fpc/packages/ptc/examples/save.pp
marco cc58e0f623 * moved ptc
git-svn-id: trunk@10050 -
2008-01-27 14:42:46 +00:00

291 lines
5.9 KiB
ObjectPascal

{
Ported to FPC by Nikolay Nikolov (nickysn@users.sourceforge.net)
}
{
Save example for OpenPTC 1.0 C++ Implementation
Copyright (c) Glenn Fiedler (ptc@gaffer.org)
This source code is in the public domain
}
Program SaveExample;
{$MODE objfpc}
Uses
ptc, Math;
Procedure save(surface : TPTCSurface; filename : String);
Const
{ generate the header for a true color targa image }
header : Array[0..17] Of char8 =
(0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
Var
F : File;
width, height : Integer;
size : Integer;
y : Integer;
pixels : Pchar8;
format : TPTCFormat;
palette : TPTCPalette;
Begin
{ open image file for writing }
ASSign(F, filename);
Rewrite(F, 1);
{ get surface dimensions }
width := surface.width;
height := surface.height;
{ set targa image width }
header[12] := width And $FF;
header[13] := width Shr 8;
{ set targa image height }
header[14] := height And $FF;
header[15] := height Shr 8;
{ set bits per pixel }
header[16] := 24;
{ write tga header }
BlockWrite(F, header, 18);
{ calculate size of image pixels }
size := width * height * 3;
{ allocate image pixels }
pixels := GetMem(size);
format := TPTCFormat.Create(24, $00FF0000, $0000FF00, $000000FF);
palette := TPTCPalette.Create;
{ save surface to image pixels }
surface.save(pixels, width, height, width * 3, format, palette);
palette.Free;
format.Free;
{ write image pixels one line at a time }
For y := height - 1 DownTo 0 Do
BlockWrite(F, pixels[width * y * 3], width * 3);
{ free image pixels }
FreeMem(pixels);
Close(F);
End;
Function calculate(real, imaginary : Single; maximum : Integer) : Integer;
Var
c_r, c_i : Single;
z_r, z_i : Single;
z_r_squared, z_i_squared : Single;
z_squared_magnitude : Single;
count : Integer;
Begin
{ complex number 'c' }
c_r := real;
c_i := imaginary;
{ complex 'z' }
z_r := 0;
z_i := 0;
{ complex 'z' squares }
z_r_squared := 0;
z_i_squared := 0;
{ mandelbrot function iteration loop }
For count := 0 To maximum - 1 Do
Begin
{ square 'z' and add 'c' }
z_i := 2 * z_r * z_i + c_i;
z_r := z_r_squared - z_i_squared + c_r;
{ update 'z' squares }
z_r_squared := z_r * z_r;
z_i_squared := z_i * z_i;
{ calculate squared magnitude of complex 'z' }
z_squared_magnitude := z_r_squared + z_i_squared;
{ stop iterating if the magnitude of 'z' is greater than two }
If z_squared_magnitude > 4 Then
Begin
calculate := Count;
Exit;
End;
End;
{ maximum }
calculate := 0;
End;
Procedure mandelbrot(console : TPTCConsole; surface : TPTCSurface;
x1, y1, x2, y2 : Single);
Const
{ constant values }
entries = 1024;
maximum = 1024;
Var
{ fractal color table }
table : Array[0..entries - 1] Of int32;
i : Integer;
f_index : Single;
time : Single;
intensity : Single;
pixels, pixel : Pint32;
width, height : Integer;
dx, dy : Single;
real, imaginary : Single;
x, y : Integer;
count : Integer;
index : Integer;
color : int32;
area : TPTCArea;
Begin
{ generate fractal color table }
For i := 0 To entries - 1 Do
Begin
{ calculate normalized index }
f_index := i / entries;
{ calculate sine curve time value }
time := f_index * pi - pi / 2;
{ lookup sine curve intensity at time and scale to [0,1] }
intensity := (sin(time) + 1) / 2;
{ raise the intensity to a power }
intensity := power(intensity, 0.1);
{ store intensity as a shade of blue }
table[i] := Trunc(255 * intensity);
End;
{ lock surface pixels }
pixels := surface.lock;
Try
{ get surface dimensions }
width := surface.width;
height := surface.height;
{ current pixel pointer }
pixel := pixels;
{ calculate real x,y deltas }
dx := (x2 - x1) / width;
dy := (y2 - y1) / height;
{ imaginary axis }
imaginary := y1;
{ iterate down surface y }
For y := 0 To height - 1 Do
Begin
{ real axis }
real := x1;
{ iterate across surface x }
For x := 0 To width - 1 Do
Begin
{ calculate the mandelbrot interation count }
count := calculate(real, imaginary, maximum);
{ calculate color table index }
index := count Mod entries;
{ lookup color from iteration }
color := table[index];
{ store color }
pixel^ := color;
{ next pixel }
Inc(pixel);
{ update real }
real := real + dx;
End;
{ update imaginary }
imaginary := imaginary + dy;
{ setup line area }
area := TPTCArea.Create(0, y, width, y + 1);
Try
{ copy surface area to console }
surface.copy(console, area, area);
Finally
area.Free;
End;
{ update console area }
console.update;
End;
Finally
{ unlock surface }
surface.unlock;
End;
End;
Var
console : TPTCConsole;
surface : TPTCSurface;
format : TPTCFormat;
x1, y1, x2, y2 : Single;
Begin
format := Nil;
surface := Nil;
console := Nil;
Try
Try
{ create console }
console := TPTCConsole.Create;
{ create format }
format := TPTCFormat.Create(32, $00FF0000, $0000FF00, $000000FF);
{ open the console with a single page }
console.open('Save example', format, 1);
{ create surface matching console dimensions }
surface := TPTCSurface.Create(console.width, console.height, format);
{ setup viewing area }
x1 := -2.00;
y1 := -1.25;
x2 := +1.00;
y2 := +1.25;
{ render the mandelbrot fractal }
mandelbrot(console, surface, x1, y1, x2, y2);
{ save mandelbrot image }
save(surface, 'save.tga');
{ read key }
console.ReadKey;
Finally
console.close;
console.Free;
surface.Free;
format.Free;
End;
Except
On error : TPTCError Do
{ report error }
error.report;
End;
End.