mirror of
				https://gitlab.com/freepascal.org/fpc/source.git
				synced 2025-10-31 14:12:32 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			1007 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			TeX
		
	
	
	
	
	
			
		
		
	
	
			1007 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			TeX
		
	
	
	
	
	
| %
 | |
| %   $Id$
 | |
| %   This file is part of the FPC documentation.
 | |
| %   Copyright (C) 2000 by Florian Klaempfl
 | |
| %
 | |
| %   The FPC documentation is free text; you can redistribute it and/or
 | |
| %   modify it under the terms of the GNU Library General Public License as
 | |
| %   published by the Free Software Foundation; either version 2 of the
 | |
| %   License, or (at your option) any later version.
 | |
| %
 | |
| %   The FPC Documentation is distributed in the hope that it will be useful,
 | |
| %   but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| %   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
| %   Library General Public License for more details.
 | |
| %
 | |
| %   You should have received a copy of the GNU Library General Public
 | |
| %   License along with the FPC documentation; see the file COPYING.LIB.  If not,
 | |
| %   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 | |
| %   Boston, MA 02111-1307, USA.
 | |
| %
 | |
| \chapter{The MATH unit}
 | |
| \FPCexampledir{mathex}
 | |
| 
 | |
| This chapter describes the \file{math} unit. The \var{math} unit
 | |
| was initially written by Florian Kl\"ampfl. It provides mathematical
 | |
| functions which aren't covered by the system unit.
 | |
| 
 | |
| This chapter starts out with a definition of all types and constants
 | |
| that are defined, after which an overview is presented of the available 
 | |
| functions, grouped by category, and the last part contains a 
 | |
| complete explanation of each function.
 | |
| 
 | |
| The following things must be taken into account when using this unit:
 | |
| \begin{enumerate}
 | |
| \item This unit is compiled in Object Pascal mode so all
 | |
| \var{integers} are 32 bit.
 | |
| \item Some overloaded functions exist for data arrays of integers and
 | |
| floats. When using the address operator (\var{@}) to pass an array of 
 | |
| data to such a function, make sure the address is typecasted to the 
 | |
| right type, or turn on the 'typed address operator' feature. failing to
 | |
| do so, will cause the compiler not be able to decide which function you 
 | |
| want to call.
 | |
| \end{enumerate}
 | |
| 
 | |
| \section{Constants and types}
 | |
| 
 | |
| The following types are defined in the \file{math} unit:
 | |
| \begin{verbatim}
 | |
| Type
 | |
|   Float = Extended;
 | |
|   PFloat = ^FLoat
 | |
| \end{verbatim}
 | |
| All calculations are done with the Float type. This allows to
 | |
| recompile the unit with a different float type to obtain a
 | |
| desired precision. The pointer type is used in functions that accept
 | |
| an array of values of arbitrary length.
 | |
| \begin{verbatim}
 | |
| Type
 | |
|    TPaymentTime = (PTEndOfPeriod,PTStartOfPeriod);
 | |
| \end{verbatim}
 | |
| \var{TPaymentTime} is used in the financial calculations.
 | |
| \begin{verbatim}
 | |
| Type
 | |
|    EInvalidArgument = Class(EMathError);
 | |
| \end{verbatim}
 | |
| The \var{EInvalidArgument} exception is used to report invalid arguments.
 | |
| 
 | |
| \section{Function list by category}
 | |
| What follows is a listing of the available functions, grouped by category.
 | |
| For each function there is a reference to the page where you can find the
 | |
| function.
 | |
| \subsection{Min/max determination}
 | |
| Functions to determine the minimum or maximum of numbers:
 | |
| \begin{funclist}
 | |
| \funcref{max}{Maximum of 2 values}
 | |
| \funcref{maxIntValue}{Maximum of an array of integer values}
 | |
| \funcref{maxvalue}{Maximum of an array of values}
 | |
| \funcref{min}{Minimum of 2 values}
 | |
| \funcref{minIntValue}{Minimum of an array of integer values}
 | |
| \funcref{minvalue}{Minimum of an array of values}
 | |
| \end{funclist}
 | |
| \subsection{Angle conversion}
 | |
| \begin{funclist}
 | |
| \funcref{cycletorad}{convert cycles to radians}
 | |
| \funcref{degtograd}{convert degrees to grads}
 | |
| \funcref{degtorad}{convert degrees to radians}
 | |
| \funcref{gradtodeg}{convert grads to degrees}
 | |
| \funcref{gradtorad}{convert grads to radians}
 | |
| \funcref{radtocycle}{convert radians to cycles}
 | |
| \funcref{radtodeg}{convert radians to degrees}
 | |
| \funcref{radtograd}{convert radians to grads}
 | |
| \end{funclist}
 | |
| \subsection{Trigoniometric functions}
 | |
| \begin{funclist}
 | |
| \funcref{arccos}{calculate reverse cosine}
 | |
| \funcref{arcsin}{calculate reverse sine}
 | |
| \funcref{arctan2}{calculate reverse tangent}
 | |
| \funcref{cotan}{calculate cotangent}
 | |
| \procref{sincos}{calculate sine and cosine}
 | |
| \funcref{tan}{calculate tangent}
 | |
| \end{funclist}
 | |
| \subsection{Hyperbolic functions}
 | |
| \begin{funclist}
 | |
| \funcref{arcosh}{caculate reverse hyperbolic cosine}
 | |
| \funcref{arsinh}{caculate reverse hyperbolic sine}
 | |
| \funcref{artanh}{caculate reverse hyperbolic tangent}
 | |
| \funcref{cosh}{calculate hyperbolic cosine}
 | |
| \funcref{sinh}{calculate hyperbolic sine}
 | |
| \funcref{tanh}{calculate hyperbolic tangent}
 | |
| \end{funclist}
 | |
| \subsection{Exponential and logarithmic functions}
 | |
| \begin{funclist}
 | |
| \funcref{intpower}{Raise float to integer power}
 | |
| \funcref{ldexp}{Calculate $2^p x$}
 | |
| \funcref{lnxp1}{calculate \var{log(x+1)}}
 | |
| \funcref{log10}{calculate 10-base log}
 | |
| \funcref{log2}{calculate 2-base log}
 | |
| \funcref{logn}{calculate N-base log}
 | |
| \funcref{power}{raise float to arbitrary power}
 | |
| \end{funclist}
 | |
| \subsection{Number converting}
 | |
| \begin{funclist}
 | |
| \funcref{ceil}{Round to infinity}
 | |
| \funcref{floor}{Round to minus infinity}
 | |
| \procref{frexp}{Return mantissa and exponent}
 | |
| \end{funclist}
 | |
| \subsection{Statistical functions}
 | |
| \begin{funclist}
 | |
| \funcref{mean}{Mean of values}
 | |
| \procref{meanandstddev}{Mean and standard deviation of values}
 | |
| \procref{momentskewkurtosis}{Moments, skew and kurtosis}
 | |
| \funcref{popnstddev}{Population standarddeviation }
 | |
| \funcref{popnvariance}{Population variance}
 | |
| \funcref{randg}{Gaussian distributed randum value}
 | |
| \funcref{stddev}{Standard deviation}
 | |
| \funcref{sum}{Sum of values}
 | |
| \funcref{sumofsquares}{Sum of squared values}
 | |
| \procref{sumsandsquares}{Sum of values and squared values}
 | |
| \funcref{totalvariance}{Total variance of values}
 | |
| \funcref{variance}{variance of values}
 | |
| \end{funclist}
 | |
| \subsection{Geometrical functions}
 | |
| \begin{funclist}
 | |
| \funcref{hypot}{Hypotenuse of triangle}
 | |
| \funcref{norm}{Euclidian norm}
 | |
| \end{funclist}
 | |
| 
 | |
| \section{Functions and Procedures}
 | |
| 
 | |
| \begin{function}{arccos}
 | |
| \Declaration
 | |
| Function arccos(x : float) : float;
 | |
| \Description
 | |
| \var{Arccos} returns the inverse cosine of its argument \var{x}. The
 | |
| argument \var{x} should lie between -1 and 1 (borders included). 
 | |
| \Errors
 | |
| If the argument \var{x} is not in the allowed range, an
 | |
| \var{EInvalidArgument} exception is raised.
 | |
| \SeeAlso
 | |
| \seef{arcsin}, \seef{arcosh}, \seef{arsinh}, \seef{artanh}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex1}
 | |
| 
 | |
| \begin{function}{arcosh}
 | |
| \Declaration
 | |
| Function arcosh(x : float) : float;
 | |
| Function arccosh(x : float) : float;
 | |
| \Description
 | |
| \var{Arcosh} returns the inverse hyperbolic cosine of its argument \var{x}. 
 | |
| The argument \var{x} should be larger than 1. 
 | |
| 
 | |
| The \var{arccosh} variant of this function is supplied for \delphi 
 | |
| compatibility.
 | |
| \Errors
 | |
| If the argument \var{x} is not in the allowed range, an \var{EInvalidArgument}
 | |
| exception is raised.
 | |
| \SeeAlso
 | |
| \seef{cosh}, \seef{sinh}, \seef{arcsin}, \seef{arsinh}, \seef{artanh},
 | |
| \seef{tanh}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex3}
 | |
| 
 | |
| \begin{function}{arcsin}
 | |
| \Declaration
 | |
| Function arcsin(x : float) : float;
 | |
| \Description
 | |
| \var{Arcsin} returns the inverse sine of its argument \var{x}. The
 | |
| argument \var{x} should lie between -1 and 1. 
 | |
| \Errors
 | |
| If the argument \var{x} is not in the allowed range, an \var{EInvalidArgument}
 | |
| exception is raised.
 | |
| \SeeAlso
 | |
| \seef{arccos}, \seef{arcosh}, \seef{arsinh}, \seef{artanh}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex2}
 | |
| 
 | |
| 
 | |
| \begin{function}{arctan2}
 | |
| \Declaration
 | |
| Function arctan2(x,y : float) : float;
 | |
| \Description
 | |
| \var{arctan2} calculates \var{arctan(y/x)}, and returns an angle in the
 | |
| correct quadrant. The returned angle will be in the range $-\pi$ to
 | |
| $\pi$ radians.
 | |
| The values of \var{x} and \var{y} must be between -2\^{}64 and 2\^{}64,
 | |
| moreover \var{x} should be different from zero.
 | |
| 
 | |
| On Intel systems this function is implemented with the native intel
 | |
| \var{fpatan} instruction.
 | |
| \Errors
 | |
| If \var{x} is zero, an overflow error will occur.
 | |
| \SeeAlso
 | |
| \seef{arccos}, \seef{arcosh}, \seef{arsinh}, \seef{artanh}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex6}
 | |
| 
 | |
| \begin{function}{arsinh}
 | |
| \Declaration
 | |
| Function arsinh(x : float) : float;
 | |
| Function arcsinh(x : float) : float;
 | |
| \Description
 | |
| \var{arsinh} returns the inverse hyperbolic sine of its argument \var{x}. 
 | |
| 
 | |
| The \var{arscsinh} variant of this function is supplied for \delphi 
 | |
| compatibility.
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{arcosh}, \seef{arccos}, \seef{arcsin}, \seef{artanh}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex4}
 | |
| 
 | |
| 
 | |
| \begin{function}{artanh}
 | |
| \Declaration
 | |
| Function artanh(x : float) : float;
 | |
| Function arctanh(x : float) : float;
 | |
| \Description
 | |
| \var{artanh} returns the inverse hyperbolic tangent of its argument \var{x},
 | |
| where \var{x} should lie in the interval [-1,1], borders included.
 | |
| 
 | |
| The \var{arctanh} variant of this function is supplied for \delphi compatibility.
 | |
| \Errors
 | |
| In case \var{x} is not in the interval [-1,1], an \var{EInvalidArgument}
 | |
| exception is raised.
 | |
| \SeeAlso
 | |
| \seef{arcosh}, \seef{arccos}, \seef{arcsin}, \seef{artanh}
 | |
| \Errors
 | |
| \SeeAlso
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex5}
 | |
| 
 | |
| 
 | |
| \begin{function}{ceil}
 | |
| \Declaration
 | |
| Function ceil(x : float) : longint;
 | |
| \Description
 | |
| \var{Ceil} returns the lowest integer number greater than or equal to \var{x}.
 | |
| The absolute value of \var{x} should be less than \var{maxint}.
 | |
| \Errors
 | |
| If the asolute value of \var{x} is larger than maxint, an overflow error will
 | |
| occur.
 | |
| \SeeAlso
 | |
| \seef{floor}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex7}
 | |
| 
 | |
| \begin{function}{cosh}
 | |
| \Declaration
 | |
| Function cosh(x : float) : float;
 | |
| \Description
 | |
| \var{Cosh} returns the hyperbolic cosine of it's argument {x}.
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{arcosh}, \seef{sinh}, \seef{arsinh}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex8}
 | |
| 
 | |
| 
 | |
| \begin{function}{cotan}
 | |
| \Declaration
 | |
| Function cotan(x : float) : float;
 | |
| \Description
 | |
| \var{Cotan} returns the cotangent of it's argument \var{x}. \var{x} should
 | |
| be different from zero.
 | |
| \Errors
 | |
| If \var{x} is zero then a overflow error will occur.
 | |
| \SeeAlso
 | |
| \seef{tanh}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex9}
 | |
| 
 | |
| 
 | |
| \begin{function}{cycletorad}
 | |
| \Declaration
 | |
| Function cycletorad(cycle : float) : float;
 | |
| \Description
 | |
| \var{Cycletorad} transforms it's argument \var{cycle}
 | |
| (an angle expressed in cycles) to radians.
 | |
| (1 cycle is $2 \pi$ radians).
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{degtograd}, \seef{degtorad}, \seef{radtodeg},
 | |
| \seef{radtograd}, \seef{radtocycle}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex10}
 | |
| 
 | |
| 
 | |
| \begin{function}{degtograd}
 | |
| \Declaration
 | |
| Function degtograd(deg : float) : float;
 | |
| \Description
 | |
| \var{Degtograd} transforms it's argument \var{deg} (an angle in degrees)
 | |
| to grads.
 | |
| 
 | |
| (90 degrees is 100 grad.)
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{cycletorad}, \seef{degtorad}, \seef{radtodeg},
 | |
| \seef{radtograd}, \seef{radtocycle}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex11}
 | |
| 
 | |
| 
 | |
| \begin{function}{degtorad}
 | |
| \Declaration
 | |
| Function degtorad(deg : float) : float;
 | |
| \Description
 | |
| \var{Degtorad} converts it's argument \var{deg} (an angle in degrees) to
 | |
| radians.
 | |
| 
 | |
| (pi radians is 180 degrees)
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{cycletorad}, \seef{degtograd}, \seef{radtodeg},
 | |
| \seef{radtograd}, \seef{radtocycle}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex12}
 | |
| 
 | |
| 
 | |
| \begin{function}{floor}
 | |
| \Declaration
 | |
| Function floor(x : float) : longint;
 | |
| \Description
 | |
| \var{Floor} returns the largest integer smaller than or equal to \var{x}.
 | |
| The absolute value of \var{x} should be less than \var{maxint}.
 | |
| \Errors
 | |
| If \var{x} is larger than \var{maxint}, an overflow will occur.
 | |
| \SeeAlso
 | |
| \seef{ceil}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex13}
 | |
| 
 | |
| 
 | |
| \begin{procedure}{frexp}
 | |
| \Declaration
 | |
| Procedure frexp(x : float;var mantissa : float; var exponent : integer);
 | |
| \Description
 | |
| \var{Frexp} returns the mantissa and exponent of it's argument
 | |
| \var{x} in \var{mantissa} and \var{exponent}.
 | |
| \Errors
 | |
| None
 | |
| \SeeAlso
 | |
| \end{procedure}
 | |
| 
 | |
| \FPCexample{ex14}
 | |
| 
 | |
| 
 | |
| \begin{function}{gradtodeg}
 | |
| \Declaration
 | |
| Function gradtodeg(grad : float) : float;
 | |
| \Description
 | |
| \var{Gradtodeg} converts its argument \var{grad} (an angle in grads)
 | |
| to degrees.
 | |
| 
 | |
| (100 grad is 90 degrees)
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{cycletorad}, \seef{degtograd}, \seef{radtodeg},
 | |
| \seef{radtograd}, \seef{radtocycle}, \seef{gradtorad}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex15}
 | |
| 
 | |
| 
 | |
| \begin{function}{gradtorad}
 | |
| \Declaration
 | |
| Function gradtorad(grad : float) : float;
 | |
| \Description
 | |
| \var{Gradtorad} converts its argument \var{grad} (an angle in grads)
 | |
| to radians.
 | |
| 
 | |
| (200 grad is pi degrees).
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{cycletorad}, \seef{degtograd}, \seef{radtodeg},
 | |
| \seef{radtograd}, \seef{radtocycle}, \seef{gradtodeg}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex16}
 | |
| 
 | |
| 
 | |
| \begin{function}{hypot}
 | |
| \Declaration
 | |
| Function hypot(x,y : float) : float;
 | |
| \Description
 | |
| \var{Hypot} returns the hypotenuse of the triangle where the sides
 | |
| adjacent to the square angle have lengths \var{x} and \var{y}.
 | |
| 
 | |
| The function uses Pythagoras' rule for this.
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex17}
 | |
| 
 | |
| 
 | |
| \begin{function}{intpower}
 | |
| \Declaration
 | |
| Function intpower(base : float;exponent : longint) : float;
 | |
| \Description
 | |
| \var{Intpower} returns \var{base} to the power \var{exponent},
 | |
| where exponent is an integer value.
 | |
| \Errors
 | |
| If \var{base} is zero and the exponent is negative, then an
 | |
| overflow error will occur.
 | |
| \SeeAlso
 | |
| \seef{power}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex18}
 | |
| 
 | |
| 
 | |
| \begin{function}{ldexp}
 | |
| \Declaration
 | |
| Function ldexp(x : float;p : longint) : float;
 | |
| \Description
 | |
| \var{Ldexp} returns $2^p x$.
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{lnxp1}, \seef{log10},\seef{log2},\seef{logn}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex19}
 | |
| 
 | |
| 
 | |
| \begin{function}{lnxp1}
 | |
| \Declaration
 | |
| Function lnxp1(x : float) : float;
 | |
| \Description
 | |
| \var{Lnxp1} returns the natural logarithm of \var{1+X}. The result
 | |
| is more precise for small values of \var{x}. \var{x} should be larger
 | |
| than -1.
 | |
| \Errors
 | |
| If $x\leq -1$ then an \var{EInvalidArgument} exception will be raised.
 | |
| \SeeAlso
 | |
| \seef{ldexp}, \seef{log10},\seef{log2},\seef{logn}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex20}
 | |
| 
 | |
| \begin{function}{log10}
 | |
| \Declaration
 | |
| Function log10(x : float) : float;
 | |
| \Description
 | |
| \var{Log10} returns the 10-base logarithm of \var{X}.
 | |
| \Errors
 | |
| If \var{x} is less than or equal to 0 an 'invalid fpu operation' error
 | |
| will occur.
 | |
| \SeeAlso
 | |
| \seef{ldexp}, \seef{lnxp1},\seef{log2},\seef{logn}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex21}
 | |
| 
 | |
| 
 | |
| \begin{function}{log2}
 | |
| \Declaration
 | |
| Function log2(x : float) : float;
 | |
| \Description
 | |
| \var{Log2} returns the 2-base logarithm of \var{X}.
 | |
| \Errors
 | |
| If \var{x} is less than or equal to 0 an 'invalid fpu operation' error
 | |
| will occur.
 | |
| \SeeAlso
 | |
| \seef{ldexp}, \seef{lnxp1},\seef{log10},\seef{logn}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex22}
 | |
| 
 | |
| 
 | |
| \begin{function}{logn}
 | |
| \Declaration
 | |
| Function logn(n,x : float) : float;
 | |
| \Description
 | |
| \var{Logn} returns the n-base logarithm of \var{X}.
 | |
| \Errors
 | |
| If \var{x} is less than or equal to 0 an 'invalid fpu operation' error
 | |
| will occur.
 | |
| \SeeAlso
 | |
| \seef{ldexp}, \seef{lnxp1},\seef{log10},\seef{log2}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex23}
 | |
| 
 | |
| \begin{function}{max}
 | |
| \Declaration
 | |
| Function max(Int1,Int2:Cardinal):Cardinal;
 | |
| Function max(Int1,Int2:Integer):Integer;
 | |
| \Description
 | |
| \var{Max} returns the maximum of \var{Int1} and \var{Int2}.
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{min}, \seef{maxIntValue}, \seef{maxvalue}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex24}
 | |
| 
 | |
| \begin{function}{maxIntValue}
 | |
| \Declaration
 | |
| function MaxIntValue(const Data: array of Integer): Integer;
 | |
| \Description
 | |
| \var{MaxIntValue} returns the largest integer out of the \var{Data}
 | |
| array.
 | |
| 
 | |
| This function is provided for \delphi compatibility, use the \seef{maxvalue}
 | |
| function instead.
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{maxvalue}, \seef{minvalue}, \seef{minIntValue}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex25}
 | |
| 
 | |
| 
 | |
| \begin{function}{maxvalue}
 | |
| \Declaration
 | |
| Function maxvalue(const data : array of float) : float;
 | |
| Function maxvalue(const data : array of Integer) : Integer;
 | |
| Function maxvalue(const data : PFloat; Const N : Integer) : float;
 | |
| Function maxvalue(const data : PInteger; Const N : Integer) : Integer;
 | |
| \Description
 | |
| \var{Maxvalue} returns the largest value in the \var{data} 
 | |
| array with integer or float values. The return value has 
 | |
| the same type as the elements of the array.
 | |
| 
 | |
| The third and fourth forms accept a pointer to an array of \var{N} 
 | |
| integer or float values.
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{maxIntValue}, \seef{minvalue}, \seef{minIntValue}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex26}
 | |
| 
 | |
| \begin{function}{mean}
 | |
| \Declaration
 | |
| Function mean(const data : array of float) : float;
 | |
| Function mean(const data : PFloat; Const N : longint) : float;
 | |
| \Description
 | |
| \var{Mean} returns the average value of \var{data}.
 | |
| 
 | |
| The second form accepts a pointer to an array of \var{N} values.
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seep{meanandstddev}, \seep{momentskewkurtosis}, \seef{sum}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex27}
 | |
| 
 | |
| \begin{procedure}{meanandstddev}
 | |
| \Declaration
 | |
| Procedure meanandstddev(const data : array of float; 
 | |
|                         var mean,stddev : float);
 | |
| procedure meanandstddev(const data : PFloat;
 | |
|   Const N : Longint;var mean,stddev : float);
 | |
| \Description
 | |
| \var{meanandstddev} calculates the mean and standard deviation of \var{data}
 | |
| and returns the result in \var{mean} and \var{stddev}, respectively.
 | |
| Stddev is zero if there is only one value.
 | |
| 
 | |
| The second form accepts a pointer to an array of \var{N} values.
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{mean},\seef{sum}, \seef{sumofsquares}, \seep{momentskewkurtosis}
 | |
| \end{procedure}
 | |
| 
 | |
| \FPCexample{ex28}
 | |
| 
 | |
| 
 | |
| \begin{function}{min}
 | |
| \Declaration
 | |
| Function min(Int1,Int2:Cardinal):Cardinal;
 | |
| Function min(Int1,Int2:Integer):Integer;
 | |
| \Description
 | |
| \var{min} returns the smallest value of \var{Int1} and \var{Int2};
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{max}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex29}
 | |
| 
 | |
| \begin{function}{minIntValue}
 | |
| \Declaration
 | |
| Function minIntValue(const Data: array of Integer): Integer;
 | |
| \Description
 | |
| \var{MinIntvalue} returns the smallest value in the \var{Data} array.
 | |
| 
 | |
| This function is provided for \delphi compatibility, use \var{minvalue}
 | |
| instead.
 | |
| \Errors
 | |
| None
 | |
| \SeeAlso
 | |
| \seef{minvalue}, \seef{maxIntValue}, \seef{maxvalue}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex30}
 | |
| 
 | |
| 
 | |
| \begin{function}{minvalue}
 | |
| \Declaration
 | |
| Function minvalue(const data : array of float) : float;
 | |
| Function minvalue(const data : array of Integer) : Integer;
 | |
| Function minvalue(const data : PFloat; Const N : Integer) : float;
 | |
| Function minvalue(const data : PInteger; Const N : Integer) : Integer;
 | |
| \Description
 | |
| \var{Minvalue} returns the smallest value in the \var{data} 
 | |
| array with integer or float values. The return value has 
 | |
| the same type as the elements of the array.
 | |
| 
 | |
| The third and fourth forms accept a pointer to an array of \var{N} 
 | |
| integer or float values.
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{maxIntValue}, \seef{maxvalue}, \seef{minIntValue}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex31}
 | |
| 
 | |
| 
 | |
| \begin{procedure}{momentskewkurtosis}
 | |
| \Declaration
 | |
| procedure momentskewkurtosis(const data : array of float;
 | |
|   var m1,m2,m3,m4,skew,kurtosis : float);
 | |
| procedure momentskewkurtosis(const data : PFloat; Const N : Integer;
 | |
|   var m1,m2,m3,m4,skew,kurtosis : float);
 | |
| \Description
 | |
| \var{momentskewkurtosis} calculates the 4 first moments of the distribution
 | |
| of valuesin \var{data} and returns them in \var{m1},\var{m2},\var{m3} and
 | |
| \var{m4}, as well as the \var{skew} and \var{kurtosis}.
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{mean}, \seep{meanandstddev}
 | |
| \end{procedure}
 | |
| 
 | |
| \FPCexample{ex32}
 | |
| 
 | |
| \begin{function}{norm}
 | |
| \Declaration
 | |
| Function norm(const data : array of float) : float;
 | |
| Function norm(const data : PFloat; Const N : Integer) : float;
 | |
| \Description
 | |
| \var{Norm} calculates the Euclidian norm of the array of data.
 | |
| This equals \var{sqrt(sumofsquares(data))}.
 | |
| 
 | |
| The second form accepts a pointer to an array of \var{N} values.
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{sumofsquares}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex33}
 | |
| 
 | |
| 
 | |
| \begin{function}{popnstddev}
 | |
| \Declaration
 | |
| Function popnstddev(const data : array of float) : float;
 | |
| Function popnstddev(const data : PFloat; Const N : Integer) : float;
 | |
| \Description
 | |
| \var{Popnstddev} returns the square root of the population variance of
 | |
| the values in the  \var{Data} array. It returns zero if there is only one value.
 | |
| 
 | |
| The second form of this function accepts a pointer to an array of \var{N}
 | |
| values.
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{popnvariance}, \seef{mean}, \seep{meanandstddev}, \seef{stddev},
 | |
| \seep{momentskewkurtosis}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex35}
 | |
| 
 | |
| 
 | |
| \begin{function}{popnvariance}
 | |
| \Declaration
 | |
| Function popnvariance(const data : array of float) : float;
 | |
| Function popnvariance(const data : PFloat; Const N : Integer) : float;
 | |
| \Description
 | |
| \var{Popnvariance} returns the square root of the population variance of
 | |
| the values in the  \var{Data} array. It returns zero if there is only one value.
 | |
| 
 | |
| The second form of this function accepts a pointer to an array of \var{N}
 | |
| values.
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{popnstddev}, \seef{mean}, \seep{meanandstddev}, \seef{stddev},
 | |
| \seep{momentskewkurtosis}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex36}
 | |
| 
 | |
| 
 | |
| \begin{function}{power}
 | |
| \Declaration
 | |
| Function power(base,exponent : float) : float;
 | |
| \Description
 | |
| \var{power} raises \var{base} to the power \var{power}. This is equivalent
 | |
| to \var{exp(power*ln(base))}. Therefore \var{base} should be non-negative.
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{intpower}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex34}
 | |
| 
 | |
| 
 | |
| \begin{function}{radtocycle}
 | |
| \Declaration
 | |
| Function radtocycle(rad : float) : float;
 | |
| \Description
 | |
| \var{Radtocycle} converts its argument \var{rad} (an angle expressed in
 | |
| radians) to an angle in cycles.
 | |
| 
 | |
| (1 cycle equals 2 pi radians)
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{degtograd}, \seef{degtorad}, \seef{radtodeg},
 | |
| \seef{radtograd}, \seef{cycletorad}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex37}
 | |
| 
 | |
| 
 | |
| \begin{function}{radtodeg}
 | |
| \Declaration
 | |
| Function radtodeg(rad : float) : float;
 | |
| \Description
 | |
| \var{Radtodeg} converts its argument \var{rad} (an angle expressed in
 | |
| radians) to an angle in degrees.
 | |
| 
 | |
| (180 degrees equals pi radians)
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{degtograd}, \seef{degtorad}, \seef{radtocycle},
 | |
| \seef{radtograd}, \seef{cycletorad}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex38}
 | |
| 
 | |
| 
 | |
| \begin{function}{radtograd}
 | |
| \Declaration
 | |
| Function radtograd(rad : float) : float;
 | |
| \Description
 | |
| \var{Radtodeg} converts its argument \var{rad} (an angle expressed in
 | |
| radians) to an angle in grads.
 | |
| 
 | |
| (200 grads equals pi radians)
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{degtograd}, \seef{degtorad}, \seef{radtocycle},
 | |
| \seef{radtodeg}, \seef{cycletorad}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex39}
 | |
| 
 | |
| 
 | |
| \begin{function}{randg}
 | |
| \Declaration
 | |
| Function randg(mean,stddev : float) : float;
 | |
| \Description
 | |
| \var{randg} returns a random number which - when produced in large
 | |
| quantities - has a Gaussian distribution with mean \var{mean} and 
 | |
| standarddeviation \var{stddev}. 
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{mean}, \seef{stddev}, \seep{meanandstddev}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex40}
 | |
| 
 | |
| 
 | |
| \begin{procedure}{sincos}
 | |
| \Declaration
 | |
| Procedure sincos(theta : float;var sinus,cosinus : float);
 | |
| \Description
 | |
| \var{Sincos} calculates the sine and cosine of the angle \var{theta},
 | |
| and returns the result in \var{sinus} and \var{cosinus}.
 | |
| 
 | |
| On Intel hardware, This calculation will be faster than making 2 calls
 | |
| to clculatet he sine and cosine separately.
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{arcsin}, \seef{arccos}.
 | |
| \end{procedure}
 | |
| 
 | |
| \FPCexample{ex41}
 | |
| 
 | |
| 
 | |
| \begin{function}{sinh}
 | |
| \Declaration
 | |
| Function sinh(x : float) : float;
 | |
| \Description
 | |
| \var{Sinh} returns the hyperbolic sine of its argument \var{x}.
 | |
| \Errors
 | |
| \SeeAlso
 | |
| \seef{cosh}, \seef{arsinh}, \seef{tanh}, \seef{artanh}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex42}
 | |
| 
 | |
| 
 | |
| \begin{function}{stddev}
 | |
| \Declaration
 | |
| Function stddev(const data : array of float) : float;
 | |
| Function stddev(const data : PFloat; Const N : Integer) : float;
 | |
| \Description
 | |
| \var{Stddev} returns the standard deviation of the values in \var{Data}.
 | |
| It returns zero if there is only one value.
 | |
| 
 | |
| The second form of the function accepts a pointer to an array of \var{N}
 | |
| values.
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{mean}, \seep{meanandstddev}, \seef{variance}, \seef{totalvariance}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex43}
 | |
| 
 | |
| 
 | |
| \begin{function}{sum}
 | |
| \Declaration
 | |
| Function sum(const data : array of float) : float;
 | |
| Function sum(const data : PFloat; Const N : Integer) : float;
 | |
| \Description
 | |
| \var{Sum} returns the sum of the values in the \var{data} array.
 | |
| 
 | |
| The second form of the function accepts a pointer to an array of \var{N}
 | |
| values.
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{sumofsquares}, \seep{sumsandsquares}, \seef{totalvariance}
 | |
| , \seef{variance}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex44}
 | |
| 
 | |
| 
 | |
| \begin{function}{sumofsquares}
 | |
| \Declaration
 | |
| Function sumofsquares(const data : array of float) : float;
 | |
| Function sumofsquares(const data : PFloat; Const N : Integer) : float;
 | |
| \Description
 | |
| \var{Sumofsquares} returns the sum of the squares of the values in the \var{data} 
 | |
| array.
 | |
| 
 | |
| The second form of the function accepts a pointer to an array of \var{N}
 | |
| values.
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{sum}, \seep{sumsandsquares}, \seef{totalvariance}
 | |
| , \seef{variance}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex45}
 | |
| 
 | |
| 
 | |
| \begin{procedure}{sumsandsquares}
 | |
| \Declaration
 | |
| Procedure sumsandsquares(const data : array of float;
 | |
|   var sum,sumofsquares : float);
 | |
| Procedure sumsandsquares(const data : PFloat; Const N : Integer;
 | |
|   var sum,sumofsquares : float);
 | |
| \Description
 | |
| \var{sumsandsquares} calculates the sum of the values and the sum of 
 | |
| the squares of the values in the \var{data} array and returns the
 | |
| results in \var{sum} and \var{sumofsquares}.
 | |
| 
 | |
| The second form of the function accepts a pointer to an array of \var{N}
 | |
| values.
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{sum}, \seef{sumofsquares}, \seef{totalvariance}
 | |
| , \seef{variance}
 | |
| \end{procedure}
 | |
| 
 | |
| \FPCexample{ex46}
 | |
| 
 | |
| 
 | |
| \begin{function}{tan}
 | |
| \Declaration
 | |
| Function tan(x : float) : float;
 | |
| \Description
 | |
| \var{Tan} returns the tangent of \var{x}.
 | |
| \Errors
 | |
| If \var{x} (normalized) is pi/2 or 3pi/2 then an overflow will occur.
 | |
| \SeeAlso
 | |
| \seef{tanh}, \seef{arcsin}, \seep{sincos}, \seef{arccos}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex47}
 | |
| 
 | |
| 
 | |
| \begin{function}{tanh}
 | |
| \Declaration
 | |
| Function tanh(x : float) : float;
 | |
| \Description
 | |
| \var{Tanh} returns the hyperbolic tangent of \var{x}.
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{arcsin}, \seep{sincos}, \seef{arccos}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex48}
 | |
| 
 | |
| 
 | |
| \begin{function}{totalvariance}
 | |
| \Declaration
 | |
| Function totalvariance(const data : array of float) : float;
 | |
| Function totalvariance(const data : PFloat; Const N : Integer) : float;
 | |
| \Description
 | |
| \var{TotalVariance} returns the total variance of the values in the 
 | |
| \var{data} array. It returns zero if there is only one value.
 | |
| 
 | |
| The second form of the function accepts a pointer to an array of \var{N}
 | |
| values.
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{variance}, \seef{stddev}, \seef{mean}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex49}
 | |
| 
 | |
| 
 | |
| \begin{function}{variance}
 | |
| \Declaration
 | |
| Function variance(const data : array of float) : float;
 | |
| Function variance(const data : PFloat; Const N : Integer) : float;
 | |
| \Description
 | |
| \var{Variance} returns the variance of the values in the 
 | |
| \var{data} array. It returns zero if there is only one value.
 | |
| 
 | |
| The second form of the function accepts a pointer to an array of \var{N}
 | |
| values.
 | |
| \Errors
 | |
| None.
 | |
| \SeeAlso
 | |
| \seef{totalvariance}, \seef{stddev}, \seef{mean}
 | |
| \end{function}
 | |
| 
 | |
| \FPCexample{ex50}
 | 
