fpc/compiler/htypechk.pas
2002-10-07 20:12:08 +00:00

1021 lines
38 KiB
ObjectPascal

{
$Id$
Copyright (c) 1998-2002 by Florian Klaempfl
This unit exports some help routines for the type checking
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit htypechk;
{$i fpcdefs.inc}
interface
uses
tokens,
node,
symtype,symdef;
type
Ttok2nodeRec=record
tok : ttoken;
nod : tnodetype;
op_overloading_supported : boolean;
end;
const
tok2nodes=25;
tok2node:array[1..tok2nodes] of ttok2noderec=(
(tok:_PLUS ;nod:addn;op_overloading_supported:true), { binary overloading supported }
(tok:_MINUS ;nod:subn;op_overloading_supported:true), { binary and unary overloading supported }
(tok:_STAR ;nod:muln;op_overloading_supported:true), { binary overloading supported }
(tok:_SLASH ;nod:slashn;op_overloading_supported:true), { binary overloading supported }
(tok:_EQUAL ;nod:equaln;op_overloading_supported:true), { binary overloading supported }
(tok:_GT ;nod:gtn;op_overloading_supported:true), { binary overloading supported }
(tok:_LT ;nod:ltn;op_overloading_supported:true), { binary overloading supported }
(tok:_GTE ;nod:gten;op_overloading_supported:true), { binary overloading supported }
(tok:_LTE ;nod:lten;op_overloading_supported:true), { binary overloading supported }
(tok:_SYMDIF ;nod:symdifn;op_overloading_supported:true), { binary overloading supported }
(tok:_STARSTAR;nod:starstarn;op_overloading_supported:true), { binary overloading supported }
(tok:_OP_AS ;nod:asn;op_overloading_supported:false), { binary overloading NOT supported }
(tok:_OP_IN ;nod:inn;op_overloading_supported:false), { binary overloading NOT supported }
(tok:_OP_IS ;nod:isn;op_overloading_supported:false), { binary overloading NOT supported }
(tok:_OP_OR ;nod:orn;op_overloading_supported:true), { binary overloading supported }
(tok:_OP_AND ;nod:andn;op_overloading_supported:true), { binary overloading supported }
(tok:_OP_DIV ;nod:divn;op_overloading_supported:true), { binary overloading supported }
(tok:_OP_NOT ;nod:notn;op_overloading_supported:true), { unary overloading supported }
(tok:_OP_MOD ;nod:modn;op_overloading_supported:true), { binary overloading supported }
(tok:_OP_SHL ;nod:shln;op_overloading_supported:true), { binary overloading supported }
(tok:_OP_SHR ;nod:shrn;op_overloading_supported:true), { binary overloading supported }
(tok:_OP_XOR ;nod:xorn;op_overloading_supported:true), { binary overloading supported }
(tok:_ASSIGNMENT;nod:assignn;op_overloading_supported:true), { unary overloading supported }
(tok:_CARET ;nod:caretn;op_overloading_supported:false), { binary overloading NOT supported }
(tok:_UNEQUAL ;nod:unequaln;op_overloading_supported:false) { binary overloading NOT supported overload = instead }
);
const
{ firstcallparan without varspez we don't count the ref }
{$ifdef extdebug}
count_ref : boolean = true;
{$endif def extdebug}
get_para_resulttype : boolean = false;
allow_array_constructor : boolean = false;
{ is overloading of this operator allowed for this
binary operator }
function isbinaryoperatoroverloadable(ld, rd,dd : tdef;
treetyp : tnodetype) : boolean;
{ is overloading of this operator allowed for this
unary operator }
function isunaryoperatoroverloadable(rd,dd : tdef;
treetyp : tnodetype) : boolean;
{ check operator args and result type }
function isoperatoracceptable(pf : tprocdef; optoken : ttoken) : boolean;
function isbinaryoverloaded(var t : tnode) : boolean;
{ Register Allocation }
procedure make_not_regable(p : tnode);
procedure calcregisters(p : tbinarynode;r32,fpu,mmx : word);
{ subroutine handling }
function is_procsym_load(p:tnode):boolean;
function is_procsym_call(p:tnode):boolean;
procedure test_local_to_procvar(from_def:tprocvardef;to_def:tdef);
{
type
tvarstaterequire = (vsr_can_be_undefined,vsr_must_be_valid,
vsr_is_used_after,vsr_must_be_valid_and_is_used_after); }
{ sets varsym varstate field correctly }
procedure unset_varstate(p : tnode);
procedure set_varstate(p : tnode;must_be_valid : boolean);
{ sets the callunique flag, if the node is a vecn, }
{ takes care of type casts etc. }
procedure set_unique(p : tnode);
{ sets funcret_is_valid to true, if p contains a funcref node }
procedure set_funcret_is_valid(p : tnode);
function valid_for_formal_var(p : tnode) : boolean;
function valid_for_formal_const(p : tnode) : boolean;
function valid_for_var(p:tnode):boolean;
function valid_for_assignment(p:tnode):boolean;
implementation
uses
globtype,systems,
cutils,verbose,globals,
symconst,symsym,symtable,
defbase,cpubase,
ncnv,nld,
nmem,ncal,nmat,
cgbase
;
type
TValidAssign=(Valid_Property,Valid_Void);
TValidAssigns=set of TValidAssign;
{ ld is the left type definition
rd the right type definition
dd the result type definition or voiddef if unkown }
function isbinaryoperatoroverloadable(ld, rd, dd : tdef;
treetyp : tnodetype) : boolean;
begin
isbinaryoperatoroverloadable:=
(treetyp=starstarn) or
(ld.deftype=recorddef) or
(rd.deftype=recorddef) or
(ld.deftype=variantdef) or
(rd.deftype=variantdef) or
((rd.deftype=pointerdef) and
not(is_dynamic_array(ld) and
is_voidpointer(rd)) and
not(is_pchar(rd) and
(is_chararray(ld) or
(ld.deftype=stringdef) or
(treetyp=addn))) and
(not(ld.deftype in [pointerdef,objectdef,classrefdef,procvardef]) or
not (treetyp in [equaln,unequaln,gtn,gten,ltn,lten,subn])
) and
(not is_integer(ld) or not (treetyp in [addn,subn]))
) or
((ld.deftype=pointerdef) and
not(is_dynamic_array(rd) and
is_voidpointer(ld)) and
not(is_pchar(ld) and
(is_chararray(rd) or
(rd.deftype=stringdef) or
(treetyp=addn))) and
(not(rd.deftype in [stringdef,pointerdef,objectdef,classrefdef,procvardef]) and
((not is_integer(rd) and (rd.deftype<>objectdef)
and (rd.deftype<>classrefdef)) or
not (treetyp in [equaln,unequaln,gtn,gten,ltn,lten,addn,subn])
)
)
) or
{ array def, but not mmx or chararray+[char,string,chararray] }
((ld.deftype=arraydef) and
not((cs_mmx in aktlocalswitches) and
is_mmx_able_array(ld)) and
not(is_dynamic_array(ld) and
is_voidpointer(rd)) and
not(is_chararray(ld) and
(is_char(rd) or
is_pchar(rd) or
{ char array + int = pchar + int, fix for web bug 1377 (JM) }
is_integer(rd) or
(rd.deftype=stringdef) or
is_chararray(rd)))
) or
((rd.deftype=arraydef) and
not((cs_mmx in aktlocalswitches) and
is_mmx_able_array(rd)) and
not(is_dynamic_array(rd) and
is_voidpointer(ld)) and
not(is_chararray(rd) and
(is_char(ld) or
is_pchar(ld) or
(ld.deftype=stringdef) or
is_chararray(ld)))
) or
{ <> and = are defined for classes }
(
(ld.deftype=objectdef) and
not((treetyp in [equaln,unequaln]) and is_class_or_interface(ld))
) or
(
(rd.deftype=objectdef) and
not((treetyp in [equaln,unequaln]) and is_class_or_interface(rd))
)
or
{ allow other operators that + on strings }
(
(is_char(rd) or
is_pchar(rd) or
(rd.deftype=stringdef) or
is_chararray(rd) or
is_char(ld) or
is_pchar(ld) or
(ld.deftype=stringdef) or
is_chararray(ld)
) and
not(treetyp in [addn,equaln,unequaln,gtn,gten,ltn,lten]) and
not(is_pchar(ld) and
(is_integer(rd) or (rd.deftype=pointerdef)) and
(treetyp=subn)
)
);
end;
function isunaryoperatoroverloadable(rd,dd : tdef;
treetyp : tnodetype) : boolean;
begin
isunaryoperatoroverloadable:=false;
{ what assignment overloading should be allowed ?? }
if (treetyp=assignn) then
begin
isunaryoperatoroverloadable:=true;
{ this already get tbs0261 to fail
isunaryoperatoroverloadable:=not is_equal(rd,dd); PM }
end
{ should we force that rd and dd are equal ?? }
else if (treetyp=subn { unaryminusn }) then
begin
isunaryoperatoroverloadable:=
not is_integer(rd) and not (rd.deftype=floatdef)
{$ifdef SUPPORT_MMX}
and not ((cs_mmx in aktlocalswitches) and
is_mmx_able_array(rd))
{$endif SUPPORT_MMX}
;
end
else if (treetyp=notn) then
begin
isunaryoperatoroverloadable:=not is_integer(rd) and not is_boolean(rd)
{$ifdef SUPPORT_MMX}
and not ((cs_mmx in aktlocalswitches) and
is_mmx_able_array(rd))
{$endif SUPPORT_MMX}
;
end;
end;
function isoperatoracceptable(pf : tprocdef; optoken : ttoken) : boolean;
var
ld,rd,dd : tdef;
i : longint;
begin
case pf.parast.symindex.count of
2 : begin
isoperatoracceptable:=false;
for i:=1 to tok2nodes do
if tok2node[i].tok=optoken then
begin
ld:=tvarsym(pf.parast.symindex.first).vartype.def;
rd:=tvarsym(pf.parast.symindex.first.indexnext).vartype.def;
dd:=pf.rettype.def;
isoperatoracceptable:=
tok2node[i].op_overloading_supported and
isbinaryoperatoroverloadable(ld,rd,dd,tok2node[i].nod);
break;
end;
end;
1 : begin
rd:=tvarsym(pf.parast.symindex.first).vartype.def;
dd:=pf.rettype.def;
for i:=1 to tok2nodes do
if tok2node[i].tok=optoken then
begin
isoperatoracceptable:=
tok2node[i].op_overloading_supported and
isunaryoperatoroverloadable(rd,dd,tok2node[i].nod);
break;
end;
end;
else
isoperatoracceptable:=false;
end;
end;
function isbinaryoverloaded(var t : tnode) : boolean;
var
rd,ld : tdef;
optoken : ttoken;
ht : tnode;
begin
isbinaryoverloaded:=false;
{ overloaded operator ? }
{ load easier access variables }
rd:=tbinarynode(t).right.resulttype.def;
ld:=tbinarynode(t).left.resulttype.def;
if isbinaryoperatoroverloadable(ld,rd,voidtype.def,t.nodetype) then
begin
isbinaryoverloaded:=true;
{!!!!!!!!! handle paras }
case t.nodetype of
addn:
optoken:=_PLUS;
subn:
optoken:=_MINUS;
muln:
optoken:=_STAR;
starstarn:
optoken:=_STARSTAR;
slashn:
optoken:=_SLASH;
ltn:
optoken:=tokens._lt;
gtn:
optoken:=tokens._gt;
lten:
optoken:=_lte;
gten:
optoken:=_gte;
equaln,unequaln :
optoken:=_EQUAL;
symdifn :
optoken:=_SYMDIF;
modn :
optoken:=_OP_MOD;
orn :
optoken:=_OP_OR;
xorn :
optoken:=_OP_XOR;
andn :
optoken:=_OP_AND;
divn :
optoken:=_OP_DIV;
shln :
optoken:=_OP_SHL;
shrn :
optoken:=_OP_SHR;
else
exit;
end;
{ the nil as symtable signs firstcalln that this is
an overloaded operator }
ht:=ccallnode.create(nil,overloaded_operators[optoken],nil,nil);
{ we have to convert p^.left and p^.right into
callparanodes }
if tcallnode(ht).symtableprocentry=nil then
begin
CGMessage(parser_e_operator_not_overloaded);
ht.free;
isbinaryoverloaded:=false;
exit;
end;
inc(tcallnode(ht).symtableprocentry.refs);
{ we need copies, because the originals will be destroyed when we give a }
{ changed node back to firstpass! (JM) }
if assigned(tbinarynode(t).left) then
if assigned(tbinarynode(t).right) then
tcallnode(ht).left :=
ccallparanode.create(tbinarynode(t).right.getcopy,
ccallparanode.create(tbinarynode(t).left.getcopy,nil))
else
tcallnode(ht).left :=
ccallparanode.create(nil,
ccallparanode.create(tbinarynode(t).left.getcopy,nil))
else if assigned(tbinarynode(t).right) then
tcallnode(ht).left :=
ccallparanode.create(tbinarynode(t).right.getcopy,
ccallparanode.create(nil,nil));
if t.nodetype=unequaln then
ht:=cnotnode.create(ht);
t:=ht;
end;
end;
{****************************************************************************
Register Calculation
****************************************************************************}
{ marks an lvalue as "unregable" }
procedure make_not_regable(p : tnode);
begin
case p.nodetype of
typeconvn :
make_not_regable(ttypeconvnode(p).left);
loadn :
if tloadnode(p).symtableentry.typ=varsym then
tvarsym(tloadnode(p).symtableentry).varoptions:=tvarsym(tloadnode(p).symtableentry).varoptions-[vo_regable,vo_fpuregable];
end;
end;
{ calculates the needed registers for a binary operator }
procedure calcregisters(p : tbinarynode;r32,fpu,mmx : word);
begin
p.left_right_max;
{ Only when the difference between the left and right registers < the
wanted registers allocate the amount of registers }
if assigned(p.left) then
begin
if assigned(p.right) then
begin
{ the location must be already filled in because we need it to }
{ calculate the necessary number of registers (JM) }
if p.location.loc = LOC_INVALID then
internalerror(200110101);
if (abs(p.left.registers32-p.right.registers32)<r32) or
((p.location.loc = LOC_FPUREGISTER) and
(p.right.registersfpu <= p.left.registersfpu) and
((p.right.registersfpu <> 0) or (p.left.registersfpu <> 0)) and
(p.left.registers32 < p.right.registers32)) then
inc(p.registers32,r32);
if (abs(p.left.registersfpu-p.right.registersfpu)<fpu) then
inc(p.registersfpu,fpu);
{$ifdef SUPPORT_MMX}
if (abs(p.left.registersmmx-p.right.registersmmx)<mmx) then
inc(p.registersmmx,mmx);
{$endif SUPPORT_MMX}
{ the following is a little bit guessing but I think }
{ it's the only way to solve same internalerrors: }
{ if the left and right node both uses registers }
{ and return a mem location, but the current node }
{ doesn't use an integer register we get probably }
{ trouble when restoring a node }
if (p.left.registers32=p.right.registers32) and
(p.registers32=p.left.registers32) and
(p.registers32>0) and
(p.left.location.loc in [LOC_REFERENCE,LOC_CREFERENCE]) and
(p.right.location.loc in [LOC_REFERENCE,LOC_CREFERENCE]) then
inc(p.registers32);
end
else
begin
if (p.left.registers32<r32) then
inc(p.registers32,r32);
if (p.left.registersfpu<fpu) then
inc(p.registersfpu,fpu);
{$ifdef SUPPORT_MMX}
if (p.left.registersmmx<mmx) then
inc(p.registersmmx,mmx);
{$endif SUPPORT_MMX}
end;
end;
{ error CGMessage, if more than 8 floating point }
{ registers are needed }
{ if p.registersfpu>maxfpuregs then
CGMessage(cg_e_too_complex_expr); now pushed if needed PM }
end;
{****************************************************************************
Subroutine Handling
****************************************************************************}
function is_procsym_load(p:tnode):boolean;
begin
{ ignore vecn,subscriptn }
repeat
case p.nodetype of
vecn :
p:=tvecnode(p).left;
subscriptn :
p:=tsubscriptnode(p).left;
else
break;
end;
until false;
is_procsym_load:=((p.nodetype=loadn) and (tloadnode(p).symtableentry.typ=procsym)) or
((p.nodetype=addrn) and (taddrnode(p).left.nodetype=loadn)
and (tloadnode(taddrnode(p).left).symtableentry.typ=procsym)) ;
end;
{ change a proc call to a procload for assignment to a procvar }
{ this can only happen for proc/function without arguments }
function is_procsym_call(p:tnode):boolean;
begin
is_procsym_call:=(p.nodetype=calln) and (tcallnode(p).left=nil) and
(((tcallnode(p).symtableprocentry.typ=procsym) and (tcallnode(p).right=nil)) or
(assigned(tcallnode(p).right) and (tcallnode(tcallnode(p).right).symtableprocentry.typ=varsym)));
end;
{ local routines can't be assigned to procvars }
procedure test_local_to_procvar(from_def:tprocvardef;to_def:tdef);
begin
if (from_def.symtablelevel>1) and (to_def.deftype=procvardef) then
CGMessage(type_e_cannot_local_proc_to_procvar);
end;
procedure set_varstate(p : tnode;must_be_valid : boolean);
var
hsym : tvarsym;
begin
while assigned(p) do
begin
if (nf_varstateset in p.flags) then
exit;
include(p.flags,nf_varstateset);
case p.nodetype of
typeconvn :
begin
case ttypeconvnode(p).convtype of
tc_cchar_2_pchar,
tc_cstring_2_pchar,
tc_array_2_pointer :
must_be_valid:=false;
tc_pchar_2_string,
tc_pointer_2_array :
must_be_valid:=true;
end;
p:=tunarynode(p).left;
end;
subscriptn :
p:=tunarynode(p).left;
vecn:
begin
set_varstate(tbinarynode(p).right,true);
if not(tunarynode(p).left.resulttype.def.deftype in [stringdef,arraydef]) then
must_be_valid:=true;
p:=tunarynode(p).left;
end;
{ do not parse calln }
calln :
break;
callparan :
begin
set_varstate(tbinarynode(p).right,must_be_valid);
p:=tunarynode(p).left;
end;
loadn :
begin
if (tloadnode(p).symtableentry.typ=varsym) then
begin
hsym:=tvarsym(tloadnode(p).symtableentry);
if must_be_valid and (nf_first in p.flags) then
begin
if (hsym.varstate=vs_declared_and_first_found) or
(hsym.varstate=vs_set_but_first_not_passed) then
begin
if (assigned(hsym.owner) and
assigned(aktprocsym) and
(hsym.owner = aktprocdef.localst)) then
begin
if tloadnode(p).symtable.symtabletype=localsymtable then
CGMessage1(sym_n_uninitialized_local_variable,hsym.realname)
else
CGMessage1(sym_n_uninitialized_variable,hsym.realname);
end;
end;
end;
if (nf_first in p.flags) then
begin
if hsym.varstate=vs_declared_and_first_found then
begin
{ this can only happen at left of an assignment, no ? PM }
if (parsing_para_level=0) and not must_be_valid then
hsym.varstate:=vs_assigned
else
hsym.varstate:=vs_used;
end
else
if hsym.varstate=vs_set_but_first_not_passed then
hsym.varstate:=vs_used;
exclude(p.flags,nf_first);
end
else
begin
if (hsym.varstate=vs_assigned) and
(must_be_valid or (parsing_para_level>0) or
(p.resulttype.def.deftype=procvardef)) then
hsym.varstate:=vs_used;
if (hsym.varstate=vs_declared_and_first_found) and
(must_be_valid or (parsing_para_level>0) or
(p.resulttype.def.deftype=procvardef)) then
hsym.varstate:=vs_set_but_first_not_passed;
end;
end;
break;
end;
funcretn:
begin
{ no claim if setting higher return value_str }
if must_be_valid and
(lexlevel=tfuncretnode(p).funcretsym.owner.symtablelevel) and
((tfuncretnode(p).funcretsym.funcretstate=vs_declared) or
((nf_is_first_funcret in p.flags) and
(tfuncretnode(p).funcretsym.funcretstate=vs_declared_and_first_found))) then
begin
CGMessage(sym_w_function_result_not_set);
{ avoid multiple warnings }
tfuncretnode(p).funcretsym.funcretstate:=vs_assigned;
end;
if (nf_is_first_funcret in p.flags) and not must_be_valid then
tfuncretnode(p).funcretsym.funcretstate:=vs_assigned;
break;
end;
else
break;
end;{case }
end;
end;
procedure unset_varstate(p : tnode);
begin
while assigned(p) do
begin
exclude(p.flags,nf_varstateset);
case p.nodetype of
typeconvn,
subscriptn,
vecn :
p:=tunarynode(p).left;
else
break;
end;
end;
end;
procedure set_unique(p : tnode);
begin
while assigned(p) do
begin
case p.nodetype of
vecn:
begin
include(p.flags,nf_callunique);
break;
end;
typeconvn,
subscriptn,
derefn:
p:=tunarynode(p).left;
else
break;
end;
end;
end;
procedure set_funcret_is_valid(p:tnode);
begin
while assigned(p) do
begin
case p.nodetype of
funcretn:
begin
if (nf_is_first_funcret in p.flags) or
(tfuncretnode(p).funcretsym.funcretstate=vs_declared_and_first_found) then
tfuncretnode(p).funcretsym.funcretstate:=vs_assigned;
break;
end;
vecn,
{derefn,}
typeconvn,
subscriptn:
p:=tunarynode(p).left;
else
break;
end;
end;
end;
function valid_for_assign(p:tnode;opts:TValidAssigns):boolean;
var
hp : tnode;
gotwith,
gotsubscript,
gotpointer,
gotvec,
gotclass,
gotderef : boolean;
fromdef,
todef : tdef;
begin
valid_for_assign:=false;
gotsubscript:=false;
gotvec:=false;
gotderef:=false;
gotclass:=false;
gotpointer:=false;
gotwith:=false;
hp:=p;
if not(valid_void in opts) and
is_void(hp.resulttype.def) then
begin
CGMessagePos(hp.fileinfo,type_e_argument_cant_be_assigned);
exit;
end;
while assigned(hp) do
begin
{ property allowed? calln has a property check itself }
if (nf_isproperty in hp.flags) then
begin
if (valid_property in opts) then
valid_for_assign:=true
else
begin
{ check return type }
case hp.resulttype.def.deftype of
pointerdef :
gotpointer:=true;
objectdef :
gotclass:=is_class_or_interface(hp.resulttype.def);
recorddef, { handle record like class it needs a subscription }
classrefdef :
gotclass:=true;
end;
{ 1. if it returns a pointer and we've found a deref,
2. if it returns a class or record and a subscription or with is found }
if (gotpointer and gotderef) or
(gotclass and (gotsubscript or gotwith)) then
valid_for_assign:=true
else
CGMessagePos(hp.fileinfo,type_e_argument_cant_be_assigned);
end;
exit;
end;
case hp.nodetype of
temprefn :
begin
valid_for_assign := true;
exit;
end;
derefn :
begin
gotderef:=true;
hp:=tderefnode(hp).left;
end;
typeconvn :
begin
{ typecast sizes must match, exceptions:
- from formaldef
- from void
- typecast from pointer to array }
fromdef:=ttypeconvnode(hp).left.resulttype.def;
todef:=hp.resulttype.def;
if not((fromdef.deftype=formaldef) or
is_void(fromdef) or
((fromdef.deftype=pointerdef) and (todef.deftype=arraydef)) or
((fromdef.deftype = objectdef) and (todef.deftype = objectdef) and
(tobjectdef(fromdef).is_related(tobjectdef(todef))))) and
(fromdef.size<>todef.size) then
begin
{ in TP it is allowed to typecast to smaller types }
if not(m_tp7 in aktmodeswitches) or
(todef.size>fromdef.size) then
CGMessagePos2(hp.fileinfo,type_e_typecast_wrong_size_for_assignment,tostr(fromdef.size),tostr(todef.size));
end;
case hp.resulttype.def.deftype of
pointerdef :
gotpointer:=true;
objectdef :
gotclass:=is_class_or_interface(hp.resulttype.def);
classrefdef :
gotclass:=true;
arraydef :
begin
{ pointer -> array conversion is done then we need to see it
as a deref, because a ^ is then not required anymore }
if (ttypeconvnode(hp).left.resulttype.def.deftype=pointerdef) then
gotderef:=true;
end;
end;
hp:=ttypeconvnode(hp).left;
end;
vecn :
begin
gotvec:=true;
hp:=tunarynode(hp).left;
end;
asn :
hp:=tunarynode(hp).left;
subscriptn :
begin
gotsubscript:=true;
{ a class/interface access is an implicit }
{ dereferencing }
hp:=tsubscriptnode(hp).left;
if is_class_or_interface(hp.resulttype.def) then
gotderef:=true;
end;
subn,
addn :
begin
{ Allow add/sub operators on a pointer, or an integer
and a pointer typecast and deref has been found }
if ((hp.resulttype.def.deftype=pointerdef) or
(is_integer(hp.resulttype.def) and gotpointer)) and
gotderef then
valid_for_assign:=true
else
CGMessagePos(hp.fileinfo,type_e_variable_id_expected);
exit;
end;
addrn :
begin
if gotderef or
(nf_procvarload in hp.flags) then
valid_for_assign:=true
else
CGMessagePos(hp.fileinfo,type_e_no_assign_to_addr);
exit;
end;
selfn,
funcretn :
begin
valid_for_assign:=true;
exit;
end;
calln :
begin
{ check return type }
case hp.resulttype.def.deftype of
arraydef :
begin
{ dynamic arrays are allowed when there is also a
vec node }
if is_dynamic_array(hp.resulttype.def) and
gotvec then
begin
gotderef:=true;
gotpointer:=true;
end;
end;
pointerdef :
gotpointer:=true;
objectdef :
gotclass:=is_class_or_interface(hp.resulttype.def);
recorddef, { handle record like class it needs a subscription }
classrefdef :
gotclass:=true;
end;
{ 1. if it returns a pointer and we've found a deref,
2. if it returns a class or record and a subscription or with is found }
if (gotpointer and gotderef) or
(gotclass and (gotsubscript or gotwith)) then
valid_for_assign:=true
else
CGMessagePos(hp.fileinfo,type_e_argument_cant_be_assigned);
exit;
end;
loadn :
begin
case tloadnode(hp).symtableentry.typ of
absolutesym,
varsym :
begin
if (tvarsym(tloadnode(hp).symtableentry).varspez=vs_const) then
begin
{ allow p^:= constructions with p is const parameter }
if gotderef then
valid_for_assign:=true
else
CGMessagePos(tloadnode(hp).fileinfo,type_e_no_assign_to_const);
exit;
end;
{ Are we at a with symtable, then we need to process the
withrefnode also to check for maybe a const load }
if (tloadnode(hp).symtable.symtabletype=withsymtable) then
begin
{ continue with processing the withref node }
hp:=tnode(twithsymtable(tloadnode(hp).symtable).withrefnode);
gotwith:=true;
end
else
begin
{ set the assigned flag for varsyms }
if (tvarsym(tloadnode(hp).symtableentry).varstate=vs_declared) then
tvarsym(tloadnode(hp).symtableentry).varstate:=vs_assigned;
valid_for_assign:=true;
exit;
end;
end;
funcretsym :
begin
valid_for_assign:=true;
exit;
end;
typedconstsym :
begin
if ttypedconstsym(tloadnode(hp).symtableentry).is_writable then
valid_for_assign:=true
else
CGMessagePos(hp.fileinfo,type_e_no_assign_to_const);
exit;
end;
else
begin
CGMessagePos(hp.fileinfo,type_e_variable_id_expected);
exit;
end;
end;
end;
else
begin
CGMessagePos(hp.fileinfo,type_e_variable_id_expected);
exit;
end;
end;
end;
end;
function valid_for_var(p:tnode):boolean;
begin
valid_for_var:=valid_for_assign(p,[]);
end;
function valid_for_formal_var(p : tnode) : boolean;
begin
valid_for_formal_var:=valid_for_assign(p,[valid_void]);
end;
function valid_for_formal_const(p : tnode) : boolean;
var
v : boolean;
begin
{ p must have been firstpass'd before }
{ accept about anything but not a statement ! }
case p.nodetype of
calln,
statementn,
addrn :
begin
{ addrn is not allowed as this generate a constant value,
but a tp procvar are allowed (PFV) }
if nf_procvarload in p.flags then
v:=true
else
v:=false;
end;
else
v:=true;
end;
valid_for_formal_const:=v;
end;
function valid_for_assignment(p:tnode):boolean;
begin
valid_for_assignment:=valid_for_assign(p,[valid_property]);
end;
end.
{
$Log$
Revision 1.50 2002-10-07 20:12:08 peter
* ugly hack to fix tb0411
Revision 1.49 2002/10/05 00:47:03 peter
* support dynamicarray<>nil
Revision 1.48 2002/10/04 21:13:59 peter
* ignore vecn,subscriptn when checking for a procvar loadn
Revision 1.47 2002/09/16 18:09:34 peter
* set_funcret_valid fixed when result was already used in a nested
procedure
Revision 1.46 2002/07/20 11:57:53 florian
* types.pas renamed to defbase.pas because D6 contains a types
unit so this would conflicts if D6 programms are compiled
+ Willamette/SSE2 instructions to assembler added
Revision 1.45 2002/05/18 13:34:08 peter
* readded missing revisions
Revision 1.44 2002/05/16 19:46:37 carl
+ defines.inc -> fpcdefs.inc to avoid conflicts if compiling by hand
+ try to fix temp allocation (still in ifdef)
+ generic constructor calls
+ start of tassembler / tmodulebase class cleanup
Revision 1.42 2002/04/02 17:11:28 peter
* tlocation,treference update
* LOC_CONSTANT added for better constant handling
* secondadd splitted in multiple routines
* location_force_reg added for loading a location to a register
of a specified size
* secondassignment parses now first the right and then the left node
(this is compatible with Kylix). This saves a lot of push/pop especially
with string operations
* adapted some routines to use the new cg methods
Revision 1.41 2002/01/16 09:33:46 jonas
* no longer allow assignments to pointer expressions (unless there's a
deref), reported by John Lee
}