fpc/compiler/x86/aasmcpu.pas
2004-01-12 16:37:59 +00:00

2228 lines
70 KiB
ObjectPascal

{
$Id$
Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
Contains the abstract assembler implementation for the i386
* Portions of this code was inspired by the NASM sources
The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
Julian Hall. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit aasmcpu;
{$i fpcdefs.inc}
interface
uses
cclasses,globals,verbose,
cpuinfo,cpubase,
cgbase,
symppu,symtype,symsym,
aasmbase,aasmtai;
const
{ "mov reg,reg" source operand number }
O_MOV_SOURCE = 0;
{ "mov reg,reg" destination operand number }
O_MOV_DEST = 1;
{ Operand types }
OT_NONE = $00000000;
OT_BITS8 = $00000001; { size, and other attributes, of the operand }
OT_BITS16 = $00000002;
OT_BITS32 = $00000004;
OT_BITS64 = $00000008; { FPU only }
OT_BITS80 = $00000010;
OT_FAR = $00000020; { this means 16:16 or 16:32, like in CALL/JMP }
OT_NEAR = $00000040;
OT_SHORT = $00000080;
OT_SIZE_MASK = $000000FF; { all the size attributes }
OT_NON_SIZE = longint(not OT_SIZE_MASK);
OT_SIGNED = $00000100; { the operand need to be signed -128-127 }
OT_TO = $00000200; { operand is followed by a colon }
{ reverse effect in FADD, FSUB &c }
OT_COLON = $00000400;
OT_REGISTER = $00001000;
OT_IMMEDIATE = $00002000;
OT_IMM8 = $00002001;
OT_IMM16 = $00002002;
OT_IMM32 = $00002004;
OT_IMM64 = $00002008;
OT_IMM80 = $00002010;
OT_REGMEM = $00200000; { for r/m, ie EA, operands }
OT_REGNORM = $00201000; { 'normal' reg, qualifies as EA }
OT_REG8 = $00201001;
OT_REG16 = $00201002;
OT_REG32 = $00201004;
OT_REG64 = $00201008;
OT_MMXREG = $00201008; { MMX registers }
OT_XMMREG = $00201010; { Katmai registers }
OT_MEMORY = $00204000; { register number in 'basereg' }
OT_MEM8 = $00204001;
OT_MEM16 = $00204002;
OT_MEM32 = $00204004;
OT_MEM64 = $00204008;
OT_MEM80 = $00204010;
OT_FPUREG = $01000000; { floating point stack registers }
OT_FPU0 = $01000800; { FPU stack register zero }
OT_REG_SMASK = $00070000; { special register operands: these may be treated differently }
{ a mask for the following }
OT_REG_ACCUM = $00211000; { FUNCTION_RETURN_REG: AL, AX or EAX }
OT_REG_AL = $00211001; { REG_ACCUM | BITSxx }
OT_REG_AX = $00211002; { ditto }
OT_REG_EAX = $00211004; { and again }
{$ifdef x86_64}
OT_REG_RAX = $00211008;
{$endif x86_64}
OT_REG_COUNT = $00221000; { counter: CL, CX or ECX }
OT_REG_CL = $00221001; { REG_COUNT | BITSxx }
OT_REG_CX = $00221002; { ditto }
OT_REG_ECX = $00221004; { another one }
{$ifdef x86_64}
OT_REG_RCX = $00221008;
{$endif x86_64}
OT_REG_DX = $00241002;
OT_REG_EDX = $00241004;
OT_REG_SREG = $00081002; { any segment register }
OT_REG_CS = $01081002; { CS }
OT_REG_DESS = $02081002; { DS, ES, SS (non-CS 86 registers) }
OT_REG_FSGS = $04081002; { FS, GS (386 extended registers) }
OT_REG_CDT = $00101004; { CRn, DRn and TRn }
OT_REG_CREG = $08101004; { CRn }
OT_REG_CR4 = $08101404; { CR4 (Pentium only) }
OT_REG_DREG = $10101004; { DRn }
OT_REG_TREG = $20101004; { TRn }
OT_MEM_OFFS = $00604000; { special type of EA }
{ simple [address] offset }
OT_ONENESS = $00800000; { special type of immediate operand }
{ so UNITY == IMMEDIATE | ONENESS }
OT_UNITY = $00802000; { for shift/rotate instructions }
{ Size of the instruction table converted by nasmconv.pas }
{$ifdef x86_64}
instabentries = {$i x86_64no.inc}
{$else x86_64}
instabentries = {$i i386nop.inc}
{$endif x86_64}
maxinfolen = 8;
type
TOperandOrder = (op_intel,op_att);
tinsentry=packed record
opcode : tasmop;
ops : byte;
optypes : array[0..2] of longint;
code : array[0..maxinfolen] of char;
flags : longint;
end;
pinsentry=^tinsentry;
{ alignment for operator }
tai_align = class(tai_align_abstract)
reg : tregister;
constructor create(b:byte);
constructor create_op(b: byte; _op: byte);
function calculatefillbuf(var buf : tfillbuffer):pchar;override;
end;
taicpu = class(taicpu_abstract)
opsize : topsize;
constructor op_none(op : tasmop);
constructor op_none(op : tasmop;_size : topsize);
constructor op_reg(op : tasmop;_size : topsize;_op1 : tregister);
constructor op_const(op : tasmop;_size : topsize;_op1 : aword);
constructor op_ref(op : tasmop;_size : topsize;const _op1 : treference);
constructor op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
constructor op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
constructor op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aword);
constructor op_const_reg(op : tasmop;_size : topsize;_op1 : aword;_op2 : tregister);
constructor op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aword);
constructor op_const_ref(op : tasmop;_size : topsize;_op1 : aword;const _op2 : treference);
constructor op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
constructor op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
constructor op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aword;_op2 : tregister;_op3 : tregister);
constructor op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aword;const _op2 : treference;_op3 : tregister);
constructor op_reg_reg_ref(op : tasmop;_size : topsize;_op1,_op2 : tregister; const _op3 : treference);
constructor op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aword;_op2 : tregister;const _op3 : treference);
{ this is for Jmp instructions }
constructor op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
constructor op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
constructor op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
constructor op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
constructor op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
procedure changeopsize(siz:topsize);
function GetString:string;
procedure CheckNonCommutativeOpcodes;
private
FOperandOrder : TOperandOrder;
procedure init(_size : topsize); { this need to be called by all constructor }
{$ifndef NOAG386BIN}
public
{ the next will reset all instructions that can change in pass 2 }
procedure ResetPass1;
procedure ResetPass2;
function CheckIfValid:boolean;
function Pass1(offset:longint):longint;virtual;
procedure Pass2(sec:TAsmObjectdata);virtual;
procedure SetOperandOrder(order:TOperandOrder);
function is_same_reg_move:boolean;override;
function is_reg_move:boolean;override;
protected
procedure ppuloadoper(ppufile:tcompilerppufile;var o:toper);override;
procedure ppuwriteoper(ppufile:tcompilerppufile;const o:toper);override;
procedure ppubuildderefimploper(var o:toper);override;
procedure ppuderefoper(var o:toper);override;
private
{ next fields are filled in pass1, so pass2 is faster }
inssize : shortint;
insoffset,
LastInsOffset : longint; { need to be public to be reset }
insentry : PInsEntry;
function InsEnd:longint;
procedure create_ot;
function Matches(p:PInsEntry):longint;
function calcsize(p:PInsEntry):longint;
procedure gencode(sec:TAsmObjectData);
function NeedAddrPrefix(opidx:byte):boolean;
procedure Swapoperands;
function FindInsentry:boolean;
{$endif NOAG386BIN}
end;
procedure InitAsm;
procedure DoneAsm;
implementation
uses
cutils,
itcpugas;
{*****************************************************************************
Instruction table
*****************************************************************************}
const
{Instruction flags }
IF_NONE = $00000000;
IF_SM = $00000001; { size match first two operands }
IF_SM2 = $00000002;
IF_SB = $00000004; { unsized operands can't be non-byte }
IF_SW = $00000008; { unsized operands can't be non-word }
IF_SD = $00000010; { unsized operands can't be nondword }
IF_AR0 = $00000020; { SB, SW, SD applies to argument 0 }
IF_AR1 = $00000040; { SB, SW, SD applies to argument 1 }
IF_AR2 = $00000060; { SB, SW, SD applies to argument 2 }
IF_ARMASK = $00000060; { mask for unsized argument spec }
IF_PRIV = $00000100; { it's a privileged instruction }
IF_SMM = $00000200; { it's only valid in SMM }
IF_PROT = $00000400; { it's protected mode only }
IF_UNDOC = $00001000; { it's an undocumented instruction }
IF_FPU = $00002000; { it's an FPU instruction }
IF_MMX = $00004000; { it's an MMX instruction }
{ it's a 3DNow! instruction }
IF_3DNOW = $00008000;
{ it's a SSE (KNI, MMX2) instruction }
IF_SSE = $00010000;
{ SSE2 instructions }
IF_SSE2 = $00020000;
{ SSE3 instructions }
IF_SSE3 = $00040000;
{ SSE64 instructions }
IF_SSE64 = $00040000;
{ the mask for processor types }
{IF_PMASK = longint($FF000000);}
{ the mask for disassembly "prefer" }
{IF_PFMASK = longint($F001FF00);}
IF_8086 = $00000000; { 8086 instruction }
IF_186 = $01000000; { 186+ instruction }
IF_286 = $02000000; { 286+ instruction }
IF_386 = $03000000; { 386+ instruction }
IF_486 = $04000000; { 486+ instruction }
IF_PENT = $05000000; { Pentium instruction }
IF_P6 = $06000000; { P6 instruction }
IF_KATMAI = $07000000; { Katmai instructions }
{ Willamette instructions }
IF_WILLAMETTE = $08000000;
{ Prescott instructions }
IF_PRESCOTT = $09000000;
IF_ATHLON64 = $0a000000;
IF_CYRIX = $10000000; { Cyrix-specific instruction }
IF_AMD = $20000000; { AMD-specific instruction }
{ added flags }
IF_PRE = $40000000; { it's a prefix instruction }
IF_PASS2 = longint($80000000); { if the instruction can change in a second pass }
type
TInsTabCache=array[TasmOp] of longint;
PInsTabCache=^TInsTabCache;
const
{$ifdef x86_64}
InsTab:array[0..instabentries-1] of TInsEntry={$i x86_64ta.inc}
{$else x86_64}
InsTab:array[0..instabentries-1] of TInsEntry={$i i386tab.inc}
{$endif x86_64}
var
InsTabCache : PInsTabCache;
const
{$ifdef x86_64}
{ Intel style operands ! }
opsize_2_type:array[0..2,topsize] of longint=(
(OT_NONE,
OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS16,OT_BITS32,OT_BITS32,OT_BITS64,OT_BITS64,OT_BITS64,
OT_BITS16,OT_BITS32,OT_BITS64,
OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_BITS64,OT_BITS64,OT_NONE,
OT_NEAR,OT_FAR,OT_SHORT
),
(OT_NONE,
OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS8,OT_BITS8,OT_BITS16,OT_BITS8,OT_BITS16,OT_BITS32,
OT_BITS16,OT_BITS32,OT_BITS64,
OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_BITS64,OT_BITS64,OT_NONE,
OT_NEAR,OT_FAR,OT_SHORT
),
(OT_NONE,
OT_BITS8,OT_BITS16,OT_BITS32,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,
OT_BITS16,OT_BITS32,OT_BITS64,
OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_BITS64,OT_BITS64,OT_NONE,
OT_NEAR,OT_FAR,OT_SHORT
)
);
reg_ot_table : array[tregisterindex] of longint = (
{$i r8664ot.inc}
);
{$else x86_64}
{ Intel style operands ! }
opsize_2_type:array[0..2,topsize] of longint=(
(OT_NONE,
OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS16,OT_BITS32,OT_BITS32,
OT_BITS16,OT_BITS32,OT_BITS64,
OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_BITS64,OT_BITS64,OT_NONE,
OT_NEAR,OT_FAR,OT_SHORT
),
(OT_NONE,
OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS8,OT_BITS8,OT_BITS16,
OT_BITS16,OT_BITS32,OT_BITS64,
OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_BITS64,OT_BITS64,OT_NONE,
OT_NEAR,OT_FAR,OT_SHORT
),
(OT_NONE,
OT_BITS8,OT_BITS16,OT_BITS32,OT_NONE,OT_NONE,OT_NONE,
OT_BITS16,OT_BITS32,OT_BITS64,
OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_BITS64,OT_BITS64,OT_NONE,
OT_NEAR,OT_FAR,OT_SHORT
)
);
reg_ot_table : array[tregisterindex] of longint = (
{$i r386ot.inc}
);
{$endif x86_64}
{****************************************************************************
TAI_ALIGN
****************************************************************************}
constructor tai_align.create(b: byte);
begin
inherited create(b);
reg:=NR_ECX;
end;
constructor tai_align.create_op(b: byte; _op: byte);
begin
inherited create_op(b,_op);
reg:=NR_NO;
end;
function tai_align.calculatefillbuf(var buf : tfillbuffer):pchar;
const
alignarray:array[0..5] of string[8]=(
#$8D#$B4#$26#$00#$00#$00#$00,
#$8D#$B6#$00#$00#$00#$00,
#$8D#$74#$26#$00,
#$8D#$76#$00,
#$89#$F6,
#$90
);
var
bufptr : pchar;
j : longint;
begin
inherited calculatefillbuf(buf);
if not use_op then
begin
bufptr:=pchar(@buf);
while (fillsize>0) do
begin
for j:=0 to 5 do
if (fillsize>=length(alignarray[j])) then
break;
move(alignarray[j][1],bufptr^,length(alignarray[j]));
inc(bufptr,length(alignarray[j]));
dec(fillsize,length(alignarray[j]));
end;
end;
calculatefillbuf:=pchar(@buf);
end;
{*****************************************************************************
Taicpu Constructors
*****************************************************************************}
procedure taicpu.changeopsize(siz:topsize);
begin
opsize:=siz;
end;
procedure taicpu.init(_size : topsize);
begin
{ default order is att }
FOperandOrder:=op_att;
segprefix:=NR_NO;
opsize:=_size;
{$ifndef NOAG386BIN}
insentry:=nil;
LastInsOffset:=-1;
InsOffset:=0;
InsSize:=0;
{$endif}
end;
constructor taicpu.op_none(op : tasmop);
begin
inherited create(op);
init(S_NO);
end;
constructor taicpu.op_none(op : tasmop;_size : topsize);
begin
inherited create(op);
init(_size);
end;
constructor taicpu.op_reg(op : tasmop;_size : topsize;_op1 : tregister);
begin
inherited create(op);
init(_size);
ops:=1;
loadreg(0,_op1);
end;
constructor taicpu.op_const(op : tasmop;_size : topsize;_op1 : aword);
begin
inherited create(op);
init(_size);
ops:=1;
loadconst(0,_op1);
end;
constructor taicpu.op_ref(op : tasmop;_size : topsize;const _op1 : treference);
begin
inherited create(op);
init(_size);
ops:=1;
loadref(0,_op1);
end;
constructor taicpu.op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
begin
inherited create(op);
init(_size);
ops:=2;
loadreg(0,_op1);
loadreg(1,_op2);
end;
constructor taicpu.op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aword);
begin
inherited create(op);
init(_size);
ops:=2;
loadreg(0,_op1);
loadconst(1,_op2);
end;
constructor taicpu.op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
begin
inherited create(op);
init(_size);
ops:=2;
loadreg(0,_op1);
loadref(1,_op2);
end;
constructor taicpu.op_const_reg(op : tasmop;_size : topsize;_op1 : aword;_op2 : tregister);
begin
inherited create(op);
init(_size);
ops:=2;
loadconst(0,_op1);
loadreg(1,_op2);
end;
constructor taicpu.op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aword);
begin
inherited create(op);
init(_size);
ops:=2;
loadconst(0,_op1);
loadconst(1,_op2);
end;
constructor taicpu.op_const_ref(op : tasmop;_size : topsize;_op1 : aword;const _op2 : treference);
begin
inherited create(op);
init(_size);
ops:=2;
loadconst(0,_op1);
loadref(1,_op2);
end;
constructor taicpu.op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
begin
inherited create(op);
init(_size);
ops:=2;
loadref(0,_op1);
loadreg(1,_op2);
end;
constructor taicpu.op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
begin
inherited create(op);
init(_size);
ops:=3;
loadreg(0,_op1);
loadreg(1,_op2);
loadreg(2,_op3);
end;
constructor taicpu.op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aword;_op2 : tregister;_op3 : tregister);
begin
inherited create(op);
init(_size);
ops:=3;
loadconst(0,_op1);
loadreg(1,_op2);
loadreg(2,_op3);
end;
constructor taicpu.op_reg_reg_ref(op : tasmop;_size : topsize;_op1,_op2 : tregister;const _op3 : treference);
begin
inherited create(op);
init(_size);
ops:=3;
loadreg(0,_op1);
loadreg(1,_op2);
loadref(2,_op3);
end;
constructor taicpu.op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aword;const _op2 : treference;_op3 : tregister);
begin
inherited create(op);
init(_size);
ops:=3;
loadconst(0,_op1);
loadref(1,_op2);
loadreg(2,_op3);
end;
constructor taicpu.op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aword;_op2 : tregister;const _op3 : treference);
begin
inherited create(op);
init(_size);
ops:=3;
loadconst(0,_op1);
loadreg(1,_op2);
loadref(2,_op3);
end;
constructor taicpu.op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
begin
inherited create(op);
init(_size);
condition:=cond;
ops:=1;
loadsymbol(0,_op1,0);
end;
constructor taicpu.op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
begin
inherited create(op);
init(_size);
ops:=1;
loadsymbol(0,_op1,0);
end;
constructor taicpu.op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
begin
inherited create(op);
init(_size);
ops:=1;
loadsymbol(0,_op1,_op1ofs);
end;
constructor taicpu.op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
begin
inherited create(op);
init(_size);
ops:=2;
loadsymbol(0,_op1,_op1ofs);
loadreg(1,_op2);
end;
constructor taicpu.op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
begin
inherited create(op);
init(_size);
ops:=2;
loadsymbol(0,_op1,_op1ofs);
loadref(1,_op2);
end;
function taicpu.GetString:string;
var
i : longint;
s : string;
addsize : boolean;
begin
s:='['+std_op2str[opcode];
for i:=0 to ops-1 do
begin
with oper[i]^ do
begin
if i=0 then
s:=s+' '
else
s:=s+',';
{ type }
addsize:=false;
if (ot and OT_XMMREG)=OT_XMMREG then
s:=s+'xmmreg'
else
if (ot and OT_MMXREG)=OT_MMXREG then
s:=s+'mmxreg'
else
if (ot and OT_FPUREG)=OT_FPUREG then
s:=s+'fpureg'
else
if (ot and OT_REGISTER)=OT_REGISTER then
begin
s:=s+'reg';
addsize:=true;
end
else
if (ot and OT_IMMEDIATE)=OT_IMMEDIATE then
begin
s:=s+'imm';
addsize:=true;
end
else
if (ot and OT_MEMORY)=OT_MEMORY then
begin
s:=s+'mem';
addsize:=true;
end
else
s:=s+'???';
{ size }
if addsize then
begin
if (ot and OT_BITS8)<>0 then
s:=s+'8'
else
if (ot and OT_BITS16)<>0 then
s:=s+'16'
else
if (ot and OT_BITS32)<>0 then
s:=s+'32'
else
s:=s+'??';
{ signed }
if (ot and OT_SIGNED)<>0 then
s:=s+'s';
end;
end;
end;
GetString:=s+']';
end;
procedure taicpu.Swapoperands;
var
p : POper;
begin
{ Fix the operands which are in AT&T style and we need them in Intel style }
case ops of
2 : begin
{ 0,1 -> 1,0 }
p:=oper[0];
oper[0]:=oper[1];
oper[1]:=p;
end;
3 : begin
{ 0,1,2 -> 2,1,0 }
p:=oper[0];
oper[0]:=oper[2];
oper[2]:=p;
end;
end;
end;
procedure taicpu.SetOperandOrder(order:TOperandOrder);
begin
if FOperandOrder<>order then
begin
Swapoperands;
FOperandOrder:=order;
end;
end;
procedure taicpu.ppuloadoper(ppufile:tcompilerppufile;var o:toper);
begin
o.typ:=toptype(ppufile.getbyte);
o.ot:=ppufile.getlongint;
case o.typ of
top_reg :
ppufile.getdata(o.reg,sizeof(Tregister));
top_ref :
begin
new(o.ref);
ppufile.getdata(o.ref^.segment,sizeof(Tregister));
ppufile.getdata(o.ref^.base,sizeof(Tregister));
ppufile.getdata(o.ref^.index,sizeof(Tregister));
o.ref^.scalefactor:=ppufile.getbyte;
o.ref^.offset:=ppufile.getlongint;
o.ref^.symbol:=ppufile.getasmsymbol;
end;
top_const :
o.val:=aword(ppufile.getlongint);
top_symbol :
begin
o.sym:=ppufile.getasmsymbol;
o.symofs:=ppufile.getlongint;
end;
top_local :
begin
ppufile.getderef(o.localsymderef);
o.localsymofs:=ppufile.getlongint;
o.localindexreg:=tregister(ppufile.getlongint);
o.localscale:=ppufile.getbyte;
o.localgetoffset:=(ppufile.getbyte<>0);
end;
end;
end;
procedure taicpu.ppuwriteoper(ppufile:tcompilerppufile;const o:toper);
begin
ppufile.putbyte(byte(o.typ));
ppufile.putlongint(o.ot);
case o.typ of
top_reg :
ppufile.putdata(o.reg,sizeof(Tregister));
top_ref :
begin
ppufile.putdata(o.ref^.segment,sizeof(Tregister));
ppufile.putdata(o.ref^.base,sizeof(Tregister));
ppufile.putdata(o.ref^.index,sizeof(Tregister));
ppufile.putbyte(o.ref^.scalefactor);
ppufile.putlongint(o.ref^.offset);
ppufile.putasmsymbol(o.ref^.symbol);
end;
top_const :
ppufile.putlongint(longint(o.val));
top_symbol :
begin
ppufile.putasmsymbol(o.sym);
ppufile.putlongint(longint(o.symofs));
end;
top_local :
begin
ppufile.putderef(o.localsymderef);
ppufile.putlongint(longint(o.localsymofs));
ppufile.putlongint(longint(o.localindexreg));
ppufile.putbyte(o.localscale);
ppufile.putbyte(byte(o.localgetoffset));
end;
end;
end;
procedure taicpu.ppubuildderefimploper(var o:toper);
begin
case o.typ of
top_local :
o.localsymderef.build(tvarsym(o.localsym));
end;
end;
procedure taicpu.ppuderefoper(var o:toper);
begin
case o.typ of
top_ref :
begin
if assigned(o.ref^.symbol) then
objectlibrary.derefasmsymbol(o.ref^.symbol);
end;
top_symbol :
objectlibrary.derefasmsymbol(o.sym);
top_local :
o.localsym:=tvarsym(o.localsymderef.resolve);
end;
end;
procedure taicpu.CheckNonCommutativeOpcodes;
begin
{ we need ATT order }
SetOperandOrder(op_att);
if (
(ops=2) and
(oper[0]^.typ=top_reg) and
(oper[1]^.typ=top_reg) and
{ if the first is ST and the second is also a register
it is necessarily ST1 .. ST7 }
((oper[0]^.reg=NR_ST) or
(oper[0]^.reg=NR_ST0))
) or
{ ((ops=1) and
(oper[0]^.typ=top_reg) and
(oper[0]^.reg in [R_ST1..R_ST7])) or}
(ops=0) then
begin
if opcode=A_FSUBR then
opcode:=A_FSUB
else if opcode=A_FSUB then
opcode:=A_FSUBR
else if opcode=A_FDIVR then
opcode:=A_FDIV
else if opcode=A_FDIV then
opcode:=A_FDIVR
else if opcode=A_FSUBRP then
opcode:=A_FSUBP
else if opcode=A_FSUBP then
opcode:=A_FSUBRP
else if opcode=A_FDIVRP then
opcode:=A_FDIVP
else if opcode=A_FDIVP then
opcode:=A_FDIVRP;
end;
if (
(ops=1) and
(oper[0]^.typ=top_reg) and
(getregtype(oper[0]^.reg)=R_FPUREGISTER) and
(oper[0]^.reg<>NR_ST)
) then
begin
if opcode=A_FSUBRP then
opcode:=A_FSUBP
else if opcode=A_FSUBP then
opcode:=A_FSUBRP
else if opcode=A_FDIVRP then
opcode:=A_FDIVP
else if opcode=A_FDIVP then
opcode:=A_FDIVRP;
end;
end;
{*****************************************************************************
Assembler
*****************************************************************************}
{$ifndef NOAG386BIN}
type
ea=packed record
sib_present : boolean;
bytes : byte;
size : byte;
modrm : byte;
sib : byte;
end;
procedure taicpu.create_ot;
{
this function will also fix some other fields which only needs to be once
}
var
i,l,relsize : longint;
begin
if ops=0 then
exit;
{ update oper[].ot field }
for i:=0 to ops-1 do
with oper[i]^ do
begin
case typ of
top_reg :
begin
ot:=reg_ot_table[findreg_by_number(reg)];
end;
top_ref :
begin
{ create ot field }
if (ot and OT_SIZE_MASK)=0 then
ot:=OT_MEMORY or opsize_2_type[i,opsize]
else
ot:=OT_MEMORY or (ot and OT_SIZE_MASK);
if (ref^.base=NR_NO) and (ref^.index=NR_NO) then
ot:=ot or OT_MEM_OFFS;
{ fix scalefactor }
if (ref^.index=NR_NO) then
ref^.scalefactor:=0
else
if (ref^.scalefactor=0) then
ref^.scalefactor:=1;
end;
top_local :
begin
if (ot and OT_SIZE_MASK)=0 then
ot:=OT_MEMORY or opsize_2_type[i,opsize]
else
ot:=OT_MEMORY or (ot and OT_SIZE_MASK);
end;
top_const :
begin
if (opsize<>S_W) and (longint(val)>=-128) and (val<=127) then
ot:=OT_IMM8 or OT_SIGNED
else
ot:=OT_IMMEDIATE or opsize_2_type[i,opsize];
end;
top_symbol :
begin
if LastInsOffset=-1 then
l:=0
else
l:=InsOffset-LastInsOffset;
inc(l,symofs);
if assigned(sym) then
inc(l,sym.address);
{ instruction size will then always become 2 (PFV) }
relsize:=(InsOffset+2)-l;
if (not assigned(sym) or
((sym.currbind<>AB_EXTERNAL) and (sym.address<>0))) and
(relsize>=-128) and (relsize<=127) then
ot:=OT_IMM32 or OT_SHORT
else
ot:=OT_IMM32 or OT_NEAR;
end;
end;
end;
end;
function taicpu.InsEnd:longint;
begin
InsEnd:=InsOffset+InsSize;
end;
function taicpu.Matches(p:PInsEntry):longint;
{ * IF_SM stands for Size Match: any operand whose size is not
* explicitly specified by the template is `really' intended to be
* the same size as the first size-specified operand.
* Non-specification is tolerated in the input instruction, but
* _wrong_ specification is not.
*
* IF_SM2 invokes Size Match on only the first _two_ operands, for
* three-operand instructions such as SHLD: it implies that the
* first two operands must match in size, but that the third is
* required to be _unspecified_.
*
* IF_SB invokes Size Byte: operands with unspecified size in the
* template are really bytes, and so no non-byte specification in
* the input instruction will be tolerated. IF_SW similarly invokes
* Size Word, and IF_SD invokes Size Doubleword.
*
* (The default state if neither IF_SM nor IF_SM2 is specified is
* that any operand with unspecified size in the template is
* required to have unspecified size in the instruction too...)
}
var
i,j,asize,oprs : longint;
siz : array[0..2] of longint;
begin
Matches:=100;
{ Check the opcode and operands }
if (p^.opcode<>opcode) or (p^.ops<>ops) then
begin
Matches:=0;
exit;
end;
{ Check that no spurious colons or TOs are present }
for i:=0 to p^.ops-1 do
if (oper[i]^.ot and (not p^.optypes[i]) and (OT_COLON or OT_TO))<>0 then
begin
Matches:=0;
exit;
end;
{ Check that the operand flags all match up }
for i:=0 to p^.ops-1 do
begin
if ((p^.optypes[i] and (not oper[i]^.ot)) or
((p^.optypes[i] and OT_SIZE_MASK) and
((p^.optypes[i] xor oper[i]^.ot) and OT_SIZE_MASK)))<>0 then
begin
if ((p^.optypes[i] and (not oper[i]^.ot) and OT_NON_SIZE) or
(oper[i]^.ot and OT_SIZE_MASK))<>0 then
begin
Matches:=0;
exit;
end
else
Matches:=1;
end;
end;
{ Check operand sizes }
{ as default an untyped size can get all the sizes, this is different
from nasm, but else we need to do a lot checking which opcodes want
size or not with the automatic size generation }
asize:=longint($ffffffff);
if (p^.flags and IF_SB)<>0 then
asize:=OT_BITS8
else if (p^.flags and IF_SW)<>0 then
asize:=OT_BITS16
else if (p^.flags and IF_SD)<>0 then
asize:=OT_BITS32;
if (p^.flags and IF_ARMASK)<>0 then
begin
siz[0]:=0;
siz[1]:=0;
siz[2]:=0;
if (p^.flags and IF_AR0)<>0 then
siz[0]:=asize
else if (p^.flags and IF_AR1)<>0 then
siz[1]:=asize
else if (p^.flags and IF_AR2)<>0 then
siz[2]:=asize;
end
else
begin
{ we can leave because the size for all operands is forced to be
the same
but not if IF_SB IF_SW or IF_SD is set PM }
if asize=-1 then
exit;
siz[0]:=asize;
siz[1]:=asize;
siz[2]:=asize;
end;
if (p^.flags and (IF_SM or IF_SM2))<>0 then
begin
if (p^.flags and IF_SM2)<>0 then
oprs:=2
else
oprs:=p^.ops;
for i:=0 to oprs-1 do
if ((p^.optypes[i] and OT_SIZE_MASK) <> 0) then
begin
for j:=0 to oprs-1 do
siz[j]:=p^.optypes[i] and OT_SIZE_MASK;
break;
end;
end
else
oprs:=2;
{ Check operand sizes }
for i:=0 to p^.ops-1 do
begin
if ((p^.optypes[i] and OT_SIZE_MASK)=0) and
((oper[i]^.ot and OT_SIZE_MASK and (not siz[i]))<>0) and
{ Immediates can always include smaller size }
((oper[i]^.ot and OT_IMMEDIATE)=0) and
(((p^.optypes[i] and OT_SIZE_MASK) or siz[i])<(oper[i]^.ot and OT_SIZE_MASK)) then
Matches:=2;
end;
end;
procedure taicpu.ResetPass1;
begin
{ we need to reset everything here, because the choosen insentry
can be invalid for a new situation where the previously optimized
insentry is not correct }
InsEntry:=nil;
InsSize:=0;
LastInsOffset:=-1;
end;
procedure taicpu.ResetPass2;
begin
{ we are here in a second pass, check if the instruction can be optimized }
if assigned(InsEntry) and
((InsEntry^.flags and IF_PASS2)<>0) then
begin
InsEntry:=nil;
InsSize:=0;
end;
LastInsOffset:=-1;
end;
function taicpu.CheckIfValid:boolean;
begin
result:=FindInsEntry;
end;
function taicpu.FindInsentry:boolean;
var
i : longint;
begin
result:=false;
{ Things which may only be done once, not when a second pass is done to
optimize }
if (Insentry=nil) or ((InsEntry^.flags and IF_PASS2)<>0) then
begin
{ We need intel style operands }
SetOperandOrder(op_intel);
{ create the .ot fields }
create_ot;
{ set the file postion }
aktfilepos:=fileinfo;
end
else
begin
{ we've already an insentry so it's valid }
result:=true;
exit;
end;
{ Lookup opcode in the table }
InsSize:=-1;
i:=instabcache^[opcode];
if i=-1 then
begin
Message1(asmw_e_opcode_not_in_table,gas_op2str[opcode]);
exit;
end;
insentry:=@instab[i];
while (insentry^.opcode=opcode) do
begin
if matches(insentry)=100 then
begin
result:=true;
exit;
end;
inc(i);
insentry:=@instab[i];
end;
Message1(asmw_e_invalid_opcode_and_operands,GetString);
{ No instruction found, set insentry to nil and inssize to -1 }
insentry:=nil;
inssize:=-1;
end;
function taicpu.Pass1(offset:longint):longint;
begin
Pass1:=0;
{ Save the old offset and set the new offset }
InsOffset:=Offset;
{ Things which may only be done once, not when a second pass is done to
optimize }
if Insentry=nil then
begin
{ Check if error last time then InsSize=-1 }
if InsSize=-1 then
exit;
{ set the file postion }
aktfilepos:=fileinfo;
end
else
begin
{$ifdef PASS2FLAG}
{ we are here in a second pass, check if the instruction can be optimized }
if (InsEntry^.flags and IF_PASS2)=0 then
begin
Pass1:=InsSize;
exit;
end;
{ update the .ot fields, some top_const can be updated }
create_ot;
{$endif PASS2FLAG}
end;
{ Get InsEntry }
if FindInsEntry then
begin
{ Calculate instruction size }
InsSize:=calcsize(insentry);
if segprefix<>NR_NO then
inc(InsSize);
{ Fix opsize if size if forced }
if (insentry^.flags and (IF_SB or IF_SW or IF_SD))<>0 then
begin
if (insentry^.flags and IF_ARMASK)=0 then
begin
if (insentry^.flags and IF_SB)<>0 then
begin
if opsize=S_NO then
opsize:=S_B;
end
else if (insentry^.flags and IF_SW)<>0 then
begin
if opsize=S_NO then
opsize:=S_W;
end
else if (insentry^.flags and IF_SD)<>0 then
begin
if opsize=S_NO then
opsize:=S_L;
end;
end;
end;
LastInsOffset:=InsOffset;
Pass1:=InsSize;
exit;
end;
LastInsOffset:=-1;
end;
procedure taicpu.Pass2(sec:TAsmObjectData);
var
c : longint;
begin
{ error in pass1 ? }
if insentry=nil then
exit;
aktfilepos:=fileinfo;
{ Segment override }
if (segprefix<>NR_NO) then
begin
case segprefix of
NR_CS : c:=$2e;
NR_DS : c:=$3e;
NR_ES : c:=$26;
NR_FS : c:=$64;
NR_GS : c:=$65;
NR_SS : c:=$36;
end;
sec.writebytes(c,1);
{ fix the offset for GenNode }
inc(InsOffset);
end;
{ Generate the instruction }
GenCode(sec);
end;
function taicpu.needaddrprefix(opidx:byte):boolean;
begin
needaddrprefix:=false;
if (OT_MEMORY and (not oper[opidx]^.ot))=0 then
begin
if (
(oper[opidx]^.ref^.index<>NR_NO) and
(getsubreg(oper[opidx]^.ref^.index)<>R_SUBD)
) or
(
(oper[opidx]^.ref^.base<>NR_NO) and
(getsubreg(oper[opidx]^.ref^.base)<>R_SUBD)
) then
needaddrprefix:=true;
end;
end;
function regval(r:Tregister):byte;
const
{$ifdef x86_64}
opcode_table:array[tregisterindex] of tregisterindex = (
{$i r8664op.inc}
);
{$else x86_64}
opcode_table:array[tregisterindex] of tregisterindex = (
{$i r386op.inc}
);
{$endif x86_64}
var
regidx : tregisterindex;
begin
regidx:=findreg_by_number(r);
if regidx<>0 then
result:=opcode_table[regidx]
else
begin
Message1(asmw_e_invalid_register,generic_regname(r));
result:=0;
end;
end;
function process_ea(const input:toper;var output:ea;rfield:longint):boolean;
var
sym : tasmsymbol;
md,s,rv : byte;
base,index,scalefactor,
o : longint;
ir,br : Tregister;
isub,bsub : tsubregister;
begin
process_ea:=false;
{Register ?}
if (input.typ=top_reg) then
begin
rv:=regval(input.reg);
output.sib_present:=false;
output.bytes:=0;
output.modrm:=$c0 or (rfield shl 3) or rv;
output.size:=1;
process_ea:=true;
exit;
end;
{No register, so memory reference.}
if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER)) or
((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
internalerror(200301081);
ir:=input.ref^.index;
br:=input.ref^.base;
isub:=getsubreg(ir);
bsub:=getsubreg(br);
s:=input.ref^.scalefactor;
o:=input.ref^.offset;
sym:=input.ref^.symbol;
{ it's direct address }
if (br=NR_NO) and (ir=NR_NO) then
begin
{ it's a pure offset }
output.sib_present:=false;
output.bytes:=4;
output.modrm:=5 or (rfield shl 3);
end
else
{ it's an indirection }
begin
{ 16 bit address? }
if ((ir<>NR_NO) and (isub<>R_SUBD)) or
((br<>NR_NO) and (bsub<>R_SUBD)) then
message(asmw_e_16bit_not_supported);
{$ifdef OPTEA}
{ make single reg base }
if (br=NR_NO) and (s=1) then
begin
br:=ir;
ir:=NR_NO;
end;
{ convert [3,5,9]*EAX to EAX+[2,4,8]*EAX }
if (br=NR_NO) and
(((s=2) and (ir<>NR_ESP)) or
(s=3) or (s=5) or (s=9)) then
begin
br:=ir;
dec(s);
end;
{ swap ESP into base if scalefactor is 1 }
if (s=1) and (ir=NR_ESP) then
begin
ir:=br;
br:=NR_ESP;
end;
{$endif OPTEA}
{ wrong, for various reasons }
if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
exit;
{ base }
case br of
NR_EAX : base:=0;
NR_ECX : base:=1;
NR_EDX : base:=2;
NR_EBX : base:=3;
NR_ESP : base:=4;
NR_NO,
NR_EBP : base:=5;
NR_ESI : base:=6;
NR_EDI : base:=7;
else
exit;
end;
{ index }
case ir of
NR_EAX : index:=0;
NR_ECX : index:=1;
NR_EDX : index:=2;
NR_EBX : index:=3;
NR_NO : index:=4;
NR_EBP : index:=5;
NR_ESI : index:=6;
NR_EDI : index:=7;
else
exit;
end;
case s of
0,
1 : scalefactor:=0;
2 : scalefactor:=1;
4 : scalefactor:=2;
8 : scalefactor:=3;
else
exit;
end;
if (br=NR_NO) or
((br<>NR_EBP) and (o=0) and (sym=nil)) then
md:=0
else
if ((o>=-128) and (o<=127) and (sym=nil)) then
md:=1
else
md:=2;
if (br=NR_NO) or (md=2) then
output.bytes:=4
else
output.bytes:=md;
{ SIB needed ? }
if (ir=NR_NO) and (br<>NR_ESP) then
begin
output.sib_present:=false;
output.modrm:=(md shl 6) or (rfield shl 3) or base;
end
else
begin
output.sib_present:=true;
output.modrm:=(md shl 6) or (rfield shl 3) or 4;
output.sib:=(scalefactor shl 6) or (index shl 3) or base;
end;
end;
if output.sib_present then
output.size:=2+output.bytes
else
output.size:=1+output.bytes;
process_ea:=true;
end;
function taicpu.calcsize(p:PInsEntry):longint;
var
codes : pchar;
c : byte;
len : longint;
ea_data : ea;
begin
len:=0;
codes:=@p^.code;
repeat
c:=ord(codes^);
inc(codes);
case c of
0 :
break;
1,2,3 :
begin
inc(codes,c);
inc(len,c);
end;
8,9,10 :
begin
inc(codes);
inc(len);
end;
4,5,6,7 :
begin
if opsize=S_W then
inc(len,2)
else
inc(len);
end;
15,
12,13,14,
16,17,18,
20,21,22,
40,41,42 :
inc(len);
24,25,26,
31,
48,49,50 :
inc(len,2);
28,29,30, { we don't have 16 bit immediates code }
32,33,34,
52,53,54,
56,57,58 :
inc(len,4);
192,193,194 :
if NeedAddrPrefix(c-192) then
inc(len);
208 :
inc(len);
200,
201,
202,
209,
210,
217,218: ;
219,220 :
inc(len);
216 :
begin
inc(codes);
inc(len);
end;
224,225,226 :
begin
InternalError(777002);
end;
else
begin
if (c>=64) and (c<=191) then
begin
if not process_ea(oper[(c shr 3) and 7]^, ea_data, 0) then
Message(asmw_e_invalid_effective_address)
else
inc(len,ea_data.size);
end
else
InternalError(777003);
end;
end;
until false;
calcsize:=len;
end;
procedure taicpu.GenCode(sec:TAsmObjectData);
{
* the actual codes (C syntax, i.e. octal):
* \0 - terminates the code. (Unless it's a literal of course.)
* \1, \2, \3 - that many literal bytes follow in the code stream
* \4, \6 - the POP/PUSH (respectively) codes for CS, DS, ES, SS
* (POP is never used for CS) depending on operand 0
* \5, \7 - the second byte of POP/PUSH codes for FS, GS, depending
* on operand 0
* \10, \11, \12 - a literal byte follows in the code stream, to be added
* to the register value of operand 0, 1 or 2
* \17 - encodes the literal byte 0. (Some compilers don't take
* kindly to a zero byte in the _middle_ of a compile time
* string constant, so I had to put this hack in.)
* \14, \15, \16 - a signed byte immediate operand, from operand 0, 1 or 2
* \20, \21, \22 - a byte immediate operand, from operand 0, 1 or 2
* \24, \25, \26 - an unsigned byte immediate operand, from operand 0, 1 or 2
* \30, \31, \32 - a word immediate operand, from operand 0, 1 or 2
* \34, \35, \36 - select between \3[012] and \4[012] depending on 16/32 bit
* assembly mode or the address-size override on the operand
* \37 - a word constant, from the _segment_ part of operand 0
* \40, \41, \42 - a long immediate operand, from operand 0, 1 or 2
* \50, \51, \52 - a byte relative operand, from operand 0, 1 or 2
* \60, \61, \62 - a word relative operand, from operand 0, 1 or 2
* \64, \65, \66 - select between \6[012] and \7[012] depending on 16/32 bit
* assembly mode or the address-size override on the operand
* \70, \71, \72 - a long relative operand, from operand 0, 1 or 2
* \1ab - a ModRM, calculated on EA in operand a, with the spare
* field the register value of operand b.
* \2ab - a ModRM, calculated on EA in operand a, with the spare
* field equal to digit b.
* \30x - might be an 0x67 byte, depending on the address size of
* the memory reference in operand x.
* \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
* \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
* \320 - indicates fixed 16-bit operand size, i.e. optional 0x66.
* \321 - indicates fixed 32-bit operand size, i.e. optional 0x66.
* \322 - indicates that this instruction is only valid when the
* operand size is the default (instruction to disassembler,
* generates no code in the assembler)
* \330 - a literal byte follows in the code stream, to be added
* to the condition code value of the instruction.
* \340 - reserve <operand 0> bytes of uninitialised storage.
* Operand 0 had better be a segmentless constant.
}
var
currval : longint;
currsym : tasmsymbol;
procedure getvalsym(opidx:longint);
begin
case oper[opidx]^.typ of
top_ref :
begin
currval:=oper[opidx]^.ref^.offset;
currsym:=oper[opidx]^.ref^.symbol;
end;
top_const :
begin
currval:=longint(oper[opidx]^.val);
currsym:=nil;
end;
top_symbol :
begin
currval:=oper[opidx]^.symofs;
currsym:=oper[opidx]^.sym;
end;
else
Message(asmw_e_immediate_or_reference_expected);
end;
end;
const
CondVal:array[TAsmCond] of byte=($0,
$7, $3, $2, $6, $2, $4, $F, $D, $C, $E, $6, $2,
$3, $7, $3, $5, $E, $C, $D, $F, $1, $B, $9, $5,
$0, $A, $A, $B, $8, $4);
var
c : byte;
pb,
codes : pchar;
bytes : array[0..3] of byte;
rfield,
data,s,opidx : longint;
ea_data : ea;
begin
{$ifdef EXTDEBUG}
{ safety check }
if sec.sects[sec.currsec].datasize<>insoffset then
internalerror(200130121);
{$endif EXTDEBUG}
{ load data to write }
codes:=insentry^.code;
{ Force word push/pop for registers }
if (opsize=S_W) and ((codes[0]=#4) or (codes[0]=#6) or
((codes[0]=#1) and ((codes[2]=#5) or (codes[2]=#7)))) then
begin
bytes[0]:=$66;
sec.writebytes(bytes,1);
end;
repeat
c:=ord(codes^);
inc(codes);
case c of
0 :
break;
1,2,3 :
begin
sec.writebytes(codes^,c);
inc(codes,c);
end;
4,6 :
begin
case oper[0]^.reg of
NR_CS:
bytes[0]:=$e;
NR_NO,
NR_DS:
bytes[0]:=$1e;
NR_ES:
bytes[0]:=$6;
NR_SS:
bytes[0]:=$16;
else
internalerror(777004);
end;
if c=4 then
inc(bytes[0]);
sec.writebytes(bytes,1);
end;
5,7 :
begin
case oper[0]^.reg of
NR_FS:
bytes[0]:=$a0;
NR_GS:
bytes[0]:=$a8;
else
internalerror(777005);
end;
if c=5 then
inc(bytes[0]);
sec.writebytes(bytes,1);
end;
8,9,10 :
begin
bytes[0]:=ord(codes^)+regval(oper[c-8]^.reg);
inc(codes);
sec.writebytes(bytes,1);
end;
15 :
begin
bytes[0]:=0;
sec.writebytes(bytes,1);
end;
12,13,14 :
begin
getvalsym(c-12);
if (currval<-128) or (currval>127) then
Message2(asmw_e_value_exceeds_bounds,'signed byte',tostr(currval));
if assigned(currsym) then
sec.writereloc(currval,1,currsym,RELOC_ABSOLUTE)
else
sec.writebytes(currval,1);
end;
16,17,18 :
begin
getvalsym(c-16);
if (currval<-256) or (currval>255) then
Message2(asmw_e_value_exceeds_bounds,'byte',tostr(currval));
if assigned(currsym) then
sec.writereloc(currval,1,currsym,RELOC_ABSOLUTE)
else
sec.writebytes(currval,1);
end;
20,21,22 :
begin
getvalsym(c-20);
if (currval<0) or (currval>255) then
Message2(asmw_e_value_exceeds_bounds,'unsigned byte',tostr(currval));
if assigned(currsym) then
sec.writereloc(currval,1,currsym,RELOC_ABSOLUTE)
else
sec.writebytes(currval,1);
end;
24,25,26 :
begin
getvalsym(c-24);
if (currval<-65536) or (currval>65535) then
Message2(asmw_e_value_exceeds_bounds,'word',tostr(currval));
if assigned(currsym) then
sec.writereloc(currval,2,currsym,RELOC_ABSOLUTE)
else
sec.writebytes(currval,2);
end;
28,29,30 :
begin
getvalsym(c-28);
if assigned(currsym) then
sec.writereloc(currval,4,currsym,RELOC_ABSOLUTE)
else
sec.writebytes(currval,4);
end;
32,33,34 :
begin
getvalsym(c-32);
if assigned(currsym) then
sec.writereloc(currval,4,currsym,RELOC_ABSOLUTE)
else
sec.writebytes(currval,4);
end;
40,41,42 :
begin
getvalsym(c-40);
data:=currval-insend;
if assigned(currsym) then
inc(data,currsym.address);
if (data>127) or (data<-128) then
Message1(asmw_e_short_jmp_out_of_range,tostr(data));
sec.writebytes(data,1);
end;
52,53,54 :
begin
getvalsym(c-52);
if assigned(currsym) then
sec.writereloc(currval,4,currsym,RELOC_RELATIVE)
else
sec.writereloc(currval-insend,4,nil,RELOC_ABSOLUTE)
end;
56,57,58 :
begin
getvalsym(c-56);
if assigned(currsym) then
sec.writereloc(currval,4,currsym,RELOC_RELATIVE)
else
sec.writereloc(currval-insend,4,nil,RELOC_ABSOLUTE)
end;
192,193,194 :
begin
if NeedAddrPrefix(c-192) then
begin
bytes[0]:=$67;
sec.writebytes(bytes,1);
end;
end;
200 :
begin
bytes[0]:=$67;
sec.writebytes(bytes,1);
end;
208 :
begin
bytes[0]:=$66;
sec.writebytes(bytes,1);
end;
216 :
begin
bytes[0]:=ord(codes^)+condval[condition];
inc(codes);
sec.writebytes(bytes,1);
end;
201,
202,
209,
210,
217,218 :
begin
{ these are dissambler hints or 32 bit prefixes which
are not needed }
end;
219 :
begin
bytes[0]:=$f3;
sec.writebytes(bytes,1);
end;
220 :
begin
bytes[0]:=$f2;
sec.writebytes(bytes,1);
end;
31,
48,49,50,
224,225,226 :
begin
InternalError(777006);
end
else
begin
if (c>=64) and (c<=191) then
begin
if (c<127) then
begin
if (oper[c and 7]^.typ=top_reg) then
rfield:=regval(oper[c and 7]^.reg)
else
rfield:=regval(oper[c and 7]^.ref^.base);
end
else
rfield:=c and 7;
opidx:=(c shr 3) and 7;
if not process_ea(oper[opidx]^,ea_data,rfield) then
Message(asmw_e_invalid_effective_address);
pb:=@bytes;
pb^:=chr(ea_data.modrm);
inc(pb);
if ea_data.sib_present then
begin
pb^:=chr(ea_data.sib);
inc(pb);
end;
s:=pb-pchar(@bytes);
sec.writebytes(bytes,s);
case ea_data.bytes of
0 : ;
1 :
begin
if (oper[opidx]^.ot and OT_MEMORY)=OT_MEMORY then
sec.writereloc(oper[opidx]^.ref^.offset,1,oper[opidx]^.ref^.symbol,RELOC_ABSOLUTE)
else
begin
bytes[0]:=oper[opidx]^.ref^.offset;
sec.writebytes(bytes,1);
end;
inc(s);
end;
2,4 :
begin
sec.writereloc(oper[opidx]^.ref^.offset,ea_data.bytes,
oper[opidx]^.ref^.symbol,RELOC_ABSOLUTE);
inc(s,ea_data.bytes);
end;
end;
end
else
InternalError(777007);
end;
end;
until false;
end;
{$endif NOAG386BIN}
function Taicpu.is_same_reg_move:boolean;
begin
result:=(ops=2) and
(oper[0]^.typ=top_reg) and
(oper[1]^.typ=top_reg) and
(oper[0]^.reg=oper[1]^.reg) and
((opcode=A_MOV) or (opcode=A_XCHG));
end;
function Taicpu.is_reg_move:boolean;
begin
result:=(ops=2) and
(oper[0]^.typ=top_reg) and
(oper[1]^.typ=top_reg) and
((opcode=A_MOV) or (opcode=A_MOVZX) or (opcode=A_MOVSX));
end;
{*****************************************************************************
Instruction table
*****************************************************************************}
procedure BuildInsTabCache;
{$ifndef NOAG386BIN}
var
i : longint;
{$endif}
begin
{$ifndef NOAG386BIN}
new(instabcache);
FillChar(instabcache^,sizeof(tinstabcache),$ff);
i:=0;
while (i<InsTabEntries) do
begin
if InsTabCache^[InsTab[i].OPcode]=-1 then
InsTabCache^[InsTab[i].OPcode]:=i;
inc(i);
end;
{$endif NOAG386BIN}
end;
procedure InitAsm;
begin
{$ifndef NOAG386BIN}
if not assigned(instabcache) then
BuildInsTabCache;
{$endif NOAG386BIN}
end;
procedure DoneAsm;
begin
{$ifndef NOAG386BIN}
if assigned(instabcache) then
begin
dispose(instabcache);
instabcache:=nil;
end;
{$endif NOAG386BIN}
end;
end.
{
$Log$
Revision 1.44 2004-01-12 16:37:59 peter
* moved spilling code from taicpu to rg
Revision 1.43 2003/12/26 14:02:30 peter
* sparc updates
* use registertype in spill_register
Revision 1.42 2003/12/25 12:01:35 florian
+ possible sse2 unit usage for double calculations
* some sse2 assembler issues fixed
Revision 1.41 2003/12/25 01:07:09 florian
+ $fputype directive support
+ single data type operations with sse unit
* fixed more x86-64 stuff
Revision 1.40 2003/12/15 21:25:49 peter
* reg allocations for imaginary register are now inserted just
before reg allocation
* tregister changed to enum to allow compile time check
* fixed several tregister-tsuperregister errors
Revision 1.39 2003/12/14 20:24:28 daniel
* Register allocator speed optimizations
- Worklist no longer a ringbuffer
- No find operations are left
- Simplify now done in constant time
- unusedregs is now a Tsuperregisterworklist
- Microoptimizations
Revision 1.38 2003/11/12 16:05:40 florian
* assembler readers OOPed
+ typed currency constants
+ typed 128 bit float constants if the CPU supports it
Revision 1.37 2003/10/30 19:59:00 peter
* support scalefactor for opr_local
* support reference with opr_local set, fixes tw2631
Revision 1.36 2003/10/29 15:40:20 peter
* support indexing and offset retrieval for locals
Revision 1.35 2003/10/23 14:44:07 peter
* splitted buildderef and buildderefimpl to fix interface crc
calculation
Revision 1.34 2003/10/22 20:40:00 peter
* write derefdata in a separate ppu entry
Revision 1.33 2003/10/21 15:15:36 peter
* taicpu_abstract.oper[] changed to pointers
Revision 1.32 2003/10/17 14:38:32 peter
* 64k registers supported
* fixed some memory leaks
Revision 1.31 2003/10/09 21:31:37 daniel
* Register allocator splitted, ans abstract now
Revision 1.30 2003/10/01 20:34:50 peter
* procinfo unit contains tprocinfo
* cginfo renamed to cgbase
* moved cgmessage to verbose
* fixed ppc and sparc compiles
Revision 1.29 2003/09/29 20:58:56 peter
* optimized releasing of registers
Revision 1.28 2003/09/28 21:49:30 peter
* fixed invalid opcode handling in spill registers
Revision 1.27 2003/09/28 13:37:07 peter
* give error for wrong register number
Revision 1.26 2003/09/24 21:15:49 florian
* fixed make cycle
Revision 1.25 2003/09/24 17:12:36 florian
* x86-64 adaptions
Revision 1.24 2003/09/23 17:56:06 peter
* locals and paras are allocated in the code generation
* tvarsym.localloc contains the location of para/local when
generating code for the current procedure
Revision 1.23 2003/09/14 14:22:51 daniel
* Fixed incorrect movzx spilling
Revision 1.22 2003/09/12 20:25:17 daniel
* Add BTR to destination memory location check in spilling
Revision 1.21 2003/09/10 19:14:31 daniel
* Failed attempt to restore broken fastspill functionality
Revision 1.20 2003/09/10 11:23:09 marco
* fix from peter for bts reg32,mem32 problem
Revision 1.19 2003/09/09 12:54:45 florian
* x86 instruction table updated to nasm 0.98.37:
- sse3 aka prescott support
- small fixes
Revision 1.18 2003/09/07 22:09:35 peter
* preparations for different default calling conventions
* various RA fixes
Revision 1.17 2003/09/03 15:55:02 peter
* NEWRA branch merged
Revision 1.16.2.4 2003/08/31 15:46:26 peter
* more updates for tregister
Revision 1.16.2.3 2003/08/29 17:29:00 peter
* next batch of updates
Revision 1.16.2.2 2003/08/28 18:35:08 peter
* tregister changed to cardinal
Revision 1.16.2.1 2003/08/27 19:55:54 peter
* first tregister patch
Revision 1.16 2003/08/21 17:20:19 peter
* first spill the registers of top_ref before spilling top_reg
Revision 1.15 2003/08/21 14:48:36 peter
* fix reg-supreg range check error
Revision 1.14 2003/08/20 16:52:01 daniel
* Some old register convention code removed
* A few changes to eliminate a few lines of code
Revision 1.13 2003/08/20 09:07:00 daniel
* New register coding now mandatory, some more convert_registers calls
removed.
Revision 1.12 2003/08/20 07:48:04 daniel
* Made internal assembler use new register coding
Revision 1.11 2003/08/19 13:58:33 daniel
* Corrected a comment.
Revision 1.10 2003/08/15 14:44:20 daniel
* Fixed newra compilation
Revision 1.9 2003/08/11 21:18:20 peter
* start of sparc support for newra
Revision 1.8 2003/08/09 18:56:54 daniel
* cs_regalloc renamed to cs_regvars to avoid confusion with register
allocator
* Some preventive changes to i386 spillinh code
Revision 1.7 2003/07/06 15:31:21 daniel
* Fixed register allocator. *Lots* of fixes.
Revision 1.6 2003/06/14 14:53:50 jonas
* fixed newra cycle for x86
* added constants for indicating source and destination operands of the
"move reg,reg" instruction to aasmcpu (and use those in rgobj)
Revision 1.5 2003/06/03 13:01:59 daniel
* Register allocator finished
Revision 1.4 2003/05/30 23:57:08 peter
* more sparc cleanup
* accumulator removed, splitted in function_return_reg (called) and
function_result_reg (caller)
Revision 1.3 2003/05/22 21:33:31 peter
* removed some unit dependencies
Revision 1.2 2002/04/25 16:12:09 florian
* fixed more problems with cpubase and x86-64
Revision 1.1 2003/04/25 12:43:40 florian
* merged i386/aasmcpu and x86_64/aasmcpu to x86/aasmcpu
Revision 1.18 2003/04/25 12:04:31 florian
* merged agx64att and ag386att to x86/agx86att
Revision 1.17 2003/04/22 14:33:38 peter
* removed some notes/hints
Revision 1.16 2003/04/22 10:09:35 daniel
+ Implemented the actual register allocator
+ Scratch registers unavailable when new register allocator used
+ maybe_save/maybe_restore unavailable when new register allocator used
Revision 1.15 2003/03/26 12:50:54 armin
* avoid problems with the ide in init/dome
Revision 1.14 2003/03/08 08:59:07 daniel
+ $define newra will enable new register allocator
+ getregisterint will return imaginary registers with $newra
+ -sr switch added, will skip register allocation so you can see
the direct output of the code generator before register allocation
Revision 1.13 2003/02/25 07:41:54 daniel
* Properly fixed reversed operands bug
Revision 1.12 2003/02/19 22:00:15 daniel
* Code generator converted to new register notation
- Horribily outdated todo.txt removed
Revision 1.11 2003/01/09 20:40:59 daniel
* Converted some code in cgx86.pas to new register numbering
Revision 1.10 2003/01/08 18:43:57 daniel
* Tregister changed into a record
Revision 1.9 2003/01/05 13:36:53 florian
* x86-64 compiles
+ very basic support for float128 type (x86-64 only)
Revision 1.8 2002/11/17 16:31:58 carl
* memory optimization (3-4%) : cleanup of tai fields,
cleanup of tdef and tsym fields.
* make it work for m68k
Revision 1.7 2002/11/15 01:58:54 peter
* merged changes from 1.0.7 up to 04-11
- -V option for generating bug report tracing
- more tracing for option parsing
- errors for cdecl and high()
- win32 import stabs
- win32 records<=8 are returned in eax:edx (turned off by default)
- heaptrc update
- more info for temp management in .s file with EXTDEBUG
Revision 1.6 2002/10/31 13:28:32 pierre
* correct last wrong fix for tw2158
Revision 1.5 2002/10/30 17:10:00 pierre
* merge of fix for tw2158 bug
Revision 1.4 2002/08/15 19:10:36 peter
* first things tai,tnode storing in ppu
Revision 1.3 2002/08/13 18:01:52 carl
* rename swatoperands to swapoperands
+ m68k first compilable version (still needs a lot of testing):
assembler generator, system information , inline
assembler reader.
Revision 1.2 2002/07/20 11:57:59 florian
* types.pas renamed to defbase.pas because D6 contains a types
unit so this would conflicts if D6 programms are compiled
+ Willamette/SSE2 instructions to assembler added
Revision 1.1 2002/07/01 18:46:29 peter
* internal linker
* reorganized aasm layer
}