 1], FP_IC4);
|
|
inptr^[row*RowSize + 3] := Multiply(inptr^[row*RowSize + 3], FP_IC4);
|
|
inptr^[row*RowSize + 7] := Multiply(inptr^[row*RowSize + 7], FP_IC4);
|
|
|
|
inptr^[row*RowSize + 2] := inptr^[row*RowSize + 2] * 2; { shift }
|
|
inptr^[row*RowSize + 5] := inptr^[row*RowSize + 5] * 2;
|
|
|
|
N2(inptr^[row*RowSize + 4], inptr^[row*RowSize + 6]);
|
|
end;
|
|
end; { Case }
|
|
|
|
{ M x N tensor }
|
|
{ rows 4,6 }
|
|
begin
|
|
N1(inptr^[4*RowSize + 0], inptr^[6*RowSize + 0]);
|
|
N1(inptr^[4*RowSize + 1], inptr^[6*RowSize + 1]);
|
|
N1(inptr^[4*RowSize + 3], inptr^[6*RowSize + 3]);
|
|
N1(inptr^[4*RowSize + 7], inptr^[6*RowSize + 7]);
|
|
|
|
N2(inptr^[4*RowSize + 2], inptr^[6*RowSize + 2]);
|
|
N2(inptr^[4*RowSize + 5], inptr^[6*RowSize + 5]);
|
|
|
|
{ N3 }
|
|
{ two inverse matrices => same as FDCT }
|
|
tmp0 := inptr^[4*RowSize + 4];
|
|
tmp3 := inptr^[6*RowSize + 6];
|
|
tmp12 := (tmp0 + tmp3) * 2;
|
|
z10 := tmp0 - tmp3;
|
|
|
|
tmp1 := inptr^[6*RowSize + 4];
|
|
tmp2 := inptr^[4*RowSize + 6];
|
|
tmp13 :=-(tmp1 - tmp2)*2;
|
|
z11 := tmp1 + tmp2;
|
|
|
|
tmp0 := Multiply(z10 + z11, FP_I_C4_2);
|
|
tmp1 := Multiply(z10 - z11, FP_I_C4_2);
|
|
|
|
|
|
inptr^[4*RowSize + 4] := tmp12 + tmp0;
|
|
inptr^[6*RowSize + 4] := tmp1 + tmp13;
|
|
|
|
inptr^[4*RowSize + 6] := tmp1 - tmp13;
|
|
inptr^[6*RowSize + 6] := tmp12 - tmp0;
|
|
end;
|
|
|
|
{ R2 x R2 }
|
|
|
|
for row := 0 to 7 do
|
|
BEGIN
|
|
{ Odd part }
|
|
tmp7 := inptr^[row*RowSize + 7];
|
|
tmp6 := inptr^[row*RowSize + 6] - tmp7;
|
|
tmp5 := inptr^[row*RowSize + 5] - tmp6;
|
|
tmp4 :=-inptr^[row*RowSize + 4] - tmp5;
|
|
|
|
{ even part }
|
|
tmp0 := inptr^[row*RowSize + 0];
|
|
tmp1 := inptr^[row*RowSize + 1];
|
|
tmp10 := tmp0 + tmp1;
|
|
tmp11 := tmp0 - tmp1;
|
|
|
|
tmp2 := inptr^[row*RowSize + 2];
|
|
tmp13 := inptr^[row*RowSize + 3];
|
|
tmp12 := tmp2 - tmp13;
|
|
|
|
tmp0 := tmp10 + tmp13;
|
|
tmp3 := tmp10 - tmp13;
|
|
inptr^[row*RowSize + 0] := (tmp0 + tmp7);
|
|
inptr^[row*RowSize + 7] := (tmp0 - tmp7);
|
|
|
|
inptr^[row*RowSize + 3] := (tmp3 + tmp4);
|
|
inptr^[row*RowSize + 4] := (tmp3 - tmp4);
|
|
|
|
tmp1 := tmp11 + tmp12;
|
|
tmp2 := tmp11 - tmp12;
|
|
|
|
inptr^[row*RowSize + 1] := (tmp1 + tmp6);
|
|
inptr^[row*RowSize + 6] := (tmp1 - tmp6);
|
|
|
|
inptr^[row*RowSize + 2] := (tmp2 + tmp5);
|
|
inptr^[row*RowSize + 5] := (tmp2 - tmp5);
|
|
END;
|
|
|
|
for ctr := 0 to pred(DCTSIZE) do
|
|
BEGIN
|
|
outptr := JSAMPROW(@output_buf^[ctr]^[output_col]);
|
|
{ even part }
|
|
tmp0 := inptr^[0*RowSize + ctr];
|
|
tmp1 := inptr^[1*RowSize + ctr];
|
|
tmp2 := inptr^[2*RowSize + ctr];
|
|
tmp3 := inptr^[3*RowSize + ctr];
|
|
|
|
tmp10 := tmp0 + tmp1;
|
|
tmp11 := tmp0 - tmp1;
|
|
|
|
tmp13 := tmp3;
|
|
tmp12 := tmp2 - tmp3;
|
|
|
|
tmp0 := tmp10 + tmp13;
|
|
tmp3 := tmp10 - tmp13;
|
|
|
|
tmp1 := tmp11 + tmp12;
|
|
tmp2 := tmp11 - tmp12;
|
|
|
|
{ Odd part }
|
|
tmp4 := inptr^[4*RowSize + ctr];
|
|
tmp5 := inptr^[5*RowSize + ctr];
|
|
tmp6 := inptr^[6*RowSize + ctr];
|
|
tmp7 := inptr^[7*RowSize + ctr];
|
|
|
|
tmp6 := tmp6 - tmp7;
|
|
tmp5 := tmp5 - tmp6;
|
|
tmp4 :=-tmp4 - tmp5;
|
|
|
|
outptr^[0*RowSize + ctr] := DeScale(tmp0 + tmp7);
|
|
outptr^[7*RowSize + ctr] := DeScale(tmp0 - tmp7);
|
|
|
|
outptr^[1*RowSize + ctr] := DeScale(tmp1 + tmp6);
|
|
outptr^[6*RowSize + ctr] := DeScale(tmp1 - tmp6);
|
|
|
|
outptr^[2*RowSize + ctr] := DeScale(tmp2 + tmp5);
|
|
outptr^[5*RowSize + ctr] := DeScale(tmp2 - tmp5);
|
|
|
|
outptr^[3*RowSize + ctr] := DeScale(tmp3 + tmp4);
|
|
outptr^[4*RowSize + ctr] := DeScale(tmp3 - tmp4);
|
|
|
|
|
|
{ Final output stage: scale down by a factor of 8 and range-limit }
|
|
|
|
outptr^[0] := range_limit^[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
|
|
and RANGE_MASK];
|
|
outptr^[7] := range_limit^[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
|
|
and RANGE_MASK];
|
|
outptr^[1] := range_limit^[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
|
|
and RANGE_MASK];
|
|
outptr^[6] := range_limit^[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
|
|
and RANGE_MASK];
|
|
outptr^[2] := range_limit^[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
|
|
and RANGE_MASK];
|
|
outptr^[5] := range_limit^[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
|
|
and RANGE_MASK];
|
|
outptr^[4] := range_limit^[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
|
|
and RANGE_MASK];
|
|
outptr^[3] := range_limit^[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
|
|
and RANGE_MASK];
|
|
END;
|
|
|
|
Inc(bbo);
|
|
Inc(inptr);
|
|
End;
|
|
End; {----------------------------------------}
|
|
|
|
|
|
{GLOBAL}
|
|
procedure jpeg_idct_i2d (cinfo : j_decompress_ptr;
|
|
compptr : jpeg_component_info_ptr;
|
|
coef_block : JCOEFPTR;
|
|
output_buf : JSAMPARRAY;
|
|
output_col : JDIMENSION);
|
|
|
|
procedure Feig_2D_IDCT(coef_block :imatrix;
|
|
output_buf : JSAMPARRAY);
|
|
Const
|
|
CONST_IC4 = 1.414213562; { 1/0.707106781; }
|
|
FP_IC4 = Integer(Round(IFX_CONST*CONST_IC4));
|
|
FP_I_C4_2 = FP_IC4;
|
|
|
|
Function Descale(x : integer):integer;
|
|
begin
|
|
DeScale := (x+ (4 shl PASS_BITS)) div (8 shl PASS_BITS);
|
|
{ DeScale := x sar (3 + PASS_BITS);
|
|
Borland Pascal SHR is unsigned }
|
|
end;
|
|
{
|
|
function Multiply(X, Y: Integer): integer;
|
|
begin
|
|
Multiply := Integer( X*LongInt(Y) div IFX_CONST);
|
|
end;
|
|
}
|
|
function Multiply(X, Y: Integer): integer; assembler;
|
|
asm
|
|
mov ax, X
|
|
imul Y
|
|
mov al, ah
|
|
mov ah, dl
|
|
end;
|
|
|
|
|
|
var
|
|
z10, z11, z12, z13,
|
|
tmp0,tmp1,tmp2,tmp3,
|
|
tmp4,tmp5,tmp6,tmp7,
|
|
tmp10,tmp11,
|
|
tmp12,tmp13 : integer;
|
|
column, row : byte;
|
|
|
|
Procedure N1(var x, y : integer); { rotator 1 }
|
|
Const
|
|
FP_a5 = Integer(Round(IFX_CONST*1.847759065));
|
|
FP_a4 = Integer(Round(IFX_CONST*2.613125930));
|
|
FP_a2 = Integer(Round(IFX_CONST*1.082392200));
|
|
var
|
|
z5, tmp : integer;
|
|
begin
|
|
tmp := x;
|
|
|
|
z5 := Multiply(tmp + y, FP_a5); { c6 }
|
|
x := Multiply(y, FP_a2) - z5; { c2-c6 }
|
|
y := Multiply(tmp, -FP_a4) + z5; { c2+c6 }
|
|
end;
|
|
|
|
Procedure N2(var x, y : integer); { N1 scaled by c4 }
|
|
Const
|
|
FP_b5 = Integer(Round(IFX_CONST*1.847759065*CONST_IC4));
|
|
FP_b4 = Integer(Round(IFX_CONST*2.613125930*CONST_IC4));
|
|
FP_b2 = Integer(Round(IFX_CONST*1.082392200*CONST_IC4));
|
|
var
|
|
z5, tmp : integer;
|
|
begin
|
|
tmp := x;
|
|
|
|
z5 := Multiply(tmp + y, FP_b5);
|
|
x := Multiply(y, FP_b2) - z5;
|
|
y := Multiply(tmp,-FP_b4) + z5;
|
|
end;
|
|
|
|
var
|
|
tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7 : DCTELEM;
|
|
tmp10, tmp11, tmp12, tmp13 : DCTELEM;
|
|
z10, z11, z12, z13 : DCTELEM;
|
|
inptr : JCOEFPTR;
|
|
|
|
quantptr : IFAST_MULT_TYPE_FIELD_PTR;
|
|
wsptr : PWorkspace;
|
|
outptr : JSAMPROW;
|
|
range_limit : JSAMPROW;
|
|
ctr : int;
|
|
workspace : TWorkspace; { buffers data between passes }
|
|
{SHIFT_TEMPS { for DESCALE }
|
|
{ISHIFT_TEMPS { for IDESCALE }
|
|
var
|
|
dcval : int;
|
|
var
|
|
dcval_ : JSAMPLE;
|
|
begin
|
|
{ Each IDCT routine is responsible for range-limiting its results and
|
|
converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
|
|
be quite far out of range if the input data is corrupt, so a bulletproof
|
|
range-limiting step is required. We use a mask-and-table-lookup method
|
|
to do the combined operations quickly. See the comments with
|
|
prepare_range_limit_table (in jdmaster.c) for more info. }
|
|
|
|
range_limit := JSAMPROW(@(cinfo^.sample_range_limit^[CENTERJSAMPLE]));
|
|
{ Pass 1: process columns from input, store into work array. }
|
|
|
|
inptr := coef_block;
|
|
quantptr := IFAST_MULT_TYPE_FIELD_PTR(compptr^.dct_table);
|
|
wsptr := @workspace;
|
|
|
|
{ R1 x R1 }
|
|
for ctr := pred(DCTSIZE) downto 0 do
|
|
BEGIN
|
|
{ even part }
|
|
tmp1 := DEQUANTIZE(inptr^[DCTSIZE*2], quantptr^[DCTSIZE*2]);
|
|
tmp3 := DEQUANTIZE(inptr^[DCTSIZE*6], quantptr^[DCTSIZE*6]);
|
|
|
|
wsptr^[DCTSIZE*0] := int (DEQUANTIZE(inptr^[DCTSIZE*0], quantptr^[DCTSIZE*0]));
|
|
wsptr^[DCTSIZE*1] := int (DEQUANTIZE(inptr^[DCTSIZE*4], quantptr^[DCTSIZE*4]);
|
|
|
|
{ Odd part }
|
|
|
|
tmp6 := DEQUANTIZE(inptr^[DCTSIZE*5], quantptr^[DCTSIZE*5]);
|
|
tmp4 := DEQUANTIZE(inptr^[DCTSIZE*1], quantptr^[DCTSIZE*1]);
|
|
tmp7 := DEQUANTIZE(inptr^[DCTSIZE*7], quantptr^[DCTSIZE*7]);
|
|
tmp5 := DEQUANTIZE(inptr^[DCTSIZE*3], quantptr^[DCTSIZE*3]);
|
|
|
|
|
|
z13 := tmp6 + tmp5;
|
|
wsptr^[DCTSIZE*4] := int (tmp6 - tmp5);
|
|
|
|
z11 := tmp4 + tmp7;
|
|
wsptr^[DCTSIZE*6] := int (tmp4 - tmp7);
|
|
|
|
wsptr^[DCTSIZE*7] := int (z11 + z13);
|
|
wsptr^[DCTSIZE*5] := int (z11 - z13);
|
|
|
|
wsptr^[DCTSIZE*3] := int (tmp1 + tmp3);
|
|
wsptr^[DCTSIZE*2] := int (tmp1 - tmp3);
|
|
|
|
Inc(JCOEF_PTR(inptr)); { advance pointers to next column }
|
|
Inc(IFAST_MULT_TYPE_PTR(quantptr));
|
|
Inc(int_ptr(wsptr));
|
|
END;
|
|
|
|
wsptr := @workspace[DCTSIZE*pred(DCTSIZE)];
|
|
for row := pred(DCTSIZE) downto 0 do
|
|
BEGIN
|
|
{ Odd part }
|
|
tmp5 := DCTELEM(wsptr^[1]);
|
|
tmp7 := DCTELEM(wsptr^[3]);
|
|
|
|
{ even part }
|
|
|
|
{noop:
|
|
tmp0 := DCTELEM(wsptr^[0]);
|
|
wsptr^[0] := DCTELEM(tmp0);}
|
|
|
|
{tmp2 := DCTELEM(wsptr^[4]);}
|
|
wsptr^[1] := wsptr^[4];
|
|
|
|
tmp1 := DCTELEM(wsptr^[2]);
|
|
tmp3 := DCTELEM(wsptr^[6]);
|
|
|
|
wsptr^[2] := DCTELEM(tmp1 - tmp3);
|
|
wsptr^[3] := DCTELEM(tmp1 + tmp3);
|
|
|
|
{ Odd part }
|
|
tmp4 := DCTELEM(wsptr^[5]);
|
|
tmp6 := DCTELEM(wsptr^[7]);
|
|
|
|
z13 := tmp4 + tmp7;
|
|
wsptr^[4] := DCTELEM(tmp4 - tmp7);
|
|
|
|
z11 := tmp5 + tmp6;
|
|
wsptr^[6] := DCTELEM(tmp5 - tmp6);
|
|
|
|
wsptr^[7] := DCTELEM(z11 + z13);
|
|
wsptr^[5] := DCTELEM(z11 - z13);
|
|
Dec(int_ptr(wsptr), DCTSIZE); { advance pointer to previous row }
|
|
END;
|
|
|
|
{ M x M tensor }
|
|
wsptr := @workspace[DCTSIZE*0];
|
|
for row := 0 to pred(DCTSIZE) do
|
|
begin
|
|
Case row of
|
|
0,1,3,7: { M1 }
|
|
begin
|
|
wsptr^[2] := Multiply(wsptr^[2], FP_IC4); { 2/c4 }
|
|
wsptr^[5] := Multiply(wsptr^[5], FP_IC4); { 2/c4 }
|
|
|
|
N1(wsptr^[ 4], wsptr^[ 6]);
|
|
end;
|
|
2,5: { M2 }
|
|
begin
|
|
wsptr^[0] := Multiply(wsptr^[0], FP_IC4);
|
|
wsptr^[1] := Multiply(wsptr^[1], FP_IC4);
|
|
wsptr^[3] := Multiply(wsptr^[3], FP_IC4);
|
|
wsptr^[7] := Multiply(wsptr^[7], FP_IC4);
|
|
|
|
wsptr^[2] := wsptr^[2] * 2; { shift }
|
|
wsptr^[5] := wsptr^[5] * 2;
|
|
|
|
N2(wsptr^[4], wsptr^[6]);
|
|
end;
|
|
end; { Case }
|
|
Inc(int_ptr(wsptr), DCTSIZE); { advance pointer to next row }
|
|
end;
|
|
|
|
{ M x N tensor }
|
|
{ rows 4,6 }
|
|
begin
|
|
N1(workspace[DCTSIZE*4+0], workspace[DCTSIZE*6+0]);
|
|
N1(workspace[DCTSIZE*4+1], workspace[DCTSIZE*6+1]);
|
|
N1(workspace[DCTSIZE*4+3], workspace[DCTSIZE*6+3]);
|
|
N1(workspace[DCTSIZE*4+7], workspace[DCTSIZE*6+7]);
|
|
|
|
N2(workspace[DCTSIZE*4+2], workspace[DCTSIZE*6+2]);
|
|
N2(workspace[DCTSIZE*4+5], workspace[DCTSIZE*6+5]);
|
|
|
|
{ N3 }
|
|
tmp0 := workspace[DCTSIZE*4,4];
|
|
tmp1 := workspace[DCTSIZE*6,4];
|
|
tmp2 := workspace[DCTSIZE*4,6];
|
|
tmp3 := workspace[DCTSIZE*6,6];
|
|
|
|
{ two inverse matrices => same as FDCT }
|
|
z10 := tmp0 - tmp3;
|
|
z11 := tmp1 + tmp2;
|
|
|
|
z12 := tmp0 + tmp3;
|
|
z13 := tmp1 - tmp2;
|
|
|
|
tmp0 := Multiply(z10 + z11, FP_I_C4_2);
|
|
tmp1 := Multiply(z10 - z11, FP_I_C4_2);
|
|
|
|
tmp2 := z12 * 2; { shifts }
|
|
tmp3 := z13 * (-2);
|
|
|
|
|
|
workspace[DCTSIZE*4,4] := tmp2 + tmp0;
|
|
workspace[DCTSIZE*6,4] := tmp1 + tmp3;
|
|
|
|
workspace[DCTSIZE*4,6] := tmp1 - tmp3;
|
|
workspace[DCTSIZE*6,6] := tmp2 - tmp0;
|
|
end;
|
|
|
|
{ R2 x R2 }
|
|
|
|
wsptr := @workspace;
|
|
for row := 0 to pred(DCTSIZE) do
|
|
BEGIN
|
|
{ even part }
|
|
tmp0 := wsptr^[0];
|
|
tmp2 := wsptr^[1];
|
|
tmp1 := wsptr^[2];
|
|
tmp3 := wsptr^[3];
|
|
|
|
tmp10 := tmp0 + tmp2;
|
|
tmp11 := tmp0 - tmp2;
|
|
|
|
tmp12 := tmp1 - tmp3;
|
|
tmp13 := tmp3;
|
|
|
|
tmp0 := tmp10 + tmp13;
|
|
tmp3 := tmp10 - tmp13;
|
|
|
|
tmp2 := tmp11 + tmp12;
|
|
tmp1 := tmp11 - tmp12;
|
|
|
|
{ Odd part }
|
|
tmp4 := wsptr^[4];
|
|
tmp5 := wsptr^[5];
|
|
tmp6 := wsptr^[6];
|
|
tmp7 := wsptr^[7];
|
|
|
|
tmp6 := tmp6 - tmp7;
|
|
tmp5 := tmp5 - tmp6;
|
|
tmp4 :=-tmp4 - tmp5;
|
|
|
|
wsptr^[0] := (tmp0 + tmp7);
|
|
wsptr^[7] := (tmp0 - tmp7);
|
|
|
|
wsptr^[1] := (tmp2 + tmp6);
|
|
wsptr^[6] := (tmp2 - tmp6);
|
|
|
|
wsptr^[2] := (tmp1 + tmp5);
|
|
wsptr^[5] := (tmp1 - tmp5);
|
|
|
|
wsptr^[3] := (tmp3 + tmp4);
|
|
wsptr^[4] := (tmp3 - tmp4);
|
|
|
|
Inc(int_ptr(wsptr), DCTSIZE); { advance pointer to next row }
|
|
END;
|
|
|
|
wsptr := @workspace;
|
|
for ctr := 0 to pred(DCTSIZE) do
|
|
BEGIN
|
|
outptr := JSAMPROW(@output_buf^[ctr]^[output_col]);
|
|
{ even part }
|
|
tmp0 := wsptr[0];
|
|
tmp1 := wsptr[1];
|
|
tmp2 := wsptr[2];
|
|
tmp3 := wsptr[3];
|
|
|
|
tmp10 := tmp0 + tmp1;
|
|
tmp11 := tmp0 - tmp1;
|
|
|
|
tmp13 := tmp3;
|
|
tmp12 := tmp2 - tmp3;
|
|
|
|
tmp0 := tmp10 + tmp13;
|
|
tmp3 := tmp10 - tmp13;
|
|
|
|
tmp1 := tmp11 + tmp12;
|
|
tmp2 := tmp11 - tmp12;
|
|
|
|
{ Odd part }
|
|
tmp4 := wsptr[4];
|
|
tmp5 := wsptr[5];
|
|
tmp6 := wsptr[6];
|
|
tmp7 := wsptr[7];
|
|
|
|
tmp6 := tmp6 - tmp7;
|
|
tmp5 := tmp5 - tmp6;
|
|
tmp4 :=-tmp4 - tmp5;
|
|
|
|
{ Final output stage: scale down by a factor of 8 and range-limit }
|
|
|
|
outptr^[0] := range_limit^[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
|
|
and RANGE_MASK];
|
|
outptr^[7] := range_limit^[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
|
|
and RANGE_MASK];
|
|
outptr^[1] := range_limit^[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
|
|
and RANGE_MASK];
|
|
outptr^[6] := range_limit^[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
|
|
and RANGE_MASK];
|
|
outptr^[2] := range_limit^[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
|
|
and RANGE_MASK];
|
|
outptr^[5] := range_limit^[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
|
|
and RANGE_MASK];
|
|
outptr^[4] := range_limit^[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
|
|
and RANGE_MASK];
|
|
outptr^[3] := range_limit^[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
|
|
and RANGE_MASK];
|
|
Inc(int_ptr(wsptr));
|
|
END;
|
|
End; {----------------------------------------}
|
|
|
|
|
|
{----------------------------------------------------------------------}
|
|
|